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ABSTRACT

In the field of eXplainable AI (XAI) in language models, the progression from
local explanations of individual decisions to global explanations with high-level
concepts has laid the groundwork for mechanistic interpretability, which aims to
decode the exact operations. However, this paradigm has not been adequately
explored in image models, where existing methods have primarily focused on
class-specific interpretations. This paper introduces a novel approach to system-
atically trace the entire pathway from input through all intermediate layers to
the final output within the whole dataset. We utilize Pointwise Feature Vectors
(PFVs) and instance-specific Effective Receptive Fields (iERFs) to decompose
model embeddings into interpretable Concept Vectors. Then, we calculate the rel-
evance between concept vectors with our Generalized Integrated Gradients (GIG),
enabling a comprehensive, dataset-wide analysis of model behavior. We validate
our method of concept extraction and concept attribution in both qualitative and
quantitative evaluations. Our approach advances the understanding of semantic
significance within image models, offering a holistic view of their operational
mechanics. !

1 INTRODUCTION

In the field of eXplainable Al (XAI), efforts have historically transitioned from Local explanation
to Global explanation to Mechanistic Interpretability. While local explanation methods including
(2017); (2017); (2017); (2024) have
focused on explaining specific decisions for individual instances, global explanation methods seek
to uncover overall patterns and behaviors applicable across the entire dataset ( , ;
, ). One step further, mechanistic interpretability methods seek
to analyze the fundamental components of the models and provide a holistic explanation of opera-
tional mechanics across various layers.

Recently, researchers in language models, ( ;

), have extensively studied mechanistic 1nterpretab1hty to reveal the precme mechamsms trans-
forming inputs into outputs. They provide a dataset-wide explanations by utilizing the whole in-
stances from the dataset, regardless of the classes. Interpretability in image models ( ,

, ), however, have typically focused on class-wise explanations, which 1nterpret
model decisions using only data from a specific class, thereby failing to capture shared concepts
across different classes. This distinction arises because images consist of pixels that do not inher-
ently represent concepts, unlike languages where each comprising word itself can be treated as a
concept. Additionally, as meaningful structures in images are localized and only occupy small re-
gions of the entire image, the embedding space in image datasets is far more sparse compared to that
in language datasets.

In this paper, we present a novel approach to mechanistic interpretation in image models by system-
atically decomposing and tracing the pathways from input to output across an entire dataset. Unlike
previous methods that often focus on individual classes or specific features, our approach provides
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a comprehensive, dataset-wide understanding of the entire model’s behavior. This is the first to ex-
plain the model’s embedding within the whole dataset, throughout the whole layers (See Fig. 1). We
decompose the model’s embedding with the dataset-wide concept vectors, enabling the existence of
“Shared Concepts” unlike other class-wise C-XAI methods ( , ), ( , ).

Following the framework of ( ), we use the Pointwise Feature Vector (PFV) for our
analysis unit. A PFV is defined as the channel-axis pre-activation vector of each layer, serving as
the fundamental unit encoding the network’s representations. We further utilize the instance-specific
Effective Receptive Fields iIERFs) of the PFVs to label their semantic meaning, enabling a direct
investigation of the PFV vector space. By leveraging iERF, we aim to identify clear and meaningful
linear bases within the PFV vector space, allowing us to decompose previously unknown PFVs into
interpretable principal components, which we refer to as Concept Vectors (CVs).

To find out the bases and identify the CVs, we leverage several clustering methods including dic-
tionary learning, k-means, and Sparse AutoEncoder. Among the clustering methods, we employ
bisecting k-means clustering, since it is well-suited for the PFV vector space, which is highly sparse
and variably dense. For instance, background features often cluster densely, while critical features,
such as “the beak of a bird”, may occupy a broader, less dense area.

To find out the causal relationships between concept vectors in different layers, we introduce Gen-
eralized Integrated Gradients (GIG), which effectively captures interlayer contributions. By com-
bining Concept Vectors with GIG, we can offer a comprehensive causal analysis of the ResNet50
model, from the lowest layers to the final class predictions. Fig. 1 shows examples of how our
method iteratively aggregates concepts in the previous layer to form a higher-layer abstract concept.

In this study, we focus on the ResNet50 architecture. Yet, our approach is not limited to convo-
lutional architectures and can be universally applicable across various modalities, including trans-
former architectures, which we intend to explore in future work. Our framework facilitates a deeper
understanding of the semantic significance of features, thus advancing the mechanistic interpretabil-
ity image models.

2 RELATED WORKS

Attribution Methods, often referred to as local explanation methods, such as

( ); ( ); ( ), aim to explain model predictions for specific in-
stances. These methods attribute the output to particular input features, such as pixels or neurons,
offering instance-specific insights. However, they often suffer from reliability issues due to an am-
biguity in interpreting what the generated explanation maps actually signify ( , ).

To address this, Concept Attribution Methods, known as global explanation methods ( s

; , ), extend traditional attribution methods by associating model predictions with
high- level concepts. They aim to provide explanations at a broader, global scale by identifying and
quantifying the importance of predefined or automatically extracted concepts. However, these meth-
ods remain confined to a single layer of the model and are typically class-specific. This limitation
highlights the need for methods that can analyze interactions between concepts across multiple lay-
ers.

Lastly, Interlayer Concept Attribution Methods, widely recognized as mechanistic interpretabil-
ity ( , , ), take the field a step further by tracing the evolution and
interaction of concepts across multiple layers of a model. Unlike attribution or concept attribution
methods, which are localized to specific instances or layers, these methods focus on systematically
analyzing the model’s internal mechanisms throughout its entire architecture. For instance, CRP
( s ), an extension of LRP ( s ), provides detailed exploration of
how the concepts impact the model’s output at each layer, by introducing concept-conditional rel-
evance mapping. VCC ( s ), an extension of TCAV ( s ), interprets
how individual concepts contribute to the model’s decisions across different layers. However, both
of them focus on a specific class, thereby limiting their capacities to offer a more comprehensive
and generalized view of the model’s behavior across the entire dataset. In contrast, our approach
broadens the interlayer analysis to include the entire dataset, enabling a more thorough examination
of the model’s decision-making process. Our work is the first to provide dataset-wide mechanistic
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Figure 1: Top: Causal explanation graph from high to low layers. From top to bottom, [Classifier,
Layerd.2, Layer3.5, Layer3.2, Layer3.0, Layer2.3, Layerl1.2], the bottleneck blocks in ResNet50
(All-layer analysis is provided in Appendix. A). The thicker and bluer the edge, the stronger the
contribution between concepts. Unlike class-wise global explanation, our method can explain the
‘Shared concepts’ between similar classes. Among the thousands of concepts in a layer, the graph
only shows the top-5 most important concepts and top-3 shared concepts. Bottom left: Detailed
concept visualization of Concept 3,320 “Bird chest” at Layer3.5 Block. With the top 10 nearest em-
beddings, we can observe Concept 3,320 is “Bird Torso.” With its concept localization image, we
can effectively see where concept 3,320 resides in input images of the classes, house finch and junco,
respectively. Bottom right: Concept 3,209 “Round head” at Layer3.2 Block. The top-1 representa-
tion image of concept 3,209 (A girl’s head) seems irrelevant to the class, junco bird. However, with
the concept localization image and the corresponding top-10 nearest embeddings, we can see that
Concept 3,209 represents the round head of various objects.

interpretability by tracing the pathway from input images through all intermediate layers to the final
output, uncovering complex interactions that previous works may overlook.
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Figure 2: Method overview. 3.1) Our dataset. The Pointwise Feature Vector (PFV) in the hidden layer
is assigned a meaning by labeling it with the instance-specific Effective Receptive Field (iERF). The
iERF image (the blue area in the picture) uses a single color to represent the importance, making it
difficult to interpret. Therefore, the context portion, around the iERF, is added to make the signifi-
cance of the iERF more understandable. 3.2) Layer-wise concept extraction. 3.2.1) The PFV vector
space exhibits a diverse density, with high density around specific concepts and sparsity elsewhere.
Hence, bisecting clustering, suitable for such data structures, is employed to extract concept vec-
tors. The meaning of each concept vector is then explained through the sample with the highest
cosine similarity to the concept vector. 3.2.2) Reconstruct the PFV and embeddings in a layer with
the extracted concept vectors. 3.3) Inter-layer concept attribution, employing Generalized Integrated
Gradients (GIG).

3 METHOD

Fig. 2 shows the overview of method. In the figure, each process of our method is represented with
the corresponding section number.

3.1 ANALYSIS UNIT: PFV-IERF DATASET

In our study on mechanistic interpretability in image models, we utilize several key components
essential for understanding and analyzing the network’s behavior from the work of ( ).
Specifically, we use a Pointwise Feature Vector (PFV) as the unit of analysis and its corresponding
instance-specific Effective Receptive Field (iERF) as the visual label to effectively show and validate
the knowledge encoded by the PFV.

Firstly, a PFV is a vector of neurons along the channel axis within a hidden layer that share an

identical receptive field. Given the embedding of layer I denoted as Al € RH'W'*C' \where C! is
the number of channels and H'W' represents the spatial dimensions of the feature map, the PFV

o . i . .
at position p € {1,---, H'W'} is represented as xé € RY" . This vector encapsulates a localized
feature representation at a specific point within the input image, providing a clear characterization
of the features at that particular location. Unlike individual neurons, a PFV ensures monoseman-

ticity, capturing a singular, coherent concept from the multi-channel features at a specific spatial
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location. Therefore, we decompose a layer in a network using PFVs. More specifically, a PFV in the
preactivation space is linearly decomposed with the concept vectors.

Secondly, we use the iERF as the PFV’s label. Receptive Field (RF) denotes the region within the
input image that influences the activation of a specific feature, defining the spatial extent over which
the input pixels contribute to the feature’s activation. ( ) introduced the concept of the
Effective Receptive Field (ERF), revealing that contrary to the theoretical RF, the actual impact of
input pixels is concentrated around the center and follows a Gaussian distribution. ( )
further refined this concept to instance-specific Effective Receptive Field iERF) to highlight the
differential impact of individual pixels, identifying those that are most influential in the computation
of the PFV. With iERF, we directly attribute a meaning (or a concept) to each hidden layer feature
vector (PFV in our case), in contrast to other existing methods, which infer feature vector meaning
through indirect techniques. ( ) and ( ) used global average
pooling after masking, and ( ) used bilinear interpolation on the masked feature maps
to create a squared region to provide an indirect explanation of feature vectors by transforming
segmented areas into representative vectors. Yet, with iERF, we explicitly assign meanings to the
hidden layer feature vectors, treating them as representations of specific concepts so that we can offer
a more straightforward interpretation of how particular features contribute to the model’s decisions.

3.2 CONCEPT EXTRACTION

3.2.1 CONCEPT VECTOR GENERATION

To determine the principal axis of the PFVs in each layer and find out the concept vectors, we utilize
ImageNet validation dataset, consisting of 50,000 images. Even though there are HW PFVs within
a single layer, we take only one PFV and its corresponding iERF, resulting in 50,000 PFV-iERF
pairs per layer for the dataset. In an image, we sample a PFV in a non-uniform sense to reflect its
contribution to the output (logit), due to the foreground-background imbalance problem in images;
If we sample PFVs randomly from an image, then the majority would capture the background,
which would be irrelevant to the output class. For example, the sky in an image could be present
across various classes, leading to an overrepresentation of the class-irrelevant feature, sky, rather than
critical features like a bird’s beak. This overrepresentation of irrelevant features within the PFVs
could skew the identification of the principal axes of the PFVs. Thus, to address the foreground-
background imbalance, we sample a single Pointwise Feature Vector (PFV) from each image. This
PFV is chosen probabilistically, with a preference for those that contribute more significantly to the
model’s output logits. This approach ensures that the selected PFVs are highly relevant to the class
predictions, thereby creating a more balanced representation of important features across the dataset.
Details of how the contribution was calculated are provided in the Appendix. C.

With this balanced PFV-iERF dataset, we employ a bisecting k-means clustering ( ,

), which iteratively splits the data into two clusters until a predefined number of clusters is
reached. This approach effectively navigates the complex manifold of image data, where some re-
gions are sparse, containing rare or atypical features, while others are dense, filled with frequently
encountered features. After clustering, we assign the centroid of each cluster as a concept vector.
The detailed procedures are included in the Appendix. B.

3.2.2 PFV DECOMPOSITION

Let there be k concept vectors in layer [, denoted as vi,--- vl  discovered in the same C-

dimensional vector space V! with PFVs. Then, each PFV xﬁ, can be expressed as a linear combi-
nation of the concept vectors:

k
xt = Zumvg + e, 1)
j=1

where u,,; is the coefficient representing the contribution of the j-th concept vector to PFV xi,
(up = [up1, -+ ,upk]?), and € is the residual error. To determine the coefficients u,,, we use Lasso
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regression, which minimizes the following objective function:
2
1 k k
* . ! l
u, = argumln 3 |[% Z up Vil +A Z lupsl ¢ @)
P j=1 j=1

where ) is a regularization parameter that controls the sparsity of the solution, encouraging many of
the coefficients u,; to be zero. By using lasso regression, we can reconstruct the original PFVs with
a small number of concept vectors.

In this way, the embeddings in the I-th layer, X! € R¥"W > can be approximated by k concept

vectors as X! = UVT where U € R¥W*F i the coefficient matrix and each column of V' € RE**
contains a concept vector. Refer to the Appendix. E for specific examples.

3.3 INTER-LAYER CONCEPT ATTRIBUTION

In this paper, we leveraged Integrated Gradients (IG) ( s ) to calculate the
inter-layer concept attribution. Among other attribution methods, we utilized IG due to its superiority
across various reliability metrics, such as C-Deletion, C-Insertion, and C-pFidelity, which are crucial
in ensuring the robustness and accuracy of concept-based explanations ( , ).

Based on IG, we propose a novel method, Generalized Integrated Gradients (GIG), which extends
the integrated gradients to quantify the contribution of a specific concept vector in a layer to both
the final class output and the concept vectors of subsequent layers.

Let a and b denote the preceding and target layer, and X'(I € {a,b}) be the embeddings of the
corresponding layer. In this work, we want to measure the influence of a query concept vector in
layer a, v, on the target concept vector in layer b, v?. To compute the attribution for the target
concept vector, we first compute the output embeddings

Qb (a) = Fup(aUs(VH)T) 3)

in layer b by varying the embeddings in layer a from 0 to X¢ = U*(V*)7T i, a € [0,1] in Eq. (3).
Here, F,,;, represents the nonlinear function from layer a to b and U%(V¢)7 is the approximation of
X obtained in Sec. 3.2.2. Then, we project 2°(«) onto the target concept vector v¥ and obtain the
projected vectors. These projected vectors are spatially aggregated and we compute the integrated
gradients for the g-th element of the coefficient vector, u;,, which is the component of vy in the
PFV x7 at position p as follows:

GIG(vglp — v = Upq >da. 4)

HW? _
/1 82;‘:1 <W?(O‘)5V§
a=0 8“;(1

Here, v is the normalized version of v?, (-, -} is the inner product operation and w? is the embedding
of QP at the i-th position.

Note that the above GIG measures the attribution of the query concept vector at position p to the
target concept vector in a subsequent layer. To measure the attribution of a query concept vector, vy,

to the target concept vector, v¥, we sum up all the attributions of vy, at different positions as follows:

Hew?® Hewe 1 wab b —p
0>, (),
GIG(v; — vh) = E GIG(vg|, — v = E u;q/ . 21 aqi‘:l (@) Vt>da. (5)
p=1 p=1 o= rq

Class Concept Relevance To quantify the class importance score of a query concept vector in
layer a, vZ, for the final output (contribution of the concept vector to the given class), we treat each
class label ¢ as an independent concept. Thus, we convert the class index into a one-hot vector,
e. € {0,1}", where N is the number of classes:

1 ifi=c
(ec)’:{o ifi# c. ©)
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Figure 3: Left: Causal explanation graph of ‘Foxhound’. From top to bottom, [Classifier, Layer4.2,
Layer3.5, Layer3.2, Layer3.0, Layer2.3, Layer1.2], the bottleneck blocks in ResNet50. Our method
can also provide a dataset-wide explanation of a single image. Right: Detailed concept visualiza-
tion of the colored boxes, 1) green, 2) blue, 3) purple, and 4) brown. () Concept 3,545 “Brown-
white-black fur Body” at Layer4.2 Block. () Concept 5,464 “Brown-white-black Thigh” at Layer3.5
Block. ) Concept 1,838 “Rounded Cone” at Layer3.2 Block. With Top-1 representation image of
‘folded arm’, the concept seems irrelevant to the input image. However, the concept localization and
the top-10 nearest embeddings show that Concept 1,838 represents “Rounded Cone”. @) Concept
1,191 “Eye” at Layer2.3 Block. Best viewed when enlarged.

Then, we calculate the class contribution of the concept vector, vg using Eq. (5) as follows:

H*W*

GIG(v§ —e.) := Y _ GIG(vi|, = e.) = Z / aua °>da, (7)

p=1

where y indicates the output layer and w¥(«) is the predicted class probability vector for input
embeddings scaled by «, i.e, w¥ = F,,,(aU*(V*)T).

By employing our Generalized Integrated Gradients, we aim to uncover the mechanistic inter-
pretability in image models, providing a detailed understanding of how these networks process
image data and construct specific concepts through the layers.

4 EXPERIMENT

To demonstrate the effectiveness of our method, we provide two kinds of qualitative analysis includ-
ing one-class explanation (Fig. 3) and two-class explanation (Fig. 1). Furthermore, we validate our
method of concept extraction and concept attribution with comprehensive experiments in Sec. 4.2.

Settings. Following Bricken et al. (2023), we selected the concept size of each layer as 8 times the
number of channels in that layer, making overcomplete linear basis. For classic dictionary learning,
we utilized the Least Angle Regression (LARS) algorithm and the Lasso LARS algorithm for PFV
decomposition. For sparse autoencoder, we followed the setting of Templeton et al. (2024). For
both methods, we extend them by decomposing PFVs directly into coefficients and concept vectors
without relying on global average pooling, as they have been applied either at the token level within
Transformer architecture, or on the global average pooled outputs of ResNet50 architecture. Due
to excessive computational time, we cannot obtain data of higher layers using the class dictionary
learning.
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Figure 4: Validation of Concept Extraction. Top Left: Comparison of C-Insertion and C-Deletion
curves for three concept extraction methods applied to ResNet50’s first block of first stage
(Layer1.0). Top Right: AUC differences across different block numbers for a balanced comparison,
as there is a tendency that the better the insertion performance, the worse the deletion performance.
Bottom: Top 3 most important concepts found by Sparse AutoEncoder (SAE) and ‘Ours’ for clas-
sifying grasshopper image at Layer4.0. Even though SAE excels our method in AUC difference on
later layers, the concepts extracted by SAE seem less persuasive than those from ‘Ours’.

4.1 QUALITATIVE ANALYSIS

As seen in Fig. 3, we can explain how the concept components are constructed through layers.
Moreover, as shown in Fig. 1, we can even find out the shared concepts, since we analyze the models
within the whole dataset, not a specific class.

4.2 VALIDATION OF OUR METHOD

Since our method involves two main steps, we validate the steps of our method with both qualitative
and quantitative experiments: Sec. 4.2.1 for Concept Extraction, Sec. 4.2.2 for PFV Decomposition
and Sec. 4.2.3 for Inter-layer Concept Attribution.

4.2.1 VALIDATION OF CONCEPT EXTRACTION

To validate our method, we assess its fidelity using the C-Deletion and C-Insertion metrics, as pro-
posed by Fel et al. (2024). These methods provide a robust framework for evaluating the alignment
between our explanation model and the original model’s behavior by systematically modifying con-
cept activations and observing the resulting impact on model predictions.

In C-Deletion and C-Insertions, concept vectors are removed or inserted in the order of their impor-
tance, and the Area Under the Curve (AUC) of the accuracy drop graph is measured. The importance
score of a concept is calculated with Eq. (7), as it is the most reliable CAT method (Fel et al., 2024).
For C-Deletion, a lower AUC indicates a more effective extraction method, as it signifies a greater
impact on model performance when key concepts are removed. Conversely, in C-Insertion, a higher
AUC is preferable, reflecting a more accurate prediction when important concepts are introduced.
Finally, we measure the AUC difference to see the overall trends in every layer.
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Results As shown in the top part of Fig. 4, ‘Ours’ with Bisecting Clustering demonstrated consis-
tently strong performance across most layers in both C-Deletion and C-Insertion. Considering the
fidelity metric, the difference between AUC(Insertion) and AUC(Deletion), ‘Ours’ outperforms the
other methods, demonstrating its effectiveness in capturing and utilizing the most essential features
of the model. We observed that while SparseAutoEncoder (SAE) exhibited lowest fidelity in the
earlier layers, it demonstrated exceptional performance in C-Insertion, achieving the highest AUC
values in layer 4. However, as seen in the bottom part of Fig. 4, while the concepts from ‘Ours’ are
human-interpretable, those from SAE seem ambiguous and even irrelevant to the class.

4.2.2 VALIDATION OF PFV DECOMPOSITION

Layers
Layerl.1 Layer2.0 Layer2.2 Layer3.0 Layer3.2 Layer3.4 Layer4.0 Layer4.2

Rel-l2(]) 0.5968 0.6103 0.7795 0.6499 0.8235 0.7851
lp ratio(T) 0.9952 0.9958 0.9955 0.9953 0.9976 0.9982

Rel-l2(]) 1.8952 1.5028 1.2524 1.2617 1.5257 1.4643 0.5096 0.4816
lp ratio(T) 0.9622 0.9787 0.9779 0.9842 0.9889 0.9925 0.9921 0.9913

Rel-l>(]) 0.3651 0.4633 0.6159 0.5618 0.6855 0.6565 0.6051 0.5095
lp ratio(T) 0.9947 0.9964 0.9961 0.9971 0.9967 0.9962 0.9968 0.9936

Method

DictionaryLearning

SAE

Ours

Table 1: Relative l5 error and [ ratio for the odd-numbered layers when reconstructing PFVs with
each concept extraction methods.

To validate the effectiveness of PFV decomposition, we calculated relative 5 for reconstruction error
and [ ratio for sparsity. Relative l5 error (Rel-l5) is defined as the ratio of the reconstruction error
to the [o norm of the original vector, and [ ratio is calculated as the ratio of the number of zero
coefficients to the total number of concept vectors.

Results. From Tab. 1, we observed that our method consistently achieves lower Relative I, er-
rors across most layers, compared to the baseline methods. Specifically, in blocks from Layerl.1 to
Layer3.4, our approach outperformed both classical Dictionary Learning and Sparse AutoEncoder
(SAE), indicating more accurate reconstruction of PFVs.

In terms of sparsity, our method maintained competitive levels. While classical Dictionary Learning
showed slightly better sparsity in (e.g., Layerl.1 and Layer3.2), it did so at the expense of higher
reconstruction errors. SAE, on the other hand, exhibited higher coefficient [ values, indicating less
sparse representations except bottleneck blocks in Layer4.

These results validated that our PFV decomposition effectively captures the essential features of the
PFVs using a minimal set of concept vectors. By outperforming the baselines in both reconstruction
accuracy and sparsity, our approach demonstrates its potential for efficient representation in high-
dimensional spaces.

4.2.3 VALIDATION OF INTER-LAYER CONCEPT ATTRIBUTION

To validate the effectiveness of our concept attribution method, Generalized Integrated Gradients
(GIG), we adapted the concept insertion and deletion strategies typically used in evaluating Concept
ATtribution (CAT) methods. The original C-Insertion and C-Deletion metrics quantify the relation-
ship between the identified concept vectors and the target class. By systematically inserting or delet-
ing concept vectors according to their attribution scores and observing changes in the target class
score, we assessed the validity of the concept vectors of CAT methods.

We extended this metric to validate the relationship between concept vectors in different layers. As
derived in Sec. 3.3, the class label can be seen as the one-hot concept vector of the last layer after
the fully-connected layer. Therefore, we validated the efficacy of our inter-layer concept attribution
method, observing the changes in the direction of the target concept vector in the subsequent layer
by inserting or deleting concept vectors from a preceding layer. Specifically, we deleted or inserted
concept vectors from the source layer one by one and observed the changes in the output of the target
layer (with dimensions H® x W x (). For instance, if we delete concept vectors related to the target
concept “dog nose” from the source layer in order of their GIG attribution, the output in the target
layer corresponding to the “dog nose” direction should decrease accordingly. However, given that
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Figure 5: Left: Deletion (Top row) and Insertion (Bottom row) scores across consecutive layers in
ResNet50. The blue curves represent our method (GIG), while the green curves denote random at-
tribution. Our method consistently outperforms random attribution, as indicated by the significantly
steeper decline in deletion scores and the sharper rise in insertion scores. Right: AUC Difference by
Layer Transition. It quantifies our superiority, showing our AUC difference achieving substantially
higher AUC differences across all layer transitions.

the actual region of “dog nose” in the image may constitute only a small portion (e.g, less than 10%)
of the total image, removing the most relevant concept from the source layer will likely affect only
1-2 PFVs in the target layer. Therefore, by deleting or inserting concepts in the source layer that
most strongly contribute to the “dog nose,” and observing the change in the projection magnitude of
the one PFV in the target layer that has the largest projection onto the “dog nose” direction, we can
determine whether the attribution computed by GIG is valid.

To this end, we plotted the curve of the normalized maximum projection values of the PFVs in
the target layer onto the target concept vector direction. Specifically, during the Insertion/Deletion
processes, the maximum projection values at each step were normalized by the original maximum
projection value prior to any Insertion or Deletion. We refer to this normalized value as the projection
score, and this metric as Interlayer Insertion/Deletion.

We conducted the Inter-layer Deletion/Insertion experiments on both GIG attribution and random
attribution. For random attribution, we deleted or inserted concept vectors in a random order.

Results. The left plot in Fig. 5 displays the Inter-layer Deletion/Insertion curves between various
blocks, specifically [Layerl.2, Layer2.3, Layer3.0, Layer3.2, Layer3.5, Layer4.2]. This experiment
was conducted on the average projection score of the five most important target layer concepts across
20 random images from the ImageNet validation set. As expected, the curve for GIG attribution
shows a rapid decrease/increase during deletion/insertion, outperforming the random attribution.

Interestingly, Insertion curves of GIG sometimes exceed 1, indicating that the insertion of only the
positively attributed concepts leads to a higher maximum projection value in the target layer output
than that in the original output. The projection score returns to 1, as the original layer output is
restored after the negatively attributed concepts are inserted.

The right plot in Fig. 5 shows the difference in AUC between GIG and random attribution. The sig-
nificant AUC difference in GIG validates our method, demonstrating its effectiveness in accurately
attributing the relationship between concept vectors across whole layers.

5 CONCLUSION

In this paper, we firstly present a novel approach for extracting and attributing concepts within
image models, enhancing interpretability through a comprehensive layer-wise analysis. Unlike ex-
isting methods that often confine their explanations to specific classes, our approach provides a
comprehensive understanding by analyzing shared concepts throughout the dataset. The shift from
class-specific to dataset-wide explanations represents a significant advancement in the field of XAI
in image models, allowing for a more holistic understanding of model behavior.
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With the dataset of PFV and iERF, we propose a pipeline that systematically decompose PFVs into
meaningful concept vectors, and further attribute these concepts across layers using the Generalized
Integrated Gradients (GIG) method. With our method, we can reveal how concepts evolve and influ-
ence decisions across different layers of the network. Through extensive qualitative and quantitative
analyses, we demonstrate the effectiveness of our method in both accurately capturing and utilizing
essential features.

Given its potential for broad applicability, we can extend our method to other deep learning archi-
tectures, such as Transformer models. Additionally, the implications of analyzing entire datasets
rather than focusing solely on class-specific explanations could be more thoroughly investigated.
We believe that our approach opens a new avenues for interpretability in image models.
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A ALL-LAYER ANALYSIS

2
¢

}
£

Figure 6: Causal explanation graph of every layer in ResNet50. The top-5 most important concepts
in each class and top-3 shared concepts. The thicker and bluer the edge, the stronger the contribution
between concepts.

As in Fig. 6, we can decompose every concepts through every layers. More interactive exam-
ples can be found at https://iclr2025gig.netlify.app/graph_visualization.
html. The GIG scores between layers are normalized to [0,1].
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B DETAILED PROCEDURE OF CLUSTERING

While traditional k-means clustering methods utilize Euclidean distance, Euclidean distance is not
appropriate for high-dimensional data ( , ). Therefore, we employ an angle-based
method known as Spherical k-means ( , ). Converting k-means with Euclidean
distance to Spherical k-means can be easily achieved by modifying two key steps:

1. Unit Vector Transformation: First, we normalize all input vectors v; to unit vectors. This ensures
that all rows of the input matrix = have a norm of 1, focusing on the angular relationship between
vectors rather than their magnitude. This is achieved through L2-normalization as follows:

r_ Vi — UBN
’ ||v1 - MBNH
Here, v; be a PFV. ugn be the normalization mean, which is defined as:
VBN Hrn + ﬁBN, (8)

HBN = — — =
O T €

where gN, OpN are the scale, shift parameters, while fi,.,, and 0., are the running mean and variance
in batch normalization. upn represents net shift by batch normalization.

2. Centroid Update with L2 Normalization: In the traditional k-means algorithm, the centroid of
a cluster is computed by taking the sum of the vectors in the cluster and dividing by the number
of vectors (L1-normalization). However, in Spherical k-means, we instead compute the sum of the
vectors and then apply L2-normalization to ensure that the centroid remains a unit vector. This
guarantees that the centroid’s magnitude is 1, which is essential for maintaining consistency in the
next iteration when calculating distances between centroids and vectors.

The centroid c of a cluster C is computed as follows:
Zv;ec Vi

T ISvee vl

By adopting these modifications, we ensure that the distance metric used in clustering reflects the
angular relationships between data points. In high-dimensional spaces, this is more robust and mean-
ingful than traditional Euclidean distance.

C

To enhance the clustering process, we adopt the Bisecting k-means clustering. This approach be-
gins by treating all the data as a single cluster. In each iteration, the largest cluster is selected for
splitting, ensuring that the algorithm focuses on the most substantial portions of the data first, thereby
preventing smaller clusters from dominating the early stages of clustering. The selected cluster is
then divided into two sub-clusters using the Spherical k-means algorithm. During this process, the
vectors are normalized to unit norms, and k-means is applied with & = 2, ensuring that the cen-
troids remain unit vectors. After the split, all clusters are re-evaluated, and the next largest cluster
is selected for further bisection. This iterative process continues until the desired number of clus-
ters is reached. Once the desired number of clusters is achieved, instead of creating new centroids,
we use the average of the vectors within each cluster as the concept vector. By combining Spheri-
cal k-means with the bisecting clustering approach, we leverage both methods’ strengths: handling
high-dimensional data effectively while iteratively refining the cluster structure.

As we approximate the embeddings in the I-th layer, X! € REW*C with X!, X! is obtained with

X'=uvT 48, 9)
where (3 is pgN in our clustering.

C PFV-1ERF DATASET PREPARATION

To determine the contribution of each pointwise feature vector (PFV) to the output, any attribution
method could be used. In this study, since the dataset of PFV-iERF is from ( ), we
specifically utilize its approach, Sharing Ratio Decomposition, which distributes the relevance of

14



Under review as a conference paper at ICLR 2025

Del/Ins AUC layerl1.0 layerl.1 layerl.2 layer2.0 layer2.1 layer2.2 layer2.3 layer3.0

Bisecting Clustering 0.0133/0.6039  0.0049/0.8982  0.0021/0.2827  0.0005/0.4856  0.0014/0.2827  0.0008/0.1809  0.0014/0.2807  0.0016/0.5400
Dictionary Learning -/0.3498  0.0020/0.3191  0.0011/0.2282  0.0020/0.4087  0.0008/0.2368  0.0006/0.0980  0.0005/0.0697  0.0015/0.6889
Sparse Autoencoder 0.0011/0.3877  0.0002/0.1039  0.0001/0.0636  0.0003/0.0303  0.0001/0.0020  0.0001/0.0149  0.0004/0.0337  0.0003/0.1982

layer3.1 layer3.2 layer3.3 layer3.4 layer3.5 layer4.0 layer4.1 layer4.2
Bisecting Clustering 0.0008/0.3999  0.0017/0.5591  0.0017/0.5092  0.0013/0.4515  0.0008/0.3149  0.0022/0.8762  0.0029/0.9362  0.0016/0.9119

Dictionary Learning 0.0002/0.2148  0.0008/0.2825  0.0014/0.3973  0.0012/0.3495 - - - -
Sparse Autoencoder 0.0000/0.0016  0.0000/0.0003  0.0000/0.0394  0.0001/0.0186  0.0002/0.0131  0.0007/0.9880  0.0007 / 0.9860  0.0005/0.9809

Table 2: Data table for Fig. 4. A lower Deletion AUC indicates better performance, while a higher
Insertion AUC is preferable.

every pixel j in layer k back to pixel ¢ in layer ! according to the inner product of the respective
PFVs, as below:

I—k pk Ik o, )
— R — — 1] J 10
= 2 MR = (D T (10

JEPF}
D DATA TABLE FOR FIG. 4

Tab. 2 shows the data table to create Fig. 4. In our comparison of bisecting clustering with dictionary
learning and sparse autoencoder, we focus on two key metrics: Deletion AUC and Insertion AUC.
A lower Deletion AUC indicates better performance, while a higher Insertion AUC is preferable.

E PFV DECOMPOSITION

As in Sec. 3.2.2, we decompose all PFVs in any layer with the concept vectors. Fig. 7- 9 show the
examples of PFV decomposition. For the concept vectors, we present the top-5 most used concept
vectors with their top-10 nearest embeddings. And, for the coefficients, we round to the nearest
tenth.

F IMPLEMENTATION DETAILS FOR THE EXPERIMENT

We followed the training setup in ( ), except for the analysis unit. We analyzed
the models with our PFV-iERF dataset, thereby leveraging Sparse AutoEncoder to PFVs instead of
tokens.

Given n: the input and output dimension, m: the autoencoder hidden layer dimension, s: the size of
the dataset, W, € R™*™: encoder weights, W; € R™"*™: decoder weights, b, € R™, by € R™:
biases, the loss function over a dataset X € R®" is as follows:

\Xl > M- arleZlﬂ Wil |2, (11)

reX
where f(x) = ReLU(W,z + b.), and & = Wy f(z) + ba.

G ADDITIONAL QUALITATIVE RESULTS

Fig. 10 shows causal explanation graph of ‘Truck-Tractor’ and ‘English Foxhound-Walkerhound’.

H COMPUTATION COST ANALYSIS

GIG calculates the integrated gradient between layers. Specifically, it computes the integrated gra-
dient of all concepts at the starting layer with respect to a specific direction at the targeted layer.
At first glance this process requires substantial computational resources due to the large number of
concepts k at the starting layer. For instance, layer 3.5 contains 8192 concepts.

15



Under review as a conference paper at ICLR 2025

Layer 4.2 Block

= e
ax (la= EpmE=s lrw-.;‘. 24 x B NS E FE‘*FEC
+ 101 o8 = R e e @ w2 P Er I e

©)

O RN 1 Lo AT e e +2zx B I R
+60% hl !-‘"rl'ﬂ.rﬂﬂl'r = +18x u.‘-'r'h-rr"
+60% 'ﬁ.gfr-"blrr +18x —W@rv—-ﬂ-m%i‘p
70x ?EEQ-P.’@E.H-PF 347 x |20 S e g g g g

+a5x R g e i e S - +82x PFETFE 'yE
#' 1o G A e W ot P o g e
ri1x A e roox qUATYREE (R QA "R
5.0 xR e +60 e S g e e

Layer 3.5 Block

1ox GO Ry ez e v« I EEEE

, vor PR R xR e
m.= +osx [P P e e AT j +08x [l e g e e e L e g
+oox BB AP EENCEP TR +osx SO S R R

+osx R QLT G 2R R +os < [ T N O T P A

1o NP e AN BN il o T

+o7x I AP e N e g + 10 [ [ e " T . T

!= +0. > e e e [ e [ P W +07 x M o™ I R I B ™ O
+oox [ Q" IR G e T e PP wemm gy O o e e

+osx N o "N RN D E vosx R EREEN P g L

Figure 7: Examples of PFV decomposition in layer4.2 Block (Top) and layer3.5 Block (Bottom).

The activation of the starting layer, X', is approximated as UV”, where U € RIW** and V ¢
RE>**_ This is computationally equivalent to adding a 1 x 1 convolutional layer with weights of size
C x k. Since k is set to be 8 times the channel size, calculating GIG(v{ — v?) involves computing
this additional convolutional layer.

However, not all concepts are used to construct UV T'; most concepts are unused. Specifically, only
a fraction 1 — (I, ratio) of the concepts is utilized. For example, in layer 3.5, only 0.38% of the
concepts are used, meaning only 30 out of 8192 concepts are active. Consequently, the additional
computational cost of this convolutional layer is reduced to the equivalent of adding a convolutional
layer with weights of size C' x (1 — [ ratio)k.

I ABLATION STUDY ON NUMBER OF CONCEPTS

We conducted an ablation study to assess the impact of the number of clusters. Specifi-
cally, we focus on various layers [Layerl.2, Layer2.0, Layer2.2, Layer3.0, Layer3,2, Layer
3.5, Layer4.2]. We evaluated performance across various numbers of concepts, k = [0.5 x
Nchannels Tlchannel s 2 x nchannela4 X nchannel78 X nchannel]~ For examp]e, Nchannel = 1024 and
k = [512,1024, 2048, 4096, 8192] at Layer3.5 . The quantitative results are summarized in Table ??.
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Figure 8: Examples of PFV decomposition in layer3.2 Block (Top) and layer3.0 Block (Bottom).

Rel l5({) lo ratio(1)
k Layerl.2 Layer2.2 Layer3.0 Layer3.5 Layer4.2 Layerl.2 Layer2.2 Layer3.0 Layer3.5 Layer4.2
0.5 X n. 0.5287 0.7293 0.7052 0.6771 0.7183 0.9542 0.9730 0.9836 0.9834 0.9748
ne 0.5021 0.7030 0.6771 0.6598 0.6758 0.9737 0.9840 0.9901 0.9891 0.9827
2 X N 0.4753 0.6783 0.6447 0.6403 0.6299 0.9856 0.9913 0.9934 0.9929 0.9875
4 X n, 0.4544 0.6503 0.6081 0.6181 0.5748 0.9910 0.9940 0.9958 0.9950 0.9910
8 X ne 0.4313 0.6177 0.5618 0.5891 0.5095 0.9945 0.9961 0.9971 0.9964 0.9936

Table 3: Performance metrics across different numbers of concepts k. As number of concept k
increases, the performance increases.

As the number of concepts k increases, the relative [y error consistently decreases, indicating bet-
ter reconstruction performance. Similarly, the [y sparsity improves with higher &, showing that the
model uses a more fine-grained representation. These results indicate a clear improvement in per-
formance with an increasing number of concepts, which is also reflected in the following qualitative

analysis.
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Figure 9: Examples of PFV decomposition in layer2.3 Block (Top) and layer1.2 Block (Bottom).

Additionally, we performed qualitative analysis to assess how broadly each concept applies as the
number of concepts k varies. First, we selected two key vectors: the concept vector (center) and the
farthest vector from the concept vector within the concept cluster. Using these two vectors as bases,
we constructed a hyperplane. We then projected all vectors within the concept cluster onto this plane.
From this setup, we drew a trajectory starting from the concept center towards the farthest vector,
extending along this direction. Along the trajectory, we iteratively selected the closest sample to the
current point.

In Fig. 11, we provide a concept vector “Dog Ear” and compare the concept clusters across varying
numbers of concepts k. With nconcepr = 512, the farthest instance appears as a stone-like horn.
At first glance, it may be unclear why this instance is categorized under the concept of “dog ears.”
However, by examining the trajectory, we observe that the concept vector of “dog ear” gradually
darkens, transforms into goat-like horns, and finally becomes fully horn-like. This indicates that the
concept cluster encompasses a spectrum from ears to gray horns, grouping them under a single broad
concept.
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Figure 10: Causal explanation graph of “Truck-Tractor (Top’), and ‘English Foxhound-Walkerhound
(Bottom)’.

On the other hand, when ncopcepr = 2048, the farthest instance is ear-like fluffy fur, indicating that
the farthest concept is closer to the center than before. Additionally, the cosine distance decreases to
0.6332, reflecting a narrower range covered by this concept cluster.

Finally, with nconcept = 8192, the cosine distance further reduces to 0.3801, indicating a very fine-
grained range. In this case, even the farthest concept remains strictly confined to “dog ears.”

We found that setting nconcept = 8 X Nchanner Yielded the most balanced results in terms of per-
formance and interpretability. Although performance may continue to improve with higher K, we
limited our experiments to a maximum of 8192 concepts. This limitation is due to the fact that our
current dataset contains only 50, 000 Effective Receptive Fields (ERFs), resulting in cases where the
number of ERFs assigned to each concept could fall below one, which would undermine meaningful
concept representation.
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Figure 11: The refinement of the ’dog ear’ concept as the number of concepts increases. As the
number of concepts grows, the region assigned to each concept becomes finer. Top: The trajectory
of samples extending towards the farthest instance, ”Grey horn,” with 512 concepts in Layer 3.5.
Middle: The trajectory towards “Ear-like tail” with 2048 concepts in Layer 3.5. Bottom: The tra-
jectory towards “"Dotted dog ear” with 8192 concepts in Layer 3.5.

J ROBUSTNESS TESTING FOR IDENTIFIED CONCEPTS

We have performed robustness experiments to assess the stability of our concepts. In Fig. 12, we
observed the targeted attacked input (Carlini & Wagner, 2017) is more influenced by the concepts of
the target class than those of the original class. Furthermore, we show how the corrupted concepts
formed. In Fig. 13, we found that the extracted concepts remained consistent, even under heavy
gaussian noise. This robustness suggests that our method captures genuinely meaningful patterns
that are not easily disrupted by input noise. Moreover, our method can show how noise influenced the
classification. The interactive graphs of the attacked samples are in https://gig2025iclr.
netlify.app/graph_visualization_additional.html.
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Figure 12: Causal explanation graph for Targeted Adversarial Attack. We attacked the border collie
image to be identified as a sea slug. Top: The sea slug-related concept (D) was dominant at the last
layer. At Layer 4.1, the sea slug concept (D) was most influenced by three key concepts: the stripe
concept (®), black-white furry head concept (@), and the slurp body concept (@). Interestingly, the
black-white furry head concept, which closely resembles a critical concept used in the correct clas-
sification (cosine similarity > 0.9), was also dominant in forming the corrupted higher-level concept
of the sea slug. This suggests that the targeted adversarial attack might build corrupted higher-level
concepts by combining non-corrupted features with corrupted features. Bottom: A similar pattern
is evident with the stripe concept (D) at Layer 4.0, which was influenced by the black-white round
ear concept (®), the monochrome background corner concept (@), the wrinkle concept (@), and
the black-white stripe concept (®).
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Figure 13: The causal explanation graphs for Gaussian Noise Attack. The model misclassified the
border collie image as a Cardigan Welsh corgi due to the heavy Gaussian noise (¢ = 70, consider-
ing that RGB values are integers ranging from 0 to 255). Top: Causal explanation graph for class
‘Border Collie’. Despite the misclassification of the perturbed image, the key concepts essential for
correctly identifying the image as a border collie remained intact. This demonstrates the robustness
of our method in preserving the underlying causal structure, even under significant noise pertur-
bation. Bottom: Causal explanation graph for class ‘Cardigan Welsh corgi’. When the image was
perturbed with Gaussian noise, brown corgi-related concepts appeared throughout the layers. The
graphs revealed that the brown background color played a role in forming the corrupted “brown
dog” concept, contributing to the misclassification.
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