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Abstract

Synthetic time series generated by diffusion models enable sharing privacy-
sensitive datasets, such as patients’ functional MRI records. Key criteria for syn-
thetic data include high data utility and traceability to verify the data source. Recent
watermarking methods embed in homogeneous latent spaces, but state-of-the-art
time series generators operate in data space, making latent-based watermarking in-
compatible. This creates the challenge of watermarking directly in data space while
handling feature heterogeneity and temporal dependencies. We propose TimeWak,
the first watermarking algorithm for multivariate time series diffusion models. To
handle temporal dependence and spatial heterogeneity, TimeWak embeds a tem-
poral chained-hashing watermark directly within the temporal-feature data space.
The other unique feature is the e-exact inversion, which addresses the non-uniform
reconstruction error distribution across features from inverting the diffusion process
to detect watermarks. We derive the error bound of inverting multivariate time
series while preserving robust watermark detectability. We extensively evaluate
TimeWak on its impact on synthetic data quality, watermark detectability, and
robustness under various post-editing attacks, against five datasets and baselines of
different temporal lengths. Our results show that TimeWak achieves improvements
of 61.96% in context-FID score, and 8.44% in correlational scores against the
strongest state-of-the-art baseline, while remaining consistently detectable. Our
code is available at https://github.com/soizhiwen/TimeWak,

1 Introduction

Multivariate time series data drive key applications in healthcare [19]], finance [13l], and science [23].
However, access to real-world datasets is often restricted by privacy regulations, limited availability,
and high acquisition costs. To address these issues, synthetic time series generated by models
are increasingly adopted as practical alternatives [9, 25]. Among generative techniques, diffusion
models [[10] have gained prominence for producing high-quality samples, often outperforming the
mainstream Generative Adversarial Networks and Variational Autoencoders [6l [12].

Beyond generation quality, traceability is equally critical, as it ensures verifiability and safeguards
against misuse [18} 41]. In this context, watermarking has become the de-facto approach for tracking
and auditing synthetic data [32,|18]. The challenge lies in striking a delicate balance: embedding
imperceptible signals that preserve the quality of generated content while remaining detectable, even
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under post-processing [40]. Recent works embed watermarks during generation by adding them
into the latent space, offering advantages such as generality and lightweight computation [32,41]].
However, latent-space watermarks are not always viable, especially since many state-of-the-art
(SOTA) time series generators operate within the data space [264|1,134]. Additionally, latent generators
introduce a trade-off in detectability, as diffusion inversion and the encode-decode cycle are inherently
lossy and can degrade the watermarks [21]].

While generation-time watermarks have proven effective for images [32] and tables [41], their
applicability to time series data remains unexplored. Multivariate time series data possess temporal
dependencies and heterogeneous features, like gender versus income. The ensuing challenges are
twofold: (i) embedding watermarks directly in the data space while preserving inter- and intra-variate
temporal dependencies of the generated time series, and (ii) ensuring accurate watermark detection
despite the lossy nature of diffusion inversion, whilst handling mixed feature types.

We propose TimeWak, the first generation-time watermark for multivariate time series diffusion
models, featuring temporal chained-hashing with e-exact inversion. TimeWak first embeds cyclic
watermark patterns, i.e., the positional seeds of Gaussian noises, along the temporal direction. First,
we chained-hash the seeds along the temporal axis, then shuffle the seeds across features to maintain
temporal correlations while preserving the unique characteristics of each feature. To ensure reliable
watermark detection, we introduce an e-exact inversion strategy that makes a practical concession
in the otherwise exactly invertible diffusion process: the Bi-Directional Integration Approximation
(BDIA) [36]. We further provide theoretical guarantees on the resulting inversion error in Appendix[C|

We evaluate TimeWak against five SOTA watermarking methods on five datasets under varying tempo-
ral lengths. TimeWak achieves the best detectability under six post-editing attack configurations with
the minimum data quality degradation. Additionally, results show that TimeWak preserves temporal
and cross-variate dependencies with high quality with near-exact watermark bit reconstruction. To
summarize, we list our contributions as follows:

* We propose TimeWak, the first generation-time watermarking scheme for multivariate time series
diffusion models, preserving realistic spatio-temporal dependencies while remaining detectable.

* To preserve temporal characteristics and boost robustness against post-processing operations, we
design a temporal chained-hashing scheme that embeds watermark seeds along the temporal
direction, followed by a shuffle across features.

* For robust detectability, we propose e-exact inversion by extending BDIA sampling into a data
space diffusion generator, and provide a theoretical error bound analysis.

* Our extensive evaluation shows that TimeWak achieves up to 61.96 % better context-FID scores
and 8.44 % better correlation scores compared to the strongest SOTA watermarking method.

2 Related work

We summarize related works on watermarking diffusion models according to their generating method
(post-processing or generation-time generation), and data modality. To the best of our knowledge,
our work is the first generation-time watermarking scheme for time series diffusion models.

Watermarking diffusion models. Watermarking has become a critical solution for tracing and
authenticating machine-generated content. Post-generation techniques embed watermarks after syn-
thesis, often degrading the generated data’s quality due to direct modifications [5}138]]. Alternatively,
recent advancements embed watermarks within the training process. Studies such as Stable Signa-
ture [7] and FixedWM [18]] fine-tune diffusion models to embed and extract watermarks. However,
these methods modify model parameters, risking overfitting which hurts generalizability.

Watermarking images. Tree-Ring (TR) [29] embeds the watermark during sampling by modifying
the initial noise latent vector in the Fourier space. However, it disrupts the Gaussian noise distribution,
reducing the diversity and quality of generated samples. Gaussian Shading (GS) [32] improves
robustness by embedding watermarks directly in the latent space using invertible transformations.
However, GS is tailored towards images and requires reversing synthetic samples into the latent space
for detection, which is a noisy and error-prone process that limits the detection accuracy.

Watermarking tables. TubWak [41] watermarks tabular data in latent space using seeded self-cloning,
shuffling with a secret key, and a valid-bit mechanism. However, it relies on latent models and does
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Figure 1: Overview of TimeWak. First, we assign random seeds at the beginning of each interval.
(D Temporally chained-hashing. A, B, and C (pink ) show seeds being copied from the previous
step and the feature order shuffled. (2) Shuffling the seeds for each series. Positional indices are
highlighted in [green. (3) Constructing an initial Gaussian noise. (4) Generating multivariate time
series. (5) Reversing the diffusion process. (6) Recovering the watermark seed. (7) Unshuffling the
seeds in the opposite way they were shuffled. (8) Bit accuracy between the hash and recovered seed.

not account for temporal dependencies in a time series. Furthermore, its detectability is limited by
the invertibility of the diffusion process and the lossy conversion to and from latent representations.

3 TimeWak

We first highlight the unique challenges of watermarking multivariate time series, motivating the
design of TimeWak, shown in Figure[T}] Then we introduce TimeWak’s key novelties: (i) temporal
chained-hashing the watermark seeds cyclically along the temporal axis; (ii) shuffling the seeds across
features, accounting for feature heterogeneity in the time series; and (iii) an adapted BDIA-DDIM
sampling method with a theoretically bounded e-exact inversion, enhancing robust detectability. Key
notations are summarized in Appendix [A]

3.1 Time series diffusion and observations

Time series diffusion. We define a time series sample of F' features (variates) and W timesteps as
xo € RWXF  with xf)”’f denoting the value of feature f at timestep w. Unlike image and tabular
diffusion, SOTA time series diffusion models operate on the data space, which have heterogeneous
features, e.g., income vs. gender, and temporal dependence [26} |1, 34]. These time series generators
use Denoising Diffusion Implicit Models (DDIM) [23] to synthesize time series starting from Gaussian

noise, X, by iteratively denoising over 7 steps, i.e., X7, X7—1, . . ., Xg. Specifically, DDIM sets the
state x;_ at diffusion step ¢ — 1 as follows:
Xy — o€ (Xy, T R
Xt—1 = Q-1 (W) +Ut71€0(xtat)7 (H
t

where oy and o, are time-dependent diffusion coefficients, and €g represents the model’s noise
estimate. DDIM approximates x; as follows:

1 — 04_1€ t _1 — 04_1€ _1,t
Xt = Oy Xio1 = Ol O(Xt’ ) +O’tée(xt,t)%04t - G(Xt L ) +Utée(xt—1,t)~
(6721 Q1
2

However, this approximation introduces errors, producing inconsistencies between the forward and
backward processes. It also introduces the following time series-specific watermarking challenges:

Spatial heterogeneity. Watermarks must be embedded directly within the temporal and feature
spaces of the data. Features can be very diverse, e.g., gender vs. income distribution, which increases
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Figure 2: Average reconstruction error distribution across feature indices and timesteps on Diffusion-
TS with DDIM and DDIM inversion. Reconstruction error is the signed absolute difference between
reconstructed and original values.

the difficulty of detecting watermarks. Specifically, the key detection step inverts the time series
back to Gaussian noise. Unfortunately, this inversion process is inexact, yielding reconstruction
errors during noise-estimation. Figure 2] shows the impact of heterogeneity on the reconstruction
errors for the Energy and MuJoCo datasets. Due to spatial heterogeneity, the reconstruction errors
across the features vary significantly more than they do along the temporal axis. Existing tabular
watermarks [41]] implicitly assume a uniform distribution across features and compare watermark
seeds across features, which prevents reliable watermark verification in multivariate time series.

Temporal dependence. Time series consist of values that are inherently correlated across timesteps.
It is critical to preserve such temporal consistencies when generating time series. Consequently,
reconstruction errors are not fully independent across timesteps within each sample, as errors
at neighbouring timesteps often exhibit stronger correlations than more distant ones. To ensure
robustness, solutions must embed the watermark in a way that respects these temporal dependencies
while remaining detectable. This requires designing watermarking strategies that align with the
sequential nature of time series diffusion models, invalidating the applicability of existing watermark
approaches that neglect the temporal dependence of time series data.

3.2 TimeWak algorithm

To address the challenges of spatial heterogeneity and temporal dependence, we propose TimeWak, a
method that enables per-sample watermark detection while mitigating non-uniform reconstruction
errors across features and preserving temporal structure. Through a structured propagation mechanism,
TimeWak enhances the watermark’s robustness, even in the presence of inversion errors.

Overview. We begin with a high-level overview of TimeWak’s watermarking pipeline, which consists
of four main stages: watermark embedding, time series generation, inversion, and detection. Each
stage involves multiple steps that we describe briefly here and explain in detail in the subsequent
sections. Following Figure[l] the complete process works as follows:

1. Embedding I: generating watermark seeds (s). We first split a multivariate time series into
intervals along the time axis, then we randomly sample seeds s*[J (with values in {0, 1}) at the
start of each interval. () We temporally chain-hash the seeds in a cyclic manner across timesteps
until the end of the current interval, by applying a unique permutation key at each timestep. Then,
(@ we independently shuffle the seeds for each feature using distinct permutation keys.

2. Embedding II: generating time series from the watermarked seeds (s + x7 — Xg). 3) Sampling
from a feature-wise pseudo-random Gaussian distribution based on all the aforementioned seeds,
where the seeds determine the sign of the sampled values (s**f = 1 becomes positive, s/ = 0
becomes negative). These noise signals are used as input to a BDIA variant of a DDIM diffusion
model, which is then (4) used to generate a multivariate time series. An attack, such as a random
crop attack, may occur at this stage.

3. Detection I: inversion of the time series (xg — X7). () The inverse BDIA-DDIM process is
applied to the time series, inverting it to Gaussian noise x7. Then (6) we reverse-sample each
time series to get the seeds (positive values become 1, negative values become 0); we now have
the shuffled seed features.

4. Detection II: watermark detection (X — §). Given shuffled seeded features, we (7) unshuffle
the seeds in the opposite way they were shuffled (using the inverse of the permutation keys of



step (2)), to obtain the retrieved seed features S. We then (8) verify the hash of these retrieved
seed features by comparing them with the original temporal chained-hash seeds s, for which we
compute the bit accuracy between the hashed and recovered versions of each seed.

3.2.1 Chained-hashing watermark seeds (s + x7 — Xq)

Existing watermarking methods assign a watermark seed to each feature dimension with L bits,
forming a seed matrix of dimensions W x F', denoted as s € RW*F  where W and F are the
respective total timesteps and total features of the time series [32,41]]. However, such approaches lack
the ability to leverage temporal dependencies and may introduce inconsistencies across timesteps.
To improve the watermark’s temporal coherence, we partition the time series data inton = |W/H |
non-overlapping intervals, each of length H. At the start of each interval, the watermark seed across
all features, s*+1:[] € R, is sampled from a discrete uniform distribution 4 ({0, L — 1})", with
[:] denoting all indices along a dimension.

Within each interval, the watermark seed evolves over timesteps using a temporal chained-hashing
mechanism. Specifically, for all features, the seed at timestep w is recursively derived from the seed
at the previous timestep w — 1, ensuring temporal consistency. Formally, for k =0,...,n — 1, we
initialize the watermark seed as:

F o oep
] _ {u ({0, L —1)"  ifw=kH +1, 3

H (k,w,sv"1E)  otherwise,

where « is a cryptographic key controlling the hashing process, H is a deterministic permutation

hash function ensuring temporal consistency, and U ({0, L — 1})F is a vector of F' i.i.d discrete
uniform samples over {0, 1, ..., L — 1}. The parameter n = |W/H | denotes the total integer count
of intervals, while k indexes the intervals, ranging from 0 to n — 1. While temporal chaining preserves
coherence across timesteps by linking each seed to its past, it may lead to repetitive patterns across
intervals. To increase diversity, we further permute the seeds along the temporal axis for each feature:

S[?Lf — WK(S[:]’f), (4)

where 7,; is a permutation function parameterized by the cryptographic key . This step preserves
inter-feature seed correlations while adding generation diversity.

After obtaining the watermark seed, we construct an initial Gaussian noise sample as follows. First,
we draw a variable from the continuous uniform distribution u ~ 2/(0, 1) and use it to generate the

noise variable x#’f at diffusion step 7" as:

w, f
xod = @ (“ u~ ) 5)

where ®~1(-) is the percent point function (PPF) of the standard Gaussian distribution ®(-), and s*+/
is the watermark seed for feature f at timestep w. Finally, the final time series sample x( is obtained
by denoising the initial noise x7 with the learned diffusion model.

3.2.2 e-Exact inversion (xg — X7)

Here, we propose a near-lossless inversion procedure by adopting the Bi-directional Integration
Approximation (BDIA) technique [36], a novel approach to address inconsistencies in DDIM inver-
sion [24]]. We introduce a practical approximation in BDIA by removing the assumption of known
X1, and derive the bound of the inversion error. BDIA improves upon DDIM by jointly leveraging the
forward and backward diffusion updates. Specifically, obtaining each x;_; as a linear combination of
(Xt+1, Xt, €9(X¢, 1)), where €g represents the noise estimator of the diffusion model:

Xt b

Xe—1 =7 (Xep1 — X¢) — ( €g(x¢,t) — Xt) + (arx; + brég(xy, 1)), (6)

A1 a1

where 7 € [0, 1], a; and b; are differentiable functions of ¢ with bounded derivatives. Consequently,
the inversion process can be directly calculated without approximation as follows:

Xi_ 1 . X biy1 .
Xt4+1 = -1 - — (atxt + thQ(Xt,t)) + ( L - t+l Gg(Xt,t)> . (7)
il v A1 a1



By design, the introduced symmetry ensures time-reversible updates, meaning that if x; and x;_; are
known, x;1 can be computed without error. However, obtaining an exact inversion requires knowing
both x; and x(, the latter of which is available only as the model’s denoised sample in practice.

To address this limitation, we introduce an adaptation to BDIA: we directly approximate x; by
equating it to xg. This seemingly simple estimation effectively enables practical application of BDIA
while maintaining reasonable accuracy. To quantify the estimation error, we establish Theorem[3.1]
which demonstrates that the final error remains bounded in terms of the initial estimation € = X7 — Xo.
We refer to this property as ‘e-exact’ inversion. We defer our proof of Theorem 3.1]to Appendix [C]

Theorem 3.1. Let {x;}7_ be the sequence of diffusion states governed by the BDIA-DDIM recur-
rence for a given dataset, following Equation (7). Given the noise estimator €g follows Assumption([l]

Suppose that instead of the exact terminal state X1, an approximation of x1, termed as x"""", is
used with a small perturbation €, given by:
X‘{PPVOX = X9 = X(llrig =+ €. (8)
Let the propagated error at time t be defined as,
8 = || — x| )
Then, for t > 1, the error is bounded by,
T—1
1 a 1 by bit1
ozl < el T] (‘—W + A+ A, (10)
=1 MY G Y at+1

where A, quantifies the sensitivity of the noise estimator at timestep t.

Assumption 1 (Lipschitz continuity of the noise estimator). There exists a time-dependent constant
Ay > 0and 6; > 0 such that, for any diffusion state x; ¢ encountered during sampling from a given

approx approx ori,

dataset and any x{"""" satisfying ||x;"""" — x7"¢|| < 0y, the noise estimator €g satisfies the Lipschitz
condition:

approx gy
tip _ X( g

leo (™™, 1) ~ &o(x;™. 1) < Ay ;

‘. (11)

3.2.3 Watermark detection (xo — X7 — S)

To verify the presence of TimeWak’s watermark in a generated time series, we first recover the initial
noise used in the generative process via diffusion inversion. Given a time series instance xg, we
estimate the initial noise X through inversion. The watermark seed at each timestep and feature is
then recovered by inverting the Gaussian mapping as follows:

s = |L-o(xp )], (12)
where ®(-) is the cumulative distribution function (CDF) of the standard Gaussian distribution. This
operation reconstructs the discrete watermark values embedded during sample generation.

Since the watermarking mechanism applies a feature-wise permutation controlled by a cryptographic
key, the extracted watermark values are initially shuffled across feature dimensions. We restore the
original seed assignments along the timesteps using the inverse permutation:

S e (D) (13)

Beyond feature-space consistency, the extracted watermark sequence should exhibit structured
temporal dependencies. Specifically, the watermark seed at each step must follow a predefined hash
function, given by:

Vw #£ kH +1, § = H(k,w,sv B, (14)

To quantify detection confidence, we compute the bit accuracy of the extracted watermark sequence,
measuring the proportion of correctly recovered bits:

1 F Lw w
Acc = WA F Z ZH[S R— ’f}, (15)

weW* f=1




where I[-] is an indicator function that evaluates to 1 if the extracted bit matches the ground-
truth watermark, and W* = {w | w # kH + 1} represents the valid timesteps for comparison.
By combining diffusion inversion, feature unshuffling, and temporal consistency verification, this
detection framework ensures robust identification of watermarked time series samples.

To assess the statistical significance, we compute the Z-score to measure how strongly the observed
bit accuracy deviates from the expected accuracy under a null hypothesis, detailed in Appendix

4 Evaluation

4.1 Experiments setup

Datasets. We use five time series datasets to evaluate TimeWak’s impact on generation quality,
watermark detection accuracy, and robustness towards post-editing operations. These are: Stocks [33l],
ETTh [39], MuJoCo [27), Energy [3], and fMRI [22]. Additional dataset details are in Appendix [D.1}

Metrics. Synthetic data quality: Context-FID score [11] measures the closeness between the real and
synthetic time series distributions using the Fréchet distance [8]]. Correlational score [15] measures
the cross-correlation error between the real and synthetic multivariates. Discriminative score [33]
trains a classifier to distinguish between synthetic and real data, with low scores implying they are
indistinguishable. Predictive score [33]] measures the downstream task performance by training a
sequence model on the synthetic data and evaluating on real data. Watermark detectability: Z-score
quantifies the difference in mean values between synthetic data with and without the watermark, with
larger positive values indicating better detectability. TPR @X%FPR measures the True Positive Rate
(TPR) at a fixed False Positive Rate (FPR) of X% in detecting watermarked time series. We provide
additional details on these metrics in Appendix [D.2]

Baselines. We compare against three sampling-based diffusion watermarks: TR [29], GS [32],
and TabWak [41]]. We also compare with TabWak ', an adaptation of TabWak that transposes the
representation and watermarks along the temporal axis instead of feature-wise. We also compare
against a post-generation watermarking method for time series, Heads Tails Watermark (HTW),
which embeds a watermark by slightly adjusting the time series values by assigning a ‘heads’ or ‘tails’
based on a predefined ratio on the proportion of ‘heads’ values [28]]. Detailed implementations of
these methods are provided in Appendix [D.3] Hardware specifications are detailed in Appendix [D.4]

4.2 Synthetic data quality and watermark detectability

When evaluating synthetic time series quality, Table |1| shows that TimeWak consistently delivers
top-tier performance across all metrics, outperforming or comparable to other baselines like HTW
and TabWak ". While HTW sometimes surpasses un-watermarked data, possibly due to subtle
perturbations introduced during watermarking that unintentionally bring synthetic samples closer
to the ground truth, it fails to offer strong detectability, as reflected in its low Z-scores. In contrast,
TimeWak and TabWak " offer a far more favorable trade-off between quality and detectability. When
benchmarked against TabWak ", TimeWak shows substantial gains, achieving up to 61.96% better
Context-FID score on MuJoCo and 8.44% better correlation score on fMRI. Moreover, low discrimi-
native and predictive scores further emphasize that TimeWak’s watermarking remains imperceptible
and does not degrade downstream utility. This is made possible by its temporal chained-hashing
mechanism, which precisely embeds the watermark while preserving both temporal structure and
inter-variate relationships. Meanwhile, traditional image-based watermarking methods such as TR
and GS perform poorly across all quality metrics. These methods struggle with time series data
because they are optimized for spatial domains. Time series, however, are governed by temporal
continuity and feature heterogeneity, thus requiring fundamentally different treatment.

TimeWak achieves significant improvements in detection performance. Using e-exact inversion via
BDIA-DDIM, it reconstructs high-fidelity noise estimates X that closely resemble the ground truth
x . This results in consistently higher Z-scores across all datasets, outperforming all baselines, except
on the fMRI dataset, where TabWak " slightly edges out. Unlike GS, which maintains moderate
detection at the cost of quality, or TR, which fails on both fronts, TimeWak delivers strong detectability
without compromising fidelity.



Table 1: Results of synthetic time series quality and watermark detectability. No watermarking
(‘W/O’) is included. Quality metrics are for 24-length sequences. Best results are in bold, and
second-best are underlined.

Quality Metric | Z-score 1T
Dataset ~ Method Context-FID  Correlational ~Discriminative  Predictive 24-length 64-length 128-length
Ww/O 0.258-+0.047 0.027+0.015 0.120+0.049 0.038+0.000 - - -
TR 1.069+0.231 0.091-+0.007 0.209-+0.056 0.039+0000  0.43+0.04 0.40-+0.08 0.08+0.10
GS 8.802+2415 0.052+0.026 0.403+0.031 0.041+0003  86.07+074  148.92+108  172.23+1.08
Stocks HTW 0.279-+0.052 0.017+0.003 0.122+0.034 0.037+0.000  4.45+0.62 7.34+0.94 10.39+1.33

TabWak 0.292-+0.064 0.017+0.012 0.124+0.024 0.038+0.000 -67.22+1.17 16.14+0.89 -10.49+1.28
TabWak  0.314+0071 0.016+0.017 0.132+0.022 0.037+0.000 55.39+086  88.81+0.82 129.39+0.90
TimeWak 0.277-+0.019 0.020-+0.018 0.120-+0.039 0.038+0.000 182.10+0.73 395.34+124  550.05+1.18

W/O 0.232+0.018 0.086+0.023 0.093+0.016 0.120-£0.009 - - -

TR 1.570+0.102 0.187+0.017 0.283+0.020 0.134+0.004 7.84+0.12 7.73+0.13 6.18+0.16

GS 4.530+0393 0.433+0.017 0.390-+0.015 0.169+0007 101.07+1.17 197414210  327.47+4.44
ETTh HTW 0.243-+0.024 0.077+0.025 0.103+0.003 0.123+0.002 3.4340.83 5.08+1.48 6.84+2.22

TabWak 0.251+0.027 0.335+0.029 0.085-+0.013 0.125+0002  -14.95+108  -6.16+1.18 -20.57+0.96

TabWak " 0.450+0057 0.116-+0.020 0.096-+0.014 0.120+0.00s  109.35+091 162.44+1.11  235.03+1.48

TimeWak 0.237+0.017 0.21240.043 0.102+0.014 0.122+0.002  134.83+095 236.08+1.63  340.36+2.06

Ww/O 0.065+0.011 0.419-+0.084 0.032+0.026 0.008=+0.001 - - -

TR 1.512+0.179 1.153+0.065 0.261+0.069 0.015+0.003 1.3840.03 1.49+0.04 1.31+0.04

GS 6.548+1.267 1.327+0.061 0.474+0.006 0.014+0002  21.13+0.77 10.13+0.62 39.63+0.71
MuJoCo HTW 0.261+0.067 0.493+0.056 0.413+0.024 0.010=+0.002 2.8940.54 3.414096 4.20+1.37

TabWak 0.545+0.122 0.975-+0.061 0.207+0.046 0.009+0.001  31.30+1.07 1.26+0.96 -3.00+1.04
TabWak | 0.23420032 0.463+0.059 0.123+0.011 0.007-+0.001  -4.85+0.87 -4.51+0.85 3.91+0388
TimeWak 0.089-t0.017 0.532+0.137 0.044-+0.021 0.008+0.001  85.69-+1.08 56.45+1.26 123.36+1.43

W/O 0.118+0.021 1.245+0.236 0.137+0.014 0.253-0.000 - - -

TR 0.649-+0.128 3.870+0.537 0.455+0.017 0.337+0.007 9.5140.09 17.29+0.11 22.58+0.19

GS 1.480+0.273 3.831+0.272 0.494+0.004 0.330+0.004  51.22+0.388 68.67+1.20 45.42+1.05
Energy  HTW 0.099-+0.009 1.312+0.280 0.138+0.019 0.253+0.000  3.06+036 4.30+0.68 5.42+1.00

TabWak 0.179-+0.027 2.724+0.203 0.162+0.011 0.255=+0.001 3.2640.89 3.86+1.02 0.57+0.87
TabWak ™  0.213+0024 1.740+0.290 0.129-+0.013 0.265+0.004  40.82+0.381 46.68+0.86 26.00+1.12
TimeWak 0.121+0.016 1.977+0.750 0.142-+0.008 0.254+0.000 231.28+145 267.53+260 245.37+2.88

Ww/O 0.190-0.006 1.952+0.087 0.132+0.027 0.100=+0.000 - - -

TR 2.474+0341 13.312+0.254 0.496+0.003 0.146+0.004 6.4940.05 8.2540.05 9.94+0.04

GS 0.714+0.051 14.628+0.052 0.499-+0.001 0.108+0.001  420.02+144 321.52+059  701.90+0.72
fMRI HTW 0.180+0.011 1.900+0.047 0.140+0.019 0.100£0.000  4.32+0.22 6.80+0.41 9.43+0.61

TabWak 0.326-+£0.042 6.825+0.395 0.452+0.092 0.112+0000  84.02+1.04  204.16+0.82 47.29+0.83
TabWak ' 0.350+0014 2.191+0.095 0.208-£0.049 0.101+0.000 464.67+050 743.33+055 1031.96+0.79
TimeWak 0.199-+0.010 2.006+0.053 0.122+0.033 0.100+0.000 379.51+082 595.68+1.03 526.81+13.12

This strength is further shown in Figure 3] which plots TPR@0.1%FPR on 64-length sequences as
a function of the number of samples. Across all settings, TimeWak consistently outperforms GS
and TabWak ", achieving significantly higher TPR values. Notably, TimeWak reaches a perfect TPR
of 1.0 in all cases, requiring only one sample in three settings and two in the remaining one. This
high sensitivity makes TimeWak well-suited for real-world use, where only limited samples may be
available. Additional results are provided in Appendix [E.8]
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Figure 3: TPR@0.1%FPR against number of samples across five datasets under 64-length sequences.

4.3 Robustness against post-editing attacks

To evaluate the robustness, we first design a set of post-editing attacks. Offsetting perturbs the time
series by adding a constant offset to each feature based on 5% or 30% of its magnitude, and applied
uniformly across all timesteps. Random cropping masks out a subregion of the time series by a fixed
proportion (5% or 30%), along the rows and columns, similar to the image domain [32]]. The min-max



Table 2: Results of robustness against post-editing attacks. Average Z-score on 64-length sequences,
including un-attacked scores from TableE} Best results are in bold, and second-best are underlined.

Without Offset 1 Random Crop 1 Min-Max Insertion 1
Dataset ~ Method Attack 5% 30% 5% 30% 5% 30%
TR 0.40-+0.08 0.35+0.07 0.17+0.09 57.09+1.09 76.87+1.29 0.99+0.10 5.43+0.18
GS 148.92+108 152.81+133 164.23+154  42.53+1.11 32.80+078  136.73+090  77.2040.86
Stocks HTW 7.34+0.94 7.34+0.94 7.34+0.94 -0.81+0.42 -0.92+0.32 6.41+1.16 2.72+1.15
TabWak 16.14+0.89 25.74+1.04 45.02+1.40 40.59+1.16 19.71+1.06 19.11+0.75 30.87+0.45
TabWak " 88.81+0.2 88.84+0.85 85.87+0.86 30.55+0.92 1.71+0.87 65.25+0.79 15.10+0.56
TimeWak  395.34+124 375.96+096 371.04+102 78.20+223 10.40+105  296.60+1.62 83.74+1.55
TR 7.73+0.13 7.96+0.11 8.83+0.12 27.22+039 38.53+032 21.86+0.26 49.85+0.64
GS 197414210 186.62+221  159.04+220 105.11+209 -39.87+124 182.03+2.09 105.23+1.21
ETTh HTW 5.08+1.48 5.08+1.48 5.08+1.48 0.54+133 -1.99+0.80 4.47+1.45 2.03+1.08
TabWak -6.16+1.18 -2.75+1.29 4.92+1.52 84.37+267 88.07+2.59 4.29+0.94 36.83+0.71
TabWak " 162.44+1.11 15775100  135.66+123  70.38+1.16 10.79+1.14 99.23+0.96 9.01+0.80
TimeWak  236.08+1.63 243.86+1.61 207.90+170 75.35+1.18 2.47+1.08 171514146  27.78+1.22
TR 1.49+0.04 1.46+0.03 1.54+0.03 7.14+0.08 T.17+007 6.09+0.11 14.83+0.22
GS 10.13+0.62 10.3540.69 8.76+0.75 28.9940.80 10.09-0.91 9.35+0.76 10.40+1.07
MuJoCo HTW 3.41+096 3.41+096 3.41+096 1.13+0.78 -1.32+0.67 3.09+0.91 1.67+0.65
TabWak 1.26+0.96 0.48+0.89 5.48+1.22 -1.75+1.21 -6.65+0.71 -0.57+0.91 -0.31+0.59
TabWak " -4.51+085 -3.46+0.99 -0.24+094  -32.20+1.04 -42.74+125 -34.16+090 -80.63+1.05
TimeWak 56.45+1.26 58.90+1.36 51.53+1.31 49.30+1.20 1.85+1.12 36.59+1.19 10.35+1.18
TR 17.29+0.11 16.74+0.11 15.09+009  128.26+039 148.31+029 37.72+0.20 75.09+0.29
GS 68.67+1.20 63.93+1.09 54.8441.09 66.3040.99 96.29+0.80 66.40+1.27 53.06+1.65
Energy HTW 4.30+0.68 4.30+0.68 4.30+0.68 0.40-+0.48 -0.60+0.34 3.87+0.66 2.03+0.48
TabWak 3.86+1.02 -5.32+1.01 -8.99+1.03 -8.31+0.65 9.94+0.60 4.21+0.78 2.67+036
TabWak " 46.68+0.6 43.1040.84 42.3840.89 12.26+101 -49.34+174  11.87+085  -43.15+071
TimeWak  267.53+260 296.74+249 191.63+2.13 4.91+0.96 15.73+096  195.37+1.97  34.26+0.99
TR 8.25+0.05 8.22+0.05 8.10+0.05 8.24+0.05 7.84+0.05 11.45+0.06 23.36+0.10
GS 321.52+059  319.93+060 312.57+062 286.05+1.13 116.24+087 320.52+166 275.34+2.20
fMRI HTW 6.80+0.41 6.80+0.41 6.80+0.41 4.82+0.46 -0.70+0.46 5.95+0.45 2.56+0.41

TabWak 204.16+082 205.01+091 215.64+107 154.27+215 452.61+314 248.19+395 297.10+8.67
TabWak " 743.33+055 743.16+059 742.43+053 636.28+067 317.24+1.18 614.25+077  224.27+085
TimeWak  595.68+1.03 601.68+081 601.53+096 459.66+1.00 112.68+085 498.39+084 189.43+1.00

insertion attack perturbs the series by randomly replacing a proportion of points (5% or 30%) in each
feature with random values drawn uniformly between the feature’s minimum and maximum values.

Table [2] presents the Z-scores of 64-length watermarked synthetic time series data under these
attacks, and averaged over 100 trials. Random cropping at 30% proves especially challenging, with
several methods showing negative Z-scores. Nevertheless, TimeWak demonstrates the best overall
robustness, consistently outperforming all baselines across most attack scenarios while maintaining
high generation quality and accurate watermark detection. In contrast, although HTW has better
quality, it does poorly under attacks, indicating a struggle in balancing trade-offs between quality and
robustness.

Interestingly, TR’s detection scores further improve under certain post-processing attacks. In particu-
lar, significant gains are observed under random cropping and min-max insertion, likely due to the
inherent robustness of watermarking in the Fourier domain. However, its overall performance lags be-
hind TimeWak. Both TabWak and TabWak " show significant degradation under attacks, particularly
on MuJoCo and Energy datasets, where detection frequently fails. GS overall demonstrates strong
robustness, maintaining detectability under all attacks except for 30% cropping on the ETTh dataset.
However, it produces low-quality synthetic samples, highlighting the need for a time series specific
watermark that can navigate the trade-offs between generation quality and watermark robustness.

5 Conclusion

Motivated by the need to ensure the traceability of synthetic time series, we propose TimeWak, the
first watermarking algorithm for multivariate time series diffusion models. TimeWak embeds seeds
through a temporally chained-hash and feature-wise shuffling in data space, preserving the temporal
and feature dependencies and enhancing the watermark detectability. To address non-uniform error
distribution in the time series diffusion process, we optimize TimeWak for e-exact inversion and
provide the bounded error analysis. Compared to multiple SOTA watermarking algorithms, TimeWak



balances synthetic data quality, watermark detectability, and robustness against post-editing attacks.
Extensive evaluations on five datasets show that TimeWak improves context-FID score by 61.96%
and correlational scores by 8.44%, against the strongest SOTA baseline, while maintaining strong
detectability.

Limitations. While TimeWak does not natively support streaming data, it can be applied to stream-
ing scenarios by processing data in small, fixed-length windows and watermarking each window
independently. However, finer-grained cases, such as watermarking at the per-timestep level, remain
unexplored. This represents a key limitation of TimeWak and an important direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction mention TimeWak’s contributions as the first
generation-time watermarking scheme for multivariate time series diffusion models; using a
temporal chained-hashing scheme to embed watermark seeds, and e-exact inversion to detect the
watermarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are included in Section[3l
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are detailed in Assumption [T} the verification of assumptions and
derivations of proof are provided in Appendix [C|

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

 The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We keep the code for the proposed TimeWak and baselines on the following open
sourced repository anonymously: https://anonymous.4open.science/r/TimeWak. We
also provide the experiment scripts and the datasets used in this study. The implementation details
can be found in Appendix [D]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions to

provide some reasonable avenue for reproducibility, which may depend on the nature of the

contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: We keep the code for the proposed TimeWak and baselines on the following open
sourced repository anonymously: https://anonymous.4open.science/r/TimeWak. We
also provide the experiment scripts and the datasets used in this study. The implementation details
can be found in Appendix [D]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The implementation details can be found in Appendix D] including details of 5
datasets, evaluation metrics and baselines we used. We keep the code for the proposed TimeWak
and baselines on the following open sourced repository anonymously: https://anonymous |
4open.science/r/TimeWak. We also provide the experiment scripts and the datasets used in
this study.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the mean and standard deviation for results, providing appropriate
measures for variability (see [Table 2).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: Compute resources are mentioned in Section[D.4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper conforms in every respect to sections ‘Potential Harms Caused by
the Research Process’, ‘Societal Impact and Potential Harmful Consequences’, and ‘Impact
Mitigation Measures’ in the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Multivariate time series are an important data modality for real-world applications,
e.g., health care, science and finance. The traceability of time series generative models is crucial
to achieve the trustworthy and responsible analysis. Our solution of embedding watermarks on
time series yields insights into auditing the use of synthetic time series to help overcome data
sharing barriers.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: Code is verified by all authors.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere

to usage guidelines or restrictions to access the model or implementing safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors should

describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: Datasets details are in Section and Appendix D], with appropriate citations for
the source(s). The datasets are widely recognized as publicly available and their use complies
with standard academic practice.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Assets introduced in the paper, in the form of code, are available at the anonymized
open-source repository: https://anonymous.4open.science/r/TimeWak.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer:

Justification: [NA|

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: [NA|

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The paper uses no LLM for any important, original, or non-standard component of
the core method.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Nomenclature

[ ) o))
D

=

n =

swil]
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X0
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H(k,w,s® L)
N(0,1)
U(0,1)
Uu{o,L —1pH¥

Noise schedule parameter

Variance schedule for noise addition

Lipschitz constant for noise estimator sensitivity at time step ¢
Perturbation error in inversion

Scaling factor in BDIA inversion

Noise estimator function

Cryptographic key for watermarking

Indicator function

Watermark seed across all timesteps at feature f
Watermark seed across all features at timestep w
Watermark seed at timestep w and feature f
Generated sequence of length W and F’ features
Noised sequence at timestep 7'

Approximate diffusion state at step ¢

Diffusion state at step ¢

Temporal chained hashing function

Standard normal distribution

Continuous uniform distribution between 0 and 1
Vector in RY with i.i.d. discrete uniform components over {0,
Set of valid timesteps for comparison

CDF of standard normal distribution

Inverse CDF of standard normal distribution
Feature permutation function

Standard deviation at timestep ¢

BDIA parameters for inversion process

Number of features

Interval length for watermark partitioning

Bit length

Number of intervals in time window

Total diffusion steps

Time window length

B Diffusion and diffusion inversion

B.1 Time series diffusion model

o L—1)

This section covers the necessary background knowledge for time series diffusion models.

Denoising Diffusion Probabilistic Models (DDPMs) are a powerful generative models, especially for
time series synthesis [10} [I (12 [34]. As shown in Figure[d] they work by iteratively forward noising
data and then learning to invert this process through during the backward step [[10]. For a time series

window, one step of forward noise is given by:

X = V1= Bixe—1 + V/ Biee.
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Figure 4: Forward and backward diffusion process. xg denotes the initial signal window and xp
corresponds to the fully diffused version of the signal obtained after 7" forward diffusion steps.

In this formulation, x; represents a multivariate time series signal after undergoing ¢ steps of noise
addition. The term /3, denotes the noise variance at step ¢. The noise component ¢, is sampled from a
normal distribution, A(0, T). Using this notation, xq and xr define a noise-free sequence and a fully
noised sequence, respectively, for an arbitrary window slice, where 7' is the total number of noise
steps. Without iteratively applying Equation (I6), an intermediate noising step can be efficiently
computed using a reparameterization trick [[10]:

Xt = Vauxo + V1 — Que, (17)
where & is the cumulative product of noise reduction factors up to step ¢, expressed as &; =
[Tie, o = [The, (1 — Bs), with 3 being the noise variance at timestep s and € ~ N(0, I).

The denoising process reverses the noising steps to reconstruct xy from x;, ideally restoring the
original signal. This is achieved by training a neural network, €g, to estimate the noise component at
each step. A single reverse step is given by:

- 1 /. Bt -
X1 = —— | Xt — ————=€0(X¢,1) | +012. 18
t—1 \/a—t<t 1_at0(t)> t ()
Here, X; and X;_; denote the signal estimates at time steps ¢ and ¢ — 1, respectively, where X; = x;
at the final noising step. The term o, is typically a function of 3 to introduce stochasticity in the
sampling process, and z ~ N(0, I) [10]. The objective is to iteratively refine the denoised sample so
that Czo ~ X9.

B.2 Diffusion models for time series

Diffusion models show great promise in time series tasks, excelling in both forecasting [20, |1 [14]
and generation [[16} [37]. Among these, Denoising Diffusion Probabilistic Models (DDPMs) [[10]]
are a leading framework, which progressively denoise samples to reconstruct data from noise [[17]]
and rely on stochastic noise addition during sampling [10]. On the other hand, Denoising Diffusion
Implicit Models (DDIMs) use a deterministic sampling process that removes noise, enabling faster
sampling and fewer steps to generate high-quality samples with greater predictability [23]. However,
this reduces the model’s ability to explore a wide range of outputs, leading to lower diversity and
reduced robustness (i.e., consistency in generating diverse and reliable samples) [[10l 23]].

Diffusion-TS, which serves as the backbone model of TimeWak presented in this paper, employs
a DDPM combined with seasonal-trend decomposition to better capture underlying structures and
dependencies of multivariate time series [34]. It also introduces a Fourier-based loss to optimize
reconstruction, improving accuracy by better matching the frequency components [34]]. Its innovation
lies in the integration of seasonal-trend decomposition with DDPMs, and the use of the Fourier-based
loss to enhance the model’s ability to capture complex temporal patterns.

Some diffusion models that synthesize time series data include ScoreGrad [31], SSSD* [1]], TSD-
iff [12]], but some also incorporate transformer-based elements like TimeGrad [20], CSDI [26], and
TDSTEF [4]. Diffusion-TS [34] effectively addresses weaknesses in these models. Unlike ScoreGrad
and TimeGrad which use autoregressive models [31} 20], it avoids error accumulation and slow
inference over long horizons by using DDPM, a stable diffusion-based framework. It outperforms
SSSD** and TSDiff [1,12] by replacing resource-intensive S4 layers with an efficient latent layer
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that simplifies handling multivariate data. Diffusion-TS handles incomplete datasets better than
CSDI [26] by avoiding the need for explicit pairing of observed and missing data during training,
while being more adaptable and efficient on diverse datasets compared to TDSTF [4]], which struggles
with real-time forecasting.

B.3 DDIM and DDIM inversion

The Denoising Diffusion Implicit Model (DDIM) [23] offers deterministic diffusion and sampling,
extending the traditional Markovian diffusion process to a broader class of non-Markovian processes.
Given a initial noise vector xp and a neural network €g that predicts the noise €g(x¢, ) at each
timestep ¢, the DDIM sampling step to generate sample x;_1 from x, is defined as:

x; — V1 —aeq (X4, 1 /
Xi_1 = /at_1< t \/at 6( t )>+ 1—at 1_Ut €g (Xt,t)—FO'tEt, (19)
t

where a1, . . ., ar are computed from a predefined variance schedule, €; ~ N (0, I') denotes standard
Gaussian noise independent of x;, and the o, values can be varied to yield different generative
processes. Setting o to 0 for all ¢ makes the sampling process deterministic:

Xt—lzﬁ/at Lx, + (\/1Oét 1— de-l Oét—l) €g (x4,1). (20)

This sampling process ensures the same latent matrix xg is consistently generated by a given noise
matrix xr.

Having large T values (being limited with small steps) allows to cross the timesteps in the backward
direction toward increasing noise levels, which gives out a deterministic diffusion process from xg to
x7; this is also known as DDIM inversion:

a
Xep1 Ay [~ an t+<\/1_at+1 1/ _at+1) (x¢,t). 21

Theorem 3.1. Let {x;}7_ be the sequence of diffusion states governed by the BDIA-DDIM recur-
rence for a given dataset, following Equation (7). Given the noise estimator €g follows Assumption([l]

C Proof

Suppose that instead of the exact terminal state X, an approximation of x1, termed as x""""", is
used with a small perturbation €, given by:
X =x9 = x7" + e 8)

Let the propagated error at time t be defined as,
8 = || — x| )
Then, fort > 1, the error is bounded by,

||5T|<|H(\+ !

at41

b b
4 A, ¢ At> , (10)
Y Qat+1

where A, quantifies the sensitivity of the noise estimator at timestep t.

Proof:
For t = 1, we have: )
6 =x" —x7" =e. (22)
For t = 2, using the recurrence,
X a1x1 + b1ég(x1,1 X bs .
Xy = X0 G% thige(nD) | (1 - 2e9(><1,2>> 23)
Y Y az a2
Subtracting the approximated and original cases and using Assumption [T} we obtain:
) é b b
P L T L YN —2A161 (24)
v a2 v
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Thus, defining

1 b b
Co=|— -4 LA+ 2A,, (25)
a2 v Y a2
we bound
[62]] < Ca[|d1]| = Cale]|. (26)

Suppose for some ¢ > 2, there exists a constant C; such that
18] < Chlle]l- 27

For t + 1, using the recurrence:

Xi_ a;Xs + bi€g(xy, t X b
Xt+1:t1_tt t9(t)+<t_t+1

ée(xu t+ 1)) . (28)
at41 at41

Taking differences, we obtain

01 a0y by + 0y bt+1

i1 = - — — — A4 — JANY IR (29)
Y Y (] a1
Bounding the terms, we define:
1 1 b b
0 Y Qat+1 Y At+1
Thus, we conclude:
641l < Crpalle]. (€2

By induction, we obtain:

T—1
CT=H<‘1—C”+ !

1 NIV T G

b b
NS At> . (32)
Y at+1

Thus, the perturbation remains bounded for all 7', i.e.

=y g 1
t
ol < 16 T (\ L
t=1

Y Y Q41

b b
+ LA, 4 2L At> , (33)
Y g1

completing the proof. ]

To further validate Assumption[I} we empirically computed A, across four different datasets, using
10,000 samples from each. Specifically, A, is calculated as the maximum ratio for different ¢ using
the L; norm of the data samples, as illustrated in Figure[5]

We also generate 10,000 samples with 64-length sequences across five datasets, computing the final
output X and the one step prior x;. Results in Table 3] show consistently small L; norm between
x; and xg, with an average of 5.1 x 1073 to 7.0 x 10~ and maximum of < 0.23, validating our
e-exact approximation. These empirically small errors confirm Theorem [3.1]s theoretical bounds and
demonstrate reliable watermark detection despite the approximation.

Table 3: L; norm between x; and xg for 64-length sequences over 10,000 samples.

Dataset ~ Avg. Ly (x107%) Max. L,

Stocks 7.031 0.082
ETTh 6.776 0.104
MuJoCo 5.146 0.081
Energy 5.687 0.230
fMRI 5.945 0.070
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Figure 5: A, for different datasets.
D Experiment details
D.1 Datasets
Table ] shows the details of all datasets used in the experiments.
Table 4: Details of datasets used in experiments.
Dataset ~ Number of Rows Number of Features  Source
Stocks 3,773 6 https://finance.yahoo.com/quote/GOOG
ETTh 17,420 7 https://github.com/zhouhaoyi/ETDataset
MuJoCo 10,000 14 https://github.com/deepmind/dm_control
Energy 19,711 28 https://archive.ics.uci.edu/ml/datasets
fMRI 10,000 50 https://www.fmrib.ox.ac.uk/datasets

D.2 Evaluation metrics

Context-FID Jeha et al. [11] introduced the Context-FID score, which is a refined adaptation of
the Fréchet Inception Distance (FID) used for evaluating the similarity between real and synthetic
time series distributions. Unlike traditional FID, which relies on the Inception model as a feature
extractor for images, Context-FID uses TS2Vec [35]], which is a specialized time series embedding
model. Yue et al. [35]] demonstrated that models with lower Context-FID scores tend to perform well
in downstream tasks, revealing a strong correlation between Context-FID and the forecasting perfor-
mance of generative models. Ultimately, a lower Context-FID score signifies a closer resemblance
between real and synthetic distributions.

Correlational We calculates the covariance between the i*” and j*” features of a time series using
the following equation [15]:

Coviy = L3 kit — (L3 k) (LS ke 34
oviy = 7 2 KK — | LK) {5 K5 - (34)
t=1 t=1 t=1

where W is the total number of time steps, K! and Kﬁ are the values of the i*" and j** features at
time step ¢, and the summations compute the average product of these values, subtracting the product
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of their individual means. To assess the correlation between real and synthetic time series, we use the
following metric [34]:

d R s
i Z Covw- B Covi,j (35)
10 i.j CovfiCovﬁj CovfiCovij

where Cov is the covariance between its subscripts ({4, ¢}, (j, j), (¢, 7)), where 7 and j are the features
in the real (denoted by R) and synthetic (denoted by S) time series data, and d is the total number of
features, with the summation taken over all feature pairs.

Discriminative The discriminative score is computed as |accuracy — 0.5|, quantifying the model’s
ability to distinguish between real and synthetic time series. A lower score indicates better per-
formance, as it indicates greater difficulty in differentiation, implying a higher degree of similar-
ity between the two distributions. To ensure consistency, we follow the experimental setup of
TimeGAN [33]] by using a two-layer GRU-based neural network as the classifier.

Predictive The predictive score is evaluated using the mean absolute error (MAE) between the
predicted and actual values on the test data. Again, we use the experimental setup of TimeGAN [33]
by using a two-layer GRU-based neural network for sequence prediction.

Z-score The Z-score is a statistical measure used to assess watermark detectability by quantifying
the deviation between watermarked and non-watermarked samples. It facilitates hypothesis testing,
where the null hypothesis Hj states that a given sample is not watermarked by the corresponding
watermarking method. A sufficiently high positive Z-score provides evidence against Hy, suggesting
the presence of a watermark.

HAce, W — HAce, NW

Tace.NW/ /T
Mace, w and piace Nw are the mean bit accuracy of watermarked and non-watermarked samples,

respectively, oacc, Nw 18 the standard deviation of bit accuracy in the non-watermarked samples, and
n is the number of watermarked samples. Under H), the expected difference in means is negligible,
resulting in a Z-score close to zero. A large positive Z-score provides statistical evidence for the
presence of a watermark.

For sample-wise bit accuracy in time series, the Z-score is computed as Z = , where

For the Tree-Ring watermarking method, the Z-score is computed in the Fourier domain instead of
the sample-wise bit accuracy domain. It measures the deviation in the amplitude spectrum between

watermarked and non-watermarked samples, given by Z = %ﬂ where Fw and Fnw denote

the Fourier amplitude spectrum of watermarked and non—watermaerzVed samples, respectively, with p
and o representing their mean and standard deviation. Since this method does not rely on per-sample
bit accuracy, the test statistic is independent of n, and the computation utilizes the opposite tail of the
distribution.

TPR@X%FPR This metric measures the True Positive Rate (TPR) at a specified False Positive
Rate (FPR) of X%, where X% denotes a fixed false positive threshold. It reflects the effectiveness of
watermark detection by quantifying how reliably watermarked samples are identified under controlled
false positive conditions. A higher TPR@X%FPR indicates stronger detection performance and
greater robustness of the watermarking method.

D.3 Baselines

Tree-Ring We adapt the latent-representation-based Tree-Ring watermark for multivariate time
series in the data space. Initially, the Tree-Ring watermark was proposed for images with square
dimensions as it places the circular ring watermark pattern centrally. However, multivariate time series
often have rectangular dimensions with varying numbers of features and timesteps. To accommodate
this structure, we apply a flexible ring pattern with a predefined radius indicating the outermost circle
of the watermark. Finally, we embed and detect the watermark in the Fourier domain.

Gaussian Shading Similar to Tree-Ring, we implement Gaussian Shading from the image domain
to multivariate time series by embedding the watermark directly in the data space. To maintain
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coherence and efficiency, we use a single control seed across all samples to avoid the need for
additional indices for each sample.

Heads Tails Watermark The HTW is a post-watermarking technique designed for univariate time
series. To extend its applicability, we adapt it for multivariate time series by iterating through each
variate in the generated synthetic sample. During evaluation, the watermarked time series is reversed,
and processing each series independently. In short, we treat each variate as a single series.

TabWak TabWak was originally designed for the tabular data domain, where it operates effectively
in the latent space. We extend its application to multivariate time series in the data space. However,
tabular data primarily captures feature dependencies, while time series data inherently relies on both
feature and temporal dependencies. Therefore, we implement another version called TabWak " by
transposing the watermarking direction onto the temporal axis. Similarly, we evaluate the watermark
detectability on a sample by sample basis.

D.4 Training and sampling

All code implementations are done in PyTorch (version 2.3.1) using a single NVIDIA GeForce RTX
2080 Graphics Card coupled with an Intel(R) Xeon(R) Platinum 8562Y+ CPU for all experiments.
Dataset splits are 80% for training and 20% for testing. Table 5| shows training and sampling time for
all datasets across window of sizes 24, 64 and 128. We train the time series diffusion model following
the Diffusion-TS settings [34], and generate 10,000 watermarked synthetic samples using TimeWak
for each sampling run.

Table 5: Details of training and sampling time.

Dataset ~ Window Size  Training Time (~ min.) Sampling Time (~ min.)

24 6.1 04
Stocks 64 6.2 2.1
128 8.0 4.6
24 11.6 0.4
ETTh 64 12.7 24
128 13.7 52
24 9.7 0.7
MuJoCo 64 9.9 4.9
128 10.6 12.6
24 23.5 14
Energy 64 24.2 10.5
128 243 23.0
24 16.8 1.8
fMRI 64 17.5 13.5
128 18.1 28.5
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E Additional experimental results

E.1 Quality performance

Table [6] shows the quality of synthetic time series generated in 64 and 128 window sizes. TimeWak
remains stable across all datasets and even comparable to the quality of non-watermarked samples.

Table 6: Results of synthetic time series quality. No watermarking (‘W/QO’) is included.

64-length | 128-length |
Dataset ~ Method Context-FID  Correlational ~ Discriminative  Predictive ~ Context-FID  Correlational ~Discriminative  Predictive
W/O0 0.444+0.114 0.030-+0.023 0.104x0.014 0.037x0000  0.536+0.135 0.020=+0.015 0.148+0.019 0.037+0.000
TR 1.812+0210 0.102+0.012 0.206-+0.038 0.038+0.001  3.555+0.868 0.130+0.025 0.276-0.030 0.041=0.004
GS 1.643-+0.126 0.011=+0.005 0.252:+£0.072 0.042£0001  2.647+0262 0.025-+0.015 0.186:£0.071 0.040-0.000
Stocks HTW 0.426-+0.073 0.026=+0.016 0.105+0.032 0.037+0.000  0.622+0.092 0.017+0.013 0.152-+0.086 0.0370.000

TabWak 0.242:£0.045 0.011+0.008 0.141-0.021 0.037£0.000  0.394+0.034 0.009-£0.009 0.150-£0.031 0.037+0.000
TabWak | 0.28440.091 0.005+0.005 0.099-£0.025 0.037+0.000  0.367+0.035 0.010-£0.007 0.129-+0.054 0.037+0.000
TimeWak 0.387+0.054 0.017+0.017 0.092-+0.041 0.037+0.000  0.316+0.044 0.021+0.024 0.140-+0.029 0.037=0.000

W/O 0.384-+0.034 0.070+0.011 0.106-£0.009 0.115+0.006  1.086+0.070 0.098+0.021 0.166-+0.013 0.111=0.008
TR 2.224+0.209 0.217+0.011 0.284:£0.032 0.131+0004  2.450=+0.128 0.270=+0.017 0.284:£0.063 0.138:£0.005
GS 3.398+0384 0.248+0.025 0.356:£0.029 0.154£0001  4.998+0.603 0.233£0.027 0.381+0.042 0.162+0.010
ETTh HTW 0.372:+0.027 0.076+0.006 0.118-+0.024 0.116:+0006  1.119+0.065 0.091+0.014 0.165+0.010 0.120=+0.006

TabWak 0.597+0.044 0.346+0.027 0.176-£0.020 0.122:£0007  1.931+0254 0.466-£0.058 0.248+0.017 0.128:£0.005
TabWak ™ 0.503+0.045 0.095+0.043 0.119+0.012 0.120+0.010  1.477+0.075 0.129+0.037 0.143+0.014 0.112+0.011
TimeWak 0.297+0.038 0.133+0.040 0.097-+0.015 0.115:+0003  1.090-+0.100 0.135+0.057 0.174+0.007 0.110+0.009

W/O0 0.103=+0.016 0.341+0.025 0.023+0.015 0.007+0.000  0.179+0.011 0.290-+0.025 0.055+0.027 0.005=0.001
TR 2.627+0230 0.948+0.064 0.270-+0.128 0.016+0005  2.348+0.236 0.865-£0.025 0.358-£0.008 0.008-£0.001
GS 7.162+1.301 1.034+0.087 0.447+0.011 0.011+0.002  4.797+1.290 1.335+0.041 0.454+0.023 0.007=+0.001
MuJoCo HTW 0.316+£0.034 0.334+0.044 0.248-£0.079 0.011+0.001  0.431+00s1 0.309-£0.064 0.255+0.174 0.009-£0.001

TabWak 0.372-+0.064 0.671+0.083 0.137+0.027 0.007+0.001  0.369+0.073 0.589-+0.059 0.175+0.042 0.006-£0.002
TabWak ™ 0.238+0019 0.339+0.059 0.087+0.025 0.006+0.001  0.275+0.033 0.333+0.066 0.084-0.028 0.006=£0.001
TimeWak 0.108-+0.014 0.413+0.062 0.038-£0.021 0.0070.001  0.155+0.016 0.316:£0.022 0.046-£0.030 0.005:£0.001

W/O 0.112+0.016 1.032:£0.289 0.124-£0.008 0.251+0001  0.120+0.011 0.798-+0213 0.202:£0.073 0.249-+0.000
TR 0.902:£0.093 3.5030.589 0.427+0.072 0.307+0.005  1.195x0.111 2.303+0.569 0.498:£0.001 0.287+0.003
GS 2.205+0.192 3.277+0.129 0.479-+0.010 0.310:£0005  3.680-+0.444 4.23340.287 0.474+0.039 0.280-0.006
Energy  HTW 0.133:+0.015 1.045+0.357 0.135+0.013 0.251x0001  0.133+0017 0.822+0310 0.103:£0.043 0.249:£0.001

TabWak 0.168-0.021 1.811+0.530 0.136-£0.013 0.251+0.000  0.201+0.020 2.001+0.440 0.156-+0.077 0.250-0.001
TabWak " 0.237+0029 1.321+0252 0.138-0015 0.252:+0000  0.274+0.019 1.211+0.196 0.136:£0.023 0.249-£0.001

TimeWak 0.143x0.019 1.662+0.208 0.145x0.019 0.251£0000  0.148+0.027 1.687+0.328 0.140+0.057 0.249+0.000
W/O 0.435:£0.033 1.899-x0.075 0.268-0.150 0.100£0.000  0.859-+0.058 1.823-0.064 0.209-£0.263 0.100-£0.000
TR 3.358+0.402 13.699+0.132 0.411+0.158 0.141+0.001  5.391+0919 13.000=+0.084 0.434+0.072 0.149-0.002
GS 0.756-£0.098 8.378+0.028 0.500-£0.001 0.104:£0001  1.046-+0.052 5.941+0.048 0.499-£0.001 0.106:£0.001
fMRI HTW 0.413+0.017 1.822+0.111 0.338-+0.032 0.100+0.000  0.811+0.051 1.757+0.053 0.063-£0.064 0.100-£0.000

TabWak 0.655+0.137 6.532+0.158 0.242:£0302 0.108£0.001  1.114+0.135 5.967+0.033 0.153+0.218 0.111:0.001
TabWak " 0.554+0049 1.955:0.0s8 0.331+£0.039 0.100£0.000  0.919+0.024 1.807-+0.024 0.265:£0.201 0.100+0.000
TimeWak 0.441+0.035 1.786+0.043 0.314+0.041 0.100+0.000  0.855+0.072 1.704+0.060 0.298-+0.227 0.100-£0.000
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E.2 Post-editing attacks

Table[7Hg] show the detectability results of several post-editing attacks on 24 and 128 window sizes,
respectively.

Table 7: Results of robustness against post-editing attacks. Average Z-score on 24-length sequences,
including un-attacked scores from Tablem Best results are in bold, and second-best are underlined.

Without Offset 1 Random Crop T Min-Max Insertion 1
Dataset ~ Method Attack 5% 30% 5% 30% 5% 30%
TR 0.43+0.04 0.41+0.04 0.26+0.05 61.01+1.18 76.69+1.17 0.18+0.05 0.81+0.08
GS 86.07+0.74 85.74+071 84.38+0.67 -34.10+0.69 3.08+0.58 82.31+0.75 57.07+0.72
Stocks HTW 4.45+0.62 4.45+0.62 4.45+0.62 -0.30+0.39 -0.40+0.30 3.96+0.72 1.80+0.71
TabWak -67.22+1.17  -66.62+123  -75.89+1.10 -137.99+123 -72.71+176  -70.11+1.14  -89.22+0.64
TabWak"  55.39+0:6 55.594074  54.76+0.78 9.3240.94 7.43+0.73 45.69+0.73 21.19+0.56
TimeWak  182.10+073 181.98+084 180.68+077  62.29+1.01 9.33+1.04 155.724+091  56.86+1.06
TR 7.84+0.12 7.94+0.12 8.19+0.13 26.95+0.32 34.36+0.26 14.11+0.28 28.7240.50
GS 101.07+117  99.45+100  105.70+1.08  98.99+1.21 2.10+137 98.78+1.13 73.67+1.30
ETTh HTW 3.43+0.83 3.43+0383 3.43+0383 0.38+0.77 -1.08+0.47 3.09+0.82 1.54+0.66
TabWak -14.95+108  -7.92+097 36.49+1.08 -11.76+1.31 8.65+1.38 -7.9540.93 21.70+0.82
TabWak "™  109.35+091 110.22+085 103.34+082  50.64:£096 1.06+1.02 80.98+0.87 21.83+0.95
TimeWak  134.83+095 130.50+099 118.65+1.03  35.30+1.14 5.99+1.04 101.53+096  20.77+0.95
TR 1.38+0.03 1.34+0.03 1.22+0.03 5.31+005 5.65+0.06 2.42+0.05 5.53+0.09
GS 21.13+0.77 23.95+0.71 27.15+0.76 23.06+0.86 -10.38+072  22.89+0.383 22.89+1.06
MuJoCo HTW 2.89+0.54 2.89+0.54 2.89+0.54 0.85+0.48 -0.47+0.40 2.65+053 1.51+043
TabWak 31.30+1.07 31.5940.96 39.05+1.05 38.80+1.11 25.04+1.13 31.60+0.92 28.70+0.59
TabWak " -4.85+087 -6.27+0.90 0.74+0.78 -15.92+088  -56.15+150 -10.95+101  -43.08+1.17
TimeWak 85.69+1.08 77.78+1.26 49.48+1.12 48.03+1.17 11.46+1.18 74.94+1.10 38.87+1.14
TR 9.5140.09 9.30+0.10 8.77+0.08 110474023  129.09+019  17.65+0.15 35.69+0.18
GS 51.22+0.88 50.27+0.96 47314097 11.65+072 38.70+1.34 48.80+0.97 39.80+0.94
Energy HTW 3.06+0.36 3.06+0.36 3.06+0.36 0.5640.35 -0.13+0.23 2.81+036 1.61+030
TabWak 3.26+0.89 0.52+1.03 -291+1.08 3.27+0.63 3.54+0.53 2.20+0.87 -2.08+0.49
TabWak ™ 40.82+031 38.47+072 40.20+0.82 33.83+1.08 -7.47+1.50 31.89+0.89 5.37+093
TimeWak  231.28+145 228.22+171 185.48+1.52 -9.20+0.96 -1.54+102  189.15+144  56.39+1.16
TR 6.49+0.05 6.43+0.05 6.12+0.05 5.42+0.05 4.40+0.05 5.54+0.05 1.37+0.07
GS 420.02+144 416.83+143 401.86+1.72  360.27+140 171.38+1.16 386.10+1.54 245.44+1.28
fMRI HTW 4.32+022 4.32+022 4.32+022 2.92+0.27 -0.39+0.28 3.86+0.26 1.78+0.25

TabWak 84.02+1.04 83.55+1.08 78.94+1.16 78.63+1.24 27.05+130  76.49+1.17 50.55+1.33
TabWak "  464.67+050 464.04+045 458.81+057 400.47+072 202.57+104 403.49+066 168.64+075
TimeWak  379.51+082 378.95+085 374.99+078 277.64+078  77.74+105 327.13+086 133.68+0585
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Table 8: Results of robustness against post-editing attacks. Average Z-score on 128-length sequences,
including un-attacked scores from Table E Best results are in bold, and second-best are underlined.

Without Offset T Random Crop 1 Min-Max Insertion 1
Dataset ~ Method Attack 5% 30% 5% 30% 5% 30%
TR 0.08+0.10 0.05+0.10 0.02+0.12 93.62+099 119.45+1.16  6.87+022 23.98+0.55
GS 172.23+1.08 167.39+1.10 145.89+1.83 13.22+1.43 -2.23+1.03 144.05+098  64.79+1.01
Stocks HTW 10.39+1.33 10.39+1.33 10.39+1.33 -1.30+0.44 -1.42+033 9.05+1.67 3.76+1.63
TabWak -10.49+1.28 49.98+331 36.78+3.15 69.44+332  70.32+2.93 9.26+1.41 33.81+0.81
TabWak'  129.39+090 131.70+0.97 129.83+1.08 7.70+1.04 -4.86+1.20 80.70+1.03 15.70+0.57
TimeWak  550.05+1.18  535.16+096  525.09+120  83.81+2.15 15424102 385.68+248  85.38+1.37
TR 6.18+0.16 6.14+0.16 6.08+0.14 24.37+0.28 36.22+0.21 23.02+0.25 55.97+0.40
GS 327.47+4.44 322.35+5.15 296.89+5.10  189.84-+2.98 8494116  296.61+4.10 172.81+2.05
ETTh HTW 6.84+222 6.84+222 6.84+2.22 0.79+1.90 -2.94+1.15 6.00+2.16 2.59+154
TabWak -20.57+0.96 -18.36+1.21 -3.56+1.91 37.32+2.48 78.54+2.07 -7.75+0.79 22.65+045
TabWak | 235.03+1.48 227.57+133 194.84+165 101.64+173  23.82+145  155.78+124  23.70+0091
TimeWak  340.36+206  333.66+1.93 276.99+204  107.52+190  7.13+1.14  244.68+172  44.75+1.21
TR 1.31+0.04 1.33+0.04 1.50+0.04 6.93+0.07 6.08+0.05 10.52+0.12 25.61+0.20
GS 39.63+0.71 38.07+0.67 32.10+0381 37.22+0.89 10.61+0.85 38.46+0.89 31.58+1.16
MuJoCo HTW 4.20+1.37 4.20+1.37 4.20+1.37 1.73+1.18 -2.13+0.99 3.78+1.29 2.02+0.90
TabWak -3.00+1.04 -5.68+0.92 -3.91+1.16 -8.02+1.07 16.29+0.61 -0.31+0.87 2.90+0.55
TabWak " 3.91+0.88 5.10+1.00 9.07+0.97 3.36+0.90 24.65+1.15 25.56+1.00 41.50-+1.00
TimeWak 123.36+1.43 139.07+1.49 111.27+1.15 93.19+1.46 12.44+1.01 71.22+1.21 7.26+0.95
TR 22.58+0.19 21.92+0.18 20.13+0.17 167.48+0.64 207.75+039  68.40+020  148.79+0.50
GS 45.42+1.05 43.41+0.96 30.53+0.93 71.60+094  67.39+1.11 44.20+116  44.13+1.18
Energy HTW 5.42+1.00 5.42+1.00 5.42+1.00 0.24+0.62 -1.11+043 4.86+0.95 2.47+0.67
TabWak 0.57+0.87 -21.06+0.96 -28.01+132  -25.69+082  -10.44+076  -0.07+0.63 -7.15+036
TabWak " 26.00+1.12 33.0840.98 19.25+0.95 9.30+1.14 10.84+1.92 24.21+0.95 33.38+0.69
TimeWak 245.37+288  307.31+1.98 183.59+1.74 9.574097 2.48+0.84 171.81+177  21.44+1.10
TR 9.94+0.04 9.9340.04 9.88+0.04 10.47+0.05 8.96+0.04 16.62+0.06 39.21+0.13
GS 701.90+0.72 701.47+0.65 699.01+063  621.08+1.08 256.13+1.63 667.14+243 528.66+2.82
MRI HTW 9.43+0.61 9.43+0.61 9.43+0.61 6.75+0.67 -1.09+0.65 8.24+0.66 3.45+057

TabWak 47.29+0.83 43.52+0.79 24.95+0.86 -57.42+4204  71.034325 78.43+4.67 0.17+8.00
TabWak ™  1031.96+079 1031.53+078 1030.14+072 889.62+084 383.15+137 801.16+083 229.37+L15
TimeWak  526.81+13.12  834.78+1.10 834.62+124  632.77+1.07 160.62+1.02 651.80+1.13 216.50+0.94
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E.3 Reconstruction attack

We implement the reconstruction attack using the original diffusion model. Specifically, we first
applied the g-sampling process up to half of the total diffusion steps (i.e., midpoint timestep), and
then performed reverse sampling starting from this midpoint. The results obtained from this approach
are presented in Table[9] We observe that although the Z-score decreases, our watermark remains
detectable.

Table 9: Results of synthetic time series quality and watermark detectability. Comparing TimeWak
and TimeWak ,..o, under reconstruction attack. Quality metrics and Z-score are for 24-length
sequences.

Dataset ~ Method Context-FID |  Correlational |  Discriminative |  Predictive |  Z-score 1
Stocks TimeWak 0.277+0.019 0.020+0.018 0.120+0.039 0.038+0.000 182.10+0.73
” TimeWak ,ccon 4.570+0.502 0.031+0.028 0.393+0.073 0.148+0.017  179.41+0.81
ETTh TimeWak 0.237+0.017 0.212+0.043 0.102+0.014 0.122+0.002  134.83+0.95
TimeWak ,econ 1.743+0.225 0.138+0.012 0.290+0.009 0.158+0.002 82.11+2.58

MuJoCo TimeWak 0.089+0.017 0.532+0.137 0.044+0.021 0.008+0.001 85.69+1.08
TimeWak ,ccon 0.925+0.047 0.622+0.063 0.261+0.010 0.008+0.002  81.97+1.33
E TimeWak 0.121+0.016 1.977+0.750 0.142+0.008 0.254+0.000 231.28+1.45
nergy TimeWak ,econ 5.158+0.568 6.678+0.087 0.444+0.006 0.263+0.002  39.99+2.03
fMRI TimeWak 0.199+0.010 2.006+0.053 0.122+0.033 0.100+0.000  379.51+0.82
TimeWak ,econ 0.595+0.036 2.37440.105 0.431+0.017 0.102+0.000  457.90+0.81

E.4 BDIA-DDIM on other baselines

The baselines in our main experiments were not evaluated with BDIA-DDIM. This is because
BDIA-DDIM tends to degrade data quality compared to standard DDIM, representing a trade-off for
achieving lower inversion error. For many baselines, such as Tree-Ring and Gaussian Shading, the
generated quality is already poor. Applying BDIA-DDIM in these cases might improve detectability
but would further deteriorate quality, making the results less meaningful. And for TabWak, we include
results with BDIA-DDIM applied to both TabWak and TabWak " in Table While BDIA-DDIM
improves detectability for both variants, it comes at the cost of further quality degradation compared
to the original results in Table[I] In contrast, TimeWak maintains stable performance across both
quality metrics and Z-score, highlighting its robustness.

Table 10: Results of synthetic time series quality and watermark detectability. All results are applied
with BDIA-DDIM. Quality metrics are for 24-length sequences.

Quality Metric | Z-score T

Dataset ~ Method Context-FID  Correlational ~ Discriminative  Predictive 24-length 64-length 128-length

TabWak 0.267+0.042 0.017+0.014 0.122+0.029 0.039+0.000  43.10+0.75 92.56+037 89.18+0.39
Stocks TabWak " 0.273+0.103 0.011-+0.008 0.115+0.042 0.037+0.000 117.12+015 170414014  267.27+0.18
TimeWak 0.277+0.019 0.020-+0.018 0.120-+0.039 0.038+0.000 182.10+0.73 395.34+124  550.05+1.18

TabWak 0.431+0.033 0.436-£0.020 0.133+0.029 0.134+0.002 1.73+0.76 16.26+0.98 31.59+0.87
ETTh TabWak " 0.454+0.049 0.132+0.018 0.104+0.024 0.119+0.006 149.16+062 220.72+084  315.34+1.16
TimeWak 0.237+0.017 0.212+0.043 0.102+0.014 0.122+0.002  134.83+095 236.08+1.63  340.36+2.06

TabWak 0.489+0.036 0.958+0.067 0.204+0.056 0.010+0.004  13.97+1.07 20.52+0.85 4.23+093
MuJoCo TabWak'  0.270+0024 0.378+0.033 0.128+0.015 0.008+0.002  68.32+1.14 93.55+1.06 228.10+1.67
TimeWak 0.089-+0.017 0.532+0.137 0.044+0.021 0.008+0.001  85.69+1.08 56.45+1.26 123.36+1.43

TabWak 0.189-+0.022 2.915+0410 0.166+0.012 0.255+0.000 3.1040.63 -9.67+0.72 -18.64+071
Energy TabWak " 0.199-+0.007 1.648+0.188 0.137+0.019 0.265+0.004 246.86+130 258.45+148  302.78+1.98
TimeWak 0.121+0.016 1.977+0.750 0.142-+0.008 0.254+0.000 231.28+145 267.53+260 245.37+2388

TabWak 0.319+0.019 6.772+0.129 0.484+0.007 0.110+0.001  57.99+1.06  268.67+088  -94.33+0.99
fMRI TabWak ' 0.317+0028 2.185+0.148 0.218+0.031 0.100+0000 471.86+045 739.39+060 1014.93+0.74
TimeWak 0.199-+0.010 2.006+0.053 0.122-+0.033 0.100+0.000 379.51+082 595.68+1.03 526.81+13.12
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E.5 Watermarked dataset on downstream tasks

We implement time series forecasting and imputation as the downstream tasks, i.e, taking either the
real, synthetic, or watermarked synthetic data to build a diffusion model that can predict the future or
missing values of time series. We compared the mean squared error (MSE) between the predicted and
actual values and summarized the results in Table |l 1|and Table The results indicate that training
on watermarked synthetic data has a minimal impact on forecasting and imputation performance
compared to training on non-watermarked synthetic data.

Table 11: Results of 64-length time series forecasting that trains on real and synthetic data (Synthyw ;o
and Synthripewax) and tests on real data with a 24 timesteps forecast horizon. MSE values x 1073,

Dataset  Training Data MSE |

Real 2.119
Stocks Synthy /o 2.022
SynthTimeWak 2.014
Real 6.678
ETTh Synthw 0 8.541
SynthTimQWak 8.655
Real 1.312
MuJoCo  Synthw o 1.615
SynthTimeWak 1.741
Real 12.715
Energy Synthy /0 13.480
SynthTimeWak 13.717
Real 36.423

fMRI  Synthy o 67.796
SynthTimeWak 67.944

Table 12: Results of 64-length time series imputation that trains on real and synthetic data (Synthyw /o
and Synthripeyax) and tests on real data with 70% missing ratio. MSE values X 10-3.

Dataset  Training Data MSE |

Real 1.020
Stocks Synthw /0 0.855
SynthTimQWak 0.858
Real 1.526
ETTh Synthyw 0 1.842
SynthTimeWak 1.963
Real 0.101
MuJoCo  Synthw o 0.364
SynthTimeWak 0.387
Real 7.926
Energy Synthw 0 8.258
SynthTimQWak 8.279
Real 27.439

fMRI  Synthy,o 45412
SynthTimeWak 47.349
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E.6 Ablation study

To assess the effectiveness of the TimeWak, we compare its full version with three distinct variants
outlined in Table Table[T4] presents the quality of the watermarked time series data for sequences
of length 24, and the detectability of the watermarks across lengths of 24, 64 and 128. TimeWak
demonstrates a comparable quality performance and high detectability.

Table 13: List of methods, including TimeWak, to be compared.

Method Watermarking Direction Sampling
SpatDDIM Spatial DDIM
SpatBDIA Spatial BDIA-DDIM
TempDDIM Temporal DDIM
TimeWak Temporal BDIA-DDIM

Table 14: Results of synthetic time series quality and watermark detectability. Quality metrics are
for 24-length sequences. All methods are originally found in Table [I3] Best results are in bold, and
second-best are underlined.

Quality Metric | Z-score T
Dataset ~ Method Context-FID  Correlational ~Discriminative  Predictive 24-length 64-length 128-length

SpatDDIM 0.233+0.025 0.012-+0.005 0.127+0.019 0.037+0.000  11.06+1.07 0.18+0.77 -1.03+0.96
SpatBDIA 0.199-+0.024 0.024+0.028 0.124+0.023 0.037+0.000 126.97+143 156.84+080 170.13+1.59

Stocks TempDDIM  0.277-+0.054 0.013+0.005 0.124+0.043 0.038+0000  25.14+089  43.24+087 58.82+0.93
TimeWak 0.277+0.019 0.020+0.018 0.120-+0.039 0.038+0000 182.10+0.73 395.34+124  550.05+118

SpatDDIM 0.249+0.020 0.145+0.026 0.094+0.011 0.124+0002  10.80+1.06 11.13+0.81 7.29+0.95

ETTh SpatBDIA 0.246+0.015 0.150+0.034 0.098+0.011 0.123+0007  28.11+110  40.67+1.21 47.73+1.04
TempDDIM  0.249+0.013 0.150-£0.020 0.097-+0.010 0.121:+0.005  63.78+097  102.06+1.16  152.63+1.29
TimeWak 0.237+0.017 0.212+0.043 0.102+0.014 0.122:+0.002  134.83+095 236.08+1.63  340.36-+2.06

SpatDDIM 0.091+0.008 0.476+0.049 0.062+0.027 0.008+0.002  -4.62+091 15.42+0.96 7.12+122

MuJoCo SpatBDIA 0.090+0.016 0.491+0.078 0.051+0.023 0.008+0002  11.73+094 18.02+0.95 25.4240.90
TempDDIM  0.098+0.010 0.450-+0.047 0.059+0.027 0.007+0.001  21.85+084  -0.88+099 -2.58+41.03
TimeWak 0.089-+0.017 0.532+0.137 0.044-0.021 0.008+0.001  85.69+108  56.45+126  123.36+143

SpatDDIM 0.135+0.021 1.814+0373 0.142+0.013 0.253+0.000  1.55+0.90 6.75+1.00 -0.70-+0.98

Ener SpatBDIA 0.142+0.027 2.104+0.254 0.149+0.025 0.253+0.000 52.86+090  63.56+1.26 81.46+1.11
gy TempDDIM  0.110-0.019 1.724+0.270 0.142+0.023 0.25440.000 1.72+0.92 3.64+0.90 2.24+0.93
TimeWak 0.121+0.016 1.977+0.750 0.142-+0.008 0.254+0000 231.28+145 267.53+260 245.37+2.88

SpatDDIM 0.198+0.023 2.014+0.046 0.139+0.030 0.101+0001  90.69+094  61.12+0.87 81.31+0.70

FMRI SpatBDIA 0.188-+-0.004 1.974+0.074 0.124-+0.035 0.101+0000  76.48+089  93.74+082 75.93+0.66

TempDDIM  0.193+0.018 2.097+0.086 0.1430.020 0.101:+0.000 381.15+081 617.91+098 828.89+1.01
TimeWak 0.199-t0.010 2.006-£0.053 0.122:£0.033 0.100-0.000 379.51+082 595.68+1.03 526.81+13.12
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E.7 Challenging time series datasets

We evaluate TimeWak on 2 additional and more challenging real-world datasets, (i) the ILI dataset,
which records influenza-like illness cases in the United States, and (ii) the Weather dataset, which
is sparse and noisy. Both datasets are standard benchmarks and are used in TimesNet [30]. Results
run on these datasets are shown in Table|15] where TimeWak achieves robust watermark detectability
while preserving the quality of the synthetic data.

Table 15: Results of synthetic time series quality and watermark detectability for 64-length sequences.
No watermarking (“W/O’) is included. Best results are in bold, and second-best are underlined.

Dataset  Method Context-FID |  Correlational | Discriminative | Predictive ||  Z-score 1

W/O 0.411+0.040 0.073+0.061 0.147+0.102 0.028+0.002 -
TR 1.530+0.177 0.149+0.056 0.286+0.096 0.0354+0.003 5.09+0.06
GS 0.734+0.030 0.15940.035 0.397+0.054 0.0304+0.001 78.18+0.84
Illness HTW 0.439+0.040 0.069+0.041 0.217+0.060 0.032+0.002 7.37+0.75
TabWak 0.239+0.030 0.070+0.036 0.131+0.132 0.027+0.001 -2.06+0.88
TabWak " 0.29540.045 0.071+0.035 0.114+0.041 0.028+0.002  21.26+1.13
TimeWak 0.240+0.009 0.0764+0.050 0.111+0.074 0.028+0.001  151.03+1.60
W/0O 0.647+0.079 1.429+0.089 0.175+0.011 0.002+0.000 -
TR 3.381+0.577 2.518+0.039 0.388+0.020 0.002+0.000 0.40+0.02
GS 4.495+0.804 2.194+0.140 0.446+0.008 0.002+0.000 15.36+0.92
Weather HTW 0.712+0.062 1.463+0.098 0.190+0.013 0.002+0.000 4.82+0.83
TabWak 0.751+0.088 1.571+0.168 0.200+0.007 0.002+0.000 -1.23+1.00
TabWak " 0.588+0.081 1.369+0.089 0.178+0.012 0.002+0.000 39.58+0.89
TimeWak 0.717+0.071 0.951+0.088 0.184+0.007 0.002+0.000 205.53+1.86

E.8 TPR@0.1%FPR performance

In Figure[6] we present the TPR@0.1%FPR metric against the number of samples across five datasets
under 24, 64 and 128 window sizes. In most cases, TimeWak consistently outperforms other baselines,
such as Gaussian Shading and TabWak ", by achieving significantly higher TPR values. Notably,
TimeWak reaches a perfect 1.0 TPR@0.1%FPR in the majority of scenarios, with 7 cases requiring
only a single sample and 4 cases needing just 2 samples, demonstrating its strong detectability with
minimal data requirements.
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Figure 6: TPR@0.1%FPR against the number of samples across five datasets under different window
sizes.
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E.9 TPR@0.1%FPR on mixed dataset

We construct a mixed dataset containing equal proportions (1/3 each) of real data, synthetic data
without watermarks, and synthetic data with watermarks, totaling 100 trials with a window length
of 64. We evaluate TPR@0.1%FPR with 1, 10, and 20 samples per record, as shown in Table @
For comparison, we select the methods with the best detectability: GS and TabWak " . The results
demonstrate that TimeWak achieves 99 to 100% true positive rates in this mixed data setting when the
number of samples is 20. But GS completely fails to detect watermarks in the MuJoCo dataset with
0% TPR across all sample sizes, while TabWak " fails on both MuJoCo with 0% TPR and Energy
datasets with 0 to 1% TPR.

Table 16: Results of TPR@0.1%FPR on mixed dataset when the number of samples is 1, 10, and 20.

Dataset ~ Method 1+ 101 201

GS 033 0.87 0.99
Stocks TabWak" 0.13 047 0.68
TimeWak 022 096 0.99

GS 043 098 1.0
ETTh TabWak' 049 091 0.99
TimeWak 0.38 092 1.0

GS 0.0 0.0 0.0
MuJoCo TabWak! 0.0 0.0 0.0
TimeWak 0.34 0.84 0.99

GS 042 1.0 1.0
Energy ~ TabWak' 0.01 0.0 0.0
TimeWak 0.32 097 1.0

GS 04 098 1.0
fMRI TabWak' 031 1.0 1.0
TimeWak 026 097 1.0
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E.10 Preservation of key signal characteristics in watermarked time series data

To assess the preservation of key signal characteristics, we add 4 additional metrics from TSG-
Bench [2]: Marginal Distribution Difference (MDD), AutoCorrelation Difference (ACD), Skewness
Difference (SD), and Kurtosis Difference (KD). These measures are designed to capture inter-series
correlations and temporal dependencies, thereby evaluating how well the generated time series
preserves the original characteristics. For all these metrics, the lower the score, the better. As shown
in Table[I7] TimeWak consistently achieves scores very close to the non-watermarked (W/O) baseline
across all datasets, indicating minimal distortion introduced by the watermark.

Table 17: Results of Marginal Distribution Difference (MDD), AutoCorrelation Difference (ACD),
Skewness Difference (SD), and Kurtosis Difference (KD) for 64-length sequences.

Dataset  Method MDD| ACDJ)] SDJ| KD/

W/O 0.491 0.044 0473 1.522
TR 0.881 0.445 0.759 4.408
GS 1.063 0.444  0.727 4.889
Stocks HTW 0.491 0.044 0473 1.522

TabWak 0.470 0.078 0.180 0.544
TabWak  0.478 0.098  0.060 0.852
TimeWak 0.431 0.068 0.103 0.295

W/0 0.176 0421 0.255 1.359
TR 0.546 1.128 0.633 3474
GS 0.712 1.581 0.723 2.725
ETTh HTW 0.384 0.459 0.276 1.468

TabWak 0.211 0.532  0.245 1422
TabWak " 0.183 0.753  0.141 0.707
TimeWak 0.184 0.511  0.197 1.109

W/O 0.379 0.225 0.062 0.306
TR 1.296 1.494 0426 1.555
GS 1.500 1.550 0.533 1.221
MuJoCo HTW 0.941 0.434 0.076 0.287

TabWak 0.420 0.262 0.087 0.311
TabWak " 0.521 0.532 0.084 0.351
TimeWak 0.394 0.300  0.069 0.340

W/O 0.188 0.157 0.112 0.703
TR 0.558 0.606 0355 1.681
GS 0.660 0.958 0373 1.015
Energy HTW 0.363 0.148 0.108 0.701

TabWak 0.235 0.270  0.126 0.618
TabWak  0.263 0.336  0.112 0.682
TimeWak 0.215 0.241 0.111 0.601

W/O 0.099 0.153  0.041 0.128
TR 0.447 1.356  0.066 0.428
GS 0.818 1.435 0.096 0.174
fMRI HTW 0.452 0.151 0.048 0.133

TabWak 0.126 0.159 0.043 0.138
TabWak ™ 0.127 0.261  0.040 0.114
TimeWak 0.120 0.148 0.040 0.132
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E.11 Hyperparameter evaluation
E.11.1 Intervals

Interval, also referred to as H, is one of the key hyperparameters in our approach. Based on our
experiments in Table [[§] (24-length), Table[I9] (64-length), and Table 20](128-length), we found that
setting H = 2 yields the best results across most datasets. For instance, consider the Stocks dataset,
which consists of 6 features and 24 time steps. When H = 8, the number of bit templates that can
be generated is 2(3%%) whereas for H = 2, the number of bit templates increases significantly to
2(12x6) " A Jower H value allows for the generation of a greater number of bit combinations, leading
to a more diverse seed distribution. However, as shown in Table 20] for datasets such as fMRI,
tuning H can enhance detectability while preserving the quality of the synthetic data. This could
be attributed to the inherently noisy nature of the fMRI dataset, where adjusting [ helps balance
detectability and data fidelity.

Table 18: Results of synthetic time series quality and watermark detectability with different intervals
on TimeWak. Quality metrics and Z-score are for 24-length sequences.

Dataset  Interval Context-FID | Correlational |  Discriminative |  Predictive |  Z-score 1

2 0.277+0.019 0.020+0.018 0.120+0.039 0.038+0.000 182.10+0.73
Stocks 4 0.419+0.098 0.006+0.002 0.162+0.022 0.039+0000 202.45+1.11
8 1.006=+0.085 0.023+0.018 0.197+0.015 0.041+0000 216.56+1.43
2 0.237+0.017 0.212+0.043 0.102+0.014 0.122+0002  134.83+0.95
ETTh 4 0.463+0.004 0.435+0.047 0.113+0.018 0.130+0.001  166.50+1.27
8 0.925+0.140 0.576+0.082 0.150+0.014 0.135+0.005 167.54+136
2 0.089+0.017 0.532+0.137 0.044+0.021 0.008+0.001 85.69+1.08
MuJoCo 4 0.148+0.031 0.739+0.086 0.087+0.020 0.007+0.000 71.95+1.36
8 0.327+0.059 1.179+0.168 0.177+0.019 0.009-+0.002 76.90+1.29
2 0.121+0.016 1.977+0.750 0.142+0.008 0.254+0000 231.28+1.45
Energy 4 0.186-+0.017 3.31540.395 0.159+0.011 0.254+0000 266.77+1.99
8 0.363+0.093 5.402+0.499 0.184+0.024 0.255+0000 279.40+1.90
2 0.199+0.010 2.006+0.053 0.122+0.033 0.100+0.000  379.51+0.82
fMRI 4 0.191+0.013 2.117+0.124 0.125+0.034 0.101+0.000 464.70+0.92
8 0.204+0.021 2.354+0.110 0.171+0.043 0.103+0.000 506.95+1.10

Table 19: Results of synthetic time series quality and watermark detectability with different intervals
on TimeWak. Quality metrics and Z-score are for 64-length sequences.

Dataset  Interval Context-FID | Correlational |  Discriminative |  Predictive |  Z-score 1

2 0.387+0.054 0.017+0.017 0.092+0.041 0.037+0000 395.34+1.24
Stocks 4 0.466+0.099 0.021+0.006 0.077+0.025 0.037+0000 397.68+1.31
8 1.053+0.099 0.017+0.013 0.155+0.037 0.037+0.000 406.56+1.77
2 0.297+0.038 0.133+0.040 0.097+0.015 0.115+0.003  236.08+1.63
ETTh 4 0.514+0.027 0.335+0.040 0.098+0.031 0.119+0008 272.70+1.79
8 0.911+0.048 0.540+0.030 0.147+0.038 0.123+0.008  268.14+2.00
2 0.108+0.014 0.413+0.062 0.038+0.021 0.007+0.001 56.45+1.26
MuJoCo 4 0.205+0.024 0.522+0.024 0.088+0.031 0.007+0.002 58.75+1.18
8 0.338-+0.068 0.768+0.077 0.159+0.020 0.007+0.001 68.29+1.19
2 0.143+0.019 1.662+0.298 0.145+0.019 0.251+0000 267.53+2.60
Energy 4 0.195+0.017 2.760+0.504 0.150=+0.011 0.252+0.000  289.07+2.77
8 0.407+0.087 4.285+0.229 0.170+0.025 0.252+0000 345.97+3.48
2 0.441+0.035 1.786+0.043 0.314+0.041 0.100+0000  595.68+1.03
fMRI 4 0.425+0.027 1.834+0.122 0.273+0.076 0.100+0.000  749.10+1.08
8 0.469+0.027 1.823+0.065 0.294+0.141 0.100+0.000  817.23+1.20
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Table 20: Results of synthetic time series quality and watermark detectability with different intervals
on TimeWak. Quality metrics and Z-score are for 128-length sequences.

Dataset  Interval Context-FID | Correlational |  Discriminative |  Predictive | Z-score T

2 0.316+0.044 0.021+0.024 0.140+0.029 0.037+0.000 550.05+1.18
Stocks 4 0.410=+0.104 0.019+0.017 0.140+0.067 0.037+0.000 571.54+122
8 1.132+0.551 0.035+0.021 0.217+0.019 0.038+0.000  599.41+1.39
2 1.090+0.100 0.135+0.057 0.174+0.007 0.110+0.009 340.36+2.06
ETTh 4 1.445+0.119 0.333+0.034 0.173+0.026 0.114+0.003 374.69+2.39
8 1.838+0.099 0.497+0.054 0.173+0.021 0.116+0.003 392.83+2.39
2 0.155+0.016 0.316+0.022 0.046+0.030 0.005+0.001 123.36+1.43
MuJoCo 4 0.172+0.038 0.410+0.057 0.083+0.011 0.006-0.000 178.16+1.60
8 0.330+0.077 0.685+0.055 0.124+0.026 0.006+0.002 170.77+1.93
2 0.148+0.027 1.687+0.328 0.140+0.057 0.249+0.000 245.37+2.88
Energy 4 0.261+0.025 3.246+0345 0.114+0.030 0.250+0.001  354.38+2.32
8 0.506+0.114 4.550+0.745 0.147+0.009 0.251+0.000 395.20+2.91
2 0.855+0.072 1.704+0.060 0.298+0.227 0.100+0.000  526.81+13.12
fMRI 4 0.884+0.124 1.708+0.050 0.348+0.201 0.100+0.000  1022.29+1.75
8 0.866+0.075 1.698+0.050 0.345+0.195 0.100+0.000 1097.78+1.57

E.11.2 Bits

We perform an empirical validation of the expected bit accuracy using simulations. Specifically, we
set the synthetic time series data size as 24 time steps (window length) and 10 features, and evaluate
the watermarking and detection pipeline using TimeWak. In this experiment, we intentionally omit
both the forward diffusion and reverse (inversion) diffusion processes to focus solely on the effect of
noise during reconstruction. Instead, we simulate the reconstruction noise directly by adding noise to
the clean initial noise.

We generate initial samples using our watermarking method and simulate reconstruction error by
adding noise with feature-specific means sampled from N (0, 5) and a shared variance o. This results
in a noise distribution of N'(y¢, o) per feature, where iy ~ N(0,5). We then apply watermark
detection to the perturbed samples and compute the average bit accuracy.

We run the simulation using 100,000 samples, grouped into trials of 2,000 samples each. This
process is repeated across 50 independent rounds to compute the average bit accuracy. Figure
shows the results we get. We observe that a larger L leads to higher bit accuracy, indicating better
detectability. In addition, we evaluate a “transposed” version of TimeWak, denoted as TimeWak ',
where the chained hash is applied along the feature dimension instead of the time axis. We find that
the bit accuracy of this variant remains close to 0.5 and is significantly lower than that of the original
TimeWak. This simulation further validates the importance of applying the watermark along the time
axis, rather than across features, to ensure reliable detection.

Additionally, we present the values of bit-length L used across different experiments in Table 2TH23]
For bit-lengths greater than 2, we applied the valid bit mechanism from [41]. In general, a larger L
tends to improve watermark detectability. This is because, during bit accuracy calculation, a larger L
places more emphasis on the tail bits, which are less likely to be affected by reconstruction errors or
noise. However, increasing L also leads to lower sample quality, as it involves modifying more of the
initial noise, making it deviate further from a standard Gaussian distribution. Our results show this
trade-off holds across most scenarios, with the exception of the Stocks dataset.
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Figure 7: Average bit accuracy of different bit-length L.

Table 21: Results of synthetic time series quality and watermark detectability with different bits on
TimeWak. Quality metrics and Z-score are for 24-length sequences.

Dataset  Bit Context-FID | Correlational | Discriminative |  Predictive |  Z-score 1

2 0.27740.019 0.020+0.018 0.12040.039 0.038+0.000 182.10+0.73
Stocks 3 0.214+0.039 0.024+0.019 0.130+0.033 0.038+0.000 194.87+0.56
4 0.328+0.110 0.023+0.026 0.155+0.027 0.038+0.000 182.58+0.33
2 0.237+0.017 0.212+0.043 0.102+0.014 0.122+0.002  134.83+0.95
ETTh 3 0.211+0.020 0.206+0.031 0.093+0.003 0.124+0003  162.25+0.89
4 0.238+0.025 0.225+0.043 0.095+0.016 0.124+0.001  149.74+0.66
2 0.089+0.017 0.532+0.137 0.044+0.021 0.008+0.001 85.69+1.08
MuJoCo 3 0.092+0.022 0.520+0.105 0.054+0.014 0.008+0.001 73.09+1.29
4 0.099+0.019 0.524+0.079 0.056+0.013 0.007+0.000  67.67+1.23
2 0.121+0.016 1.977+0.750 0.142+0.008 0.254+0000 231.28+1.45
Energy 3 0.121+0.014 1.799+0.395 0.156+0.023 0.254+0.001  268.24+1.69
4 0.143+0.015 1.721+0.347 0.155+0.010 0.254+0000 269.83+1.60
2 0.199+0.010 2.006+0.053 0.122+0.033 0.100+0.000  379.51+0.82
fMRI 3 0.195+0.008 1.987+0.076 0.113+0.031 0.101+0.000 456.02+0.67
4 0.183+0.012 2.032+40.030 0.111+0.026 0.101+0.000  440.88+0.55
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Table 22: Results of synthetic time series quality and watermark detectability with different bits on
TimeWak. Quality metrics and Z-score are for 64-length sequences.

Dataset  Bit Context-FID | Correlational | Discriminative | Predictive |  Z-score T

2 0.387+0.054 0.017+0.017 0.092+0.041 0.037+0.000 395.34+1.24
Stocks 3 0.312+0.046 0.014+0.006 0.121+0.010 0.037+0.000  334.15+0.49
4 0.251+0.053 0.014+o0.018 0.095+0.022 0.037+0.000  309.59+0.33
2 0.297+0.038 0.133+0.040 0.097+0.015 0.115+0.003 236.08+1.63
ETTh 3 0.369+0.043 0.182+0.036 0.102+0.013 0.117+0.003  249.67+1.41
4 0.365+0.031 0.185+0.030 0.102+0.010 0.113+0.007 261.13+1.20
2 0.108+0.014 0.413+0.062 0.038+0.021 0.007+0.001 56.45+1.26
MulJoCo 3 0.136+0.012 0.423+0.051 0.073+0.018 0.007+0.002 84.07+1.48
4 0.126+0.017 0.381+0.063 0.036+0.030 0.007+0.001 96.73+1.45
2 0.143+0.019 1.662+0.298 0.145+0.019 0.251+0.000 267.53+2.60
Energy 3 0.182+40.047 1.284+0.400 0.165+0.019 0.25140.000  323.04+237
4 0.143+0.010 1.460+0.354 0.152+0.023 0.251+0.000 322.38+2.25
2 0.441+0.035 1.786+0.043 0.314+0.041 0.100+0.000  595.68+1.03
fMRI 3 0.423+0.024 1.782+0.082 0.216+0.175 0.100+0.000  724.69+0.85
4 0.440+0.027 1.783+0.033 0.256+0.106 0.100+0.000  712.67+0.59

Table 23: Results of synthetic time series quality and watermark detectability with different bits on
TimeWak. Quality metrics and Z-score are for 128-length sequences.

Dataset  Bit Context-FID | Correlational |  Discriminative |  Predictive |  Z-score 1

2 0.31640.044 0.021+0.024 0.1404+0.029 0.037+0.000  550.05+1.18
Stocks 3 0.380+0.059 0.019+0.015 0.176+0.046 0.037+0.000  459.23+0.45
4 0.391+0.087 0.017+0.020 0.134+0.060 0.037+0.000  427.53+0.23
2 1.090-0.100 0.135+0.057 0.174+0.007 0.110+0.009  340.36+2.06
ETTh 3 1.111+0.137 0.151+0.040 0.153+0.010 0.118+0.005  352.26+1.63
4 1.173+0.131 0.233+0.058 0.166+0.013 0.113+0.006  362.55+1.39
2 0.155+0.016 0.316+£0.022 0.046+0.030 0.005-0.001 123.36+1.43
MuJoCo 3 0.183+0.029 0.317+0.068 0.062+0.011 0.005+0.000 183.47+155
4 0.150+0.013 0.349-+0.028 0.051+0.031 0.006-0.001 174.45+155
2 0.148+0.027 1.687+0.328 0.140+0.057 0.249+0.000  245.37+2.88
Energy 3 0.230+0.037 1.154+0.446 0.166+0.054 0.249+0.001  380.35+249
4 0.167+0.014 1.700+0.524 0.168+0.069 0.249-+0.001 389.26+2.01
2 0.855+0.072 1.704+0.060 0.298+0.227 0.100+0.000  526.81+13.12
fMRI 3 0.819+0.010 1.688+0.049 0.37440.193 0.100+0.000  986.17+1.08
4 0.828+0.053 1.713+0.020 0.336+0.209 0.100+0.000  967.53+0.86
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E.12 Watermark detection overhead

To evaluate the practical feasibility of real-time deployment, we measure the watermark detection
overhead for TimeWak using a single NVIDIA L40S GPU and Intel(R) Xeon(R) Platinum 8562Y+
CPU. Table [24] presents the computational overhead for watermark detection across different datasets
and configurations. The results demonstrate that detection overhead remains consistently low, ranging
from approximately 1.5 to 7.5 seconds depending on the dataset complexity and batch size. We
consider this overhead acceptable for streaming scenarios, particularly given the security benefits
provided by the watermarking system. Adapting the hashing mechanism to handle variable-length
sequences without padding represents a promising direction for future research that could further
enhance the method’s applicability to diverse real-world scenarios.

Table 24: Watermark detection overhead in seconds for TimeWak when the batch size is 1 and 100.

Dataset Window Size 1 100

24 1.58 2.09
Stocks 64 1.50 2.27
128 1.55 259
24 1.72  2.23
ETTh 64 1.64 241
128 1.63 2.62
24 296 3.84
MuJoCo 64 290 4.25
128 290 4.49
24 389 522
Energy 64 3.88 5.73
128 3.89 6.58
24 4.69 631
fMRI 64 475 17.00
128 4.81 7.47
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F Synthetic samples

Figures [BHI2] show synthetic time series generated unconditionally by Diffusion-TS with/without
watermark embedding. Each figure corresponds to one of the following datasets: Stocks, ETTh,
MulJoCo, Energy, and fMRI. Within each figure, the columns represent the following algorithms: no
watermark, TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarks. Up to 4 features are
randomly selected from each dataset.
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Figure 8: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the Stocks
dataset.
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Figure 9: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the ETTh
dataset.
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Figure 10: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the MuJoCo
dataset.
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Figure 11: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the Energy
dataset.
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Figure 12: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the fMRI
dataset.
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