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Abstract

Cooperative multi-agent reinforcement learning
(MARL), where agents coordinates with team-
mate(s) for a shared goal, may sustain non-
stationary caused by the policy change of team-
mates. Prior works mainly concentrate on the
policy change cross episodes, ignoring the fact
that teammates may suffer from sudden policy
change within an episode, which might lead to
miscoordination and poor performance. We formu-
late the problem as an open Dec-POMDP, where
we control some agents to coordinate with un-
controlled teammates, whose policies could be
changed within one episode. Then we develop
a new framework Fast teammates adaptation
(Fastap) to address the problem. Concretely, we
first train versatile teammates’ policies and assign
them to different clusters via the Chinese Restau-
rant Process (CRP). Then, we train the controlled
agent(s) to coordinate with the sampled uncon-
trolled teammates by capturing their identifications
as context for fast adaptation. Finally, each agent
applies its local information to anticipate the team-
mates’ context for decision-making accordingly.
This process proceeds alternately, leading to a ro-
bust policy that can adapt to any teammates dur-
ing the decentralized execution phase. We show in
multiple multi-agent benchmarks that Fastap can
achieve superior performance than multiple base-
lines in stationary and non-stationary scenarios.

1 INTRODUCTION

Cooperative Multi-agent Reinforcement Learning (MARL)
has shown great promise in recent years, where multiple

*The first two authors contributed equally.
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agents coordinate to complete a specific task with a shared
goal [Oroojlooy and Hajinezhad, 2022], achieving great
progress in various domains (e.g., path finding [Sartoretti
et al., 2019], active voltage control [Wang et al., 2021],
and dynamic algorithm configuration [Xue et al., 2022]).
Various methods emerge as promising solutions, including
policy-based ones [Lowe et al., 2017, Yu et al., 2022], value-
based series [Sunehag et al., 2018, Rashid et al., 2018], and
many variants like transformer [Wen et al., 2022], showing
remarkable coordination ability in a wide range of tasks
like StarCraft multi-agent challenge (SMAC), Google Re-
search Football (GRF) [Gorsane et al., 2022], etc. Other
works investigate different aspects, including communica-
tion among agents [Zhu et al., 2022], model learning [Wang
et al., 2022], policy robustness [Guo et al., 2022], ad hoc
teamwork [Mirsky et al., 2022], etc.

However, one issue that can arise in MARL is non-
stationarity [Papoudakis et al., 2019] caused by changes in
teammates’ policies. Non-stationary is a hazardous issue for
reinforcement learning, either in single-agent reinforcement
learning (SARL) [Padakandla et al., 2019], or MARL [Pa-
poudakis et al., 2019] settings, where the environment dy-
namic (e.g., transition or reward functions) of a learning sys-
tem may change over time (inter- or intra-episodes). Many
solutions have been developed in SARL to relieve this prob-
lem, including meta-reinforcement learning [Beck et al.,
2023], strategic retreat [Dastider and Lin, 2022], sticky Hier-
archical Dirichlet Process (HDP) prior [Ren et al., 2022], etc.
The non-stationary in MARL is, however, much more com-
plex, as we should consider the policy change caused by mul-
tiple teammates rather than the single environment dynamic
change in SARL. The majority of works in MARL mainly
focus on the non-stationary during the training phase [Al-
brecht and Stone, 2018, Kim et al., 2021], the teammates’
policy change across episodes [Qin et al., 2022, Hu et al.,
2020], or when perturbations happen [Guo et al., 2022]
(See related work in App. A). However, the sudden policy
change of teammates when deployed within an episode is
never explored to the best of our knowledge, neither in prob-
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lem formulation nor efficient algorithm design. Ignoring
this issue would result in policy shift and even catastrophic
miscoordination as agents’ policies depend on other team-
mates in MARL Zhang et al. [2021]. On the other hand, the
successful approaches used in SARL are unsuitable for the
MARL setting because of the MARL’s inherent characteris-
tic (e.g., partial observability). This begs the question: Can
we acquire a robust policy that can handle such changes and
adapt to the new teammates’ polices rapidly?

In this work, we aim to develop a robust coordination pol-
icy for the mentioned issue. Concretely, we formulate the
problem as an Open Dec-POMDP, where we control multi-
ple agents to coordinate with some uncontrolled teammates,
whose policies could be altered unpredictably within one
episode. Subsequently, we develop a new training frame-
work Fastap, with which an agent can anticipate the team-
mates’ identification via its local information. Specifically,
as similar teammates might possess similarities in their iden-
tifications, learning a specific context for each teammate but
ignoring the relationships among them could lead to trivial
encodings. We thus assign them to different clusters via
the Chinese Restaurant Process (CRP) to shrink the context
search space. For the controlled coordinating policy training,
we sample representative teammates to coordinate with by
capturing their identifications into distinguishing contexts
to augment the joint policy during the centralized training
phase. Each agent then utilizes its local information to ap-
proximate the global context information. The mentioned
processes proceed alternately, and we can finally obtain a
robust policy to adapt to any teammates gradually during
the decentralized execution phase.

For evaluation, we conduct experiments on different MARL
benchmarks where the teammates’ policy alter within one
episode, including level-based foraging (LBF) [Papoudakis
et al., 2021b], Predator-prey (PP), Cooperative navigation
(CN) from MPE [Lowe et al., 2017], and a map created
from StarCraft Multi-Agent Challenge (SMAC) [Samvelyan
et al., 2019]. Experimental results show that the proposed
Fastap can cluster teammates to distinguishing groups, learn
meaningful context to capture teammates’ identification,
and achieve outstanding performance in stationary and non-
stationary scenarios compared with multiple baselines.

2 RELATED WORK

Cooperative Multi-agent Reinforcement Learning
Many real-world problems are made up of multiple in-
teractive agents, which could usually be modeled as a
multi-agent system [Dorri et al., 2018]. Among the mul-
titudinous solutions, Multi-Agent Reinforcement Learn-
ing (MARL) [Zhang et al., 2021] has made great suc-
cess profit from the powerful problem-solving ability of
deep reinforcement learning [Wang et al., 2020]. Further,
when the agents hold a shared goal, this problem refers

to cooperative MARL [Oroojlooy and Hajinezhad, 2022],
showing great progress in diverse domains like path find-
ing [Sartoretti et al., 2019], active voltage control [Wang
et al., 2021], and dynamic algorithm configuration [Xue
et al., 2022], etc. Many methods are proposed to facilitate
coordination among agents, including policy-based ones
(e.g., MADDPG [Lowe et al., 2017], MAPPO [Yu et al.,
2022]), value-based series like VDN [Sunehag et al., 2018],
QMIX [Rashid et al., 2018], or other techniques like trans-
former [Wen et al., 2022] and many variants [Gorsane et al.,
2022], demonstrating remarkable coordination ability in a
wide range of tasks like SMAC [Samvelyan et al., 2019],
Hanabi [Yu et al., 2022], GRF [Wen et al., 2022]. Besides
the mentioned approaches and the corresponding variants,
many other methods are also proposed to investigate the
cooperative MARL from other aspects, including casual
inference among agents [Grimbly et al., 2021], policy de-
ployment in an offline way for real-world application [Yang
et al., 2021], communication [Zhu et al., 2022] for partial
observability, model learning for sample efficiency improve-
ment [Wang et al., 2022], policy robustness when perturba-
tions occur [Guo et al., 2022, Yuan et al., 2023a], training
paradigm like CTDE (centralized training with decentral-
ized execution) [Lyu et al., 2021], testbed design for con-
tinual coordination validation [Nekoei et al., 2021], and
ad hoc teamwork [Mirsky et al., 2022], offline learning in
MARL Guan et al. [2023], Zhang et al. [2023], etc.

Non-stationary is a longstanding topic in single-agent
reinforcement learning (SARL) [Padakandla et al., 2019,
Padakandla, 2020], where the environment dynamic (e.g.,
transition and reward functions) of a learning system may
change over time. For SARL, most existing works focus
on inter-episode non-stationarity, where decision processes
are non-stationary across episodes, including multi-task set-
ting [Varghese and Mahmoud, 2020], continual reinforce-
ment learning [Khetarpal et al., 2022], meta reinforcement
learning [Beck et al., 2023], etc., these problems can be
formulated as a contextual MDP [Hallak et al., 2015], and
could be solved by techniques like task embeddings learning.
Other works also consider intra-episode non-stationarity,
where an agent may suffer from dynamic drifting within
one single episode [Kumar et al., 2021, Ren et al., 2022,
Chen et al., 2022, Luo et al., 2022, Dastider and Lin, 2022,
Feng et al., 2022]. ESCP [Luo et al., 2022] considers the
sudden changes one agent may encounter and obtains a
robust policy via learning an auxiliary context recognition
model. Experiments show that in environments with both
in-distribution and out-of-distribution parameter changes,
ESCP can not only better recover the environment encoding,
but also adapt more rapidly to the post-change environment.

Different from the SARL setting, non-stationarity is an in-
herent challenge for MARL, as the agent’s policy may be
instability caused by the concurrent learning of multiple
policies of other agents [Papoudakis et al., 2019]. Previous
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Figure 1: The overall framework of Fastap.

works also concentrate on non-stationarity across episodes,
and have focused on solving the problem in the training
phase using techniques such as multi-task training [Qin
et al., 2022], training policy for zero-shot coordination [Hu
et al., 2020]. Despite the progress made, they do not ad-
dress non-stationarity caused by teammates’ sudden policy
changes, which is a crucial and urgent need. As for the open
MARL, our work takes a different perspective by emphasiz-
ing the general coordination and fast adaptation ability of
learned controllable agents in the context of MARL.

Open Multi-agent System considers the problem where
agents may join or leave while the process is ongoing,
causing the system’s composition and size to evolve over
time Hendrickx and Martin [2017]. In previous works, the
multi-agent problem has mainly been modeled for planning,
resulting in various problem formulations such as Open Dec-
POMDP Cohen et al. [2017], Team-POMDP Cohen and
Mouaddib [2018, 2019], I-POMDP-Lite Chandrasekaran
et al. [2016], Eck et al. [2019], CI-POMDP Kakarlapudi et al.
[2022], and others. Recently, some works consider the open
multi-agent reinforcement learning problems. GPL Rah-
man et al. [2021] formulates the Open Ad-hoc Teamwork
as OSBG and assumes global observability for efficiency,
which may be hard to achieve in the real world. Addi-
tionally, it uses a GNN-based method that works only on
the single controllable agent setting and is not scalable
enough to be extended to multiple controllable agents set-
ting. ROMANCE Yuan et al. [2023b] models the prob-
lem where the policy perturbation issue when testing in
a different environment as a limited policy adversary Dec-
POMDP (LPA-Dec-POMDP), and then proposes Robust
Multi-Agent Coordination via Evolutionary Generation of
Auxiliary Adversarial Attackers (ROMANCE), which en-
ables the trained policy to encounter diversified and strong

auxiliary adversarial attacks during training, thus achieving
high robustness under various policy perturbations.

3 PROBLEM FORMULATION

The aim of this work is to train multiple controllable agents
to interact with other teammates that might suddenly change
their policies at any time step within one episode. Therefore
we formalize the problem by extending the framework of
Dec-POMDP [Oliehoek and Amato, 2016] to an Open Dec-
POMDP M = ⟨N , N̄ ,S,A, Ā, P,Ω, O,R,U , γ⟩. Here
N = {1, ..., n}, N̄ = {1̄, ..., m̄} are the sets of controllable
agents and uncontrollable teammates, respectively, S stands
for the set of state, A = A1×...×An and Ā = A1̄×...×Am̄

are the corresponding sets of joint actions for N and N̄ , P ,
O, R denote the corresponding transition, observation, and
reward functions, Ω is the set of observations, γ ∈ [0, 1)
is the discounted factor, and U is a probability distribution
used to control the frequency of sudden change.

At the beginning of each episode, the set of uncontrollable
teammates that participate in the cooperation at the very start
is denoted by N̄0 ∈ P(N̄ ), where P(·) stands for the power
set, and the waiting time is represented by u0 ∼ U . At each
time step t, ut = ut−1 − 1 and N̄t = N̄t−1 are updated. If
ut ≤ 0, it will be resampled from U , and a brand new set
of uncontrollable teammates N̄t ∈ P(N̄ ) will replace the
previous one. Meanwhile, controllable agent i receives the
observation oi = O(s, i) and outputs action ai ∈ Ai. Notice
that the number of uncontrollable teammates is changeable
in one episode. The joint action (a, ā) leads to the next state
s′ ∼ P (·|s, (a, ā)) and a shared rewardR(s, (a, ā)), where
a = (a1, ..., an) ∈ A and ā ∈ {(aī)ī∈N̄ |aī ∈ Aī, N̄ ∈
P(N̄ )}. To relieve the partial observability, the trajectory
history (oi1, a

i
1, ...o

i
t−1, a

i
t−1, o

i
t) of agent i until time step



t is encoded into τ it by GRU [Cho et al., 2014]. Under an
Open Dec-POMDP, we aim to find an optimal policy when
uncontrollable teammates suffer from sudden change. Then,
with τt = ⟨τ1t , ..., τnt ⟩, the formal objective is to find a
joint policy π(τt,a), which maximizes the global value
function Qπ

tot(τ ,a) = Es,a,ā[
∑∞
t=0 γ

tR(s, (a, ā))|s0 =
s,a0 = a,π, π̄], where π̄ is the unknown joint policy of
uncontrollable teammates.

4 METHOD

In this section, we will present the detailed design of Fastap
(see Fig. 1), a novel multi-agent policy learning approach
that enables controllable agents to handle the sudden change
of teammates’ polices and adapt to new teammates rapidly.
First, we design an infinite mixture model that formulates
the distribution of continually increasing teammate clusters
based on the Chinese Restaurant Process (CRP) [Blei and
Frazier, 2010] (Sec 4.1 and Fig. 1(a)). Next, we introduce
the centralized context encoder learning objective for fast
adaption (Sec 4.2 and Fig. 1(b)). Finally, considering the
popular CTDE paradigm in cooperative MARL, we train
each controllable agent to recognize and adapt to the team-
mate situation rapidly according to its local information
(Sec 4.3 and Fig. 1(c)).

4.1 CRP-BASED INFINITE MIXTURE FOR
DYNAMIC TEAMMATE GENERATION

To adapt to the sudden change in teammates with diverse be-
haviors in one episode rapidly during evaluation, we expect
to maintain a set of diverse policies to simulate the possibly
encountered teammates in the training phase. Nevertheless,
it is unreasonable and inefficient to consider every newly
generated group of teammates as a novel type while ignoring
the similarities among them. This approach lacks scalabil-
ity in a learning process where teammates are generated
incrementally, and it may lead to reduced training effec-
tiveness if teammates with similar behavior are generated.
Accordingly, we expect to acquire clearly distinguishable
boundaries of teammates’ behaviors by applying a behavior-
detecting module to assign teammate groups with similar
behaviors to the same cluster. To tackle the issue, an infi-
nite Dirichlet Process Mixture (DPM) model [Lee et al.,
2020] could be applied due to its scalability and flexibility
in the number of clusters. Concretely, we can formulate
the teammate generation process as a stream of teammate
groups with different trajectory batch D1,D2, ... where each
batch Dk is a set of trajectories τ = (s0,a0..., sT ) sampled
from the interactions between the kth teammate group and
the environment, and T is the horizon length. Considering
the difficulty of trajectory representation due to its high
dimension, we utilize a trajectory encoder Eω1 parameter-
ized by ω1 to encode τ into a latent space. Specifically, we

partition the trajectory τ into τS = (s0, ...sT−1, sT ) and
τA = (a0, ...,aT−1), and a transformer architecture is ap-
plied to extract features from the trajectory and represent
it as v = Eω1

(τ). For the kth teammate group generated
so far, vk = Eτk∼Dk

[Eω1
(τk)] will be used to represent its

behavioral type, and v̄m is the mean value of the mth cluster.

If M clusters are instantiated so far, the cluster that the kth

teammate group belongs to will be inferred from the assign-
ment P (v(m)

k |τk) = P (v
(m)
k |τSk , τAk ),m = 1, ...,M,M +

1, where v(m)
k denotes that the kth group belongs to the

mth cluster based on its representation vk. The posterior
distribution can be written as:

P (v
(m)
k |τSk , τAk ) ∝ P (v

(m)
k )P (τAk |τSk ; v

(m)
k ), (1)

we apply CRP [Blei and Frazier, 2010] to instantiate the
DPM model as the prior. Specifically, for a sequence of team-
mate groups whose representations are [v1, v2, ...vk, ...], the
prior P (v(m)

k ) is set to be:

P (v
(m)
k ) =

{
n(m)

k−1+α , m ≤M
α

k−1+α , m =M + 1,
(2)

where n(m) denotes the number of teammate groups be-
longing to the mth cluster, M is the number of clusters
instantiated so far,

∑M
m=1 n

(m) = k − 1, and α > 0 is a
concentration hyperparameter that controls the probability
of the instantiation of a new cluster.

To estimate the predictive likelihood P (τAk |τSk ; v
(m)
k ), we

use an RNN-based decoderDω2
that takes τSk , v

(m)
k as input

and predicts τAk . The decoder represents each sample as an
Gaussian distribution N (µ(τSt , v), σ

2(τSt , v)) where τSt =
(s0, ..., st), such that

P (τAk |τSk ; v
(m)
k ) =Dω2

(τAk |τSk ; v
(m)
k )

=

T∏
t=1

Dω2(a
k
t |τSk,t, v

(m)
k ),

where v(m)
k =

{
n(m)v̄m+vk
n(m)+1

m ≤M

vk m =M + 1.

(3)

Combing the estimated prior Eqn. (2) and predictive like-
lihood Eqn. (3), we are able to decide which cluster the
kth teammate group belongs to and thus acquire clearly dis-
tinguishable boundaries of teammates’ behavior. After the
assignment, the mean value of the mth cluster will also be
updated. Meanwhile, to force the learned representation v to
capture the behavioral information of each teammate group
and estimate the predictive likelihood more precisely, the
encoder Eω1and decoder Dω2 are optimized as:

Lmodel(ω) = − logEτ∼∪K
k=1Dk

[Dω2
(τA|τS ;Eω1

(τ))],
(4)



where K is the number of teammate groups generated so
far, ω = (ω1, ω2). The encoder and decoder are optimized
while generating teammate groups (see details in App. B.1).

4.2 CENTRALIZED CONTEXTUALIZATION
LEARNING FOR FAST ADAPTATION

After gaining the generated teammates divided into differ-
ent clusters, this part aims to train a robust policy to han-
dle sudden teammate change and rapidly adapt to the new
teammates via conditioning the controllable agents’ poli-
cies on other teammates’ behavior. Despite the diversity and
complexity that unknown teammates’ behavior exhibits, the
CRP formalized before helps acquire clearly distinguish-
able boundaries based on teammates’ behavioral types with
regard to high-level semantics.

Inspired by Environment Sensitive Contextual Policy Learn-
ing (ESCP) [Luo et al., 2022], which aims to guide the
context encoder to identify and track the sudden change
of the environment rapidly, we expect to utilize a global
context encoder gθ and local context encoder {fϕi

}ni=1 to
embed the historical interactions into a compact but infor-
mative representation space. The encoders are supposed to
identify a new type of teammate fast so as to recognize the
sudden change in time, and we can optimize the encoder
by proposing an objective that helps the encoder’s output
coverage to the oracle rapidly at an early time and keep
consistent for the remaining steps.

During centralized training phase, we set zmt = gθ(τ
m
t ),

where τmt = (sm0 ,a
m
0 , ..., s

m
t ) is generated based on the

interactions between the paired joint policy (π, π̄m) and the
environment, and π̄m is the joint policy of uncontrollable
teammates belonging to the mth cluster. Notice that the
cluster of teammates is chosen at the beginning of each
episode and will not change during training, and sudden
change of teammates only happens during evaluation. We
can acquire the empirical optimization objective of gθ as:

LGCE =

M∑
m=1

E[||zmt − z̄m||22]− log det(R{z̄m}), (5)

where z̄m is the moving average of all past context vectors
used for stabilizing the training process, θ is the parameter
of the global context encoder gθ, det(·) denotes the matrix
determinant, and R{z̄m} is a relational matrix. Intuitively,
the objective expects to help the encoder’s output cover-
age rapidly at an early time and keep it consistent for the
remaining steps. Specifically, the former part forces zmt to
converge fast and stably in one episode, and the latter pushes
the expectation of zmt to a set of separable but representative
latent vectors. The full derivation can be found in App. B.2.

In practice, a recurrent neural network is applied to in-
stantiate gθ, which takes τmt = (sm0 ,a

m
0 , ..., s

m
t ) as

input and outputs a multivariate Gaussian distribution

N (µθ(τ
m
t ), σ2

θ(τ
m
t )). Thus the teammates context is ob-

tained from the Gaussian distribution with the reparam-
eterization trick by zmt ∼ gθ(τ

m
t ). As we can ap-

ply Fastap to any value-based methods, the global em-
bedding zmt could also be integrated into the central-
ized network. Similarly, the local embedding em,it and
local trajectory τm,it will also be concatenated to cal-
culate the local Q-value Qi(τm,it , em,it , ·), where the
optimization of the local context encoder will be ex-
plained in detail in the next part. Therefore, the TD loss
LTD = [rmt + γmaxam

t+1
Q̄tot(s

m
t+1, e

m
t+1, z

m
t+1,a

m
t+1) −

Qtot(s
m
t , e

m
t , z

m
t ,a

m
t )] is utilized to accelerate the central-

ized contextualization learning, where Q̄tot is periodically
updated target Q network, and emt = (em,it )ni=1. The overall
optimization objective of gθ can thus be derived:

LADAP = LTD + αGCELGCE, (6)

where αGCE is an adjustable hyper-parameter to balance the
two optimization objective.

4.3 DECENTRALIZED TEAM SITUATION
RECOGNITION AND OPTIMIZATION

Despite the fact that optimizing Eqn. (6) helps obtain com-
pact and representative representations zmt that could guide
individual policies to adapt to teammate sudden change
rapidly, partial observability of MARL will not allow agents
that execute in a decentralized manner to obtain zmt encoded
from the global state-action trajectory. Thus, we equip each
agent i with a local encoder fϕi

to recognize the team situa-
tion. Concretely, the network architecture of fϕi is similar to
gθ, fϕi

takes local trajectory τm,it = (om,i0 , am,i0 , ..., om,it )

as input and outputs em,it ∼ N (µϕi
(τm,it ), σ2

ϕi
(τm,it )). To

make em,it informatively consistent with zmt , we introduce
a mutual information (MI) objective by maximizing the MI
I(em,it ; zmt |τm,it ) between em,it and zmt conditioned on the
agent i’s local trajectory τm,it . Due to the difficulty and fea-
sibility of estimating the conditional distribution directly,
variational distribution qξ(e

m,i
t |zmt , τ

m,i
t ) is used to approxi-

mate the conditional distribution p(em,it |zmt , τ
m,i
t ). Inspired

by the information bottleneck [Alemi et al., 2017], we would
derive a tractable lower bound of MI objective:

I(em,it ; zmt |τm,it ) ≥
ED[log qξ(e

m,i
t |zmt , τ

m,i
t )] +H(em,it |τm,it ),

(7)

where H(·) denotes the entropy, and variables of the distri-
butions are sampled from the experience replay buffer D.
We defer the full derivation to App. B.3. We can now rewrite
the MI objective as:

LMI =

M∑
m=1

n∑
i=1

ED[log qξ(e
m,i
t |zmt , τ

m,i
t )] +H(em,it |τm,it ),

(8)
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Figure 2: Experimental environments used in this paper.

the mentioned symbols are defined similarly as Eqn. (5). To
facilitate the learning process, two local auxiliary optimiza-
tion objectives are further designed. On the one hand, we
expect em,it to recognize the team situation and adapt to new
teammates that change suddenly as zmt does:

LLCE =

M∑
m=1

n∑
n=1

E[||em,it − ēm,i||22]− log det(R{ēm,i}).

(9)
On the other hand, to derive the descriptive representation
em,it of the specific team situation, we hope em,it can learn
the relationship between controllable agents and the team-
mates. Therefore, we expect em,it to reconstruct the observa-
tions and actions taken by teammates:

LREC =

M∑
m=1

n∑
n=1

ED[− log hψi
(ōmt , ā

m
t |em,it )], (10)

where h is parameterized by ψi for each agent i. As em,it

and τm,it will be concatenated into the input of individual Q
network Qi(τm,it , em,it , ·), the TD loss LTD is also utilized
to promote the learning of local context encoder. Thus, the
optimization objective becomes:

LDEC = LTD + αMILMI + αLCELLCE + αRECLREC, (11)

where αMI, αLCE, αREC are the corresponding adjustable hy-
perparameters of the three objectives.

5 EXPERIMENTS

In this section, we design extensive experiments for the
following questions: 1) Can Fastap achieve high adaptabil-
ity and generalization ability when encountering teammate
sudden change compared to other baselines in different sce-
narios, and how each component influences its performance
(Sec. 5.2) ? 2) Can CRP help acquire distinguishable bound-
aries of teammates’ behaviors, and what team situation rep-
resentation is learned by Fastap (Sec. 5.3)? 3) What transfer
ability Fastap reveals, and how does each hyperparameter
influence its coordination capability (Sec. 5.4)?

5.1 ENVIRONMENTS AND BASELINES

We select four multi-agent tasks as our environments, as
shown in Fig. 2. Level Based Foraging (LBF) [Papoudakis
et al., 2021b] is a cooperative grid world game with agents
that are rewarded if they concurrently navigate to the food
and collect it. Predator-prey (PP) and Cooperative naviga-
tion (CN) are two scenarios coming from the MPE environ-
ment [Lowe et al., 2017], where multiple agents (predators)
need to chase and encounter the adversary agent (prey)
to win the game in PP, and in CN, multiple agents are
trained to move towards landmarks while avoiding colli-
sions with each other. We also create a map 10m_vs_14m
from SMAC [Samvelyan et al., 2019], where 10 allies are
spawned at different points to attack 14 enemies to win.

For baselines, we consider multiple ones and implement
them to a popular valued-based method QMIX [Rashid et al.,
2018] for comparisons, including (1) the vanilla QMIX
without any extra design; (2) Meta-learning SARL meth-
ods: PEARL [Rakelly et al., 2019] uses recently collected
context to infer a probabilistic variable describing the task;
ESCP [Luo et al., 2022] copes with the sudden change in
the environment by learning a context-sensitive policy; (3)
Context-based MARL approaches: LIAM [Papoudakis et al.,
2021a] predicts teammates’ current behaviors based on local
observation history to relieve non-stationary in the training
phase; ODITS [Gu et al., 2022] applies a centralized “team-
work situation encoder” for end-to-end learning to adapt to
arbitrary teammates across episodes. More details about the
environments and baselines, and Fastap are illustrated in
App. C, and App. D, respectively.

5.2 COMPETITIVE RESULTS AND ABLATIONS

Coordination Ability in Stationary and Non-stationary
Settings At first glance, we compare Fastap against the
mentioned baselines to investigate the coordination ability
under stationary and non-stationary conditions, as shown in
Fig. 3. We can find all algorithms suffer from coordination
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Figure 3: Performance comparison with baselines on multiple benchmarks.

LBF PP CN 10m_vs_14m
Environment

40

30

20

10

0

Pe
rf

or
m

an
ce

 C
ha

ng
e 

Pe
rc

en
ta

ge
 (%

)

Fastap ODITS LIAM QMIX PEARL ESCP

Figure 4: Performance difference in stationary and non-
stationary conditions. The value is the difference in the
performance under non-stationary and stationary settings
w.r.t. the best return.

ability degradation when teammates are in a non-stationary
manner, indicating a specific consideration of teammates’
sudden policy change in a non-stationary environment is
needed. When only using local information to obtain a con-
text to capture the teammates’ information, methods like
PERAL and LIAM show indistinctive coordination improve-
ment in stationary and non-stationary settings, PEARL per-
forms even worse than vanilla QMIX, demonstrating that
successful meta-learning approaches in SARL cannot be
implemented without modification in the MARL setting.
Furthermore, when learning a teammate’s behavior context
extraction model in both global and local ways, ODITS
shows superior performance in the two mentioned condi-
tions, manifesting the necessity of utilizing global states
to improve training efficiency. Besides, ESCP also reveals
a relatively better coordination capability, demonstrating
the effectiveness of optimizing a context encoder with fast
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Figure 5: Ablation Studies.

adaptability. Fastap achieves the best performance on all
benchmarks both in stationary and non-stationary condi-
tions, and suffers from the least performance degradation
when tested in a non-stationary condition in most environ-
ments (see Fig. 4), showing the effectiveness and high effi-
ciency of the proposed method.

Ablation Studies As Fastap is composed of multiple com-
ponents, we here design ablation studies on benchmarks
LBF and PP to investigate how they impact the coordina-
tion performance of Fastap under non-stationary settings.
First, for the infinite mixture model of dynamic teammate
generation, we derive W/o CRP by removing the CRP pro-
cess and taking each newly generated teammate group as a
new cluster. Next, to explore whether a teammate-behavior-
sensitive encoder helps improve adaptability, we introduce
W/o LCE by removing LLCE of local encoders. Furthermore,
we pick up W/o MI to investigate how maximizing mutual
information between global and local contexts accelerates
learning efficiency. Finally, W/o REC is introduced to check
the impact of the auxiliary optimization objective that in-
volves agent modeling. As is shown in Fig. 5, W/o CRP
and W/o MI suffer the most severe performance degradation
in LBF and PP, respectively, manifesting the benefit of the



U Fastap Fastap_wo_CRP ODITS LIAM QMIX PEARL ESCP
stationary 0.642± 0.008 0.594± 0.015 0.637± 0.008 0.597± 0.029 0.569± 0.033 0.507± 0.021 0.618± 0.040
U [5, 8] 0.562± 0.012 0.400± 0.020 0.352± 0.002 0.415± 0.026 0.306± 0.038 0.288± 0.019 0.404± 0.026
U [6, 7] 0.567± 0.001 0.444± 0.314 0.487± 0.022 0.454± 0.157 0.444± 0.221 0.333± 0.000 0.556± 0.125
U [2, 9] 0.484± 0.285 0.222± 0.133 0.416± 0.182 0.401± 0.078 0.443± 0.205 0.205± 0.114 0.514± 0.314
U [3, 6] 0.518± 0.136 0.366± 0.217 0.444± 0.314 0.388± 0.283 0.353± 0.272 0.264± 0.066 0.502± 0.120
U [3, 3] 0.384± 0.272 0.246± 0.141 0.342± 0.118 0.362± 0.208 0.222± 0.314 0.243± 0.172 0.271± 0.157

Table 1: The final average return ± std in LBF, where U is the sudden change probability distribution of open Dec-POMDP
that controls the frequency of sudden change, and U [m,n] denotes a discrete uniform distribution parameterized by m and
n. The row of the original training sudden change distribution U = U [5, 8] is highlighted as gray .
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Figure 6: Cross-Play performance before and after CRP and
teammate behavior embeddings.

introduction of CRP model and that teammate-behavior-
sensitive encoders do help agents adapt to sudden change of
teammates rapidly. Besides, when removing LMI, the perfor-
mance gap W/o MI shows in two benchmarks demonstrate
the necessity of utilizing global information to facilitate
the learning of local context encoders. Finally, we also find
agent modeling helps learn more informative context and
brings about a slight coordination improvement.

Comparisons in (OOD) Non-stationary Setting. As this
study considers a setting where the frequency of uncon-
trolled teammates’ sudden change follows a fixed proba-
bility distribution U , which is set to be a uniform distribu-
tion, we evaluate the generalization ability when altering
the changing frequency during testing. The experiments
on LBF are conducted with the distribution U = U [5, 8]
during training. As shown in Tab. 1, we compare the final
returns of different learned policies in LBF by altering the
distribution U . Although different approaches obtain simi-
lar coordination ability in stationary conditions, they suffer
from strong performance degradation when altering team-
mates’ policy-changing frequency (e.g., ODITS suffer from
close to half performance degradation in sudden change[3,
3]). On the other hand, Fastap and ESCP achieve outstand-
ing generalization ability in both in-distribution and OOD
settings mostly. More specifically, in the stationary setting,
Fastap outperforms the best baseline ODITS by 0.005, while
in the original non-stationary setting, the gap increases to
0.147. We also find Fastap shows inferiority to ESCP in
setting sudden change[2, 9], we believe that both methods
fail to perform well under the 2-timestep sudden change
interval, while Fastap sacrifices a part of the performance
under large timestep sudden change interval that might hap-

pen in U [2, 9]. A more robust policy in diverse conditions
would be developed in the future.

5.3 TEAMMATE ADAPTATION ANALYSIS

Here we conduct experiments to investigate the CRP model
and teammate adaptation progress. We first verify whether
CRP helps acquire distinguishable boundaries of teammates’
behaviors by performing Cross-Play [Hu et al., 2020] ex-
periments on LBF before and after CRP. As shown in the
left part of Fig. 6, for generation process of 8 teammate
groups, we find that the values on the diagonal from the
top left to the bottom right are relatively larger. However,
several high performances of other points (e.g., Teammate
groups 2 and 3) indicate that the generated teammate groups
might share similar behavior. To help relieve the negative
influence caused by taking teammate groups with similar
behavior as two different types, CRP is applied to learn the
behavior type and assign teammates with similar behavior to
the same cluster. Further, we sample latent variables gener-
ated by Eω1(τk) and reduce the dimensionality by principal
component analysis (PCA) [Wold et al., 1987]. We find that
latent variables assigned to the same cluster (the ellipse) are
distributed in the adjacent areas. Cross-Play experiments are
also conducted on the teammate clusters after CRP, and we
find from the right part of Fig. 6 that teammates belonging
to different clusters achieve low performance when paired
together, indicating the effectiveness of CRP.

To investigate how teammate-behavior-sensitive encoders
help adapt to teammates’ sudden change rapidly, we also
visualize the fragment snapshot of an episode during testing
as shown in Fig. 7(a). When a teammate and two controlled
agents are trying to reach out for an apple and win the score
as they were intended, the teammate accidentally leaves
out the team, and they fail to get the reward provisionally.
However, the controlled agents learned by Fastap recognize
the situation and switch out the policy rapidly by moving
downward and coordinating with the other teammate to at-
tain the reward. Meanwhile, we record the latent context
vector in different timesteps of one episode. Fastap encodes
the context to four-dimensional vectors in LBF, and we re-
duce the dimensionality to one-dimensional scalars by PCA.
We scatter the points in Fig. 7(b) together with the contexts
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Figure 7: Teammate adaptation visualization.

learned by LIAM and ablation Fastap_wo_CRP. The results
imply that the contexts learned by Fastap are sensitive to
the sudden change of teammates, and when the teammates
are stable, the latent context is stable and flat. Despite the
fact that agent modeling helps recognize the teammates’
behavior, the context curve of LIAM is still hysteretic and
unstable. Meanwhile, the ablation Fastap_wo_CRP can also
adapt to new teammates rapidly, but it fails to recognize the
teammates with similar behavior and results in the unstable
latent context (e.g., Teammate Cluster 3).

5.4 TRANSFER AND SENSITIVE STUDIES

Our Fastap learns teammates recognition module to cope
with teammates that might change suddenly in one episode.
The sudden change distribution U that controls the fre-
quency of changing is fixed, and a more frequent change
or a larger gap of waiting interval tends to make the train-
ing more difficult. Here, we investigate the policy trans-
fer ability of Fastap by comparing the performance af-
ter fine-tuning and learning from scratch. Concretely, we
train Fastap agents under the sudden change distribution
Usource = U [5, 8] for 0.6M timesteps and initialize the
trained network with the saved checkpoint under the tar-
get setting with U = Utarget = U [3, 6]. The learning curves
demonstrated in Fig. 8 show that agents trained under Usource
possess a jumpstart compared with the random initializa-
tion, and we hope it could accelerate the learning in a new
environment by reusing previously learned knowledge.

As Fastap includes multiple hyperparameters, here we con-
duct experiments on benchmark LBF to investigate how
each one influences the coordination ability. αGCE balances
the trade-off between the TD-loss and the global context
optimization object. If it is too small, agents may coordinate
in stationary environment excessively, ignoring the extrac-
tion of teammates context information. On the other hand,
if it is too large, agents pay much attention to teammates
identification with risk of overfitting to specific teammates
types. We thus find each hyperparameter via grid-search. As
shown in Fig. 9(a), we can find that αGCE = 1 is the best
choice in this benchmark. αMI influences the optimization

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0.00

0.15

0.30

0.45

0.60

0.75

Te
st

 R
et

ur
n 

M
ea

n

Learn after transfer
Learn from scratch

(a) LBF

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

15

30

45

60

Te
st

 R
et

ur
n 

M
ea

n

Learn after transfer
Learn from scratch

(b) PP

Figure 8: Policy Transfer Ability.
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Figure 9: Sensitivity Studies on LBF.

of local encoder fϕi to recognize the team situation, we can
find that αMI = 0.001 works well in Fig. 9(b).

6 FINAL REMARKS

In this work, we study the teammates’ adaptation prob-
lem when some coordinators suffer from the sudden pol-
icy change. We first formalize this problem as an open
Dec-POMDP, where some coordinators may sustain policy
changes unpredictably within one episode, and we train mul-
tiple controllable agents to adapt to this change rapidly. For
this goal, we propose Fastap, an efficient approach to learn a
multi-agent coordination policy by capturing the teammates’
policy-changing information. Extensive experimental results
on stationary and non-stationary conditions from different
benchmarks verify the effectiveness of Fastap, and the anal-
ysis also confirms it from multiple aspects. Our method can
be seen as a primary attempt for the open-environment set-
ting [Zhou, 2022] in cooperative MARL, and we sincerely
hope it can be a solid foothold for applying MARL to prac-
tical applications . For future work, researches on the chang-
ing of action/observation space of the MARL system or
utilizing techniques like transformer [Vaswani et al., 2017]
to obtain a generalist coordination policy for non-stationary
from diverse sources and degrees is of great value.
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