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Abstract

We study the first gradient descent step on the first-layer parameters W' in a two-
layer neural network: f(x) = \/%CLTO'(WT:B), where W € RN q ¢ RV

are randomly initialized, and the training objective is the empirical MSE loss:
L5 (f(z;) — y;)?. In the proportional asymptotic limit where n,d, N — oo
at the same rate, and an idealized student-teacher setting where the teacher f* is
a single-index model, we compute the prediction risk of ridge regression on the
conjugate kernel after one gradient step on W with learning rate n. We consider
two scalings of the first step learning rate . For small ), we establish a Gaussian
equivalence property for the trained feature map, and prove that the learned kernel
improves upon the initial random feature model, but cannot defeat the best linear
model on the input. Whereas for sufficiently large 7, we prove that for certain f*,
the same ridge estimator on trained features can go beyond this “linear regime”
and outperform a wide range of (fixed) kernels. Our results demonstrate that even
one gradient step can lead to a considerable advantage over random features, and
highlight the role of learning rate scaling in the initial phase of training.

1 Introduction

We consider the training of a fully-connected two-layer neural network (NN) with N neurons,

1 & RO S
fNN(ac)—\/—N;ama((m,wQ)_ﬁa o(W'x), (1.1)

where € RY, W € RN a € RV, ¢ is the nonlinear activation function applied entry-wise, and
the training objective is to minimize the empirical risk. Our analysis will be made in the proportional
asymptotic limit, i.e., the number of training data n, the input dimensionality d, and the number of
neurons [V jointly tend to infinity. Intuitively, this regime reflects the setting where the network
width and data size are comparable, which is consistent with practical choices of model scaling.

When the first layer W is fixed and the second layer a is optimized, we arrive at a kernel model,
where the kernel defined by features = — U(WT:I:) (often called the hidden representation) is
referred to as the conjugate kernel (CK) [Nea95]. When W is randomly initialized, this model is an
example of the random features (RF) model [RROS], the training and test performance of which has
been extensively studied in the proportional limit [LLC18, MM?22]. These precise characterizations
reveal interesting phenomena also present in practical deep learning [BHMM19].

However, RF models do not fully explain the empirical success of NNs: one crucial advantage of
deep learning is the ability to learn useful features [GDDM 14, DCLT 18] that “adapt” to the learning
problem [Suz18]. In fact, recent works have shown that such adaptivity enables NNs optimized by
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gradient descent to outperform a wide range of linear/kernel estimators [AZL19, GMMM19]. While
many explanations of this separation have been proposed, our starting point is the empirical finding
that “non-kernel” behavior often occurs in the early phase of NN optimization, especially under
large learning rates [JSF™20, FDPT20]. The goal of this work is to answer the following question:

Can we precisely capture the emergence of feature learning in the early phase of gradient descent,
and demonstrate its improvement over the initial (fixed) kernel in the proportional limit?

1.1 Contributions

Motivated by the above observations, we investigate a simplified scenario of the “early phase” of
learning: how the first gradient step on the first-layer parameters W impacts the representation of the
two-layer NN (1.1). Specifically, we consider regression with the squared loss (MSE), and a student-
teacher setting in the proportional asymptotic limit; we aim to characterize the prediction risk of the
kernel ridge regression estimator on top of the first-layer CK feature  +— CT(WT:B), before and
after one gradient descent step on the empirical risk (starting from Gaussian initialization).

Following prior works on the precise asymptotics of RF re- 100
gression [GLK ™20, DL20], we focus on the setting where
the input « is Gaussian and the teacher f* is a single-index
model. In this case, the prediction risk of a large class of
RF/kernel ridge regression estimators is lower-bounded by
the L2-norm of the “nonlinear” component of the teacher

prediction risk
=
<

initialized CK n

(IPs1f* ||2Lz, i.e., they only learn linear functions on the in- : ”:2;1%) -
put. After one gradient step on W, we compute the CK . L.f‘ufz

ridge estimator using separate training data, and compare its o7 o8
prediction risk against this linear lower bound. Our analysis sample size n
will be made under two choices of learning rate scalings: Figure 1: Prediction risk of ridge re-
gression on trained CK features (erf) af-
* SmallIr: 7 = ©(1). In Section 4, we extend the Gaussian ter one feature learning step. Markers
Equivalence Theorem (GET) in [HL20] to the updated fea- represent empirical simulations and solid
ture map after one gradient descent step on W with learn-  curves are predicted asymptotic values;
ing rate 7 = ©O(1); this allows us to precisely characterize ed line indicates O(¥/n) rate.
the prediction risk using random matrix theoretical tools. We prove that after one gradient step,
the ridge regression estimator on the learned CK features already exhibits nontrivial improvement
over the initial RF ridge regression model (see pink curve in Figure 1), but it remains in the “linear
regime” and cannot outperform the best linear estimator on the input (black dashed line).

* Largelr: n = ©(v/N). In Section 5, we analyze a larger learning rate that coincides with the

maximal update parameterization in [YH20]. For certain target functions f*, we prove that ker-
nel ridge regression after one feature learning step can achieve lower risk than the lower bound

IP>1f* Hig; thus, it outperforms a wide range of kernel estimators (see purple curve in Figure 1).

1.2 Related works

Asymptotics of kernel regression. Recent works provided precise analysis of RF and kernel mod-
els in the proportional limit [GLK*20, DL20, LCM20, AP20, MM22]. These results typically build
upon analyses of the spectrum of kernel matrices, a key ingredient in which is the “linearization” of
nonlinear random matrices via Taylor expansion [EK10] or orthogonal polynomials [CS13, PW17].

Consequently, a large class of kernel models are essentially linear in the proportional asymptotic
limit [LR20, BMR21]. In the case of RF models, a similar property is captured by the Gaussian
Equivalence Theorem [GMKZ20, HL20, GLR " 21], which roughly states that RF estimators achieve
the same prediction risk as a (noisy) linear model. For inputs with unit norm, [GMMM21, MMM21]
showed that sample size n = §2(d?) is required to go beyond this “linear” regime. As we will see in
certain settings, such a limitation can also be overcome (in the n =< d scaling) by training the feature
map for one gradient step with a sufficiently large learning rate.

Advantage of NNs over fixed kernels. It is well-known that under a specific initialization, the
learning dynamics of overparameterized NNs can be described by the neural tangent kernel (NTK)
[JGH18]. However, the NTK description essentially “freezes” the model around its initialization
[COB19], and thus does not explain the presence of feature learning in NNs [YH20].



In fact, various works have shown that deep learning is more powerful than kernel methods in
terms of approximation and estimation ability [Bacl7, Suzl8, IF19, SH20, GMMM?20]. More-
over, in some specialized settings, NNs optimized with gradient-based methods can outperform the
NTK (or more generally any kernel estimators) in terms of generalization error [AZL19, WLLMI9,
GMMM19, LMZ20, DM20, SA20, AZL.20, RGKZ21, KWLS21, ABAB*21] (see [MKAS21, Table
2] for a survey). These results often require a careful analysis of the landscape (e.g., properties of
global optimum) or optimization dynamics; in contrast, our goal is to precisely characterize the first
gradient step and demonstrate a similar separation.

Early phase of NN optimization. Recent empirical studies suggest that properties of the final
trained model is strongly influenced by the early stages of optimization [GAS19, LM20, PPVF21],
and the NTK evolves most rapidly in the first few epochs [FDP*20]. Large learning rate in the initial
steps can impact the conditioning of loss surface [JSFT20, CKL"21] and potentially improve the
generalization performance [LWM19, LBD'20]. Under structural assumptions on the data, it has
been proved that one gradient step with sufficiently large learning rate can drastically decrease the
training loss [CLB21], extract task-relevant features [DM20, FCB22], or escape the trivial stationary
point at initialization [HCG21]. While these works also highlight the benefit of one feature learning
step, to our knowledge this advantage has not been precisely characterized in the proportional regime
(where the performance of RF models has been extensively studied).

2 Problem setup and assumptions

Notations. Throughout this paper, || - || denotes the £2-norm for vectors and the ¢ — {5 operator
norm for matrices, and || - |  is the Frobenius norm. For matrix M € R™*", tr(M) = L Tr(M) is
the normalized trace. O4(-) and o4(-) stand for the standard big-O and little-o notations, where the

subscript highlights the asymptotic variable; we write O(-) when the (poly-)logarithmic factors are
ignored. Oy p(-) (resp. o4p(-)) represents big-O (resp. little-o) in probability as d — oo. (-), ©(+)
are defined analogously. T is the standard Gaussian distribution in R%. Given f : R¢ — R, we
denote its LP-norm w.r.t. I' as || f|| . » (ga ), which we abbreviate as || ||, when the context is clear.

2.1 Training procedure

Gradient descent on the 1st layer. Given training examples {(x;, y;)}?_,, we learn the two-layer
NN (1.1) by minimizing the empirical risk: £(f) = 23" | ¢(f(w;),y;), where ¢ is the squared
loss £(z,y) = 3(z — y)?. As previously remarked, fixing the first layer W at random initialization
and learning the second layer a yields an RF model, which is a convex problem with closed-form
solution. In contrast, we are interested in learning the feature map (representation); hence we first
fix a (at initialization) and perform gradient descent on W. We write the initialized first-layer as
W, and the weights after one gradient step as W;. The gradient update, which we refer to as the

feature learning step, with learning rate ) is given as: W1 = Wy 4+ nvV N - Gy where

1 1 1
Go=-X"||—=(y—- —=0c(XWya aT)QU’XW ] 2.1
o= 2 X[ (5 (v~ Fpoxwaa) (xXWy) e
in which ® is the Hadamard product, ¢’ is the derivative of o (acting entry-wise), and we denoted
the input feature matrix X € R"*9, and the corresponding label vector y € R™. We remark that

the v/ N-scaling in front of 7 accounts for the \/Lﬁ—prefactor in our definition of two-layer NN (1.1).

Ridge regression for the 2nd layer. After obtaining the updated weights W, we evaluate the
quality of the new CK features by computing the prediction risk of the kernel ridge regression
estimator on top of the first-layer representation. Note that if ridge regression is performed on
the same data X, then after one feature learning step, W; is no longer independent of X, which
significantly complicates the analysis. To circumvent this difficulty, we estimate the regression
coefficients @ using a new set of training data {&;,§; }?_, which for simplicity we assume to have
the same size as the original dataset. This can be interpreted as the representation being “pretrained”
on separate data before the ridge regression estimator is learned.

Denoting the feature matrix on the fresh training set {X ,Ytas P = \/%O'(X W) € RN the

CK ridge regression estimator can be obtained by solving @ = argmin,, { ||y — ®al| >4 2 |al? }

— =



2.2 Student-teacher setting and main assumptions

Given a target function (teacher model) f* and a learned model f , we evaluate the model perfor-
mance using the prediction risk: R(f) = E5(f(z) — f*(x))? = ||f — f*||3., where the expectation
is taken over the test data from the same training distribution.

We utilize the orthogonal decomposition of the activation function o. Define the coefficients

o =Elo(2)], i =Elzo()], pa=\/El0(2)2] - ud — 3, where z ~ N(0,1). (2.2)

This implies o (z) = pg + p1z + 01 (2), where E[o| (2)] = E[z01(2)] = 0, and E[o | (2)?] = p3.

Similarly, for square integrable target function f*, we have the orthogonal decomposition
[ (@) = po + pr(x, B.) + Porf(®), 1B, = Elzf"(2)], 2.3)

where P+ is the projector orthogonal to constant and linear functions in L2(R¢, "), which implies
that E[P~1 f*(x)] = 0, E[xzP~; f*(x)] = 0. As d — oo, quantities defined in (2.3) satisfy ||3,| =
1, [[Ps1f*|l 2 — w5, where uf, i, ¢ are bounded constants. Intuitively, pf, u}, and p3 can be
interpreted as the “magnitude” of the constant, linear, and nonlinear components of f*, respectively.

Assumption 1.

1. Proportional limit. n,d, N — co, n/d — 11, N/d — 1o, where 11,15 € (0, 00).
2. Gaussian initialization. \/d - [W);; "~ N'(0,1), VN -[a]; "= N(0,1), fori € [d], j € [N].

3. Normalized activation. The activation function o has \,-bounded first three derivatives almost
surely. In addition, o satisfies pig = 0 and 1, o # 0 defined in (2.2).

4. Single-index teacher. Labels are generated as y; = f*(x;) + €;, where x; N (0,I), and
g is i.i.d. sub-Gaussian noise with mean 0 and variance o2. The teacher f*(x) = o*((z,3,)),

(
where B, € R with ||B, || = 1, and o* is Lipschitz with pify = 0, % # 0 as defined in (2.3).
Remark. We make the following comments on the above assumptions.

* Following [HL20], we assume smooth centered activation to simplify the computation; empirical
evidence suggests that similar result holds beyond this condition (e.g. [LGCT21]). We also expect
the Gaussian input assumption may be replaced by weaker orthogonality conditions as in [FW20].

* The single-index setting has been extensively studied in the proportional regime [GLK'20, DL20,
HL20]. However, prior works only considered training the coefficients a on top of fixed feature
map, and such RF models cannot efficiently learn a single-index f* in high dimensions [YS19].

Under Assumption 1, a relatively large sample size corre-
sponds to larger i1, and a relatively large network width cor-
responds to larger ¥5. The proportional scaling of n, d, N im-
plies that the model width is not significantly larger than the
training set size, in contrast to the polynomial overparameter-
ization often required in NTK analyses [DZPS19], which may
be less realistic in practical settings.

\ NTK parameterization
1

Importantly, the initialization of our two-layer NN (1.1) resem-
bles the mean-field parameterization [MMN18, CB18]: the
second layer is divided by an additilonal v/N-factor compared Figure 2: 2D visualization of opti-
to the kernel (NTK) scaling — this ensures that fNN(®) = ization trajectory under mean-field
oqp(l) at initialization and enables feature learning (see (main) and NTK (subfigure) parame-
[YH20, Corollary 3.10]). As an illustrative example in Figure terizations. f* consists of two ReLU
2, we plot the gradient descent trajectory of the first-layer pa- neurons and the student is a two-layer
rameters W in two coordinates. Observe that under the mean- ReLU neural network. Darker color
field parameterization (main figure), the neurons travel away indicates earlier in training, and vice
from the initialization and align with the target function (black ~versa. We set d =512, 91 = 2 =
dashed lines), whereas in the NTK parameterization (subfig- 1U: both models are optimized until

i ses -3
ure, which omits the lN -prefactor), the parameters remain training losses are below 107~

close to their initialization and hence do not learn useful features.

Trained

0 1 2 3




3 Preliminary results

3.1 Lower bound for kernel ridge regression

To illustrate the benefits of feature learning, we compare the prediction risk of ridge regression on
the trained CK (after one gradient step) against that on the initial RF and fixed kernels. Specifically,
given training data {x;, y; }I*,, we consider the following classes of kernel models for comparison.

¢ Random features model. We introduce two RF kernels associated with (1.1) at initialization: the

conjugate kernel (CK) defined by features ¢k () = T%U(Wg x) € RY, and the neural tangent

kernel (NTK) [JGH18] defined by features ¢y (T) = ﬁVec (' (Wyz)x") € RN Given

a feature map RF € {CK,NTK}, the RF ridge regression estimator can be written as

fir() = {Gel), @), &= argmin {2 S (01— (Dreln). @) + Llal?} G

n
acRN i—1

* Rotation invariant kernel model. Consider the inner-product kernel: k(x,y) = g( %), and

— 2 . ., .
M), where g satisfies the smoothness conditions

the Euclidean distance kernel: k(x,y)= g(
in [EK10]. Denoting the associated RKHS with #, the kernel ridge estimator is given by

n

. 1 . _
fer = argmin {E ;(yz‘ — fxi)? + AHin} = frer(®) = k(z, X) (K + M) "'y 32)

We write the prediction risk of the above kernel estimators as Rcx (A), Rtk (A), Rier(A), respec-
tively. The following lower bound on the prediction risk is a simple combination of existing results.

Proposition 1 (([HL20, MZ20, BMR21]). Under Assumption 1, we have
inf min{Rox (), Rt (V) Rier (M)} > IP>1f*132 + oap(1), (3.3)

where P~ denotes the projector orthogonal to constant and linear functions in L*(R%,T).

This proposition implies that in the proportional limit, ridge regression on the RF or rotationally
invariant kernels defined above does not outperform the best linear estimator on the input — it cannot
achieve vanishing risk unless the target function is linear (||P~1f*||,. = 0). In the following, we
compare the prediction risk of the ridge estimator on trained features against this lower bound.

3.2 Almost rank-1 property of the gradient matrix

Before we analyze the prediction risk of the ridge regression estimator on the trained CK, we first
need to understand the gradient matrix Gy in (2.1). The following proposition shows that the first
gradient step on W can be approximated in operator norm by a rank-1 matrix under Assumption 1.
Proposition 2. Define G := ﬁ(wl — W) and a rank-1 matrix A := n“ﬁXTyaT. Given
Assumption 1, there exist some constants ¢, C > 0 such that for all large n, N, and d, we have

C'log*n

Gy—A| <
1Go — Al < N

NGoll,

with probability at least 1 — ne™¢ log? n.

Scaling of learning rate . Based on the above proposition, we can now specify an appropriate
learning rate 7 such that the change in the first-layer weights after one gradient descent step is neither
insignificant nor unreasonably large. Assumption 1 implies that, for proportional n, d, IV, the initial
weight matrix satisfies | W || = ©4p(1), [Wo||» = O4,p(v/d), and due to Proposition 2, the first
gradient step satisfies vV N||Go|| = O4p(1), VN|Go| z = Ouar(1).

In light of the above scaling, if we write n = ©(N®), then o > 0 is required so that the change in the
weight matrix is non-negligible (one may verify that for 7 = 04(1), the test performance of kernel



ridge regression remains unchanged after one GD step). On the other hand, when o > 1/2, the
gradient update “overwhelms” the initialized parameters W, and the preactivation feature {x, w;)
in the NN (1.1) becomes unbounded as N — oo. This motivates us to consider the following two
regimes of learning rate scaling.

Smalllr: = (1) = ||[W, — Wyl = W
Largelr: n = O(VN) = |W, — Wollp < [[Wollp
In Section 4, we consider small step size n = ©(1), which is parallel to common practice in NN

optimization'. Whereas in Section 5, we analyze the larger step size 1 = @(\/N ), which resembles
the learning rate scaling in the maximal update parameterization in [YH20]; in particular, from
Lemma 10 in Appendix B.1, one can easily verify that given data point & ~ A/ (0, I'), the change in
each coordinate of the feature vector is roughly of the same order as its initialized magnitude, that

is, fori € [N], |o(W] &) — a(Wga:)L, = |O’(WJ.’B)|i = O(1) with probability 1 as N — oo.

4 17 = ©(1): improvement over the initial CK

From Proposition 2, we observe that the dominant rank-1 direction in the first-step gradient matrix
G|y contains information of the teacher model f* (through label vector y). Intuitively, this indicates
that the learned feature map after one GD step « U(WlTac) can “adapt” to f*, and hence we
may expect the ridge regression estimator on the trained CK to achieve better performance. In this
section, we precisely characterize the CK prediction risk under the small learning rate n = ©(1).
We first introduce the Gaussian equivalence property which will be useful in the risk computation.

4.1 The Gaussian equivalence property

The Gaussian Equivalence Theorem (GET) states that the performance of a nonlinear kernel model
is the same as that of a noisy linear model. Specifically, for the ridge regression estimator, define
2

Re(Y) = o (ge(e) 0) — /*(@)°)
ax = argmin { 13 (00— (@p (.00 + lal?), @)

i=1
where F € {CK, GE} indicates the choice of feature map, which can be either the nonlinear
CK feature ¢oy () = ﬁa(WT:B), or the linear Gaussian equivalent (GE) feature ¢qp(x) =

ﬁ (/~L1 wW'e+ ugz) where z ~ N (0, I) is independent of x, W. In the following, for both ¢

and ¢, we take W to be the updated weight matrix W after one GD step.

The Gaussian equivalence refers to the universality phenomenon Rcek(A) ~ Rgr(A). For RF
models (3.1), the GET has been rigorously proved in [HL20, MS22, MM22]. Furthermore,
[GLR*21, LGC*21] provided empirical evidence that such equivalence holds for more general
feature maps, including the representation of certain pretrained NNs (e.g., see [LGC ™21, Figure 4]).
Since our setting goes beyond RF models and cannot be covered by the prior results, we establish
the GET for our trained feature map under small learning rate.

Theorem 3. Suppose that Assumption I holds and the activation o is an odd function. If the learning
of W1 in (2.1) and estimation of ay in (4.1) are performed on independent training data X and X,
respectively, then the GET holds after the first-layer weight is trained for one gradient step with
learning rate n = O(1); that is, for the CK feature pcy () = Tlﬁa(WlTa:) and A > 0,

|RCK()\) - RGE(A” = Od’]}»(l). (42)

This is to say, for learning rate n = ©O(1), the Gaussian equivalent model provides an accurate
description of the prediction risk of CK ridge regression after one feature learning step. The impor-
tant observation is that even though the trained parameters in W are no longer i.i.d., the Gaussian
equivalence property can still hold when W, — W, remains “small” (in some norm, see (C.3) in
Appendix C.1 for details), which entails that the neurons remain nearly orthogonal to one another.

"Heuristically, the updated NN under = ©(1) remains close to the “kernel regime” in the sense that each
neuron is close to initialization, i.e., as N — oo, |[W1 — Wo]ij‘ < |[W0]1]’ with high probability.




Implications of Gaussian equivalence. Under the GET, we can alternatively compute Rgr()),
the prediction risk of ridge regression on noisy Gaussian features ¢y, which is much easier to
analyze. Theorem 3 is empirically validated in Figure 3(a)(b), where we observe an agreement
between the experimental values and the analytic predictions” from Section 4.2. On the other hand,
the GET also implies that the kernel estimator is essentially “linear” in high dimensions. For the
squared loss, it is straightforward to verify that the Gaussian equivalent model cannot learn the
nonlinear component of the target function P~ f* as follows.

Fact 4. Under the same assumptions as Theorem 3, Rgr(A) > ||P>1f* ||2L2 Sfor any 11,99, X > 0.

Hence when 7 = ©(1), even though training the first-layer W for one step can lead to non-trivial
improvement over the initial RF model (which we precisely quantify in Section 4.2), the learned CK
cannot outperform the best linear model on the input features. In other words, to (possibly) learn a
nonlinear f*, the trained feature map needs to violate the GET. In the case of one gradient step on
W, this amounts to using a sufficiently large step size, which we analyze in Section 5.

4.2 Precise asymptotics of CK ridge regression

Having established the Gaussian equivalence property for the CK ridge estimator after one gradient
step with n = ©(1), we can now compute the asymptotic prediction risk for the trained kernel and
compare with the initialized RF. To quantify the discrepancy in the prediction risk (4.1), we write
Ro(A) as the prediction risk of the initialized RF ridge regression estimator (on the feature map
x — o(W, x)), and Ry (\) as the prediction risk of the ridge estimator on the trained feature map
after one feature learning step  — o(W ).

Importantly, because of the dependency between the trained weights W and the teacher model
f* (due to the gradient update (2.1)), we cannot simply apply a rotation invariance argument (e.g.,
[MM22, Lemma 9.2]) to remove the dependency on the true parameters 3, and reduce the prediction
risk to the trace of certain rational functions of the kernel matrix. In other words, knowing the
spectrum (or the Stieltjes transform) of the CK is not sufficient for these purposes. Instead, we
utilize the GET and the almost rank-1 property of G in Proposition 2, which, in combination with
techniques from operator-valued free probability theory [MS17, AP20], enables us to obtain the
asymptotic expression of the difference in the prediction risk before and after one gradient step.

Theorem 5. Under the same assumptions as Theorem 3 and n = ©(1), we have

Ro(A) = Ri(A) = 6(n, A, b, 4bg) > 0,

where 6(n, A\, 1, 12) is defined by (C.19) in Appendix C.3. Here, § is a non-negative function of
7, A, 1,02 € (0,400) with parameters 15, i1, p2, and it vanishes if and only if (at least) one of
WU, p1 and n is equal to zero.

Remark. Performance of the initial RF ridge estimator Ro(\) has been characterized by the prior
works [GLK20, MM22]; hence, the precise asymptotics of 0 provided in Theorem 5 allows us to
explicitly compute the asymptotic prediction risk of the CK model after one gradient step, i.e. R1(\).

Theorem 5 confirms our intuition that training the first-layer parameters improves the CK model,
as shown in Figure 3(a)(b). Remarkably, this improvement (when § > 0) holds for any 1,1 €
(0, 00), that is, taking one gradient step (with learning rate = ©(1)) is always beneficial, even
when the training set size n is small. Moreover, we do not require the student and teacher models to
have the same nonlinearity — a non-vanishing decrease in the prediction risk is present as long as
(1, pi # 0. On the other hand, the GET also implies an upper bound on the possible improvement:
§ < Ro(A\) — u? asn,d, N — oo; this is to say, the trained CK remains in the “linear” regime.

Fore the details of Theorem 5, see Appendix C.3.2. Additionally, from inspecting the asymptotic
risk formulae (C.19), we can arrive at the following characterization of two special cases of interest.

* Large sample regime (i); — o0): ¢ is increasing with respect to the learning rate 7; that is,
taking a larger step results in greater decrease in the prediction risk, as shown in Figure 3(a).

» Large width regime (v — 00): In this case § — 0; thus, the benefit of one-step feature learning
(with = ©(1)) becomes less significant as the width increases, as shown in Figure 3(b).

2We note that when the first-layer weights are trained for more gradient steps, the GET (Theorem 3) will
likely fail eventually, as empirically demonstrated in Appendix A.1.
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Figure 3: Prediction risk of CK ridge regression on trained features: dots represent empirical simulations
(d = 512, averaged over 50 runs) and solid curves are asymptotic predictions; dashed black line corresponds to
the kernel lower bound (3.3). (a) n = ©(1), o = tanh, o* = SoftPlus; we set ¢ = 2, A\ = 107%, 0. = 0.25.
(b) n = O(1), o = tanh,c* = ReLU; we set )1 = 5, A = 1072, 0. =0.1. ¢)p = N®fora € [0,1/2];
brighter color represents larger step size. We choose o = o* = erf, 12 = 2, A = 1072, and g = 0.1.

5 15 = ©O(v/N): improvement over the kernel lower bound

In this section, we consider a gradient step with large learning rate n = @(\/N ), which matches
the asymptotic order of the Frobenius norm of the gradient G and that of the initialized weight
matrix W. Note that after absorbing the prefactors, this learning rate scaling is analogous to the
maximal update parameterization [YH20], which admits a feature learning limit. More specifically,
the change in each coordinate of the feature vector [o(W " x)]; is ©4(1), which has roughly the
same order of magnitude as its value at initialization.

Due to the large step size, columns of the updated weight matrix W, are no longer near-orthogonal,
which is an important property in existing analyses of the Gaussian equivalence (e.g., see Proposi-
tion 13 in Appendix C.1 or [HL20, Equation (66)]). Indeed, we will see that in this regime, the ridge
regression estimator on the trained CK features is no longer “linear” and can potentially outperform
the kernel lower bound (3.3) in the proportional limit. However, in the absence of GET, it is difficult
to derive the precise asymptotics of the CK model. As an alternative, we establish an upper bound
on the prediction risk R (\), which we then compare against the kernel ridge lower bound.

Existence of a “‘good” solution. Given the trained first-layer weights W, we first construct a
second-layer a for which the prediction risk can be upper-bounded. For a pair of nonlinearities
(0,0*), we introduce a scalar 7* which is the optimum of the following minimization problem:

P i inf B, (0" (&) — B + €2)°). G.1)

where &1, & NV (0,1). We write k* as an optimal value at which 7* is attained (when 7* is not
achieved by a finite x, the same argument holds by introducing a small tolerance factor ¢ > 0 in
7*; see Appendix D.2). Roughly speaking, 7* approximates the prediction risk of a specific student
model which takes the form of an average over a subset of neurons (after one feature learning step).
In particular, the first term on the RHS of (5.1) containing o* corresponds to the teacher f*, and
the second term E, represents the constructed student model. The following lemma shows that we
can find some a on the trained CK features whose prediction risk is approximately 7%, under the
additional assumption that the activation function o is bounded. For more details, see Appendix D.

Lemma 6 (Informal). Suppose that Assumption 1 holds and o is bounded. Then, after one gradient
step on W withn = ©(v/ N), there exist some second-layer coefficients a such that the constructed
student model f(x) = ﬁdTU(WIm) achieves a prediction risk which is “close” to T*.

It is worth noting that the definition of 7* does not involve the specific value of the learning rate
7. This is because for any choice of n = @(\/ﬁ ), due to the Gaussian initialization of a;, we can
find a subset of weights that receive a “good” learning rate (with high probability) such that the
corresponding neurons are useful for learning the teacher model. In addition, observe that 7* is a
simple Gaussian integral which can be numerically or analytically computed (see Appendix D.2 for
more examples). For instance, when 0 = ¢* = erf, one can easily verify that K* = V3and 7 = 0.



Prediction risk of ridge regression. Since we have established the existence of a “good” student
model f that can achieve a prediction risk close to 7* (as defined in (5.1)), in what follows, we prove
an upper bound for the prediction risk of the ridge regression estimator on the trained CK features
R1()\) in terms of the scalar 7*. The proof of the following result is shown in Appendix D.3.

Theorem 7. Under the same assumptions as Lemma 6, after one gradient step on W with n =

O(V'N), there exist constants C, 5 > 0 such that for any n/d > 1), the ridge regression estimator
(4.1) with regularization parameter n°~' < N~'\ < n=¢ for some small ¢ > 0 satisfies

Ri(N\) < 1077 +C(\/’T* . \/%%— %),
with probability 1 as n,d, N — oo proportionally.

While Theorem 7 does not provide exact expression of the prediction risk, the upper bound still
allows us to compare the prediction risk of the CK ridge regression before and after one large gra-
dient step. In particular, if |Ps1 f*||2L2 > 107* (the constant 10 is not optimized), we know that
the trained CK can outperform the kernel lower bound (3.3) (and also the initialized CK) in the
proportional limit, when the ratio ¢, = n/d is sufficiently large. The following corollary provides
two examples of this separation (see Figure 3(c)).

Corollary 8. Under the same conditions as Theorem 7, there exists a constant 1) such that for any
1 > Y7, the following holds with probability 1 when n,d, N — oo proportionally:

o Foro =c*=erf, we have R1(A\)=0O(d/n). e For c=0c*=tanh, we have R1(\) < HP>1f*||2LQ.

In the two examples outlined above, training the features by taking one large gradient step on the
first-layer parameters can lead to substantial improvement in the performance of the CK model. In
fact, the new ridge regression estimator may outperform a wide range of kernel models as described
in Section 3.1, and as shown in Figure 3(c). However, we emphasize that this separation is only
present in specific pairs of (o, 0*) for which the scalar 7* is sufficiently small. In general settings,
learning a good representation would likely require a training procedure that takes more than one
gradient step (even if f* is as simple as a single-index model, see Figure 4(c) in Appendix A.1).

6 Conclusion

We investigated how the conjugate kernel of a two-layer neural network (1.1) benefits from feature
learning in an idealized student-teacher setting, where the first-layer parameters W are updated by
one gradient descent step on the empirical risk. Based on the approximate low-rank property of
the gradient matrix, we quantified the improvement in the prediction risk of conjugate kernel ridge
regression under two different scalings of first-step learning rate 1. To the best of our knowledge,
this is the first work that rigorously characterizes the precise asymptotics of kernel models (defined
by neural networks) in the presence of feature learning.

We outline a few limitations of our current analysis as well as future directions.

* Dependence between W) and X . One crucial assumption that we make is that the trained weight
matrix W is independent of the data X on which the CK is computed. While this does not cover
the important scenario where feature learning and kernel evaluation are performed on the same
data, our setting is very natural in the analysis of pretrained models or transfer learning, which
would be an interesting extension.

* Scaling of learning rate. Our findings illustrate that different learning rate scalings such as n =
O(1) and n = O(v/N) result in drastically different behavior. One natural question to ask is
whether there exists a “phase transition” in between the two regimes that dictates whether the
GET holds. Interestingly, [RGKZ21] showed that instead of breaking the near-orthogonality of
the weights W (via large gradient step), one can also introduce sufficiently large low-rank shifts
to the input X to enable the initial RF model to fit a nonlinear f*. Intuitively, this may be due to
the “dual” relation of the inputs X and the weights W in the CK model.
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(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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