
Protein language model rescue mutations highlight
variant effects and structure in clinically relevant genes

Onuralp Soylemez†

onuralp@gmail.com
Pablo Cordero†

pablo@stripe.com

Abstract

Despite being self-supervised, protein language models have shown remarkable
performance in fundamental biological tasks such as predicting impact of genetic
variation on protein structure and function. The effectiveness of these models on
diverse set of tasks suggests that they learn meaningful representation of fitness
landscape that can be useful for downstream clinical applications. Here, we in-
terrogate the use of these language models in characterizing known pathogenic
mutations in curated, medically actionable genes through an exhaustive search of
putative compensatory mutations on each variant’s genetic background. Systematic
analysis of the predicted effects of these compensatory mutations reveal unappre-
ciated structural features of proteins that are missed by other structure predictors
like AlphaFold. While deep mutational scan experiments provide an unbiased
estimate of the mutational landscape, we encourage the community to generate
and curate rescue mutation experiments to inform the design of more sophisticated
co-masking strategies and leverage large language models more effectively for
downstream clinical prediction tasks.

1 Introduction

Understanding the effects of genetic variation in modulating disease is a central task in clinical
genetics and genomic medicine, where the ultimate goal is to detect, quantify, and characterize
the pathogenicity of particular mutations to elicit correct diagnosis and inform treatments. Recent
advances in protein sequence and structure modeling are beginning to show promise to aid in this
task. Protein language models have been shown to harbor variant effect information and high
accuracy protein structure prediction [1] has vastly expanded the ways protein structure can be used
in connecting genetic variation with disease effects.

More precisely, recent work ([2], [3], [4]) has shown that protein language models can effectively
model deep mutational scan data from extensive genotype-phenotype mapping (e.g., fitness landscape
of green fluorescent protein [5]) and are also capable of predicting pathogenicity of disease-associated
mutations ([6], [7]) without further training, simply relying on the underlying patterns mined by self-
supervised language modeling. Here, we expand on these trends by interrogating protein language
models through in silico mutation.

We leverage an evolutionary insight from compensatory molecular evolution and describe a novel
approach to recovering spatial features of protein structures. To ground the approach, we compare
compensatory scores with compensated pathogenic deviations (CPDs): pathogenic amino acid
substitutions in humans where the human pathogenic state appears to be wild-type in a functionally-
equivalent protein from an orthologous species without any drastic fitness impact on the latter genetic
background ([8], [9]). Additionally, we delve into the patterns of such protein language model
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rescue mutations and find that they segregate guided by protein structure and can sometimes pinpoint
structural features missed by structure predictors like AlphaFold.

2 Data and Methods

Clinically relevant genetic variants. We retrieved the latest list of medically actionable genes
curated by the American College of Medical Genetics and Genomics (ACMG)[10]. These genes
harbor high penetrance, large effect pathogenic mutations associated with clinically actionable
medical conditions. We limited our analysis to 53 genes with less than 1024 amino acid residues in
length in line with the ESM-1v pre-training setup [7] (see Appendix for the gene list). For each gene,
we extracted ClinVar [11] variants with their corresponding clinical significance annotation, and
grouped the variant impact into three categories: pathogenic/likely pathogenic (P/LP), benign/likely
benign (B/LB) and variants of unknown significance (VUS). In case of conflicting interpretations of
pathogenicity, annotation with the higher number of ClinVar submissions is considered.

For each ClinVar variant, we parsed the global allele frequency for the mutant pathogenic allele from
the gnomAD v2.1 dataset that contains human genetic variation data from 125,748 whole exomes
and 15,708 whole genomes [12]. In case of multiple nucleotide changes corresponding to the same
protein change, we kept the allele frequency for the more common alternate allele.

Compensated pathogenic deviations (CPDs). We compiled a list of compensated pathogenic
deviations, where the pathogenic ClinVar variant in human is conserved in an ortholog in another
species. Presence of such substitutions - even in highly conserved regions - suggest that there must
be other amino acid changes either within the same protein or in an interacting protein to mitigate
the fitness impact, and these interdependent or epistatic interactions may represent functional or
spatial constraints on the corresponding sites. Specifically, using highly conserved multiple sequence
alignment from placental mammals, we identified sites where the disease associated ClinVar amino
acid state (e.g., His in Arg13His substitution) appears to be wild-type in a functionally equivalent
(orthologous) sequence in at least one placental mammal. To assess the relevance of sequence context
in the vicinity of the pathogenic mutation, we also identified CPDs where neighboring amino acid
residues are completely conserved in the placental mammal phylogeny, likely corresponding to
regions of functional importance.

Fitness impact of secondary mutations. We use the ESM protein language model to score putative
secondary mutations on the genetic background of a known disease mutation. Specifically, we
interrogate the log odds of each amino acid in each sequence position of the protein language model
under the background of the genetic variant of interest (the so-called "wild-type marginal" effect).
Independently, such a score highlights the fitness impact of secondary mutations and identifies rescue
mutations whose average fitness impact can compensate the fitness reduction caused by the original
mutant. In aggregate, summary statistics of such scores in any given position can yield signals of
gain or loss of fitness as a result of the background, pathogenic genetic variant and may lead to to
insights into structure. Thus, we also consider the z-score across background mutation position of
these ESM scores to compare the fitness impact of that background mutation against all others.

3 Results

Stability of predictions between different language models. For any useful clinical application,
it is important that pretrained protein language models with different modeling perplexity yield
robust predictions. Here we evaluate the consistency of the pathogenicity predictions from two
state-of-the-art transformer protein language models. Specifically, we score the pathogenicity of
ClinVar variants in LDLR gene using ESM-1v and ESM-2 pre-trained models, and show that there
is very strong correlation among the two predictors (Pearson’s correlation coefficient r=0.91) (see
Figure 1). While the correlation attenuates when all ClinVar variants across the entire gene list are
considered, two models generate consistent clinical significance annotations (see Supplementary
Figure 1).

Notably, variants with unknown significance (VUS) and pathogenic variants (P/LP) show relatively
moderate correlation (Pearson’s r of 0.60 and 0.59, respectively) when compared to correlation for
benign variants (B/LB) between the two language models. Moreover, we found that pre-trained

2



Figure 1: ESM scores are reasonably stable between model versions (Pearson’s correlation coefficient
(r) of 0.91). Here, we compare normalized ESM scores of ESM-1v and ESM-2 for the low-density
lipoprotein receptor (LDLR) gene which has the highest number of mutations with ClinVar annotations
available in ACMG dataset. ESM-1v scores are averaged across five models.

models with more layers scored a subset of VUS in BAG3 more pathogenic. These findings underscore
the importance of model selection for in silico pathogenicity predictions of clinically relevant variants
with unknown significance in medically actionable genes such as BAG3 (see Supplementary Figure
3).

Variant pathogenicity predictions. Due to natural selection pressure on deleterious alleles that
reduce fitness, we expect the predicted pathogenicity scores for the pathogenic missense variants
(P/LP) to be inversely correlated with the allele frequency of the mutant alelle. We mapped each
ClinVar variant to available large-scale human genetic variation data in gnomAD database, and found
that the language model variant impact predictions are consistent with the prevalence of corresponding
mutant alleles in the general population (See Figure 2). As expected, predicted scores for the benign
missense variants (B/LB) do not show the same correlation. Prediction scores calculated using ESM-2
model show the same trend (see Supplementary Figure 2).

Sequence context around putative rescued sites. Structural and biochemical analysis of compen-
sated pathogenic mutations (CPDs) found previously that CPDs are on average less deleterious than
non-compensated pathogenic mutations [13]. To test whether language model predictions recapitulate
this empirical observation, we identified CPDs as described in Methods and compared the prediction
scores for CPDs against non-CPDs. We found that the distributions of ESM-2 prediction scores of
CPDs and non-CPDs are statistically different (Mann-Whitney-Wilcoxon two-sided test p-value <
1e-03), and CPDs appear to be more tolerated than non-CPDs in line with the biochemical analysis
(see Supplementary Figure 4).

Taking into consideration potential misalignment errors in multiple sequence alignments, we repeated
the analysis limiting CPDs to sites where the neighboring sites are required to be fully conserved
across the phylogeny. Interestingly, we did not observe a statistically significant difference between
CPDs and non-CPDs when using such constraint on local homology. This finding may suggest that
the existing protein language models may be limited to capture local sequence context when putative
compensated mutations are present, and further hint at potential gains from more sophisticated
co-masking strategies during pre-training. Modest correlation between ESM-2 model scores and
Cross-Protein Transfer (CPT) model [14] scores highlight the importance of better understanding the
subset of predictions where these models do not agree, and compensatory framework may be helpful
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Figure 2: ESM-2 differentiates between pathogenic and benign genetic variants in clinically-relevant
genes and this effect grows weaker as the variants are more common in the general population. For
all pairwise comparisons, two-sided Mann-Whitney U test p-values < 1e-05.

to diagnose the inherent limitations of protein language models for resulting in such disagreements
(see Supplementary Figure 5).

Rescue mutation effects reveal unappreciated structural features . We next interrogated whether
simple summary statistics of mutations conditioned against a background variant along the protein
sequence revealed any informative compensatory features. This follows the same intuition of residue
co-evolution, where compensatory effects arise from sequence perturbations and can crucially inform
downstream tasks such as structure prediction. We took the mean wild type marginal score per
position, per background variation and z-scored them across all genetic variants. Plotting these
scores in aggregate revealed patterns that matched predicted contact maps of the protein’s AlphaFold-
predicted structures, confirming the functional relevance of these compensatory effects and in line
with previous results observing that protein language models can be unsupervised structure predictors.
Crucially, in some cases we observed that compensatory effects of these rescue mutations predicted
structural features that may have been missed in AlphaFold. For example, the myopathy-related BAG
Cochaperone 3 (BAG3) gene is predicted to be mostly unstructured save for one small BAG domain
by AlphaFold – the same domain that has been experimentally characterized. Rescue mutation effects
reveal compensatory changes within this supposedly unordered region that harbors multiple variation
of unknown significance. Further, comparing ESMfold vs AlphaFold structures confirm that the
AlphaFold structure is mostly predicted to be disordered while ESMfold shows a more compact
structure with more structural features.

4 Discussion and Future Directions

Our findings add additional support to the promise of protein language models as tools for interrogat-
ing possibly pathogenic genetic variation, following lines of evidence in deep mutational scanning and
genome-wide scoring of genetic variants. While extensive large-scale experimental measurements
in deep mutational scan data sets provide clear and robust genotype-phenotype maps, curation of
clinically relevant genetic variants poses significant challenges. For example, a non-trivial fraction of
pathogenic or likely pathogenic ClinVar variants may have incomplete penetrance and therefore their
pathogenicity may be highly context dependent. We focused on an expert curated subset of medically
actionable genes to enrich our genetic variant dataset for better studied variants with well-established
genotype-phenotype associations. Likewise, medical phenotypes in ACMG gene list include diseases
with highly complex diagnosis criteria, and it is challenging to establish causal associations with
every single genetic variant in these genes. Population scale biomedical databases and biobanks such
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Figure 3: Summary statistics of secondary mutation effects on a variant genetic background segregate
in structural features and resemble a contact map. Normalized mean of mutation effects in each
position of the BAG Cochaperone 3 (BAG3) gene (left) bring out structural patterns consistent
with the 10 angstroms contact map of the predicted AlphaFold structure (center; see square pattern
corresponding to the BAG domain) and highlight additional, potentially missed structural patterns in
regions deemed disordered by AlphaFold. High and low effects tend to segregate within the contact
map (right)

Figure 4: BAG3 predicted structures via ESMfold (left) and AlphaFold (right). ESMfold picks up
more structural features than AlphaFold. Both structures are colored by confidence, from blue (high
confidence) to yellow (medium confidence) to red (very low confidence)
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as UK Biobank ([15]) provide an opportunity to refine the curation the genetic and phenotypic data
from hundreds of thousands of individuals.

Additionally, we explore an in silico search of compensatory mutations using protein language models
as a means to further characterize the effect of genetic variation. This compensatory score maps
reveal potentially unappreciated structural features in some cases. For this work, we only considered
single rescue mutations, however, it is conceivable that compensatory interactions may involve more
than one amino acid substitution within the same protein, co-evolving changes in the interacting
protein partners, or more subtle synonymous changes affecting the secondary structure. It remains
elusive to what extent incorporating higher order dependencies between sites can help improve
the predictive accuracy of protein language models or highlight any potential limitation. Masked
language models provide a convenient extended co-masking strategy to probe the relevance of higher
order interactions. Rescue experiments offer a powerful framework to diagnose the limitations of
large language models to capture clinically relevant aspects of complex fitness landscapes. While
deep mutational scan experiments provide an unbiased estimate of the mutational landscape, we
encourage the community to generate and curate rescue mutation experiments to inform the design of
more sophisticated co-masking strategies and leverage large language models more effectively for
downstream clinical prediction tasks.

5 Data and code availability

All the data used in this paper are publicly available. Details on datasets, models and analysis code
can be found at https://github.com/dimenwarper/llm-for-clinical-variants.
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A Appendix

List of ACMG genes considered in this study:

ACTA2 ACTC1 ACVRL1 BAG3 BMPR1A BTD
CASQ2 DES DSC2 ENG GAA GLA

HFE HNF1A KCNQ1 LDLR LMNA MAX
MEN1 MLH1 MSH2 MUTYH MYL2 MYL3
NF2 OTC PCSK9 PKP2 PRKAG2 PTEN
RB1 RPE65 SDHAF2 SDHB SDHC SDHD

SMAD3 SMAD4 STK11 TGFBR1 TGFBR2 TMEM127
TMEM43 TNNC1 TNNI3 TNNT2 TP53 TPM1

TRDN TTR VHL WT1
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Supplementary Figure 1: Distribution of ESM-1v prediction scores for pathogenic (P/LP) and benign
(B/LB) ClinVar variants group by their respective population allele frequencies in the gnomAD
genetic variation database. ESM-1v prediction scores are the average ensemble score of five models.
For all pairwise comparisons, two-sided Mann-Whitney U test p-values < 3.5e-05.
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Supplementary Figure 2: Comparison of ESM-1v and ESM-2 prediction scores as normalized across
the entire predictions among ClinVar variants in 53 ACMG genes. Pearson’s correlation of r=0.66

Supplementary Figure 3: Comparison of ESM-2 prediction scores for BAG3 variants with unknown
significance (VUS) across ESM-2 pre-trained models with varying number of layers.
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Supplementary Figure 4: ESM-2 scores for pathogenic variants (P/LP) and variants of unknown
significance (VUS) at putative compensated sites. CPD refers to sites where the mutant residue is
present in at least one non-human species. CPD+1 and CPD+2 refer to CPDs where the neighboring
residue or two residues, respectively, are required to be fully conserved. Mann-Whitney-Wilcoxon
(M.W.W) two-sided test p-values are shown.
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Supplementary Figure 5: Comparison of ESM-2 and Cross-Protein Transfer (CPT)[14] model
prediction scores as normalized across the entire predictions among ClinVar variants in 51 ACMG
genes for which both models have predictions available. Spearman’s rank correlation between the
two predictors is ρ=0.69.

11


	Introduction
	Data and Methods
	Results
	Discussion and Future Directions
	Data and code availability
	Appendix

