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Abstract

Underlying data structures, such as symmetries or
invariance to transformations, are often exploited
to improve the solution of learning tasks. How-
ever, embedding these properties in models or
learning algorithms can be challenging and com-
putationally intensive. Data augmentation, on the
other hand, induces these symmetries during train-
ing by applying multiple transformations to the
input data. Despite its ubiquity, its effectiveness
depends on the choices of which transformations
to apply, when to do so, and how often. In fact,
there is both empirical and theoretical evidence
that the indiscriminate use of data augmentation
can introduce biases that outweigh its benefits.
This work tackles these issues by automatically
adapting the data augmentation while solving the
learning task. To do so, it formulates data augmen-
tation as an invariance constrained learning prob-
lem and leverages Monte Carlo Markov Chain
(MCMC) sampling to solve it. The result is an
algorithm that not only does away with a priori
searches for augmentation distributions, but also
dynamically controls if and when data augmen-
tation is applied. We validate empirically our
theoretical developments in automatic data aug-
mentation benchmarks for CIFAR and ImageNet-
100 datasets. Furthermore, our experiments show
how this approach can be used to gather insights
on the actual symmetries underlying a learning
task.

1. Introduction
Exploiting the underlying structure of data is a key principle
of data analysis. Its use has been fundamental to the suc-
cess of machine learning solutions, from the translational
equivariance of convolutional neural networks (Fukushima
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and Miyake, 1982) to the invariant attention mechanism
in Alphafold (Jumper et al., 2021). However, embedding
invariances and symmetries in model architectures is hard
in general and when possible, often incurs a high compu-
tational cost. This is the case, of rotation invariant neural
network architectures that rely on group convolutions, which
are feasible only for small, discrete transformation spaces
or require coarse undersampling due to their high compu-
tational complexity (Cohen and Welling, 2016; Finzi et al.,
2020).

A widely used alternative consists of modifying the data
rather than the model. That is, to augment the dataset by
applying transformations to samples in order to induce the
desired symmetries or invariances during training. Data aug-
mentation, as it is commonly known, is used to train virtually
all state-of-the-art models in a variety of domains (Shorten
and Khoshgoftaar, 2019). This empirical success is sup-
ported by theoretical results showing that, when the under-
lying data distribution is invariant to the applied transfor-
mations, data augmentation provides a better estimation of
the statistical risk (Chen et al., 2019; Sannai et al., 2019;
Lyle et al., 2020; Shao et al., 2022). On the other hand,
applying the wrong transformations can introduce biases
that may outweigh these benefits (Chen et al., 2019; Shao
et al., 2022).

Choosing which transformations to apply, when to do so,
and how often, is thus paramount to achieving good results.
However, it requires knowledge about the underlying distri-
bution of the data that is typically unavailable in learning
settings. Several approaches to learning an augmentation
policy or distribution over a given set of transformations
exist, such as reinforcement learning (Cubuk et al., 2018),
genetic algorithms (Ho et al., 2019), density matching (Lim
et al., 2019; Cubuk et al., 2020; Hataya et al., 2020), gradi-
ent matching (Zheng et al., 2022), bi-level optimization (Li
et al., 2020b; Liu et al., 2021), jointly optimizing over trans-
formations using regularised objectives (Benton et al., 2020),
variational bayesian inference (Chatzipantazis et al., 2021),
bayesian model selection (Immer et al., 2022) and alignment
regularization (Wang et al., 2022). Nevertheless, optimiza-
tion based methods often require computing gradients with
respect to transformations (Chatzipantazis et al., 2021; Li
et al., 2020b) and several of these methods resort to compu-
tationally intensive search phases, optimization of auxiliary
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models, or additional data, while failing to outperform fixed
user-defined augmentation distributions (Müller and Hutter,
2021).

In this work, we formulate data augmentation as an
invariance-constrained learning problem. That is, we specify
a set of transformations and a desired level of invariance or
robustness with respect to these transformations, and recover
an augmentation distribution that imposes this requirement
on the learned model. We do this in a non-parametric fash-
ion, i.e., without explicitly parametrising the distribution
over transformations.

More specifically, our invariance requirement is weighted
by the probability of each data point. Hence, we require
the output of our model to be stable only on the support of
the underlying data distribution, and more so on common
samples. By imposing this requirement as a constraint on
the learning task and leveraging recent duality results, the
amount of data augmentation can be automatically adjusted
during training. An advantage of the constrained learning
formulation is that it mitigates the potential biases intro-
duced by data augmentation without doing away with its
potential benefits. We propose an algorithm that combines
stochastic primal-dual methods and MCMC sampling to do
away with the need for transformations to be differentiable.
We evaluate our method in automatic data augmentation
benchmarks in CIFAR and ImageNet-100 datasets. Further-
more, we show how our method provides insights on the
actual symmetries underlying a learning task, using synthet-
ically invariant MNIST and Fashion-MNIST datasets.

2. Data Augmentation in Supervised Learning
As in the standard supervised learning setting, let x ∈ X ⊆
Rd denote a feature vector and y ∈ Y ⊆ R its associated
label or measurement. For classification tasks, we take
Y ⊆ N. Let D denote a probability distribution over the data
pairs (x, y) and ℓ : Y ×Y → R+ be a non-negative, convex
loss function, e.g., the cross entropy loss. Our goal is to learn
a predictor fθ : X → Y in some hypothesis class Hθ =
{fθ | θ ∈ Θ ⊆ Rp} that minimizes the expected loss,

minimize
θ∈Θ

R(fθ) := E(x,y)∼D[ℓ(fθ(x), y)]. (SRM)

We consider the distribution D to be unknown, except for
the dataset {(xi, yi), i = 1, . . . , n} of n i.i.d. samples from
D. Therefore, we rely on the empirical approximation of
the objective of (SRM),

R̂(fθ) :=
1

N

n∑
i=1

ℓ(fθ(xi), yi). (1)

One of the aims of data augmentation is to improve the
approximation R̂ of the statistical risk R when dealing with
a dataset that is not sufficiently representative of the data

distribution. To do so, we consider transformations of the
feature vector g : X → X , taken from the (possibly infinite)
transformation set G. Common examples include rotations
and translations in images. Data augmentation leverages
these transformations to generate new data pairs (gx, y) by
sampling transformations according to a probability distri-
bution G over G, leading to the learning problem

minimize
θ∈Θ

R̂aug(fθ) :=
1

N

N∑
i=1

Eg∼G [ ℓ(fθ(gxi), yi)] .

(2)

Note that the empirical risk approximation R̂ in (1) can be
interpreted as an approximation of the data distribution D by
a discrete distribution that places atoms on each data point.
In that sense, R̂aug in (2) can be thought of as the Vicinal
Risk Minimization (Chapelle et al., 2000) counterpart of (1),
in which the atoms on xi are replaced by a local distribution
over the transformed samples gxi, i.e.,

R̂aug(fθ) =
1

N

N∑
i=1

∫
ℓ (fθ(gxi), yi) dP (gxi), (3)

where the measure P over X is induced by the distribution
G over G. As it can be seen from (3) if G is not chosen
adequately, R̂aug can be a poor estimate of R, introducing
biases that outweigh the benefits of data augmentation (Chen
et al., 2019; Shao et al., 2022). On the other hand, if the data
distribution D is statistically invariant under the action of
G, and G is chosen so as to induce those invariances in the
solution, then learning using (2-3) has provable advantages
in terms of sample complexity (Chen et al., 2019; Bietti and
Mairal, 2019; Sannai et al., 2019; Lyle et al., 2020).

In this work, we tackle the choice of G given a set of trans-
formations G, i.e., how to sample transformations so that the
solution of the learning problem is approximately invariant,
as defined on the next section. Unlike invariance learn-
ing (Jebara, 2003; Zhou et al., 2021a; Benton et al., 2020;
Immer et al., 2022), we do not seek to learn the transforma-
tions G from the data. We also explore how to incorporate
the expectation of the risk of transformed samples in the
learning algorithm, so that even when the distribution is
not invariant — or the hypothesis space is not rich enough
to capture invariances of the data — we can still avoid in-
troducing a bias. Note that invariance to transformations
in G may hold for the true distribution or may also be a
desirable property of the solution, for example, to achieve
robustness (Kanbak et al., 2017; Volpi et al., 2018; Joshi
et al., 2019).
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3. From Invariance to an Augmentation
Distribution

It can be straightforward to specify a set of transforma-
tions G to which the solution should be approximately in-
variant (e.g., image rotations and translations). However,
finding a transformation distribution G that leads to the de-
sired properties in the solution can be challenging. What is
more, using a fixed G as in (2) prevents us from controlling
when and how much augmentation is used during training,
running the risk of biasing the final solution.

In the next sections, we explain how a data augmentation
distribution can be obtained from imposing invariance. We
first argue how invariance leads to a robustness require-
ment (Section 3.1) and then show that this invariance con-
strained learning problem yields an augmentation distribu-
tion (Section 3.2).

3.1. From Invariance to Robustness

If the data is invariant to action g, we want to learn a model
that respects this invariance. This induces the requirement
to learn a model such that fθ(x) = fθ(gx) for all g ∈ G.
Here, we focus on learning models in which invariance
requirements are stated in terms of the loss function and we
therefore require that the model satisfies

ℓ(fθ (x) , y) = ℓ(fθ (gx) , y), for all g ∈ G . (4)

If the model is indeed invariant in the sense that fθ(x) =
fθ(gx), (4) holds as well. The advantage of (4) is that it ex-
plicitly incorporates the structure of the learning task. This
is useful when the model is not perfectly invariant, in which
case the difference ℓ(fθ(gx), y)− ℓ(fθ(x), y) measures the
cost of not having invariance in terms of the loss function.
We leverage this observation to define the invariance loss as

ℓinv(fθ,x, y) := max
g∈G

ℓ(fθ (gx) , y)− ℓ(fθ (x) , y). (5)

This loss is always nonnegative because the identity action
is assumed to be part of the invariant set G. In fact, the set
G defines an equivalence class of points gx that we know
map to the same output y. The loss ℓinv defined in (5) is
a measurement of how far the learnable model fθ is from
defining a corresponding equivalence class with respect to
the loss. We can therefore define an invariance risk by taking
the average of the invariance loss in (5) with respect to the
data distribution,

Rinv(fθ) := E(x,y)∼D [ℓinv(fθ,x, y)] . (6)

It is interesting to substitute (5) into (6). Using the linearity
of expectations we can conclude that the invariance risk is

Rinv (fθ) = E(x,y)∼D

[
max
g∈G

ℓ(fθ (gx) , y)

]
− E(x,y)∼D [ℓ(fθ (x) , y)] . (7)

The second term in (7) is the standard statistical risk without
data augmentation. The first term can be interpreted as a
data augmentation distribution [cf. (2)] in which all of the
augmentation mass is allocated to the element gx of the
invariance set G for which the loss is highest. This term can
also be interpreted as a robust adversarial loss, e.g., (Madry
et al., 2017), in which the adversary chooses the element
gx ∈ G with the highest loss.

Note that minimizing the invariance risk Rinv does not nec-
essarily lead to a good model fθ but rather one that has
constant loss under transformations of the input. This mo-
tivates a problem formulation in which we want to find
models fθ with small statistical risk R [cf. (SRM)] and
small invariance risk Rinv [cf. (7)]. We therefore combine
these two terms to propose the constrained learning problem

P ⋆ = min
θ∈Θ

E(x,y)∼D [ℓ(fθ(x), y)] (CSRM’)

s. to E(x,y)∼D

[
max
g∈G

[ℓ(fθ(gx), y)]

]
≤ ϵ .

Observe that in the constraint in (CSRM’) we keep the first
term in (7) only. We do that because to reduce (7) in a
problem in which the standard risk is being minimized, it
suffices to reduce the first term of (7).

The formulation in (CSRM’) tackles the two terms forming
the invariant risk bound in (7), but instead of combining
them directly, it incorporates the data augmentation term
as a constraint in the typical statistical risk minimization
problem (SRM). This formulation has the advantage that
if a solution to the unconstrained problem is feasible, i.e.,
satisfies the invariance constraint in (CSRM’), the presence
of that constraint has no effect on the statistical problem.
Still, it can be beneficial when approximating the solution
of (CSRM’) empirically. We will explore this fact in the next
section, where we tackle the practical challenges involved
in solving (CSRM’).

3.2. From Robustness to an Augmentation Distribution

Solving the maximization in the constraint can be difficult
when G is not finite or fθ is a deep neural network. Even
when the transformation space is low dimensional, as is
the case of translations and rotations, the highly non-convex
loss landscape of these models makes the maximization over
G challenging (Engstrom et al., 2017). As shown by (Robey
et al., 2021a), the maximisation of the loss over transfor-
mations can be written as the semi-infinite constrained opti-
mization problem

max
g∈G

ℓ (fθ (gx) , y) = sup
λ∈L2

+

∫
G
λ(g)ℓ(fθ(gx), y)dg (8)

s. to
∫
G
λ(g)dg = 1.
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Notice that the solution of this optimization problem λ⋆(g)
is a non-negative, normalized function and can therefore
be interpreted as a distribution over transformations that
depends on the sample point (x, y) as well as the model fθ .
This allows us to re-interpret the maximization over G as an
expectation, i.e.,

E(x,y)∼D

[
max
g∈G

ℓ(fθ (gx) , y)

]
(9)

= E(x,y)∼D [Eg∼λ⋆ [ℓ(fθ(gx), y)]] .

Note that this risk upper bounds the risk under any augmen-
tation distribution defined on G.

Then we can re-write problem (CSRM’) replacing its robust-
ness constraint with one using data augmentation according
to λ⋆, namely,

P ⋆ = min
θ∈Θ

E(x,y)∼D [ℓ(fθ(x), y)] (CSRM)

s. to E(x,y)∼D [Eg∼λ⋆ [ℓ(fθ(gx), y)]] ≤ ϵ .

For conciseness in (CSRM) we have included only one
invariance constraint associated with a single set of trans-
formations G. However, our approach can be extended to
an arbitrary number of constraints defined by transforma-
tion sets Gi, i = 1, . . . ,m (each inducing an augmentation
distribution λ⋆

i ), and constraint levels ϵi. All of the fol-
lowing derivations still hold, regardless of the number of
constraints.

4. Algorithm Development
Solving (CSRM) presents two challenges. First, it is a
constrained statistical learning problem, which involves the
unknown data distribution D. We address this by resorting
to an empirical dual problem as explained in Section 4.1.
Second, it can be hard to sample from λ⋆. We address
this by introducing a smooth approximation that leverages
MCMC methods in Section 4.2.

4.1. Dual Empirical Constrained Learning

To tackle the invariance-constrained statistical risk mini-
mization problem, we leverage recent duality results in
constrained learning theory (Chamon and Ribeiro, 2020;
Chamon et al., 2021), that approximate (CSRM) by its em-
pirical dual,

D⋆
emp = max

γ≥0
min
θ∈Θ

1

n

n∑
i=1

[
ℓ(fθ(xi), yi)

+ γ (Eg∼λ⋆ [ℓ(fθ(gxi), yi)]− ϵ)
]
.

(DE-CRM)

The advantage of (DE-CRM) is that it is an unconstrained
problem that, provided we have enough samples and the
parametrization is rich enough, can approximate the con-
strained statistical problem (CSRM). Namely, the difference
between the optimal value of the empirical dual D⋆

emp and
the statistical primal P ⋆, i.e., the empirical duality gap is
bounded (Chamon et al., 2021) with high probability.

As in regular data augmentation, we will also approximate
the expectation over λ⋆ by sampling transformations as
discussed in Section 4.2. Then, the problem (DE-CRM)
becomes an unconstrained deterministic problem that can
be solved using the algorithm described in Section 4.3.

Note that finding a Lagrangian minimizer for a fixed value
of the dual variable (γ) is equivalent to minimising the
risk under a fixed mixture augmentation distributiona pe-
nalised or regularised learning objective. However, solving
the constrained problem, namely maximising over γ, has
fundamental differences.

First, constraints explicit the requirement they represent.
While the degree of invariance imposed should depend only
on the statistical problem at hand, the value of γ needed to
achieve it will depend on the sample size, the parametriza-
tion and the learning algorithm. In contrast, constrained
learning dynamically adjusts the amount of augmentation
— dictated by γ — to a particular learning setup. Second,
the optimal dual variable can give information about the
trade-off minimising the loss over training samples and sat-
isfying the invariance constraint. In penalised approaches,
on the contrary, this trade-off is fixed. Lastly, the afore-
mentioned informativeness and interpretability can facilitate
hyper-parameter tuning. The insights gathered from optimal
dual variables can be leveraged a posteriori, for instance,
to manually choose appropriate transformations, relax the
invariance constraint levels, or change the learning setup
(e.g., increase the capacity of the model class).

4.2. Sampling towards invariance

If the optimal distribution λ⋆ is not smooth, it is challeng-
ing to sample from it with sufficient accuracy (Homem-de
Mello and Bayraksan, 2014). Consequently, obtaining an
unbiased estimator of Eg∼λ⋆ [ℓ(fθ(gx), y)] may not be pos-
sible. Therefore, we add an L2 norm penalisation, which
promotes smoothness, to leverage MCMC methods.

We then define the c-smoothed distribution λ⋆
c as a solution

to the regularised problem

λ⋆
c ⊆

argmaxλ∈L2
+

∫
G
λ(g)ℓ(fθ(gx), y)dg + c

∫
G
λ(g)2dg,

s. to
∫
G
λ(g)dg = 1
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The regularization term introduces an optimal-
ity gap with respect to worst case perturbations,
i.e., Eg∼λ⋆

c
[ℓ(fθ(gx), y)] ≤ maxg∈G ℓ (fθ (gx) , y).

However, for particular values of c the regularized problem
has a closed form solution (Robey et al., 2021a) that allows
us to sample from it easily. Namely, there exists a constant
c ≥ 0 such that λ⋆

c(x, y, g) ∝ ℓ(fθ(gx), y).

We need not find its partition function to sample from λ⋆
c ,

and can instead leverage Monte Carlo Markov Chain meth-
ods (MCMC). MCMC methods (Hastings, 1970) are based
on constructing a Markov chain that has the target distribu-
tion as an equilibrium distribution. Independent Metropolis
Hastings uses a state independent — usually fixed — pro-
posal for each step. In our case, it only requires applying
a transformation and computing a forward pass of the neu-
ral network to evaluate the loss. This enables the use of
non-differentiable transformations, and has the advantage
that the density at consecutive proposals can be evaluated in
parallel, allowing speedups in the sampling step.

MH methods thus allow to sample the proposal distribution
with low computational cost. It also allows the compu-
tation of transformations on CPU, unlike gradient based
methods, thus requiring minimal modifications to typical
training pipelines. Although MH methods exhibit random
walk behaviour, which leads to slow convergence in high di-
mensional settings (Dellaportas and Roberts, 2003; Holden
et al., 2009), the space of augmentation transformations is
typically low dimensional. For example, d = 18 for the ex-
periments in Section 5. Furthermore, even coarse sampling
approximations can yield useful augmentation distributions
in practice (see Section 5).

However, nothing precludes our method from being used
with other sampling algorithms. For example, Hamilto-
nian Monte Carlo methods (see e.g. (Neal, 2011)), namely
Langevin Monte Carlo (Rossky et al., 1978; Bubeck et al.,
2015) samplers, are suitable when using differentiable trans-
formations.

Then, we can obtain a set of m samples drawn from λ⋆
c and

approximate the expectation over the group by the sample
mean

Eg∼λ⋆
c
[ℓ(fθ(gxi), yi)] ≈

1

m

m∑
j=1

ℓ(fθ(gjxi), yi),

where g1, . . . , gm
i.i.d.∼ ℓ(fθ(gxi), yi) are m transformations

sampled from the smoothed distribution λ⋆
c(fθ,xi, yi).

Algorithm 1 describes the implementation of independent-
MH with a uniform proposal. By keeping only one sample
(m = 1) we recover the usual augmentation setting, that
yields one augmentation per sample in the training batch. In
our experiments we address this setting, because it is exten-
sively used in practice. However, simply keeping more sam-

ples from the chain (m > 1) allows to extend the method to
the batch augmentation setting (Hoffer et al., 2020), which
creates several augmented samples from the same instance
in each batch.

Algorithm 1 Independent MH sampler

1: g(0) ∼ U(G) ▷ Sample initial State
2: ℓ(0) = ℓ

(
fθ

(
g(0)x

)
, y
)

▷ Evaluate loss
3: for t = 1, . . . , nsteps do
4: gprop ∼ U(G) ▷ Sample next proposal
5: ℓprop = ℓ (fθ (gpropx) , y) ▷ Evaluate Loss

6: p = min
(
1,

ℓprop
ℓ(t−1)

)
▷ Acceptance Prob

7: w.p. p: ▷ Accept/Reject
8: g(t) = gprop, ℓ(t) = ℓprop
9: else:

10: g(t) = g(t−1) , ℓ(t) = ℓ(t−1)

4.3. Primal-Dual Algorithm

Since the cost of the inner minimization, i.e. training the
model, can be high, we adopt an alternating update scheme
(K. J. Arrow and Uzawa., 1958) for the primal and dual
variables, as in (Chamon et al., 2021; Fioretto et al., 2020).

A bounded empirical duality gap does not guarantee that
the primal variables obtained after running the alternating
primal-dual Algorithm 2 and solving the saddle point prob-
lem approximately are near optimal or approximately feasi-
ble. Although stronger primal recovery guarantees can be
obtained by randomizing the learning algorithm (Chamon
et al., 2021), it requires storing model parameters θ at each
iteration and there is empirical evidence (Chamon et al.,
2021; Robey et al., 2021a; Elenter et al., 2022; Shen et al.,
2022; Cervino et al., 2022; Zhang et al., 2022) that good
solutions can still be obtained without randomization.

Algorithm 2 Primal-Dual Augmentation

1: λ = 0, θ = θ0.
2: for Batch in {(xi, yi)}ni=1 do
3: for (xi, yi) ∈ Batch do ▷ Sample transformations
4: gi1, . . . , gim ∼iid ℓ(fθ(gxi), yi)

5: ℓc =
1

|Batch|
∑

(xi,yi) ∈ Batch

[
1
m

∑m
j=1 ℓ(fθ(gijxi), yi)

]
6: s = ℓc − ϵ ▷ Slack
7: ℓ = 1

|Batch|
∑

(xi,yi) ∈ Batch ℓ(fθ(xi), yi) ▷ Loss

8: L̂ = ℓ+ γs ▷ Lagrangian
9: θ = θ − ηp∇θL̂ ▷ Primal update

10: γ = [γ + ηds]+ ▷ Dual Update
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Standard Wide
TA DeepAA OURS TA DeepAA OURS

CIFAR10
Wide-ResNet-40-2 96.55± 0.11 96.43± 0.09 96.76± 0.14 96.24± 0.19 96.27± 0.19 97.05± 0.18
Wide-ResNet-28-10 97.46± 0.10 97.57± 0.15 97.74± 0.10 97.51± 0.20 97.27± 0.10 97.85± 0.17
CIFAR100
Wide-ResNet-40-2 79.92± 0.13 79.45± 0.42 80.83± 0.31 79.96± 0.45 79.36± 0.27 81.19± 0.34
Wide-ResNet-28-10 83.40± 0.16 83.77± 0.29 83.53± 0.16 84.11± 0.24 83.09± 0.30 84.89± 0.12
SVHNcore
Wide-ResNet-28-10 98.05± 0.03 98.04± 0.08 98.15± 0.09 98.07± 0.03 97.93± 0.03 98.01± 0.04

Table 1. Image Classification accuracy for WideResnet architectures (Zagoruyko and Komodakis, 2016) trained using different augmenta-
tion policies, defined on standard (Cubuk et al., 2018) and wider (Müller and Hutter, 2021) augmentation search spaces. We include
state-of-the-art methods TA (Müller and Hutter, 2021), DeepAA (Zheng et al., 2022), and 95% confidence intervals computed over five
independent runs.

5. Experiments
5.1. Automatic Data Augmentation

This section showcases Algorithm 2 in common image clas-
sification benchmarks. We compare it to state-of-the-art data
augmentation methods in terms of classification accuracy.
Furthermore, we discuss other advantageous properties of
our method through ablations. Namely, we focus on the abil-
ity to control the effect of data augmentation by modifying
the constraint level, the informativeness of dual variables,
and the benefits of adapting the augmentation distribution
throughout training. We follow the setup (including the
transformation sets) used in recent automatic data augmen-
tation literature (Müller and Hutter, 2021). A complete
list of transformations together with other hyperparame-
ters and training settings can be found on Appendix C.1.
Note that four out of the sixteen transformations used are
non-differentiable. Whereas other works have introduced
gradient approximations for transformation operations with
discrete parameters (Li et al., 2020b; Hataya et al., 2020),
our approach does not require such approximations.

Throughout these experiments, we fixed the number of steps
of the MH sampler (Algorithm 1) to two, which has the
added advantage of reducing the computational cost of eval-
uating proposals. That is, the added computational cost of
running our algorithm with respect to uniform augmenta-
tion at each iteration is essentially that of computing an
additional forward pass through the neural network (see
Appendix D.2 for a runtime analysis). The constraint level
was determined by a grid search targeting cross-validation
accuracy. As shown in Table 1, in both transformation sets
considered, we find that our approach improves or closely
matches existing approaches.

The failure to achieve large improvements in accuracy over
baselines, which has been attributed to a stagnation in data
augmentation research (Müller and Hutter, 2021), can also
reflect the limits of the benchmarking setup. In order to

Samples TA OURS
0.01 19.17± 0.38 20.11± 0.69
0.025 34.67± 0.34 37.85± 0.23
0.05 48.77± 0.46 51.01± 1.74
0.1 60.77± 0.47 62.45± 0.58

Table 2. Image Classification accuracy for subsampled ImageNet-
100 using Resnet50 (He et al., 2015) and wide (Müller and Hutter,
2021) augmentation search space. We vary the fraction of samples
kept from the original training set (first column). We include
TA (Müller and Hutter, 2021) as a baseline and standard deviation
computed over three independent runs.

investigate whether larger gains can be obtained when less
data is available and tasks are more challenging, we test
our approach on subsampled versions of the Imagenet-100
dataset. That is, we consider all of the classes in Imagenet-
100 but use only a fraction of all the training samples in the
dataset to train the model. As sown in Table 2, our method
shows larger performance gains in this scenario, regardless
of the size of the training set.

Moreover, our approach yields improvements in test accu-
racy over a baseline model without augmentation for a wide
range of constraint levels (Figure 1). This illustrates the
robustness of the solution to this hyperparameter. Observe
also that as the constraint is relaxed (by increasing ϵ), the
training error decreases while the generalization gap, i.e., the
difference between train and test errors, increases. In other
words, by loosening the invariance requirement the model
can fit better to training samples at the cost of worse gener-
alization. Eventually, only the generalization gap increases
while the training error stagnates (ϵ > 2.1 for CIFAR100
and ϵ > 0.8 for CIFAR10). This transition occurs at the
same point at which the final value of the dual variable γ
from (DE-CRM) essentially vanishes (darker color). This
showcases the infromativeness of the dual variable. In the
case of CIFAR10, even the training error begins to increase
at that point, suggesting that the invariance requirement
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Figure 1. Constraint level ablation for WideResnet-40-2 in CIFAR datasets. We plot error rates computed over the train and test set and
averaged over five runs, for different constraint levels. We include the test error of the unconstrained baseline (without augmentation) for
comparison. The color of markers denotes the final value of the dual variable.

need not be at odds with accuracy.

Not only does Algorithm 2 tune the effect of data augmen-
tation on the solution (by adapting γ in step 9), but also
modifies the distribution over transformations during train-
ing (step 4). To showcase the benefits of this over the use
of a fixed distribution, Figure 2 compares the results ob-
tained using our approach (sampling according to λ⋆

c ) and
one where step 4 is replaced by a uniform sampling over
transformations. For the same constraint levels, lower test
errors are obtained by sampling transformations according
to λ⋆

c , i.e., promoting invariance. Note also that for ϵ = 2.1
in CIFAR100 and ϵ = 0.8 for CIFAR10, the performance
gap is quite large. Once again, this occurs at the point in
which γ vanishes (darker color) for the uniform distribution,
i.e., no data augmentation occurs by the end of training.
At this point, however, there is still value in promoting in-
variance by sampling from λ⋆

c as evidenced by the positive

value of the dual variable (lighter color) in this approach.

Furthermore, to assess the impact of the sampling approxi-
mation on the performance of the solution we conduct an
ablation on the number of steps of the MH sampler (Algo-
rithm 1), keeping the constraint level (ϵ) fixed. Using more
steps of the chain allows samples to deviate further from the
uniform distribution, which as shown in Figure 3 is reflected
on the lower entropy of sampled transformations (right).
As shown in the left plot, this results in higher loss on the
training set (represented by blue circular markers). How-
ever, we find that increasing the number of steps does not
affect significantly test loss (denoted by orange crosses). In
Appendix D.1.3 we show how the number of sampling steps
affects the evolution of dual variables. In Appendix D.1.4
we also analyze how it affects the frequency and strength of
different transformations.
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Figure 2. We compare our approach to a constraint on the uniform distribution, for WideResnet-40-2 in CIFAR datasets, at different
constraint levels. We plot error rates computed over test set and averaged over five runs. Markers denote the augmentation distribution.
The color of markers denotes the final value of the dual variable.
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Figure 3. Number of Metropolis Hastings steps ablation for
WideResnet-40-2 in CIFAR-10. The constraint level is fixed
(ϵ = 0.8). The first plot shows the cross-entropy loss averaged
over the train and test sets. The second plot shows the entropy
of the augmentations sampled at the last epoch of training. Each
point represents an independent run.

5.2. Synthetic Invariances

Although our approach does not aim to learn the set of sym-
metries or invariant transformations from the data, but rather
to impose it on the predictor, dual variables can be used to
gather insights on the actual invariances underlying a learn-
ing task. We showcase this on datasets with artificial invari-
ances, following the setup of (Immer et al., 2022). Namely,
we apply rotations, translations or scalings, independently
drawn from the uniform distributions, to each sample in
the MNIST (LeCun et al., 2010) and FashionMNIST (Xiao
et al., 2017) datasets. We use the same MLP and CNN archi-
tectures and hyperparameters as (Immer et al., 2022). The
distributions used to generate the datasets and additional
experimental details can be found in Appendix C.2.

We run our algorithm constraining the loss on transforma-
tion spaces which (except for the fully rotated dataset) are
larger than the true transformation range used to construct

the synthetic dataset. Note that we use the same transforma-
tion sets and constraint levels (ϵ) for all synthetic datasets,
regardless of which transformations were used to construct
the dataset. As shown in table 3, except for scalings in
FashionMNIST, the dual variables (γ) associated with trans-
formations corresponding to the true synthetic invariances
in the dataset are considerably smaller. This indicates that
when the transformations in the constraint correspond to a
true invariance of the dataset, the constraint is easier to sat-
isfy. Therefore dual variables can give information about the
invariances in a dataset or alert about the misspecification
of transformation sets and constraint levels. Appendix D.5
illustrates how dual variables can be leveraged to adjust the
constraint specification (ϵ) using simple heuristics.

6. Conclusion
In this paper, we have proposed a constrained learning ap-
proach for automatic data augmentation, which instead of
using augmented samples as a modified learning objective,
imposes an invariance-constraint. We have shown that this
yields an augmentation distribution that adapts during train-
ing, and found that coarse sampling approximations based
on MCMC methods exhibit competitive performance in
small and medium scale benchmarks. Furthermore, our ex-
periments showed that dual variables can give insights about
the resulting augmentation distribution. We also found that
strictly feasible solutions were obtained for a wide range of
constraint levels, with different generalization gaps, and that
in some cases tightening the constraint even led to a lower
training error. Analysing the interplay between the learning
problem and the optimization algorithm, and evaluating our
approach in more complex or larger scale datasets, as well
as in batch-mode augmentation, are promising future work
directions. Finally, constrained optimization can enable
further theoretical developments in data augmentation.

Synthetic Invariance
Dataset Architecture γ Full Rot. Partial Rot. Translation Scale
MNIST MLP Rotation 0.000 0.004 3.224 0.035

Translation 1.344 0.038 0.289 0.032
Scale 1.800 0.045 4.206 0.004

CNN Rotation 0.000 0.002 2.724 0.012
Translation 1.218 0.009 0.439 0.006
Scale 2.026 0.049 4.029 0.003

F-MNIST MLP Rotation 0.000 0.037 4.470 1.599
Translation 3.572 1.934 0.939 0.717
Scale 4.144 2.653 3.472 0.754

CNN Rotation 0.000 0.107 3.301 1.352
Translation 3.572 1.426 0.515 0.441
Scale 4.144 2.332 2.725 0.904

Table 3. Value of dual variables (after 400 epochs) for different transformation constraints and synthetic invariant datasets. Columns
correspond to different transformations of the dataset, and rows to dual variables associated with different transformations. Except
for scaling in FashionMNIST, for all architectures and datasets the dual variable associated with the constraint corresponding to the
transformations applied to the dataset is considerably lower. The smallest dual variable for each dataset and architecture is bolded.
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A. Additional Related work
A.1. Constrained Learning and Data augmentation

(Xu et al., 2021) also formulate data augmentation as a con-
strained learning problem. They impose a constraint on
the excess risk, i.e. the difference between the statistical
risk and its optimal value, on augmented data. Thus the
constraint level on the augmented risk is also determined by
the data distribution, augmentations considered, and model
class, and the existence of a strictly feasible point is guaran-
teed.

min
θ∈Θ

R(fθ) s.t. Raug (fθ)−min
θ̂∈Θ

Raug(fθ̂) ≤ ϵ, ϵ > 0,

where R and Raug are the statistical risk under the original
and augmented distribution, exlipicity

R(fθ) = E(x,y)∼D[ℓ(fθ(x), y)],

Raug(fθ) = E(x,y)∼D,
g∼G

[ℓ(fθ(gx), y)].

Unlike our formulation, this formulation assumes a fixed
distribution of augmentations G is given.

By formulating it as a constrained problem, they aim to
avoid introducing a bias when the data distribution is not
invariant to augmentations. Two types of biases induced by
augmentation are explicitly addressed, covariate shift (i.e.
label-preserving augmentations) and concept shift (i.e. label
mixing augmentations).

Interestingly, they show that under some conditions on the
risk, augmented risk and constraint level, by utilizing the
augmented data to constrain the solution to a small region
SGD can achieve lower error (Xu et al., 2021, Proposition
1).

Instead of resorting to constrained optimization algorithms,
they propose a two stage algorithm that consists of first
finding an approximate minimizer of the augmented risk
and then using that solution as an initialisation to the (un-
constrained) statistical risk minimization problem. The first
stage obtains a feasible point, and then under some condi-
tions the SGD iterates obtained when solving the second
problem remain feasible (Xu et al., 2021, Theorem 1).

A.2. Adversarial Data Augmentation

(Zhang et al., 2020) have shown that using adversarial trans-
formations - which as already mentioned is related to pro-
moting invariance - can give competitive results with respect
to other automatic augmentation methods in image classifi-
cation. However, (Blaas et al., 2021) have since evidenced
the importance of two factors: the implicit learning curric-
ula and the suboptimality of the adversarial used by (Zhang
et al., 2020), which mitigates the biases introduced by worst-
case transformations. Furthermore, (Blaas et al., 2021) re-
port that an explicit cyclic curricula in which augmentations
are mild at first, then get harder as training progresses, and
finally revert to milder augmentations at the end of train-
ing, performs better empirically. We note some interesting
commonalities with our approach and experimental results.
First, the dynamics of our primal-dual algorithm resemble
the aforementioned heuristically defined curricula. Second,
the suboptimality with respect to worst case perturbations
can be related to the smoothed approximation used in our
approach.

A.3. Constrained Learning and Domain Generalization

Domain Generalization (DG) involves training the model in
different but related data distributions, and evaluating in an
unseen domain. For example, a common benchmark con-
sists of domains created by rotating images in the MNIST
dataset by different angles. Constrained formulations have
been proposed in this context (Robey et al., 2021b; Zhang
et al., 2022), that enforce invariance under learnt domain
translation transformations. In contrast, our approach ad-
dresses pre-defined transformations that are commonly used
in data augmentation pipelines in order to improve general-
ization in the same domain used to train the model.

A.4. Group invariance

The relationship between convolutional structure and equiv-
ariance has been long known in algebraic signal processing
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theory (Püschel and Moura, 2006). Recently, necessity
results have re-gained attention in the context of neural net-
work architecture design (Kondor and Trivedi, 2018). Sev-
eral Group Convolutional neural network architectures that
generalize CNNs to different groups by leveraging group
convolutions have been proposed (Cohen and Welling, 2016;
Esteves et al., 2017; Finzi et al., 2020). In the case of im-
ages, it has been shown that that SE2 equivariant layers
can be implemented efficiently using regular 2D convolu-
tions (Weiler and Cesa, 2019). This approach allows to
derive a parametrization for CNN filters under finite sub-
groups of SE2. Among other works (Bietti and Mairal,
2019; Sannai et al., 2019) give theoretical analyses of the
benefits of group invariance in learning settings.

As already mentioned, achieving invariance through archi-
tecture design is both challenging and limited in the sense
that it relies on transformations having a specific structure
(e.g: a group). The goal of exact invariance over the whole
input space is more strict than the approximate invariance
notion that our work addresses. As argued by (Mallat, 2016),
CNNs can learn locally invariant features with respect to
arbitrary transformation groups, which could explain their
generalization properties. Furthermore, empirical studies
evidence modern CNN architectures learn approximately
equivariant features to transformations such as scaling and
rotations (Olah et al., 2020), or diffeomorphisms (Petrini
et al., 2021), even when trained without direct augmentation.

However, commonly used augmentations do not form a
group. Our approach does not require this structure.

B. Additional Theoretical Details
B.1. Related Notions of invariance

There are several definitions of invariance that capture differ-
ent properties of the solution or data distribution under the
action of transformations in G. In the context of supervised
learning, the data distribution is said to be exactly invariant
iff it does not change when transformations are applied to
the covariates, i.e.,

(x, y) =d (gx, y), for all g ∈ G, (10)

Note that this is equivalent to the distribution of inputs x
being conditionally invariant on the label y,

(gX | Y = y) = d(X | Y = y). (11)

If the data distribution D is statistically invariant under the
action of G, invariant solutions have provable advantages in
terms of sample complexity (Chen et al., 2019; Bietti and
Mairal, 2019; Sannai et al., 2019; Lyle et al., 2020).

These notions of invariance do not explicitly contemplate
the task at hand, that is, not all changes in y equally affect

performance. Thus, we use the loss to encode meaningful
differences in labels with respect to the task, as described
in section 3.1. Throughout this work, we thus refer to the
invariant risk Rinv defined on equation 6 as the degree of
invariance, unless otherwise noted.

B.2. Data Augmentation and Penalised Formulations

Augmented risk minimisation formulations usually do not
include the loss on clean data explicitly on the objective.
However, several common choices for the augmentation dis-
tribution G have positive mass at the identity transformation
e(x) = x, i.e. PG(g = e) = γ > 0.

Therefore, the risk under the augmentation distribution G is
statistically equivalent to a regularised objective, explicitly

E(x,y)∼D,
g∼G

[ℓ(h(gx), y)] =γE(x,y)∼D[ℓ(h(x), y)]

+ E(x,y)∼D,

g∼G̃

[ℓ(h(gx), y)],

where G̃ is a distribution over G with no mass at the identity.

The bias-variance tradeoff arising from averaging over trans-
formations of training samples while introducing a distribu-
tion shift (Chen et al., 2019), can thus be controlled through
the probability of the identity transformation in the augmen-
tation distribution.

B.3. Worst case transformations as an Augmentation
Distribution

In this section we show that finding the transformation that
maximises the loss can be interpreted as an augmentation
distribution. We thus extend the particular case of bounded
additive perturbations in (Robey et al., 2021a) to a transfor-
mation set G.

Given a predictor fθ and a data instance (x, y), we want to
solve the optimization problem

P ∗ = max
g∈G

ℓ (fθ (gx) , y) (12)

Assuming ℓ ∈ L2, we begin by writing the problem in
epigraph form

P ∗ = min
t∈L2

t(g) (EPI)

s.t. ℓ(fθ(gx), y) ≤ t(g) for allg ∈ G

Then, the Lagrangian associated to this problem can be
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written as

L(λ, t) = t(g) +

∫
G
λ(g)(ℓ(fθ(gx), y)− t(g))dg

= t(g)

[
1−

∫
G
λ(g)dg

]
+

∫
G
λ(g)(ℓ(fθ(gx), y))dg.

Problem (EPI) can thus be written in Lagrangian form as:

P ∗ = sup
λ∈L2

+

min
t∈L2

L(λ, t),

where L2
+ is the space of non negative functions.

Since L is linear in t, if P ∗ is finite, then strong duality
holds (Bertsekas, 2015, Chapter 4). Then we can solve the
dual problem:

P ∗ = D∗ := sup
λ∈Pq

min
t∈Lp

L(λ, t),

Since t is unconstrained, the inner minimization yields:

min
t∈L2

L(λ, t) =

{
−∞ if

∫
G λ(g)dg ̸= 1∫

G λ(g)ℓ(fθ(gx), y)dg otherwise

Maximizing over λ we get the desired result:

P ∗ = sup
λ∈L2

+

∫
G
λ(x, y, g)ℓ(fθ(gx), y)dg,

s. t.
∫
G
λ(x, y, g)dg = 1

Since any solution of this optimization problem, which we
will denote λ⋆(g), is non-negative almost everywhere and in-
tegrates one, it defines a distribution over the set of transfor-
mations G. This allows us to re-interpret the maximization
over G as an expectation, namely

max
g∈G

ℓ (fθ (gx) , y) = Eg∼λ⋆ [ℓ(fθ(gx), y)] .

B.4. Derivation of the smoothed distribution λ⋆
c

In this section we show that for a particular value of c, the
smoothed distribution λ⋆

c has a closed form solution that
enables MCMC sampling methods. We defined the L2

regularised problem as

sup
λ∈L2

+

∫
G

[
λ(x, y, g)ℓ(h(gx), y) + cλ2(x, y, g)

]
dg.

s . t.
∫
G
λ(x, y, g)dg = 1

We will begin by finding the optima of the unconstrained
problem.

Since L2 is decomposable, and the integral is Careothodory,
the supremum can be found by taking pointwise supremum
in R+ inside the integral. See (Rockafellar and Wets, 1998)
chapter 14, theorem 14.60.

sup
λ∈L2

+

∫
G

[
λ(x, y, g)ℓ(fθ(gx), y)

− c

∫
G
λ2(x, y, g)

]
dg

=

∫
G

sup
λ(x,y,g)∈R+

[
λ(x, y, g)ℓ(fθ(gx), y)

− cλ2(x, y, g)
]
dg

Note that if ℓ(fθ(gx), y)) < 0 then the pointwise maximum
is attained at λ∗(x, y, g) = 0.

Otherwise, we can find the pointwise maxima by setting the
partial derivative w.r.t. λ to zero.

∂

∂λ(x, y, g)

[
λ(x, y, g)ℓ(fθ(gx), y)− cλ2(x, y, g)

]
= ℓ(fθ(gx), y)− 2cλ(x, y, g)

Then, if ℓ(fθ(gx), y)) ≥ 0 the pointwise maximum is at-
tained at λ∗(x, y, g) = ℓ(fθ(gx),y)

2c . Then the optimum of
the unconstrained problem can be written as

λ∗(x, y, g) =

[
ℓ(fθ(gx), y)

2c

]
+

For the solution of the unconstrained problem λ∗ to be
feasible for the constrained problem, we can choose c so
that it satisfies the normalization constraint:∫

G
λ∗(x, y, g)dg =

1

2c

∫
G
[ℓ(fθ(gx), y)]+ dg = 1

⇔

c =
1

2

∫
G
[ℓ(fθ(gx), y)]+ dg

If we further assume the loss is non-negative, which holds
for many commonly used losses such as cross-entropy and
mean squared error, we can drop the projection into the
non-negative orthant.

B.5. Constrained Statistical Learning Guarantees

In this section we provide an overview of the results that
bound the empirical duality gap of problem (DE-CRM)
under uniform convergence assumptions shown by (Chamon
and Ribeiro, 2020; Chamon et al., 2021) in more general
settings and in (Robey et al., 2021a) for the particular case of
robustness (invariance) objectives. The bound goes to show
that the sample complexity of constrained learning is not
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larger than that of unconstrained ERM. However, unlike the
unconstrained formulation of traditional data augmentation
in (2), our constrained formulation has stronger guarantees
over the loss of transformed samples.

A1. (Bounded Distance to Convex Hull) The parametriza-
tion fθ is rich enough so that for each θ1,θ2 ∈
Θ and β ∈ [0, 1], there exists θ ∈ Θ such that
supx∈X |βfθ1(x) + (1− β)fθ2(x)− fθ(x)| ≤ α.

A2.(Slater’s Condition) There exists θ′ ∈ Θ such that
E(x,y)∼D [Eg∼λ⋆ [ℓ(fθ(gxn), yn))]]− ϵ > Mν > 0.

A3.(Uniform convergence) There exists
ζ0(N, δ), ζ1(N, δ) ≥ 0 monotonically decreasing in
N such that w.p 1− δ for allθ ∈ Θ:∣∣E(x,y)∼D [Eg∼λ⋆ [ℓ(fθ(gx), y))]]

− 1

N

N∑
n=1

Eg∼λ⋆ [ℓ(fθ(gxn), yn))]

∣∣∣∣∣ ≤ ζ1(N, δ)∣∣E(x,y)∼D [ℓ (fθ(x), y)]

− 1

N

N∑
n=1

ℓ (fθ (xn) , yn)

∣∣∣∣∣ ≤ ζ0(N, δ).

A4. The loss function ℓ(·, y) is convex, M -Lipchitz and
[0, B] bounded.

The first two assumptions state that the hypothesis space
Hθ = {fθ | θ ∈ Θ ⊆ Rp} is sufficiently expressive in the
sense that the pointwise distance to its convex hull conv(Hθ)
is bounded (A1), and there exists a function that fθ ∈ F that
strictly satisfies the constraint (A2). Note that in the case of
neural networks, universal approximation results (Hornik
et al., 1989) imply the existence of hypothesis spaces that are
sufficiently expressive to satisfy these assumptions. How-
ever, this may be at odds with uniform convergence (A3),
which limits the complexity of the hypothesis space.

Empirical Duality Gap Bound (Chamon et al., 2021) Un-
der Assumptions A1−A4, there exists a solution (γ∗, fθ̂⋆)
of the empirical dual problem (DE-CRM) such that, w. p.
1− 5δ, it holds∣∣P ⋆ −D⋆

emp

∣∣ ≤ (1 + γ)(Mν +max(ζ0(N, δ), ζ1(N, δ)), and

ED [Eg∼λ⋆ [ℓ(fθ(gx), y)]] ≤ ϵ+ ζ1 (N, δ) ,

where P ⋆ is the value of (CSRM), ζ̄ = maxi ζi (Ni, δ), and
γ is lower bounded by γ∗.

The optimal dual variable γ∗ depends not only on the data
distribution, loss and hypothesis class, but also on the con-
straint level. As a result, if satisfying the invariance con-
straint is overly restrictive for a learning task and results in
large optimal dual variables, it also leads to looser guaran-
tees for our empirical dual algorithm.

C. Experimental Setup Details
C.1. Automatic Data Augmentation

C.1.1. TRANSFORMATIONS

As in recent automatic augmentation literature (Ho et al.,
2019; Lim et al., 2019; Hataya et al., 2020; Zhang et al.,
2020; Cubuk et al., 2020; LingChen et al., 2020; Zhang
et al., 2020; Müller and Hutter, 2021; Zhou et al., 2021b;
Zheng et al., 2022; Cheung and Yeung, 2022), we focus
on image classification datasets and employ a transforma-
tion search space comprising 14 operations, introduced by
(Cubuk et al., 2018). For those that have parameters, their
magnitudes are discretized in thirty levels, which does not
compromise performance and greatly reduces the search
space (Cubuk et al., 2020). Most approaches compose trans-
formations, i.e. applying more than one transformation to
the same image. However, recently (Müller and Hutter,
2021) have shown that applying only one transformation at
a time, defined over a wider magnitude space (noted Wide
in Table 4) can outperform other approaches. We thus use
the same transformation space as (Müller and Hutter, 2021).

Table 4 from (Müller and Hutter, 2021) lists the operations
and their magnitude ranges. In our experiments we used
the wide search space, the standard ranges from (Cubuk
et al., 2020) are included for comparison. We extend the
codebase provided by (Müller and Hutter, 2021), which uses
the Pillow1 implementation of all transformations except
for cutout, and refer to its documentation for further details
about image operations.

C.1.2. TRAINING SETUP

In order to enable comparisons and reproducibility we use
the same training pipeline as in previous works (Müller
and Hutter, 2021) . We apply the vertical flip and the pad-
and-crop augmentations and a 16 pixel cutout (DeVries and
Taylor, 2017) after any augmentation method. We trained
Wide-ResNet (Zagoruyko and Komodakis, 2016) models in
the 40-2 and 28-10 configurations For CIFAR (Krizhevsky,
2009) and SVHN (Netzer et al., 2011) datasets, and ResNet-
50 (He et al., 2015) for Imagenet-100 (Russakovsky et al.,
2015).

Except for epoch ablation and Imagenet-100 experiments,
we use SGD with Nesterov Momentum and a learning rate
of 0.1, a batch size of 128, a 5e-4 weight decay. In Imagenet-
100 experiments, we use Adam (Kingma and Ba, 2014) and
a learning rate of 5e-4. We use a cosine learning rate decay
schedule and train for 270 epochs for tinyImagenet and 200
epochs for all other datasets. In ablation experiments we
also trained for 600 epochs and used a custom learning rate
schedule. For the first 185 epochs we followed the same

1 https://github.com/python-pillow/Pillow

15

https://github.com/python-pillow/Pillow


Data Augmentation via Invariance-Constrained Learning

Operation Magnitude
Standard Wide

Identity − −
ShearX [−0.3, 0.3] [−0.99, 0.99]

ShearY [−0.3, 0.3] [−0.99, 0.99]

TranslateX [−10, 10] [−32, 32]

TranslateY [−0.45, 0.45] [−32, 32]

Rotate [−30, 30] [−135, 135]

AutoContrast − −
Invert − −
Equalize − −
Solarize [0, 256]

Posterize [4, 8] [2, 8]

Contrast [0.1, 1.9] [0.01, 2]

Color [0.1, 1.9] [0.01, 2]

Brightness [0.1, 1.9] [0.01, 2]

Sharpness [0.1, 1.9] [0.01, 2]

Flips − −
Cutout 16(60) 16(60)

Crop − −

Table 4. Pillow image operations in the data augmentation search
space and the range of magnitudes corresponding to the stan-
dard (Cubuk et al., 2020) and wide (Müller and Hutter, 2021)
search spaces. Some operations do not use magnitude parameters.

cosine learning rate decay schedule, and then switching to
a custom step learning rate scheduler detailed on Table 5.
This schedule was implemented after observing that just
scaling the cosine learning rate schedule to 600 epochs
resulted in slow convergence, thus yielding solutions similar
to training for 600 epochs, and failing reflect the effects of
early stopping which this experiment addressed.

We used 2 MH steps for the MH sampler (Algorithm 1)
unless stated otherwise, and a learning rate of 10−3 for the
dual ascent step.

No other hyperparameters were tuned or modified with re-
spect to standard settings. The constraint levels were set
for Wide-ResNet-40-2 in the wide augmentation space by
maximising three fold cross validation over the grid spec-
ified on Table 6. Then the constraint levels were adjusted
for other architectures and search spaces so that the dual
variables at the end of training were small but not zero (of
the order of 10−1), which empirically showed good results.
The resulting constraint levels corresponding to the results
in 1 are detailed in table 7.

We used the provided code and reported hyperparameters
for running TrivialAugment (Müller and Hutter, 2021) and
DeepAA (Zheng et al., 2022). For the latter, unlike the
results reported in (Zheng et al., 2022), we kept all evalua-
tion hyperparameters (including weight decay) consistent
with that of other methods. Results for the wide augmen-
tation space were not included in (Zheng et al., 2022). We
thus performed the augmentation policy search for the wide
search space using the same hyperparameters (except for
the augmentation space) reported in (Zheng et al., 2022) for
CIFAR datasets. We also run the search for both augmenta-
tion spaces in SVHN datasets, and evaluated the policy with
the same setup as other methods.

Epochs LR Scheduler Step
180-230 10

230-430 20

430-600 40

Table 5. Learning Rate Custom schedule used when training for
600 epochs. We use the standard scheduler for the first 180 epochs,
and then update the LR only every n epochs, where n is the number
indicated in the second column. This hand designed schedule
outperforms using a cosine learning rate schedule for 600 epochs,
but could improvements convergence speed and performance by
exploring other LR-schedulers or tuning it.

Dataset Constraint Level Grid Range
CIFAR10 [0.2, 2.3]

CIFAR100 [0.3, 2.7]

SVHNcore [0.1, 1.5]

Table 6. Constraint level grid search space. For each dataset, we
evaluated three fold cross validation accuracy for 8 evenly spaced
constraint levels in the ranges given in the second column. The
one with the highest cross validation score was then selected and
used to train the model with the full dataset.

C.2. Syntetic Invariances

We showcase our approach on datasets with artificial in-
variances, following the setup of (Immer et al., 2022). Ex-
plicitly, we generate the synthetic datasets, by applying
either rotations, translations or scalings, to each sample in
the MNIST (LeCun et al., 2010) and FashionMNIST (Xiao
et al., 2017) datasets. The transformations are sampled from
uniform distributions over the ranges detailed in Table 8.
We use the same MLP and CNN architectures and hyperpa-
rameters as (Immer et al., 2022), except that we use only 1
augmentation per sample instead of 31 during training.

For each transformation set (rotations, translations and scal-
ings), we constraint the expected loss over samples aug-
mented with the transformations sampled from uniform
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Constraint Level
Standard Wide

CIFAR10
Wide-ResNet-40-2 0.6 0.8

Wide-ResNet-28-10 0.4 0.8

CIFAR100
Wide-ResNet-40-2 0.9 0.8

Wide-ResNet-28-10 0.9 1.2

SVHNcore
Wide-ResNet-28-10 0.1 0.2

Table 7. Constraint levels for different datasets and architectures,
for the results presented in Table 1

distributions over the ranges detailed in Table 9. Note that
there is a mismatch between the distribution used to gener-
ate the data and that used in the constraints. That is, except
for the fully rotated dataset, the constraints are larger than
the true transformation range used to construct the synthetic
dataset (Table 8). We use the same transformation sets and
constraint specification (ϵ) for all synthetic versions of the
datasets. We only vary the constraint level depending on
the architecture, to contemplate how model capacity affects
the relative difficulty of satisfying the constraint. In order
to do so, we evaluate the loss of a model trained without
constraints. Constraint levels are specified in Table 10.

Synthetic invariance Parameter Distribution
Full Rotation Angle in radians. U

[
−π

2 ,
π
2

]
Partial Rotation Angle in radians. U [−π, π]
Translation Translation in pixels. U [−8, 8]2

Scale Exponential Scaling factor. U [−log(2), log(2)]

Table 8. Sampling parameters for transformations used to obtain
synthetically invariant datasets, from (Immer et al., 2022).

Constraint Set Parameter Range
Rotations Angle in radians. [−π, π]
Translation Translation in pixels. [−16, 16]2

Scale Exponential Scaling factor. [−1.5, 1.5]

Table 9. Transformation sets used as invariance constraints. All
sets are used simultanously, with the same constraint level (ϵ) for
all transformations.

D. Additional Experimental Results
D.1. Automatic Data augmentation

The following section contains additional ablations and dis-
cussions about our algorithm. As in previous sections, we
use the wide (Müller and Hutter, 2021) augmentation space
and CIFAR image classification benchmarks. Our main
motivation is to analyse how the different hyperparameter

MLP CNN
MNIST 0.6 0.35
F-MNIST 0.8 0.6

Table 10. Constraint levels used for different architectures and base
datasets. We use the same constraint levels for all synthetically
invariant versions of the same base dataset.

choices and the learning algorithm affect the generalization
and invariance of the obtained solutions. First, we show how
the dual variables adapts to different constraint levels dur-
ing training, and link its dynamics to heuristically defined
learning curricula. We then evaluate the effect of training
for more epochs and link our observations to the known
properties of early stopping in unconstrained learning, in
section D.1.2. In section D.1.3, we analyse how the sam-
pling approximation affects regularisation, by performing
an ablation on the number of MH steps. Lastly, we include
the observed frequencies of sampled transformations for
different setups, so as to obtain further insights in how the
distribution adapts throughout training (Section D.1.4).

D.1.1. DUAL VARIABLE DYNAMICS

As already mentioned, the dual variables control the weight
of augmented samples during training, thus balancing the
trade-off between fitting the primal objective (i.e. loss over
training samples) and satisfying the constraints (i.e. loss
over transformed samples). In penalised approaches, on the
contrary, this trade-off is fixed. In Figure 4 we show how the
dual variable adapts to different constraint levels, for Wide-
ResNet-40-2 in CIFAR datasets using the standard setup.
Note that for stricter constraint levels, the algorithm has not
converged when it reaches 200 epochs. We also observe that
the dynamics of our primal-dual algorithm resembles the
augmentation learning curricula proposed by (Blaas et al.,
2021).

D.1.2. EARLY STOPPING

Our approach has slower convergence than unconstrained
approaches and stopping training arbitrarily - after a fixed
number of epochs - can result in solutions that are unfea-
sible or sub-optimal. However, early stopping is a popular
regulariser, particularly for neural networks trained through
gradient descent. Several empirical (Caruana et al., 2000;
Rice et al., 2020) and theoretical (Ji et al., 2021; Li et al.,
2020a; Duvenaud et al., 2016) results show its advantages
in terms of generalisation and robustness to noisy training
data. In general, the advantages of early stopping do not
lie in the sub-optimality of the solution in terms of training
error, but on nature of the regularization or prior imposed,
which leads to non-uniform model selection among models
with a given training error (Cataltepe et al., 1999).

To the best of our knowledge, there is no literature that ex-
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Figure 4. Evolution of dual variables during training for Wide-
ResNet-40-2 in CIFAR datasets. For most levels, augmentation
increases until the constraint becomes feasible and then decreases
towards the end of training. For stricter levels, the algorithm does
not converge in 200 epochs using the standard learning settings.
However, the solutions obtained still show good properties.

plicitly addresses early stopping in empirical primal-dual
learning. Whether the generalisation gap in constraint sat-
isfaction can be reduced by early stopping regularisation,
in the same manner early stopping regularisation can re-
duce the generalisation gap in unconstrained learning, thus
remains unclear.

Figure 5 shows an ablation on the number of epochs. Non-
zero dual variables and strict feasiblility show the algorithm
has not yet converged at 200 epochs. At 600 epochs whereas
constraint satisfaction shows little change, training loss de-
creases and the generalization gap increases. Thus, we
observe early stopping has a larger impact on the primal
objective than on the constraint. that although for stricter
levels of the constraint the algorithm has not converged
when training is stopped at 200 epochs, it can yield solu-
tions that are still feasible and have a smaller generalization
gap.

D.1.3. SAMPLING STEPS ABLATION

As already mentioned in Section 4.3, we used the
Metropolis-Hastings algorithm with independent uniform
proposals. As shown in Figure 6, using more steps of the
chain allows samples to deviate further from the uniform dis-
tribution, as measured by the decrease in entropy. As already
mentioned, dual variables give information of the trade-off
between fitting clean and augmented data. We observe the
final value of the dual variable is highly correlated with the
entropy of sampled transformations. That is, transforma-
tions that deviate further from uniformity result in larger
dual variables at the end of training. Furthermore, in 7 we

1.0 1.5 2.0

0.25

0.50

0.75

C
E 

Lo
ss

 (
) Epochs             Split

200
600

Train
Test

1.0 1.5 2.0

1.0

0.5

0.0

Sl
ac

k

1.0 1.5 2.0
0

5

10

D
ua

l V
ar

ia
bl

e 
(

)

Constraint level ( )

Figure 5. Training WideResnet-40-2 for 200 (standard) and 600
epochs in the CIFAR100 dataset, with different constraint levels.

show the evolution of dual variables for different sampling
steps. Sampling distributions that are closer to worst case
perturbations results in more stringent requirements, and
thus dual variables grow more rapidly.

D.1.4. SAMPLED TRANSFORMATIONS

We now include plots of the empirical transformation dis-
tributions. As shown in Figure 8, the frequency with which
transformations are sampled varies depending on the dataset,
which is a desirable property. Similar to (Zhang et al., 2020),
we observe a prevalence of geometric transformations, un-
like (Cubuk et al., 2018). In SVHN color transformations
are less frequent than in CIFAR datasets, and the frequency
of geometric transformations increases, which is interest-
ing due to the perceptual importance of shape in the digit
recognition task.

As already noted, using more steps allows the chain to
deviate further from the uniform proposal distribution. We
thus plot the frequency of sampled transformations across
training epochs on Figure 9. We observe that as training
progresses, the observed frequencies also deviate further
from uniformity. This suggests that, due to the dataset and
architecture, some transformations may be harder to fit than
others.

Similarly, we include histograms for the sampled transfor-
mation levels in Figure 10. Extreme levels are sampled more
frequently, but the empirical distributions vary depending
on the transformation. The deviation from uniformity and
the differences between transformations are accentuated as
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Figure 6. Number of Metropolis Hastings steps ablation for WideResnet-40-2 in CIFAR datasets. The constraint level is fixed for each
dataset (0.8 in CIFAR10 and 2.1 for CIFAR100). We compute the entropy of the augmentations sampled at the last epoch of training. The
value of the dual variable at epoch 200 increases with the number of steps, whereas the augmentation distribution entropy decreases. Each
point represents an independent run. Experiments were repeated four times.
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Figure 7. Evolution of dual variables during training for Wide-
ResNet-40-2 in CIFAR datasets. The constraint level is fixed for
each dataset (0.8 in CIFAR10 and 2.1 for CIFAR100). As the
number of MH sampler steps increases so does the growth of dual
variables, which reflects harder to satisfy constraints.

Figure 8. Frequency of sampled transformations for CIFAR and
SVHN datasets using two MH sampler steps, for Wide-Resnet-28-
10.

sampling steps increase (Figure 11).

D.2. Runtime analysis

As mentioned in section 4.3, the added computational cost
of our algorithm is that of computing a forward pass for each
MCMC step. As a result, trade-off between sampling λ⋆

c

accurately and computation arises. In Table 11 we provide
an empirical runtime analysis for our method for different
numbers of MH steps, and compare it with the training
time of baseline methods. These times correspond solely
to training, and it is difficult to account for the time taken
to tune the hyperparameters of each method, which hinders
direct comparisons. In the case of DeepAA (Zheng et al.,
2022), it requires running a data augmentation policy search
that takes 11 hours (more than 5× training time) using the
same hardware.
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TA DeepAA Ours

2 Steps 4 Steps

Epoch time (s) 12.6 13.3 32.5 51.2

Table 11. Time per epoch for WideResnet 40-2 in CIFAR 10
dataset, on a workstation with one NVIDIA RTX 3090 GPU and
AMD Threadripper 3960X (24 cores, 3.80 GHz) CPU.

m Accuracy

2 81.58
4 81.34
8 81.25
16 80.33

Table 12. Test accuracy (second column) for WideResnet 40-2
trained on CIFAR100 using different values of augmentations per
sample (denoted as m, first column).

D.3. Batch mode Augmentation

All of the experiments were conducted using a single aug-
mentation per training sample in the batch, that is m = 1
in Algorithm 1. As already mentioned, our approach is
also suitable for batch mode augmentation, i.e. m > 1.
Therefore, conducted a preliminary ablation study on m. As
shown in table 12, increasing m resulted in a slight decrease
in accuracy. However, increasing m leads to larger batch
sizes, which affects optimization dynamics. Consequently,
adjusting the learning rate and other optimization hyperpa-
rameters for each value of m could lead to performance
improvements, as shown by (Zheng et al., 2022). Therefore,
providing further ablations and analyses regarding batch
mode sampling is an interesting future research direction.

D.4. The bias of data augmentation can hinder
performance

As already mentioned in section A.2 there is empirical
evidence that certain distributions over commonly used
transformations can introduce biases that are detrimental to
model performance and generalization (Blaas et al., 2021).
We provide another simple experiment to show that in prac-
tice there exist transformation distributions over commonly
used augmentation spaces that deteriorate model perfor-
mance. We also showcase that balancing the amount of
data augmentation (e.g. by including the original data) is
important to mitigate and overcome this issue.

We restrict the transformations in the wide augmentation
space (Müller and Hutter, 2021) to their maximum mag-
nitude. We sample transformations according to λ⋆

c using
two MH steps as previously described. We compare against
training without augmentation, and training using both aug-
mentation and the original data (i.e. adding the identity)

No augmentation λ⋆
c λ⋆

c + Identity

78.42± 0.31 75.19± 0.54 80.01± 0.26

Table 13. Image Classification test accuracy for WideResnet 40-
2 in CIFAR100, trained using different augmentation policies
defined over the wide (Müller and Hutter, 2021) augmentation
space. The first column corresponds to using the training data
without applying any transformations, and the second column
to sampling transformations according to λ⋆

c , which results in
lower accuracy. The third column corresponds to using both the
original and augmented data equally weighted, which leads to an
improvement in accuracy. We report the mean and confidence
intervals computed over five independent runs.

equally weighted. While sampling transformations accord-
ing to λ⋆

c deteriorates performance with respect to the model
without augmentation, including both the identity and the
augmented samples achieves a superior performance, as
shown in Table 13.
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D.5. Constraint Level Specification.

This experiment illustrates how dual variables can be used
to adjust epsilon using simple heuristics. In the synthetic
invariances setup, we first train the model with the same con-
straint level for all transformations, regardless of whether
the transformation is a “true” invariance of the data distri-
bution. That is, there is a mismatch between the constraints
and the invariances in the datasets, which can result in poor
performance. We then proceed to:

(i) Tighten the constraints associated with zero dual vari-
ables by dividing epsilon by a factor of two.

(ii) Relax the remaining constraints, which showed large
associated dual variables, by multiplying ϵ by a factor
of two.

As shown in Table 14, this simple heuristic leads to an
improvement in test accuracy over the initial (misspecified)
constraint levels. Therefore, adapting the constraint level
by leveraging dual dynamics while training is a promising
future work direction.

Dataset Architecture Invariance Same ϵ Adjusted ϵ

MNIST MLP Translation 93.5± 0.2 94.9± 0.1
Rotation (90) 96.95± 0.03 97.28± 0.07
Rotation (180) 93.18± 0.03 95.35± 0.03

CNN Translation 96.00± 0.02 97.79± 0.09
Rotation (90) 98.15± 0.09 98.5± 0.1
Rotation (180) 96.3± 0.3 97.2± 0.3

F-MNIST MLP Translation 76.5± 0.5 81.2± 0.2
Rotation (90) 81.8± 0.1 84.78± 0.06
Rotation (180) 76.1± 0.7 83.85± 0.21

Table 14. Classification accuracy for synthetically invariant datasets using the same constraint level for all transformations (third column)
and adjusting constraint levels according to dual variables (fourth column).
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Figure 9. Frequency of sampled transformations for CIFAR datasets in the first and last epochs of training, for Wide-Resnet-40-2. As the
number of steps increases, the the entropy of sampled transformations decreases, i.e., observed frequencies get further from uniformity.
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Figure 10. Frequency of sampled transformation levels across epochs, for different transformations, using two MH steps. Extreme levels
are sampled more frequently, but some transformations deviate further from uniformity.
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Figure 11. Frequency of sampled transformation levels for the first and last epochs, for different transformations, using sixteen MH steps.
The frequencies concentrate in extreme values for some transformations.
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