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ABSTRACT

Large vision models (VLMs) have achieved significant success in most daily sce-
narios but face challenges in specialized grounding tasks. This limitation is pri-
marily due to insufficient semantic understanding of both tasks and images in
current vision models. In contrast, large multimodal language models (MLLMs)
excel in semantic comprehension and instruction-following but underperform in
detailed recognition. To harness the strengths of both, we propose utilizing
MLLMs to assist VLMs in handling difficult segmentation tasks. Our approach
involves: (1) leveraging MLLMs for their semantic expertise, and (2) design effec-
tive framework for zero-shot segmentation. Our proposed framework is general-
izable and performs well across various tasks. Experimental results show a signif-
icant performance improvement (10%+) in challenging tasks such as camouflage
object detection, anomaly detection, and medical image segmentation compared
to zero-shot baselines.

1 INTRODUCTION

Zero-shot challenging segmentation has become an essential area of research due to the its signifi-
cant applications in fields such as medical imaging and anomaly detection Trinh (2023); Cao et al.
(2023b). Traditional segmentation methods struggle with recognizing objects in challenging zero-
shot scenarios Chen et al. (2023a); Tang et al. (2023), where data scarcity and lack of fine-grained
labels pose substantial challenges.

We find that the primary challenges for Large Vision Models (LVMs) in such task is not the visual
recognition ability. As shown in (a) in Figure 1, Table 1 and Table 3, the LVMs are able to accurately
segment targets within a few visual prompt and even under 10% errors. However, when it is asked to
auto-segment the target, it almost fails completely. Therefore, we conduct experiment in this paper
and identify the bottleneck is the semantic knowledge.

On the contrary, we find that Large Multimodal Models are good at semantic understanding, from
Figure 1 and Table 3. Therefore, our question is: Can we transfer the semantic expertise from
MLLMs to LVMs for challenging zero-shot segmentation? There have been previous works on
it, but they are either (1) directly grounding the target with grounding-capable MLLMs Zhang
et al. (2023b), which suffers from low accuracy (2) Using weak labels to train an Adapter Chen
et al. (2023a), which requires training (3) Introducing extra smaller models for guidance Tang et al.
(2023) which hurts generalization ability, (4) Segmenting-then-picking by MLLMs, which does not
fall in the scope of challenging segmentation since segmenting is already difficult for LVMs. To
overcome the limit, we propose Decomposed Segmentation with Selective Re-localizing(DeSSeR),
a training-free, zero-shot while highly generalized method. As shown in FIgure 1 (b), our method
use decomposition to approach the question in a coarse-to-fine grained manner, and fully utilize the
semantic ability of powerful MLLMs to correct unreliable results. Abundant analysis is done to
illurstrate the design of the method, and experimental results on three dataset, Camouflage Object
Detection (COD), Zero-Shot Anomaly Detection (ZSAD), and polyp medical image segmentation
(polyp) demonstrate the superiorness of our method.

In conclusion, our contributions are:

1. Demonstrating that zero-shot challenging segmentation benefits significantly from the se-
mantic expertise of MLLMs.
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Figure 1: (a) Current limitations of LVMs in challenging zero-shot segmentation is the lack of se-
mantic understanding while LMMs is able to semantic expertise. (b) Comparison of our framework
with naive segmentations.

2. Quantitatively showing that decomposing segmentation tasks improves performance in
challenging zero-shot scenarios.

3. Identifying the limitations of grounding models in localization and proposing uncertainty
estimation methods, as well as gridding localization techniques that utilize the generaliza-
tion ability of MLLMs.

4. Composing a novel strategy and introducing DESSER, a training-free framework. Experi-
mental results on camouflage object detection, anomaly detection, and polyp segmentation
show significant performance improvements (over 10%) compared to zero-shot baselines,
achieving results comparable to fully-supervised methods.

2 PRELIMINARIES

2.1 PROBLEM SETTING

In challenging zero-shot segmentation, a model f : I, p → M is given an image I and outputs a
prediction mask M based on the task t and prompt p. Unlike traditional segmentation, the model
is not trained on the specific domain, making it desirable for computational convenience and data
scarcity.

To tackle the 0-shot, we utilizing generalizing ability from large pretrained models OpenAI (2023a);
Caron et al. (2021), including vision and large multimodal models. Vision models is transformer-
based, and MLLMs are autoregressive, generative language models conditioned on the visual modal-
ity. The prompt p is designed to guide the MLLMs to do the task. The answer sampled from
p(a|v, q) is used to enhance the segmentation of vision models. The setting is common in previous
works, Tang et al. (2023); Biswas (2023); Zhang et al. (2023b). Our method differs in that it can
generalize to multiple tasks, all with large performance gain, and just require necessary changes to
prompt.

2.2 MOTIVATING EXPERIMENT

Is semantic expertise helpful in zero-shot segmentation? Per previous work that distill guidance
from MLLM and use LVM to segment, they either Recognizer/Localizer/Segmentor. Experiment are
conducted to see if that works generally and in zero-shot. we conduct naive decomposition strategy
to test if semantic expertise is beneficial for segmentation. To select the data, we randomly picked
100 images from CAMO dataset (in camouflage object detection filed), and simply use MAE to test
the result. For models, we use gpt-4o to generate semantic expertise, and SEEM for segmentation.
According to Table 3 and Figure 2, we compare two ways: (1) Asking SEEM to segment directly (2)
Asking SEEM to segment based on the name of the object. Results show when the original MAE is
large, meaning SEEM may totally not know the target, the improvement from semantic expertise is
huge. This demonstrates the lack of semantics is the main reason for failed segmentation.
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How to exploit semantics effectively? Is the semantics being exploited by the naive semantic-
enhanced text prompt? From Table 3, we find that recognizing from MLLMs is high, there are still
complete misses; when given rough grounding (boxes with 10% off accuracy), the segmenting is
way higher. Therefore, we claim that the segmentor model is good at segmenting, but lacks the
ability in between, which we call it ”localization”. So when we want it to localize and segment
together, it suffers from the localizing. To further prove the claim, we add a localizer MLLM in
between, composing a three-step pipeline as shown in Figure 1. It shows that the rough localization
by MLLM helps transferring semantic knowledge, for that it can (1) understand better semantics,
according to high IOU of box than vanilla SEEM, (2) is able to better prompt SEEM, visual prompt.

In conclusion, we study the challenging zero-shot segmentation and propose to decompose it in three
parts, recognizing, localization (rough grounding) and segmentation (exact grouonding). We want
to see how to optimize each and their connect to improve the performance.

3 ENHANCING SEMANTICS THROUGH DECOMPOSITION

As suggested in Section 2.2, we can use decomposition to advance semantic expertise from MLLM
in segmentation models. In this section, we put our main focus on the decomposition of localization
and segmentation. Recognizing alone is not studied in detail since (1)this can be seen as a VQA
question, and plenty of them have been discussed Khan et al. (2024) (2) We focus more on the
correlation between visual question and visual answer, Section 3.5. For localization, we mainly
study how to transfer semantic from recognizer to better localization result. For segmentation, since
the whole process is end to end, we mainly study how to provide effective visual prompt for LVMs.

In the section, all experiments are conducted based on CAMO.

3.1 SHOULD LOCALIZATION BE DECOMPOSED?

We examine if the decomposition of localizing is useful. As shown in the Table 3, we test naive
end-to-end localizing with prompt:”Where is the camouflage object?”1 ,and simple decomposition
for localization, recognizing name of the object first then localize: Two prompts are used in order.
(1)prompt:”What is the name of camouflage object?”, (2)prompt:”Where is the [name]?”. Multiple
MLLMs (both close-source and open-source are tested) are tested, and results show in localization,
they all benefit from such decomposition. This is consistent with what previous similar work proves
in VQA and language field Zhou et al. (2022); Khan et al. (2024): If we ask model to focus on one
thing at a time, it generally produces better result.

Model Visual Prompt MAE
SAM auto-segment 0.412

exact bbox 0.057
random-10%-off bbox 0.083

random-30%-off bbox 0.090

random-50%-off bbox 0.138

Figure 2: Semantic expertise and decompo-
sition helps.

Table 1: SAM segment images from CAMO with
different visual prompts. It can be found that
rough localization is able to improve segmenta-
tion largely.

1one thing to note is that the model sometimes do decomposition themselves, but not much impact on the
result
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Method LVLM-based Zero-Shot Training Settings CAMO CVC300 VisA*
Sα ↑ Fω

β ↑ MAE ↓ mIOU ↑ mDice ↑ MAE ↓ AUROCpx↑ F1-maxpx↑
Task-Specific Methods
diffCOD Chen et al. (2023b) ✗ ✗ F 0.795 0.704 0.082 - - - - -
ZoomNeXT(ResNet) Pang et al. (2023) ✗ ✗ F 0.833 0.774 0.065 - - - - -
ZoomNeXT(PVT) Pang et al. (2023) ✗ ✗ F 0.888 0.859 0.040 - - - - -
WSCOD He et al. (2023) ✗ ✗ W 0.735 0.641 0.092 - - - - -
CVPLF Tang et al. (2023) ✓ ✓ N 0.700 0.650 0.100 - - - - -
PraNet Fan et al. (2020b) ✗ ✗ F - - - 0.797 0.871 0.010 - -
Polyp-PVT Dong et al. (2021) ✗ ✗ F - - - 0.833 0.890 0.007 - -
Meta-Polyp Trinh (2023) ✗ ✗ F - - - 0.862 0.926 0.006 - -
SAM-CLNet Zhao et al. (2023) ✗ ✗ F - - - 0.800 0.876 0.008 - -
Polyp-SAM++ Biswas (2023) ✓ ✓ N - - - 0.690 0.730 - - -
GPT-4V-AD Zhang et al. (2023b) ✗ ✓ N - - - - - - 77.9 9.3
WinCLIP Jeong et al. (2023) ✗ ✓ N - - - - - - 81.2 15.8
SAA Cao et al. (2023a) ✗ ✓ N - - - - - - 84.7 13.2
SAA++ Cao et al. (2023a) ✗ ✓ N - - - - - - 77.8 29.8

General Vision Models
OpenSeeD Zhang et al. (2023a) ✗ ✓ N 0.592 0.552 0.201 0.301 0.402 0.060 60.2 2.2
SAM Kirillov et al. (2023) ✗ ✓ N 0.684 0.606 0.132 0.685 0.742 0.016 69.8 7.5
SAM-HQ Ke et al. (2023) ✗ ✓ N 0.701 0.625 0.114 0.679 0.722 0.014 68.3 5.5
SEEM Zou et al. (2023) ✗ ✓ N 0.697 0.578 0.121 0.674 0.696 0.020 71.1 6.3

LVLMs with Segmentation Ability
LISA Lai et al. (2023) ✓ ✓ N 0.690 0.625 0.148 0.152 0.221 0.059 63.1 1.2

Ours ✓ ✓ N 0.833 0.818 0.064 0.845 0.903 0.004 86.4 32.5

Table 2: Quantitative results overview. The table organizes compared methods into three categories, ar-
ranged from top to bottom: Task-Specific Methods (features numerous ’-’ entries, indicating their limited
applicability across different datasets), General Vision Models, and LVLMs with segmentation ability. ’VisA*’
specifically refers to using only anomaly images from the VisA dataset for segmentation-focused evaluations.
Training settings are indicated as ’N’ (no supervision), ’F’ (full supervision), and ’W’ (weak supervision). Bold
and underline highlight the best and second-best results, respectively. The results showcase our method’s com-
petitive edge against fully-supervised approaches and substantial improvements over weakly or unsupervised
methods across all datasets.

3.2 HOW WELL CAN DECOMPOSED LOCALIZATION BE?

Can the simple decomposition be further improved? First, previous works show that customized
prompt for each task help improve the result of MLLMs Zhang et al. (2023b); Zhou et al. (2023);
Tang et al. (2023). However, that is not in the scope of this paper and we try to focus on the general
aspect. There are two problems identified.

Grounding Multiple Instances. MLLMs are hard to ground multiple objects if not explicitly
prompted. Recent works Rasheed et al. (2023); Wu et al. (2023) also reveals this. For example,
when asked to localize ”people”, localizer MLLMs inclined to localize either one person or the
whole people, but not every one in one box individually. This compromise the result of segmenta-
tion. To overcome the limit, we include instance-aware-prompt: that is we generate one query for
each instance target, and then we prompt localizer to answer grounding for each queries. Experiment
results can be shown in Table 6 to suggest its effectiveness.

Target Misses. Though grounding MLLMs are good at understanding semantic, there are cases they
still miss the recognized targets or only able to identify part of it. We attribute this to two reasons, as
shown in the left image of Figure 3: 1. referring text confusion (text prompt): The description for the
target is not clear enough. As shown in the upper row, the prompt is misleading since the localizer
can not know what is ”bend” without refering to normal objects. Even though in this case we can
exactly use ”the rightmost metal legs” to guide the localizer, the way to speicify such prompt varies
largely across images, and it is hard to ensure the exact expression all the time. 2. The localizer
fails to understand the image,, even with the guidance of semantic expertise. As shown in the lower
row, The localizing ability of a model is generally weaker than the semantic understanding ability
for much less grounding data trained than image-text pairs data.

Therefore, we wonder (1) can we identify problematic localization? (2) if there is a way to further
exploit the semantics for localization from recognizer?

3.3 SELECTIVE RE-LOCALIZING WITH MLLM GRIDDING

To address the above issues, we propose the strategy: selective re-localizing with MLLM Grid-
ding. It can first estimate the uncertainty of MLLMs, then use recognizer MLLM to improve the
localiztion.
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3.3.1 UNCERTAINTY ESTIMATION

No matter is the confusing referring text prompt or the inability, the localizer is not sure about its
predicctionl. Therefore, we propose to use sampling for uncertainty estimation. We test consistency
over multiple answers, and select those with inconsistent answers.

After selection, we combine the answers in one image and ask recognizer to confirm which one is
correct.

Model Text Prompt Metrics Result

Recognizing GPT-4o What is the name of camouflage object? Accuracy 0.88
QWen-VL-Max What is the name of camouflage object? Accuracy 0.80

Localization Qwen-VL-Max What is the name of camouflage object? IOU 0.72

Qwen-VL-Max What is the [object name]? IOU 0.81
CogVLM-14B What is the name of camouflage object? IOU 0.65

CogVLM-14B What is the [object name]? IOU 0.81
SEEM (box of pred.) camouflage object IOU 0.46

SEEM (box of pred.) [object name] IOU 0.66

Segmentation SAM Bbox MAE 0.057

SAM Bbox, center point MAE 0.048

SAM Bbox, center point, 1 rand. point MAE 0.041

SAM Bbox, center point, 3 rand. point MAE 0.039
SAM Bbox, center point, 5 rand. point MAE 0.039
SAM Center point MAE 0.061

SEEM Center point MAE 0.063

Table 3: Comparison of prompts for recognizing, localizing and segmenting camouflage objects on
subset data from CAMO. ”[object name]” refers to the category name of the object in the image.
”SEEM (box of pred.)” means that we use the bounding box of its prediction to calculate IOU.
”Center point” refer to the center of the bounding box. ”rand. point” refer to random sampled points
within the bounding box.

Recognizer’s verification ability: One of MLLM’s emerging ability is verification on visual
prompt, as show in Figure 3. The recognize is able to select the grid box that cantains the target.
This prompt us to provide a novel localization strategy when loicalizer failed.

3.3.2 MLLM GRIDDING LOCALIZER

Therefore, we propose gridding prompt for recognizer. As shown in Figure 3, the gridding is laid
on the image and sent to MLLM. Then the overall gridding is cropped based on the whole bounding
box, and this is sent to localization for finer localize.

Replacing localization with gridding? Totally replace localization with MLLM localizer hurts
overall performance, because when localizer know the object, its localizing accuracy is much higher
than MLLM recognizer. Also, it is computational consuming.

3.4 SEGMENT WITH LOCALIZATION RESULT

In this subsection, we dicuss how to segment based on localization result. More specifically, we use
SAM to segment, which takes pure visual prompt. We study what visual prompt is valuable, and
how to achieve them.

Various visual prompt for segmentation We conduct experiment on different visual prompt for
segmentation, the results show that box prompt is the most effective one. Also, we find that providing
points used for visual prompt is also important, even though a fixed point prompt may help SAM’s
segmenting. Several visual prompting is studies including (1)Single point (2) Box (3) Center Point
in the Box (4) Corner Point of the box, as shown in 3, 5.

Cost-effective visual prompt The localizer only provide box; to utilize the point prompt, we can
use recognizer. According to Table 5, we find that even the fixed point prompt with box performs
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Figure 3: (a) Cases where localization fails. The above row demonstrate cases where prompt is
confusing (not knowing what is counted as ”bending outside”. Below row shows localizer failed
to understand images. ”red box” is the predicted grounding while ”green” is the GT. (b) Different
ways to do localization. Here, we show cases where Localizer (QWen-VL) failed while gridding
localizing by recognizer (GPT-4o) succeds. The point represent the center of the grids, red for
positive and blue for negative.

quite closely with recognizer-identified point prompt. Therefore, we adoopt fixed point prompt with
box promtp as a cost-effective way.

3.5 SCOPE AND LIMITATIONS

Our method focus specifically on the intersection of VQA and grounding for segmentation, so not
including pure text output such as optimizing recognization stage. Our method focus on zero-shot
segmentation, all the models are not trained. Currently, the performance of un-trained models are
still far from trained domain experts, but the method open a new perspective in regards to segment
by utilizing the generalizing power of MLLMs. We choose to enable our methods on black-box
models, for wider application. We do not target on only one task (focus on one optimize), but to find
what can be generalized; performance could be improved further through manual knowledge about
specific one task. Cao et al. (2023b) Also, we focus on difficult task where normal method may
completely fail, so normal detection dataset like COCO Lin et al. (2014) is not within the scope.

4 DeSSeR: DeCOMPOSED SEGMENTATION WITH SeLECTIVE RE-LOCALIZING
In this section, we combine the strategy in Section 3 and propose Decomposed Segmentation with
Selective Re-localizing(DeSSeR).

4.1 METHOD

The method contains (1) decomposition of recognization, localization and segmentation (2)
instance-aware prompt to solve counting (3) selective re-localizing with MLLM gridding to im-
prove reliability (4) cost-effective box-point prompt , as shown in Algo 1. Notably, the process
contains some hyperparamters, which we show our setting in the bracket: the iou threshold (0.7),
the resampling time (1), the gridding layout number (6x6 when images smaller than 384x384, 8x8
when images larger than 384x384) in selective re-localizing.
Prompt. The final prompt can be seen in appendix.

Implementation. In the main experiment, we use GPT-4o, CogVLM and SAM for recognizer,
localizer, and segmentor respectively. For other experiments, the choice of models are the same
unless specified. For segmentor using text prompt, we use SEEM Zou et al. (2023) model. All
experiment can be done in a single NVIDIA A-6000 GPU.
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Algorithm 1 DeSSeR

1: Input: I: image, t: task, p: instance-aware prompts, n: times for uncertainty estimate, τ : IOU
threshold for uncertainty

2: Models: rcg: recognizer , loc: localizer , seg: segmentor
3: Output: Mpred: predicted mask
4: q ← rcg(I, t, p)
5: box← loc(I, q)
{Uncertainty Estimation}

6: for i = 1 to n do
7: box this← loc(I, q)
8: if IOU(box, box this) < τ then
9: answer ← rcg(I, “verify {box}, {box this} for {q}”)

10: {Selective Re-localizing}
11: if answer == None then
12: box← gridding localize(rcg, I, q)
13: box← loc(crop(I, box), q)
14: break
15: end if
16: if answer == box this then
17: box← box this
18: end if
19: end if
20: end for
{Prepare cost-effective visual prompt.}

21: pseg ← prepare(box)
22: Mpred ← seg(I, pseg)

4.2 TASKS AND DATASETS.

Our experiments are conducted on datasets from three challenging tasks, namely camouflage object
detection, zero-shot anomaly detection and polyp segmentation, to showcase our method’s broad ap-
plicability: (1) CAMO Le et al. (2019), a subset of the CAMO-COCO dataset used in camouflaged
object segmentation, includes 250 images for testing in eight categories, featuring diverse challeng-
ing scenarios. We used three established metrics: structure-measure Sα, weighted F-measure Fω

β ,
and Mean Absolute Error MAE. (2) CVC300 Vázquez et al. (2017), a benchmark in polyp segmen-
tation in medical images, comprises 60 images of 500x574 resolution from colonoscopy videos.
Our evaluations include Mean IOU, Mean Dice, and MAE. (3) VisA Zou et al. (2022), an indus-
trial anomaly detection dataset that contains 12 classes of objects in 3 types (i.e., single instance,
multiple instances, and complex structure) with a total 2162 images for testing. For our purposes,
we focuses on the 1,200 images in the anomaly subset to evaluate segmentation capabilities. Two
widely adopted pixel-based metrics, AUROC and F1-max is used.

4.3 EXPERIMENT AND DISCUSSION.

We evaluate our proposed DeSSeR framework across various challenging segmentation tasks, cat-
egorizing the competing methods into specialist, vision general, and LLM general methods, as
shown in Table 2. Our training-free approach consistently outperforms existing general and zero-
shot/weakly-supervised methods by over 10%, and in some instances, achieves performance com-
parable to fully supervised models.

Table 4 demonstrates that the quality of semantic expertise significantly impacts segmentation per-
formance, underscoring the importance of leveraging advanced semantic understanding. Further-
more, as illustrated in Table 5, point prompts enhance the prediction quality of LVMs. However,
point labels generated by GPT-4V do not lead to performance improvements, indicating potential
challenges in fine-grained recognition for LVLMs like GPT-4V.
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Recog. Model Accuracy Loc. Model Box IOU Seg. Model Mask MAE
GPT-4o LLaVa-1.5 CogVLM LLaVa-1.5 SAM Grounding-DINO

✓ 0.84 ✓ 0.81 ✓ 0.064
✓ 0.53 ✓ 0.55 ✓ 0.110

✓ 0.84 ✓ 0.53 ✓ 0.101
✓ 0.84 ✓ 0.81 ✓ 0.069

Table 4: Error analysis on CAMO. This analysis reveals that the prediction errors of our method
can be attributed to the model performance at each stage. Moreover, the table shows that selecting
appropriate models substantially enhances performancee.

Image GT Ours LISA SEEM ZoomNeXT Image GT Ours SEEM PraNet Meta-Polyp

Figure 4: Qualitative results of DeSSeRon CAMO and CVC300, from left to right respectively.

In the context of anomaly segmentation, Table 6 shows that instance-aware prompts, which involve
querying each instance for errors, significantly benefit segmentation performance. Additionally,
incorporating overall image descriptions alongside category labels improves localization accuracy.

As presented in Table 6, selective re-localizing is performed frequently and results in performance
improvements. Although LLMs can identify inaccurate detections, they may lack the capability
to provide accurate results proactively. Comparative experiments between gridding localization by
recognizers and box localization from localizers reveal that gridding localization offers robustness
when localizers are unreliable, albeit with lower overall accuracy.

Qualitative results in Figures 4 and 5 illustrate that our method produces significantly clearer in-
stance masks compared to other zero-shot methods, particularly in complex scenarios as shown in
Figure 5.

Ways of labeling points CVC300
mIOU ↑ mDice ↑ MAE ↓

No labels 0.820 0.809 0.084
Fixed labels 0.833 0.818 0.064
GPT-4o generated 0.835 0.828 0.060
Consistent labels 0.824 0.810 0.061

Table 5: Performance on CVC300 with vari-
ant point prompts for segmentation model.
The results demonstrates that point prompts
enhance the quality of predictions from
LVMs. Additionally, point labels generated
by GPT-4V do not improve performance, in-
dicating that LVLMs such as GPT-4V may
face challenges in fine-grained recognition.

Prompt for Localizer VisA
AUROCpx F1-maxpx

Fixed 65.6 7.1
Category 80.1 24.4
Category + Description 85.5 30.1
Category + Description + Instance-aware Prompt 86.4 32.5

Table 6: Performance on VisA with varied
prompts for LMM during Localization Stage.
The results highlight that incorporating seman-
tic information, such as the target’s category,
size, and color, significantly enhances the qual-
ity of box localization in LMM.

5 LITERATURE REVIEW

Large Vision Models Recently, SAM Kirillov et al. (2023) proposes a strong universal segmenta-
tion model and evaluations show that its zero-shot performance is often competitive with prior results
achieved through full supervision. Despite being capable of performing routinary segmentation, the
SAM-based models fail when encountering challenging scenes Chen et al. (2023a). Therefore, a
zero-shot approach that is good at handling segmentation on scarce and complex data (e.g., COD,
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Image GT Ours SAA++ WinCLIP

Figure 5: Qualitative results of our method
DeSSeRon VisA.

Re-localizing Freq. 0.13
Correct. rate 0.061
Mean Change in MAE -0.023

IOUall IOUIOUloc<0.2

MLLM Gridding 0.30 0.25
Localizer 0.37 0.14

Figure 6: Re-localizing and Gridding localiza-
tion performance in COD dataset.

AD, and medical image segmentation) is in pressing demand. Multimodal Large Language Mod-
els Large Multimodal Language Models (MLLMs) Liu et al. (2023b;a); OpenAI (2023a); Zhu et al.
(2023); Wang et al. (2023); Ferret (2023); Lai et al. (2023) integrate LLMs with visual capabil-
ities to extend their impressive abilities from language tasks to vision-related tasks. LLaVA Liu
et al. (2023b;a), an open-source LVLM, is trained end-to-end by instruction tuning on language-
image dataset generated by GPT-4. MiniGPT-4 Zhu et al. (2023) introduces a model combining
a frozen visual encoder with the LLM Vicuna Peng et al. (2023). GPT4 Omni (gpt-4o) OpenAI
(2023b), an extraordinary model trained by OpenAI, is now the most capable LVLM. However,
these LVLMs primarily focus on semantic understanding of images and are not capable of visual
grounding. To solve the problem, CogVLM Wang et al. (2023) proposes a LVLM that is able to
ground objects to bounding boxes. It uniquely integrates a trainable visual expert module into the
frozen pretrained language model and image encoder. Challenging Segmentation Tasks (1)Cam-
ouflage Object Dectection. In the past years, there has been significant effort in the COD task Fan
et al. (2020a); Pang et al. (2023); Chen et al. (2023b); He et al. (2023). ZoomNext Pang et al. (2023)
develops a unified collaborative pyramid network which leverages multi-head scale integration and
rich granularity perception units. WSCOD He et al. (2023) introduces the first weakly-supervised
camouflaged object detection method using scribble annotations, featuring a novel consistency loss,
a feature-guided loss, and a new network. CPVLF Tang et al. (2023) introduces the camo-perceptive
vision-language framework to assess if MLLM can adapt to COD without specific training. Its still
have large gaps with fully-supervised ones. (2)Zero-Shot Anomaly Dectection Anomaly detection
has attracted great interest in various domains, e.g., industrial quality control Bergmann et al. (2019;
2020); Zou et al. (2022) and medical diagnoses Baur et al. (2021). Recently, zero-shot anomaly de-
tection (ZSAD) is proposed as a promising setting where neither normal nor abnormal image is pro-
vided. (3)Polyp Segmentation in Medical Images The pioneering work Fan et al. (2020b) presents
a novel method, the Parallel Reverse Attention Network (PraNet) for accurate polyp segmentation;
Polyp-PVT Dong et al. (2021) proposes a polyp segmentation model using a transformer encoder
and three innovative modules for robust performance on five polyp datasets. More recently, Polyp-
SAM++ Biswas (2023), a variant of SAM, utilizes text prompts for polyp segmentation, whose
evaluation shows its effectiveness compared to un-prompted SAM, but still have large gaps on some
datasets (e.g., CVC300) compared to SOTA methods.

6 CONCLUSION

In this paper, we introduce DeSSeR, a novel and training-free strategy leveraging Large Multimodal
Language Models (MLLMs) for segmentation in challenging tasks. Our study shows the pivotal
role of semantic understanding in such tasks, a facet where general large vision models (LVMs)
often fall short. The method uniquely combines the semantic insights from MLLMs with the visual
distinction capabilities of LVMs. Abundant experiment and analysis are done to provide insights on
the challenges faced when approaching zero-shot segmentation with MLLMs, and the logic behind
the DeSSeR method. Our comprehensive experimental analysis across various datasets not only
showcases the efficacy of DeSSeR but also suggests its genration on various tasks and datasets.
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