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Abstract

Enabling robots to navigate as efficiently as humans in unknown environments is
an attractive and challenging research goal in the field of embodied intelligence.
Following the exploration behaviors of humans, we find that scene semantic under-
standing, scene spatio-temporal memory, and accumulated knowledge are all key
elements to achieve efficient navigation. Inspired by this, we propose a zero-shot
object navigation method, HuLE-Nav, which contains two core components: multi-
dimensional semantic value maps for human-like exploration memory, human-like
exploration processes with multi-dimensional semantic value maps. Specifically,
HuLE-Nav first leverages the off-the-shelf Vision-Language Models (VLMs) and
real-time observations to dynamically capture the semantic relevance between
objects, the scene-level semantics, and spatio-temporal history of exploration paths,
and jointly represent them as a multi-dimensional semantic value maps. Then,
mimicking the active exploration behavior of humans, we further propose a dy-
namic exploration and replanning mechanism to flexibly update the long-term goal
based on the real-time updated multi-dimensional semantic value maps. Finally, we
propose a collision escape strategy based on the powerful reasoning and planning
capabilities of VLMs to prevent robots from getting into collisions. The exten-
sive evaluation of HM3D validates HuLE-Nav outperforms the best-performing
competitor +7.3% success rate and +27.7% exploration efficiency, respectively.

1 Introduction

Understanding how humans navigate efficiently in unseen environments is crucial for developing
robots that can mimic human exploration behavior. Typically, efficient human exploration behavior
relies on scene semantic understanding, scene spatio-temporal memory, and accumulated knowledge.
The first two provide humans with detailed scene semantic maps, and the accumulated knowledge
can help humans efficiently decide where to explore next based on the semantic maps. Obviously,
such a human decision-making process can naturally be mimicked by using pre-trained foundation
models (LLMs and VLMs) with a large amount of commonsense knowledge and strong reasoning
and generalization capabilities[1]. Inspired by this, a series of object goal navigation algorithms based
on semantic maps and foundation models have been proposed and made substantial progress. For
example, SemExp[2] first proposed a semantic maps construction method containing navigable areas,
obstacles, and object semantic categories to mimic the map-based exploration process. Following the
frontier-based exploration approach FBE[3], L3MVN[4] describes object-type information around
map frontiers in textual form and then employs an LLM to reason about more valuable exploration
locations. ESC[5] considers both object type and room type semantic information to help the LLM
identify which frontier is most likely to contain instances of the target object. LGX[6] also translates
visual information into text and uses the LLM for search planning. Further, PixNav[7] uses the
foundation models and specifies navigation goals in pixel units to achieve generalized navigation

∗Corresponding author: Jianye Hao (jianye.hao@tju.edu.cn)

NeurIPS 2024 Workshop on Behavioral Machine Learning.



Now that I'm looking 
for a “TV”. How can I 
find it as quickly as a 
human?

sofa: 0.6
TV: 1

bed: 0.3

table: 0.4
toilet: -0.5

Start 
Point

30° Possibility: 
0.5. 

150° Possibility: 
0.3. 

-90° Possibility: 
0.0. 

···

Higher Value

Lower Value

Long-term 
Goal

Where have I 
already been?

Which direction 
should I go now?

What objects 
are typically 
near a TV?

Figure 1: HuLE-Nav addresses three aspects: object-level semantic relevance analysis, scene-level
semantic understanding and exploration direction reasoning, and non-repeated exploration of paths.

across object types. VoroNav[8] feeds textual descriptions of paths and images into the Large
Language Model (LLM) to prompt the LLM to apply commonsense knowledge to reason about
navigation waypoints.

However, these methods mainly consider single spatial semantic clues such as object type, room type,
and path, and only convert these semantic clues into textual information for the LLM. Compared
with the scene semantics and spatio-temporal memory acquired by humans from the environment,
the pre-trained foundation model obtains very limited environmental information, which is very
challenging for it to rely on commonsense knowledge to reason about the next exploration location
(see Fig.1). To address this problem, we propose the real-time updated multi-dimensional semantic
value maps based on VLMs to mimic human-acquired scene semantics and scene spatio-temporal
memory as much as possible. Specifically, the proposed multi-dimensional semantic value maps
encapsulate object semantics, inter-object semantic relevance, scene-level semantics, and the spatio-
temporal history of exploration paths, navigable areas, and obstacles. Based on the multi-dimensional
semantic value map, we further propose a dynamic exploration and replanning mechanism to mimic
the active exploration behavior of humans and combine it with a collision escape strategy to prevent
the robot from getting into collisions. We name our approach HuLE-Nav (Human-Like Exploration
for Navigation).

Our contributions can be summarized as follows: (1) for the first time, we highly reproduce the
scene semantics and scene spatio-temporal memory necessary for humans to perform navigation
decisions through real-time multi-dimensional semantic value maps; (2) we actively apply the scene
understanding and action planning capabilities of VLMs, and propose a dynamic exploration and
replanning mechanism driven by scene semantic updates and a collision escape strategy to mimic
human; and (3) we develop a complete map-based human-like navigation method, which realizes
effective integration of different modules and state-of-the-art performance on the Habitat platform.

2 HuLE-Nav Approach

In Fig. 2, we illustrate the complete architecture of HuLE-Nav. Specifically, Sec. 2.1 introduces the
specific construction method of the multi-dimensional semantic value maps. Sec. 2.2 further explains
the human-like navigation process with multi-dimensional semantic value maps.

2.1 Multi-dimensional Semantic Value Maps for Human-like Exploration Memory

Semantic Value Map Overview. To construct human-like exploration memory, we create a multi-
dimensional semantic value map mt initialized to zero, which is a K×M ×M matrix. Among them,
M×M represents the map size and K = C+5 is the number of channels. C and the first two channels
represent the total number of semantic categories, navigation areas, and obstacles, respectively (see
App. A.1 for more details). The remaining three channels are specially designed for this study
to capture the semantic relevance between objects, the scene-level semantic information, and the
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Figure 2: HuLE-Nav includes two main components: Semantic Value Maps and Dynamic Exploration
and Replanning, supported by auxiliary functions such as Collision Escaping and Local Policy.

spatio-temporal history of exploration paths, respectively, so as to highly reproduce human-like
exploration memory.

Object Semantic Value Map. To encourage the agent to search for the target object around more
relevant objects quickly, we propose for the first time to radiate the semantic relevance between
the target object and other objects to their surrounding areas on the Object Semantic Value Map.
Specifically, at task initiation, the VLM assigns semantic relevance values Soi ∈ [−1, 1] between
each object instance oi and the target object, with larger positive values indicating a higher likelihood
of the two objects co-occurring, and projects these values onto the map as shown in Eq. 1. Then, for
each frontier point p within the frontier set P on the map, the value So(p) is determined by the object
with the highest semantic impact as shown in Eq. 2.

S′
o(p, oi) = Soi ·

(
1− dt(p, oi)

r

)
· I(dt(p, oi) ≤ r) ∀p ∈ P, (1)

So(p) = S′
o(p, oimax), where oimax = arg max

oi∈O
|S′

o(p, oi)| ∀p ∈ P, (2)

where O represents the set of all objects in the semantic maps, dt(p, oi) denotes the minimum distance
from point p to the nearest point within the cluster of object oi, and r is the distance threshold, beyond
which the value is set to zero.

Direction Semantic Value Map. To break the object semantic information bottleneck, we employ
VLM to extract scene-level semantic cues to quickly infer the most appropriate exploration direction.
Specifically, we maintain a cumulative record of optimal direction choices on the Direction Semantic
Value Map. At task initiation and each observation point, the agent performs circular scans to capture
six equidistant RGB observations,{I0, . . . , I5}, along with corresponding pose information. The
VLM evaluates these images for the potential presence of the target object G (as shown in Eq. 3),
projecting the results onto the corresponding pixels on the map using depth and pose information,
with overlapping projections averaged on the same pixel.

Sdi
= VLM(Ii, G), i = 0, 1, . . . , 5 |

5∑
i=0

Sdi
= 1. (3)

Trajectory Semantic Value Map. To prevent the agent from repeatedly traversing the same paths
or getting stuck at the same target point during exploration, we created a Trajectory Semantic Value
Map, which assigns lower values St around the trajectory T , encouraging the agent to explore new
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and diverse paths. The semantic value St for each frontier point p within the frontier set P on the
trajectory semantic value map is given by Eq. 4 and 5.

dt = min
t∈T

∥p− t∥, N (p, r) = {t ∈ T | ∥p− t∥ ≤ r} ∀p ∈ P, (4)

St(p) = −
(
1− dt

r

)
·
(

|N (p, r)|
λ+ |N (p, r)|

)
· I(dt(p, oi) ≤ r) ∀p ∈ P, (5)

where dt is the minimum distance from the point p to the nearest trajectory point, and N (p, r) is the
set of trajectory points within a radius r around the point p. λ is a regularization parameter.

2.2 Human-like Exploration Process with Multi-dimensional Semantic Value Maps

Dynamic Exploration and Replanning. To encourage the agent to actively look around the
environment like a human, capture environmental information as quickly as possible, and adjust
the long-term goal flexibly while moving towards the next long-term goal, we propose a dynamic
exploration and planning mechanism. Specifically, during the navigation process, the agent’s current
location pl becomes an observation point po if it has a direct line of sight to a frontier point pf , where
pf is the centroid of a connected region within the set of candidate target points P (denoted as C(P )),
with no intervening obstacles B, as shown in Eq. 6. At po, the agent performs a circular scan, then
the agent selects the frontier point p with the highest semantic value S from the frontier map as the
new long-term goal. As shown in Eq. 7, the semantic value is calculated by combining a weighted
sum of the three dimensions of the semantic map with the normalized distance between the current
position and the candidate target points. We defer the details of local policy to App. A.2.

po = {pl | ∃pf ∈ C(P ), line(pl, pf ) ∩ B = ∅}. (6)

L = argmax
p∈P

(Sd(p) + αSt(p) + βSo(p)− γdnorm(p)) ∀p ∈ P. (7)

Collision Escape Strategy. The robot getting stuck is a major factor in navigation failure. To
address this problem, we propose a VLM-based escape strategy. Specifically, once the long-term
goal has not been updated for a long time, our algorithm will activate the escape strategy, allowing
the VLM to give an action plan containing 10 actions based on the robot’s current position and
observations. Based on the action plan, the robot can effectively escape from the current collision.

3 Experiments

Experiment Setting. For a fair comparison with recent methods, we also evaluate our method on
the HM3D[9] dataset in Habitat simulator[10]. We evaluate all approaches using two metrics: success
rate (SR) and Success weighted by inverse Path Length (SPL) [11] (see App. A.3 for more details).

Table 1: Comparison with SOTA methods on HM3D.
Method Zero-Shot SR↑ SPL↑

Random ✓ 0.00 0.00

FBE(2023)[3] ✓ 23.7 12.3

SemExp(2020)[2] × 37.9 18.8
L3MVN(2023)[4] ✓ 50.4 23.1
Pixel-Nav(2023)[7] × 37.9 20.5
ESC(2023)[5] ✓ 39.2 22.3
VoroNav(2024)[8] ✓ 42.0 26.0
HuLE-Nav(Ours) ✓ 54.1 33.2
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Figure 3: Failure Cases Analysis.

Experiment Results. From Tab 1, in terms of SR, HuLE-Nav improves the SR by 128.2% over
FBE[3] and by 7.3% compared to the second-best L3MVN[4]. In terms of SPL, HuLE-Nav surpasses
all other algorithms by a large margin, and its exploration efficiency is 2.7 times that of FBE[3] and
1.28 times that of the second-best VoroNav[8]. To further illustrate the effectiveness of our algorithm
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in mimicking human exploration behavior and escaping collisions, we conduct a detailed cause
analysis of specific navigation failure cases. From the results in Fig.3, compared with the baseline
L3MVN, HuLE-Nav shows lower failure rates in exploration, collision, and detection. In particular,
the failure rates due to exploration and collision are reduced by 36.1% and 24.1%, respectively.

4 Conclusion

In this work, we introduce HuLE-Nav, a novel approach for zero-shot object navigation that mimics
human exploration behavior by multi-dimensional semantic value maps, and active exploration and
dynamic planning mechanism. Despite its significant performance improvements, HuLE-Nav still
has limitations, including underutilization of VLM’s full potential and occasional missed detections
near targets due to its frontier-based approach. Future work will focus on exploiting the potential of
VLMs for navigation tasks and advancing the development of navigation algorithms.
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A Appendix

A.1 More Details of Preliminary

Zero-Shot Object Navigation. Approaches to Zero-Shot Object Navigation (ZSON) fall into two
main categories: map-less methods that use reinforcement or imitation learning[12, 13, 14, 15, 16],
and map-based methods that store historical environment information in semantic top-down maps to
guide waypoint selection[2, 17, 18]. Map-based methods primarily focus on constructing detailed
semantic maps[19, 2, 20, 21, 22]. Recent approaches enhance these maps by integrating frontier-based
exploration strategies with large language models for more efficient frontier selection[23, 4, 24].
Furthermore, several methods improve navigation efficiency and adaptability through path-planning
algorithms[8], complementary mapping techniques[25, 26], or auxiliary tools[27].
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Episodic Semantic Map. Semantic Map construct and update a (K + 2)×M ×M map using
RGB-D images and poses, where M denotes the dimensions of the map’s width and height, and
K + 2 represents the total number of channels in the map. Specifically, K channels represent the
semantic channels of the detected objects, 2 channels correspond to an obstacle map and an explored
map. Given RGB-D images and the agent’s poses at each time step, we can obtain 3D point clouds.
The 3D point clouds are projected onto a top-down 2D map by judging the height, resulting in an
obstacle map and an explored map, which represent navigable areas and non-navigable obstacle
areas, respectively. Simultaneously, the RGB images are used to predict the category masks and filter
out specific object categories. These are aligned with the 3D semantic point clouds and ultimately
projected onto the corresponding K semantic channels.

Frontier Map. We derive the frontier map through a multi-step process that integrates information
from both the explored and obstacle maps, adhering to the methodology proposed in [28]. This process
entails extracting the explored edge via maximum contour identification from the explored map,
followed by edge dilation of the obstacle map. The frontier map is then generated by computing the
difference between these processed maps. Subsequently, we employ connected component analysis
to identify and cluster frontier cells into coherent chains. The centroids of these frontier connected
components serve as potential candidates for long-term goals, effectively balancing exploration and
obstacle avoidance.

A.2 More Details of Method

Local Policy. To navigate from the agent’s current position to its long-term objective, we utilize the
Fast Marching Method (FMM)[29]. The agent then identifies a local goal within a constrained radius
of its present location and executes the optimal action to progress towards this proximal target. At
each timestep, both the local map and the immediate goal are dynamically updated to incorporate
new sensory information. This modular policy approach significantly enhances training efficiency
and eliminates the need for explicitly learning obstacle avoidance behaviors.

Semantic Value Map. The Semantic Value Map assigns a value to each pixel in the exploration
area, quantifying its semantic importance for locating the target object. This value is a parameterized
sum of three dimensions: Direction Semantic Value Map, Trajectory Semantic Value Map, and
Object Semantic Value Map. The value map is used to evaluate each frontier, with the highest-valued
frontier selected for the next exploration step. The Direction Semantic Value Map is iteratively built
using depth and pose information to construct a top-down map, where VLM-provided probabilities
are projected onto the corresponding map pixels. When probabilities from different directions are
projected onto the same pixel, their average is calculated. The Trajectory Semantic Value Map
calculates pixel values based on the agent’s trajectory path, while the Object Semantic Value Map
computes pixel values based on the most influential value from the object list.

A.3 More Details of Experiment

Task Definition. Object navigation tasks challenge agents to locate specific objects within indoor
environments, with target categories including beds, chairs, sofas, TVs, plants, and toilets. The agent
operates in a discrete action space comprising Stop, MoveForward, TurnLeft, TurnRight, LookUp,
and LookDown, with 0.25m movements and 30° rotations. Success is achieved when the agent stops
within 0.1m of the target, while failure occurs if the 500-step limit is exceeded (exploration failure),
if the agent stops at an incorrect object (detection error), or if it becomes trapped due to insufficient
long-term goal updates (collision error). This task evaluates an agent’s ability to efficiently navigate,
recognize objects, and make decisions in complex indoor spaces.

Experiment Setup. The evaluations conducted on HM3D[30] using Habitat Simulator[9] adhere
to the parameters established in the Habitat ObjectNav Challenge [31]. The agent is modeled after
a LoCoBot[32] with a base radius of 0.18m. It is equipped with an RGB-D camera mounted at a
height of 0.88 meters and a pose sensor that provides precise localization. The camera features a
79° Horizontal Field of View (HFoV) and captures frames with dimensions of 480 × 640 pixels. For
category prediction across all classes, we employed a finetuned RedNet model[33], following the
approach outlined in[34].In the experiment, GPT-4o was used as the VLM. The parameters for the
Trajectory Semantic Value Map and Object Semantic Value Map in Eq. 4, 5, and 1 were set with
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r = 30, while the weights for α, β, and γ in Eq. 7. were set to 0.5, 0.3, and 0.1, respectively. And λ
is set as 10 in Eq. 5.

Experiment Baselines. In this work, we compare HuLE-Nav against several baselines:

• Random Exploration: A classical baseline that drives the robot to randomly sampled points
in unexplored areas.

• FBE [3]: This method employs a classical robotics pipeline for mapping and uses a frontier-
based exploration strategy to navigate in unfamiliar environments.

• SemExp [2]: A semantic map-based method that integrates reinforcement learning to
explore and search for the target, relying on pre-trained semantic models.

• L3MVN [4]: An LLM-based approach that finetunes a an LLM to conduct frontier-based
exploration.

• Pixel-Nav [7]: A approach that utilizes foundation models to select navigation pixels from
panoramic images and trains a locomotion module to move towards the selected pixels.

• ESC [5]: A map-based zero-shot object navigation baseline that combines object and room
detection using GLIP and integrates large language models (LLM) with soft commonsense
constraints to guide planning.

Experiment Examples. We analyzed the success rate for each target type in the experiment and
compared it with the baseline L3MVN. As shown in Fig. 4, HuLE-Nav achieves a higher exploration
success rate than the baseline across all object categories. We present several examples during the
experiment. Tab. 2 shows the pairwise relationship degrees between objects provided by GPT-4o,
where one row will be used in the object semantic map during the experiment. Fig. 5, 6, 7, and 8
illustrate some typical examples and processes encountered in various parts of the experiment.
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Table 2: The Object Correlation Table provided by GPT-4o indicates that higher values represent
stronger relationships between objects, meaning they are more likely to appear together, while lower
values suggest they are less likely to co-occur.

Object Chair Sofa Plant Bed Toilet TV Monitor Bathtub Shower Fireplace Appliances Towel Sink Chest of Drawers Table Stairs
Chair 1 0.75 0.2 0.4 -0.3 0.5 -0.6 -0.5 0.3 0.1 0.1 -0.2 0.5 0.7 0.1
Sofa 0.75 1 0.3 0.5 -0.4 0.6 -0.5 -0.5 0.4 0.2 0.2 -0.2 0.6 0.8 0.2
Plant 0.2 0.3 1 0.1 -0.2 0.2 -0.2 -0.3 0.2 0.1 0.3 0.2 0.2 0.3 0.1
Bed 0.4 0.5 0.1 1 -0.6 0.3 -0.3 -0.4 0.2 0.1 0.1 -0.5 0.6 0.5 0.1
Toilet -0.3 -0.4 -0.2 -0.6 1 -0.5 0.6 0.7 -0.2 -0.3 0.5 0.6 -0.5 -0.4 0.2
TV Monitor 0.5 0.6 0.2 0.3 -0.5 1 -0.5 -0.4 0.3 0.2 0.1 -0.2 0.5 0.6 0.1
Bathtub -0.6 -0.5 -0.2 -0.3 0.6 -0.5 1 0.8 -0.2 -0.3 0.4 0.5 -0.5 -0.4 0.1
Shower -0.5 -0.5 -0.3 -0.4 0.7 -0.4 0.8 1 -0.3 -0.4 0.5 0.6 -0.6 -0.5 0.1
Fireplace 0.3 0.4 0.2 0.2 -0.2 0.3 -0.2 -0.3 1 0.2 0.2 -0.1 0.3 0.4 0.2
Appliances 0.1 0.2 0.1 0.1 -0.3 0.2 -0.3 -0.4 0.2 1 0.2 0.3 0.2 0.2 0.3
Towel 0.1 0.2 0.3 0.1 0.5 0.1 0.4 0.5 0.2 0.2 1 0.5 0.1 0.2 0.1
Sink -0.2 -0.2 0.2 -0.5 0.6 -0.2 0.5 0.6 -0.1 0.3 0.5 1 -0.4 -0.3 0.2
Chest of Drawers 0.5 0.6 0.2 0.6 -0.5 0.5 -0.5 -0.6 0.3 0.2 0.1 -0.4 1 0.6 0.1
Table 0.7 0.8 0.3 0.5 -0.4 0.6 -0.4 -0.5 0.4 0.2 0.2 -0.3 0.6 1 0.2
Stairs 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.2 1

I’m stuck in a collision. 
The image represents my view of the current position.
Suggest a sequence of 10 actions to escape this situation.
The actions can be one of the following:
1: Move forward 2: Turn left 30° 3: Turn right 30°

Based on the image, it appears that you are stuck near a corner in a home environment. 
To navigate out of this corner, you can use the following sequence of actions:
[3, 3, 1, 1, 3, 1, 1, 1, 1, 1]

I will Turn right 60°, Move forward two steps, Turn right 30°,  and Move forward five 
steps!

Figure 5: Example of HuLE-Nav collision escape: When the robot encounters a deadlock, GPT-4o
generates an action sequence based on the robot’s current observations. The robot then executes this
sequence to successfully escape the trapped situation.
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Step1: Turn around and Initialize.
Step11: Select the long-term goal 
from frontiers based on the semantic 
value map.

Step28: Move towards the goal using 
local policy. Find new frontier! 
(Dynamic Exploration)

Step41: Turn around and select the 
new long-term goal (Dynamic replanning) 
using the updated semantic map.

Step66: Arrive long-term goal using 
local policy. 

Step78: Turn around and select the 
new long-term goal (Dynamic 
replanning).

Step83: Move towards the long-term 
goal. Find new frontier! (Dynamic 
Exploration)

Step85: Turn around and detect the 
target! Verify target using VLM.

Step100: Pass the verification and 
move towards the target.

Figure 6: Example of HuLE-Nav navigation process: The robot’s main steps in a task to find a "bed,"
from initialization to task completion.

Yes, there is a toilet visible 
in the image. It is located 
on the left side, partially 
visible behind the sink.

Goal :toilet

Yes, there is a chair visible in 
the image. It is located near 
the lamp, to the right of the 
bed.

Goal :chair

Yes, there is a bed visible in 
the image. It is located in the 
room seen through the 
doorway, in the background.

Goal :bed

Yes, there is a toilet visible in 
the image. It is located at the 
end of the hallway, in the 
bathroom area.

Goal :toilet

No, there is no toilet visible. 
The objects in the image 
include chairs, a table, and 
some artwork on the wall, but 
there is no toilet present.

Goal :toilet Goal :tv monitor

No, there is no TV monitor 
visible. The objects include 
chairs, a table, and some 
artwork on the wall, but there 
is no TV monitor present.

Check if the “goal” is visible in the image，Respond with a 'yes' or 'no', and the reason.

Figure 7: Example of HuLE-Nav target verification: After the target detector identifies the object,
GPT-4o is used to verify and confirm the detection.
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{“30.0”:0.4,“-30.0”:0.3,“90.0”:0.15,“150.0”:0.1,“-90.0”:0.025,“-150.0":0.025}，

Reason:"The area at angle 30.0 looks like a hallway that could lead to other rooms, 
such as a bedroom. -30.0 also appears to lead to another space, but less likely than 30.0. 
The remaining angles show kitchen and dining areas, which typically do not contain beds."

-30° -90° -150° 150° 90° 30°

Give me a number from 0 to 1 indicating the potential for exploring in each direction to 
find the target.

Long-Term Goal：296 252 
Direction Value：0.25 
Tajectory Value：-0.0 
Obejct Value：0.28
Distance Value：0.43
Value Sum：0.29

I‘m going to the Long-Term Goal！

{ "chair": 0.6, "sofa": 0.7, "plant": 0.3, "toilet": -0.9, "tv_monitor": 0.4,  "bathtub": -0.8, 
"shower": -0.8, "fireplace": 0.2, "appliances": -0.5, "towel": -0.4, "sink": -0.7, 
"chest_of_drawers": 0.8, "table": 0.5, "stairs": -0.2 }

I‘m looking for the object goal:”bed” in an indoor environment. 
Determine the correlation between the objects in the object list and the goal separately.

Figure 8: Example of HuLE-Nav circular scan initialization for the semantic value map decision-
making based on the updated semantic value map.
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