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ABSTRACT

Recently, advances in differential volumetric rendering enabled significant break-
throughs in the photo-realistic and fine-detailed reconstruction of complex 3D
scenes, which is key for many virtual reality applications. However, in the context
of augmented reality, one may also wish to effect semantic manipulations or aug-
mentations of objects within a scene. To this end, we propose a volumetric frame-
work for (i) disentangling or separating, the volumetric representation of a given
foreground object from the background, and (ii) semantically manipulating the
foreground object, as well as the background. Our framework takes as input a set
of 2D masks specifying the desired foreground object for training views, together
with the associated 2D views and poses, and produces a foreground-background
disentanglement that respects the surrounding illumination, reflections, and partial
occlusions, which can be applied to both training and novel views. Unlike previ-
ous work, our method does not rely on 3D information in the form of 3D object
bounding boxes or a scene voxel grid. It correctly captures reflective foreground
objects, objects occluded by the background, and objects with noisy and inac-
curate masks. Our method enables the separate control of pixel color and depth
as well as 3D similarity transformations of both the foreground and background
objects. We subsequently demonstrate our framework’s applicability on several
downstream manipulation tasks, going beyond the placement and movement of
foreground objects. These tasks include object camouflage, non-negative 3D ob-
ject inpainting, 3D object translation, 3D object inpainting, and 3D text-based
object manipulation.

1 INTRODUCTION

The ability to interact with a 3D environment is of fundamental importance for many augmented
reality (AR) application domains such as interactive visualization, entertainment, games, and
robotics Mekni & Lemieux (2014). Such interactions are often semantic in nature, capturing spec-
ified entities in a 3D scene and manipulating them accordingly. To this end, we propose a novel
framework for the disentanglement and manipulation of objects in a 3D scene. Given a small set
of 2D masks delineating the desired foreground object together with the associated 2D views and
poses, and no other 3D information, our method produces a volumetric representation of both the
foreground object and the background. Our volumetric representation enables separate control of
pixel color and depth, as well as scale, rotation, and translation of the foreground object and the
background. Using this disentangled representation, we demonstrate a suite of downstream manip-
ulation tasks involving both the foreground and background volumes, going beyond previous work,
and including 3D camouflage and 3D semantic text-based manipulation. Fig. 1 illustrates our pro-
posed volumetric disentanglement and a sampling of the downstream volumetric manipulations that
this disentanglement enables. We note that while the foreground/background terminology is useful
for painting a mental picture, we wish to emphasize that the disentanglement is not limited to fore-
ground objects, and works equally well for objects positioned further back (and partially occluded).

Neural Radiance Fields (NeRF) Mildenhall et al. (2020) delivered a significant breakthrough in the
ability to reconstruct complex 3D scenes with high fidelity and a high level of detail. However, NeRF
has no control over individual semantic objects within a scene. To this end, ObjectNeRF Yang et al.
(2021) proposed to represent foreground objects by rendering rays with masked regions. While Ob-
jectNeRF learns foreground object representation independently from the background, our method
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Figure 1: Volumetric disentanglement framework. We introduce a framework for the volumetric
disentanglement of foreground objects as well as the background from a full scene (1). Our vol-
umetric disentanglement can then be used for many downstream tasks of interest to designers and
artists in AR applications (2), including 3D object camouflage, non-negative 3D inpainting, 3D ob-
ject inpainting, 3D object transformation, and 3D text-based semantic manipulation.

instead disentangles the foreground from the background using a volumetric composition. In par-
ticular, the foreground object is extracted using a volumetric “subtraction” of the background from
the full scene. In doing so, our method correctly captures reflective objects and those occluded by
the background, as well as objects with noisy and inaccurate masks. Further, unlike our method,
ObjectNeRF requires additional 3D information in the form of 3D bounding boxes to render the
background and edit objects at test time and relies on an accurate estimation of depth for training.

Given a set of 2D training views and poses of a scene, as well as masks, specifying the foreground
object, our method first trains a neural radiance field to reconstruct the background and its asso-
ciated effects, following a similar procedure to NeRF Mildenhall et al. (2020). Due to the prior
induced through volumetric rendering, the resulting neural field captures the background volume
that also includes objects appearing behind or occluding the foreground object, and captures asso-
ciated effects such as illumination and reflections. By training a neural radiance field to reconstruct
the volume of the entire 3D scene and the volume of the background separately, the representation
of the foreground can be computed in a compositional manner from the two volumes Drebin et al.
(1988) as illustrated in Fig. 1, without using any other 3D information. We note that the background
and foreground can be rendered from both training and novel views.

Having disentangled the foreground object from the rest of the 3D scene, we can now perform a
range of downstream tasks, going beyond the placement and movement of objects, as shown in Yang
et al. (2021). For example, optical-see-through devices can only add light to the scene, meaning that
the generation must be non-negative with respect to the input scene Luo et al. (2021). In other cases,
one may wish to keep the depth of the original scene intact Owens et al. (2014); Guo et al. (2022),
and only modify the textures or colors of objects. Our framework enables properties such as color,
depth, and affine transformations of both the foreground object and background to be manipulated
separately, and therefore can handle such manipulation tasks.

Lastly, we consider the ability to affect semantic manipulations to the foreground. To this end,
we consider the recently proposed multi-modal embedding of CLIP Radford et al. (2021). Using
CLIP, we are able to manipulate the foreground object semantically using text. Recent work such as
Michel et al. (2021); Wang et al. (2021a); Sanghi et al. (2021b) considered the ability to manipulate
3D scenes semantically using text. We demonstrate a similar capability, but one which transcends
to individual objects in our 3D scene, while adhering to the semantics of the background. We also
note that while 2D counterparts may exist for each of the proposed manipulations, our disentangled
volumetric manipulation offers 3D-consistent semantic manipulation of foreground objects.

2 RELATED WORK

3D Disentanglement We focus on the disentanglement of semantic and geometric properties in
3D scenes. For a more comprehensive overview, see Ahmed et al. (2018). CLIP-NeRF Wang et al.
(2021a) disentangle the shape and appearance of NeRF Mildenhall et al. (2020) and, subsequently,
uses CLIP Radford et al. (2021) to manipulate these properties. Other works disentangle pose Wang
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et al. (2021b); Yen-Chen et al. (2021), illumination Srinivasan et al. (2021); Boss et al. (2021),
texture and shape Liu et al. (2021); Jang & de Agapito (2021); Deng et al. (2020); Noguchi et al.
(2021). These works are limited to an entire volumetric scene or object but not to objects within a
scene. Further, they are limited to specific categories on constrained domains (e.g human parts).

Another line of work considers the disentanglement of objects in a full 3D scene. Niemeyer & Geiger
(2021); Nguyen-Phuoc et al. (2020) consider the generation of scenes in a compositional manner. In
contrast, we disentangle an existing scene into the foreground and background volumes, while they
generate such volumes from scratch. A subsequent line of works considers the disentanglement of
objects in an existing scene. Several representations can be used to learn 3D scenes such as point
clouds Shu et al. (2019); Yang et al. (2019); Hui et al. (2020); Achlioptas et al. (2017), meshes
Hanocka et al. (2019); Groueix et al. (2018); Wang et al. (2018); Pan et al. (2019), or voxels Riegler
et al. (2017); Xie et al. (2019); Wu et al. (2016); Brock et al. (2016). However, work using these
representations for disentanglement Broadhurst et al. (2001); Kutulakos & Seitz (2000) are typically
restricted in topology or resolution or make strong assumptions about scenes.

Recently, a number of methods proposed to use neural fields (NeRFs) to represent individual objects
in the scene. Guo et al. (2020) use an object library and learn a per object scattering field which
can then be composed together to represent a scene where the object’s movement, lighting, and
reflection can be controlled. Our method instead decomposes an existing scene into the foreground
and background objects, capturing their relations, and subsequently allowing for object-specific
edits. Ost et al. (2021) use a scene graph representation to decompose dynamic objects, but rely
on a dynamic scene as input, and are restricted to only one class of objects with similar shapes.
Fu et al. (2022); Kundu et al. (2022) consider specific types of semantic categories, for instance by
considering a specialized domain s.a traffic scenes. Unlike these works, our work is not limited to
the type of editable objects in the scene and enables a wider variety of manipulations including 3D
object camouflage and 3D semantic manipulation of individual objects in a scene. Recently, and
concurrently to our work, Kobayashi et al. (2022) proposed a disentanglement framework for neural
fields using text or image patches. While it enables the disentanglement of coarse concepts based
on text or image patch, it does not allow for the fine-grained control which a mask can provide in
selecting the object to be disentangled.

Perhaps most similar to our work is ObjectNeRF Yang et al. (2021). ObjectNeRF uses an object
branch to render rays with masked regions for foreground objects. At test time, it uses 3D bounding
boxes of individual objects to edit their movement and placement. Similarly to ObjectNeRF, our
method inherits NeRF’s ability to produce novel views for both foreground and background objects.
However, our method differs from ObjectNeRF in multiple ways: (i). Our method requires input
2D segmentation masks for input training views and does not require 3D bounding boxes for editing
foreground objects. Similarly, no 3D structure in the form of a voxel grid is required during training.
(ii). Unlike ObjectNeRF, our method correctly captures objects with noisy and inaccurate masks as
well as reflective objects and those occluded by the background. (iii). Our method relies on ground
truth RGB images for existing views for our loss objectives, and does not require an occlusion loss
which requires an accurate estimate of the scene’s depth of existing and novel views. (iv). Lastly,
our method goes beyond the editing of objects’ movement and placement and enables zero-shot
manipulations (does not require any 3D or 2D training data) such as 3D object camouflage, and 3D
text-based semantic manipulation of individual objects.

3D Manipulation Our framework enables the manipulation of localized regions in a scene. While
2D counterparts, such as 2D inpainting approaches exist Guillemot & Le Meur (2013); Yu et al.
(2019); Efros & Leung (1999); Efros & Freeman (2001), they cannot generate 3D consistent ma-
nipulations. One set of approaches consider editing the entire scene. Canfes et al. (2022) considers
texture and shape manipulation of 3D meshes. CLIP-Forge Sanghi et al. (2021a) generates objects
matching a text prompt using CLIP embeddings. Text2Mesh Michel et al. (2021) manipulate the
texture or style of an object. DreamFields Jain et al. (2021a) learn a neural radiance field represent-
ing 3D objects from scratch. Unlike these works, our work is concerned with manipulating a local
region in an existing scene. Jang & de Agapito (2021) and Liu et al. (2021) modify the shape and
color code of objects using coarse 2D user scribbles, but require a curated dataset of objects under
different colors and views, and are limited to synthetic objects. In contrast, our method enables the
manipulation of objects in complex scenes, semantically, according to a target text prompt.
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Figure 2: Overview of our disentanglement framework. First, we learn a volumetric representa-
tion of the background and full scene (Sec. 3.1). Second, by subtracting the full and the background
volumes, we obtain a disentangled foreground volume. Third, we perform a wide range of manipu-
lations on this volume, which adhere to the background volume. This is illustrated here by changing
the color of the cube from blue to red. Finally, we can place the foreground object back into the
original scene by adding it volumetrically to the background scene, obtaining a manipulated scene.

3 METHOD

Given a 3D scene, we wish to disentangle semantic objects from the rest of the scene. First, we
describe the 3D volumetric representation used to disentangle objects and control objects separately
(Sec. 3.1). The disentanglement of foreground and background volumes opens a wide range of
downstream applications. We provide a framework that explores some of these applications by
manipulating objects in a semantic manner (Sec. 3.2). An illustration of our framework is provided
in Fig. 2. Additional training and implementation details are provided in Appendix A.

3.1 DISENTANGLED OBJECT REPRESENTATION

The ability to disentangle the foreground object volumetrically from the background requires a volu-
metric representation that correctly handles multiple challenges: (i). Foreground occluding objects,
which may be covered by a foreground mask, should not be included in the foreground volume,
(ii). Regions occluded by the foreground object should be visible in the background volume, (iii).
Illumination and reflectance effects, affecting the foreground object in the full scene volume, should
affect the now unoccluded regions of the background in a natural way. To this end, we build upon
the representation of neural radiance fields Mildenhall et al. (2020).

Neural Radiance Fields. A neural radiance field Mildenhall et al. (2020) is a continuous function
f whose input is a 3D position p = (x, y, z) ∈ R3 along with a viewing direction d = (θ, ϕ) ∈ S2,
indicating a position along a camera ray. The output of f is an RGB color c ∈ R3 and volume density
α ∈ R+. We first apply a frequency-based encoding γ to correctly capture high-frequency details
using γ (p) = [cos (2πBp) , sin (2πBp)]

T, where B ∈ Rn×3 is a randomly drawn Gaussian matrix
whose entries are drawn from N

(
0, σ2

)
, where σ is a hyperparameter. f is then parameterized as

an MLP fθ whose input is (γ(p), γ(d)) and output is c and σ.

Object Representation. Given camera extrinsics ξ, we assume a set {(cir, σi
r)}Ni=1 of color and vol-

ume density values predicted by fθ for N randomly chosen points along camera ray r. A rendering
operator then maps these values to an RGB color cr as follows:

cr =

N∑
i=1

wi
r · cir wi

r =

i∏
j=1

(1− σr
j ) · T i

r T i
r = 1− exp(σi

r · δri ) (1)

where σi
r and T i

r are the alpha and transmittance values for point i along ray r and δri = ti+1 − ti

is the distance between adjacent samples. For training, we assume a set of posed views {xi}Mi=1

together with their associated foreground object masks {mi}Mi=1. We set {x̂i}Mi=1 to be the corre-
sponding colors to {xi}Mi=1 as predicted by Eq. (1). Fig. 3 gives an overview of the training. To train
the background (resp. full) volume, we minimize the masked (resp. unmasked) reconstruction loss
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k � g.t.k2
2

Figure 3: Training losses for the background and full scene. We train a neural radiance field
for the full scene with rendering loss on all ground truth pixels. To train the background scene, we
apply a masked rendering loss, where regions that are projected inside a 2D mask (1 −m), are not
penalized in the loss. The network learns to reconstruct this region based on correlated effects, such
as how light from the surrounding affects the masked regions and multi-view geometry.

between real and estimated views:

Lbg =

M∑
i=1

||(1−mi)⊙ (xi − x̂i)||22 Lfull =

M∑
i=1

||xi − x̂i||22 (2)

Let wir
bg and cirbg be the value of wi

r and cir in Eq. (1) predicted for the background volume and
similarly let wir

full and cirfull be the value of wi
r and cir in Eq. (1) predicted for the full volume.

A natural representation of the foreground object can then be found using the principle of volume
mixing Drebin et al. (1988):

cfgr =

N∑
i=1

wir
fg · cirfg wir

fg = wir
full − wir

bg cirfg = cirfull − cirbg (3)

cfgr is the foreground volume color at the pixel corresponding to ray r. Eq. (3) renders the color of
the foreground object for all pixels across different views.

Object Controls. We note that camera parameters, as well as chosen poses, rays, and sampled
points along the rays, are chosen to be identical for both the full volume and the background volume,
and hence also identical to the foreground volume. Given this canonical setting, the corresponding
points along the rays for both the foreground and background can be easily found.

Due to the above-mentioned correspondence, one can independently modify wfg
ir and cfg

ir to get
w′

fg
ir and c′fg

ir for the foreground volume as well as wbg
ir and cbg

ir to get w′
bg

ir and c′bg
ir for the

background volume. In order to recombine the modified background with the modified foreground,
we note that every 3D point along the ray should only be colored, either according to the background
volume or according to the foreground volumes, but not by both, as they are disentangled. We can
then recombine the modified foreground and background:

ccr =

N∑
i=1

w′
bg

ir · c′bg
ir + w′

fg
ir · c′fg

ir (4)

ccr is the recombined color of the pixel corresponding to ray r. In our experiments, we only modify
the foreground and so w′

bg
ir = wbg

ir , c′bg
ir = cbg

ir .

3.2 OBJECT MANIPULATION

Given the ability to control the foreground and background volumes separately, we now propose a
set of downstream manipulation tasks that emerge from our disentangled representation. As noted
in Sec. 3.1, we can now control the weights, colors as well as translation parameters separately for
the foreground and background volumes and so introduce a set of manipulation tasks that use the
controls. We note that the task of Object Removal is equivalent to displaying the background.
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Object Transformation. Due to the alignment of camera parameters, as well as chosen poses,
rays, and sampled points along the rays, one can apply a transformation on the background and
foreground volumes separately, before recombining the volumes together. For either the foreground
or the background, and for a given transformation T , we simply evaluate the color and weight of
point p using fθ at position T−1(p) and then recombine the volumes together using Eq. (4).

Object Camouflage. Here we wish to change the texture of the foreground 3D object such that it
is difficult to detect from its background Owens et al. (2014); Guo et al. (2022). Such an ability
can be useful in the context of diminished reality Mori et al. (2017). To do so, we fix the depth
of the foreground object while manipulating its texture. As the depth of the foreground is derived
from wfg

ir , we fix w′
fg

ir = wfg
ir and only optimize c′fg

ir . We follow Eq. (4), in compositing the
foreground and background volumes. Let the resulting output for each view i be x̂c

i , and let x̂bg
i

be the corresponding output for the background volume. We optimize a neural radiance field for
foreground colors c′fg

ir to minimize Lcamouflage =
∑M

i=1 ||x̂c
i − x̂bg

i ||22. As depth is fixed, only the
foreground object colors are changed to match the background volume as closely.

Non-negative 3D Inpainting. Next, we consider the setting of non-negative image generation Luo
et al. (2021). We are interested in performing non-negative changes to views of the full scene so as
to most closely resemble the background. This constraint is imposed in optical-see-through devices
that can only add light onto an image. In this case, we learn a residual volume to render views
x̂residual
i as in Eq. (1) to minimize Lnon−negative =

∑M
i=1 ||x̂

full
i + x̂residual

i − x̂bg
i ||22. where x̂full

i
are rendered views of the full scene as in Eq. (2). That is, we learn a residual volume whose views
are x̂residual

i , such that when added to the full volume views, most closely resemble the background.

Semantic Manipulation. Next, we consider a mechanism for the semantic manipulation of the
foreground. We consider the recently proposed model of CLIP Radford et al. (2021), which can be
used to embed an image I and text prompt t (or image I2), and to subsequently compare the cosine
similarity of the embeddings. Let this operation be sim(I, t) (resp. sim(I, I2)), where a value of 1
indicates perceptually similar text (resp. image) and image. Let x̂c

i be the result of applying Eq. (4),
while fixing the background colors and weights as well as the foreground weights. That is, we only
optimize the foreground colors c′fg

ir . For a user-specified target text t, we consider the objective:

Lsemantic =

M∑
i=1

1− sim
(
x̂c
i ⊙mi + x̂bg

i ⊙ (1−mi), t
)

(5)

+ 1− sim
(
x̂c
i ⊙mi + x̂bg

i ⊙ (1−mi), x̂
bg
i ⊙ (1−mi)

)
(6)

+ ||x̂c
i ⊙ (1−mi), x̂

bg
i ⊙ (1−mi)||22 (7)

We note that while only the colors of the foreground volume can be manipulated, we enforce that
such changes only occur within the localized masked region of the foreground, and so take the
background from the fixed background volume. To do so, instead of applying clip similarity directly
with x̂c

i , we apply it with x̂c
i ⊙ mi + x̂bg

i ⊙ (1 − mi). Therefore, CLIP’s similarity can only be
improved by making local changes that occur within the masked region of the foreground object,
but can ’see’ the background as well as the foreground for context. We enforce the generated volume
views are similar to both the target text (Eq. (5)) and the background (Eq. (6)). To further enforce
that no changes are made to the background, we constrain the background of the combined volume
views to match those of the background using Eq. (7).

4 EXPERIMENTS

We divide the experimental section into two parts. First, we consider the ability to successfully
disentangle the foreground and background volumes from the rest of the scene. Second, we demon-
strate some of the many manipulation tasks this disentanglement enables, as described in Sec. 3.2.
Corresponding 3D scenes from multiple existing and novel views are provided as a supplementary.
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Full Background Foreground Yang et al. (2021) Foreground Training
Figure 4: Two rendered novel views of the full scene, background, and foreground. Note that as the
TV screen is black, the foreground object appears black as well. For ObjectNeRF Yang et al. (2021),
however, the object representation also captures the background reflections. We also show the result
of directly training a neural field on the masked foreground object itself (foreground training). As
masks are noisy and may include much of the background, this results in a very noisy result which
also include much of the background. While no 2D mask annotation is given for novel views,
corresponding masks for training views are provided in the appendix.

Figure 5: Two uniformly sampled renderings of the full and the background volumes for three
different scenes. The removed object is visually enhanced by a 2D mask.

(a) Original Scene (b) Background (c) Foreground Obj. (d) New Scene

Figure 6: Foreground object transformation. Our method makes plausible predictions in occluded
regions (behind the TV) by understanding the correlated effects from the rest of the scene, such as
the light reflections in the TV screen, which are not visible in the foreground. After scaling the
foreground object and placing it back into the scene, the correlated effects are introduced again,
resulting in photo-realistic and view consistent light reflections on the TV screen.

(a) (b) (c) (d) (e)

Figure 7: Object camouflage for two different random views of a fortress scene. (a) original
scene, (b) background scene, (c) disparity map of the background scene, (d) camouflaged scene, (e)
disparity map of the camouflaged scene.

(a) (b) (c) (d)

Figure 8: Non-negative object inpainting for two views for a scene of leaves. Given the full scene
(a), a residual scene is added (b) resulting in scene (c), with the aim of being close to the background
without the leaf (d).

7



Under review as a conference paper at ICLR 2023

Object Removal Object Extraction Semantic Object Manipulation

Ours DeepFill-v2 EdgeConnect Ours ObjectNeRF Ours GLIDE Blended

Q1 3.86 2.44 2.37 3.87 2.85 3.85 1.10 1.26
Q2 3.84 1.52 1.86 3.91 2.62 3.78 1.20 1.26

Table 1: A user study performed for the tasks of Object Removal, Object Extraction, and 3D Se-
mantic Object Manipulation. A mean opinion score (1-5) is shown.

(a) (b) (c) (d) (e)

Figure 9: 3D Object Manipulation. Insets of the disentangled (a) window mullion and manipu-
lated (c)-(e) tree trunk in the original scene (b). Note how the window mullion is removed without
removing the leaf of the fern that occludes it from the first view. The query text to manipulate the
trunks is (c) Old tree, (d) Aspen tree, and (e) Strawberry.

4.1 OBJECT DISENTANGLEMENT

Fig. 4 shows views from different scenes of the LLFF dataset Mildenhall et al. (2019), where we
separate the full scene, background, and foreground in a volumetrically and semantically consistent
manner. We compare our method to ObjectNeRF Yang et al. (2021). We note that ObjectNeRF
requires 3D bounding boxes to extract the background volume which we do not use. Hence, we
consider only the extracted foreground by ObjectNeRF. As can be seen, ObjectNeRF’s extracted
foreground object captures much of the background as well. This is most visible for the orchids and
tree trunk examples (second and third rows). Further, for the TV extraction (fourth row), our object
representation isolates the reflections on the TV from the background (hence the TV appears black),
while ObjectNeRF considers those reflections as part of the object representation. Our reflection-
independent object representation allows us to resize the TV in a manner that correctly adheres to
those reflections as those resulting from background light sources. This can be seen in Fig. 6. As a
further comparison we consider a neural field trained to reconstruct only the masked region. Due to
some noisy masks, shown in the appendix, this results in a noisy result which captures much of the
background.

Fig. 5 depicts the consistency of the removal of a leaf, a T-rex, and a whiteboard for two different
views. The background neural radiance field makes plausible predictions of the background scene
via multi-view geometry and based on the correlated effects from the scene. E.g. the background
behind the leaf or the legs of the T-rex might be occluded by the 2D mask from one view, but
visible from another. However, the background behind the whiteboard is occluded from every angle.
Nevertheless, the background neural radiance field makes a plausible prediction of the background
based on the correlated effects from the surrounding scene. Further, our model can handle the
disentanglement of non-planar objects, such as the T-rex, well.

In the 2D domain, as far as we can ascertain, the closest 2D task to object disentanglement is that
of object inpainting. We consider two prominent baselines of DeepFill-v2 Yu et al. (2019) and
EdgeConnect Nazeri et al. (2019) for this task and compare our method on the scenes of leaves and
whiteboard removal as in Fig. 5. We train the baseline on the same training images and their associ-
ated masks. In order to compare our method on the same novel views, we train a NeRF Mildenhall
et al. (2020) on the resulting outputs, resulting in a scene with the same novel views as ours. Unlike
our method, the results have 3D inconsistencies, artifacts and flickering between views. The visual
comparison is provided in the supplementary.

To assess our method numerically, we conduct a user study and ask users to rate from a scale of
1 − 5: (Q1) “How well was the object removed/extracted?” and (Q2) “How realistic is the result-
ing object/scene?” We consider 25 users and mean opinion scores are shown in Tab. 1. For object
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extraction we consider ObjectNeRF Yang et al. (2021) and consider the scenes in Fig. 4, For ob-
ject removal, we consider 2D baselines of DeepFill-v2 Yu et al. (2019), EdgeConnect Nazeri et al.
(2019), as detailed above, and consider the leaves and whiteboard scenes as in Fig. 5. As no 3D
bounding box is provided, we did not consider ObjectNeRF Yang et al. (2021) for object removal.

4.2 OBJECT MANIPULATION

Foreground Transformation. We consider the ability to scale the foreground object and place the
rescaled object back into the scene by changing the focal length used to generate the rays of the fore-
ground object, and then volumetrically adding it back into our background volume. Fig. 6 shows
an example where the disentangled TV is twice as large. We note that other transformations such
as translation and rotation are possible in a similar manner. Fig. 6 highlights several properties of
our volumetric disentanglement volume. First, the network is able to “hallucinate” how a plausi-
ble background looks in regions occluded across all views (e.g. behind the TV). It does this based
on correlated effects from the rest of the scene. A second property is that it can disentanglement
correlated effects such as the reflections on the TV screen, which is evident from the almost com-
pletely black TV in the foreground scene. Lastly, these correlated effects result in consistent and
photo-realistic reflections, when we place the rescaled TV back into the scene.

Object Camouflage. Another manipulation is of camouflaging an object Owens et al. (2014); Guo
et al. (2022), i.e. only changing the texture of the object and not its shape. Fig. 7 illustrates examples
of camouflaging with fixed depth, but free texture changes. While the depth of the camouflaged
object and that of the foreground object match, the appearance is that of the background.

Non-Negative Inpainting. In optical see-through AR, one might also wish to camouflage ob-
jects Luo et al. (2021) or inpaint them. However, in see-through AR one can only add light. Fig. 8
shows how adding light can make the appearance of camouflage in a 3D consistent manner.

3D Object Manipulation. We now consider 3D object manipulation. Fig. 9 shows two views of
a fern. We have disentangled both the window mullion in the upper left corner and the tree trunk
from the rest of the scene. Even though the window mullion is occluded in the first view, and thus
our 2D mask is masking the occluding leaf in front of the window mullion, this occluding object is
not part of the disentangled window mullion object. The 3D manipulations are shown in (c)-(e) in
Fig. 9. For the strawberry manipulation in (e), note how part of the tree trunk was camouflaged to
more closely resemble the shape of a strawberry. We compare to 2D text-based inpainting methods
of GLIDE Nichol et al. (2021) and Blended Diffusion Avrahami et al. (2021), where we follow
the same procedure as in Sec. 4.1. We consider a similar user study as detailed in Sec. 4.1, where
Q1 is modified to: “How well was the object semantically manipulated according to the target text
prompt?” and consider the fern scene of Fig. 9, for the text prompts of “strawberry” and “old tree”.

4.3 DISCUSSION AND LIMITATIONS

Our work has some limitations. When light from the background affects the foreground object, we
correctly disentangle the illuminations on the object. However, when the object is a light source, we
cannot completely disentangle the object as seen in Appendix Fig. 10 (a) and in the supplementary.
Another limitation is with respect to the semantic manipulation of foreground objects. We found
that manipulating too large objects results in an under-constrained optimization because the signal
provided by CLIP is not sufficient. We also note that, while our work can handle noisy masks, we
require masks for all training views. We leave the task of reducing the number of masks for future
work. Further, artifacts may arise when the training views do not provide sufficient information to
generate the foreground using correlated background effects of multi-view geometry. Our work is
orthogonal to recent speed and generalization extensions of NeRF that could be combined with our
method. The number of 2D masks required by our method is also upper bounded by the number of
training views and so methods such as DietNeRF Jain et al. (2021b) and SinNeRF Xu et al. (2022)
could be combined with our method to reduce the number of 2D masks required to even a single
mask. Alternatively one can use zero-shot segmentation approaches such as Shin et al. (2022) to
obtain masks in a zero-shot manner. In Appendix B, we consider, for the task of foreground object
translation (Fig. 6), alternatives to the recombining method of Eq. (4). Lastly, we note that our
method can handle noisy annotations of the foreground. In Appendix Fig. 10(c), we demonstrate the
masks used for the leaves scene, which were extracted using an off-the-shelf segmentation algorithm.
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5 CONCLUSION

In this work, we presented a framework for the volumetric disentanglement of foreground objects
from a background scene. The disentangled foreground object is obtained by volumetrically sub-
tracting a learned volume representation of the background with one from the entire scene. The
foreground-background disentanglement adheres to object occlusions and background effects such
as illumination and reflections. We established that our disentanglement facilitates separate control
of color, depth, and transformations for both the foreground and background objects. This enables
a wide range of applications going beyond object movement and placement, of which we have
demonstrated those of object camouflage, non-negative generation, and 3D object manipulation.
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(a)

(b1 - Ours) (b2) (b3) (b4)

(c)

Figure 10: (a) Failure to completely remove a light source. The original light source is shown in blue
in the middle image and for the background, using our method, on the right. In orange and green
are regions affected by the light source, resulting in the failure to completely remove it. (b1-b4)
Ablation for composition. Alternatives to the composition shown in Eq. (4) for foreground object
translation (Fig. 6). (c) Robustness to noisy 2D masks. Our method can handle noisy 2D masked
obtained automatically.

A IMPLEMENTATION DETAILS

For training, we consider the natural non-synthetic scenes given in Mildenhall et al. (2020), together
with their associated pose information. An off-the-shelf segmentation or manual annotation is used
to extract masks. We note that masks need not be exact, and may capture more than the desired
object (see main paper for details). Our rendering resolution for training the background and full
scenes is 504×378. For the manipulation tasks, the same resolution is used for 3D inpainting, object
camouflage, transformation and non-negative inpainting tasks. For the semantic manipulation task,
our rendering resolution is 252 × 189. For the CLIP Radford et al. (2021) input, for a given view,
we sample a 128× 128 grid of points from the 252× 189 output and then upsample it to 224× 224,
which is the required input resolution of CLIP. We normalize the images and apply text and image
embedding as in CLIP Radford et al. (2021). We follow NeRF Mildenhall et al. (2020), in optimizing
both “coarse” and “fine” networks for a neural radiance field, and follow the same sampling strategy
of points along the ray. All neural fields are parametrized using an MLP with ReLU activation of the
same architecture as Mildenhall et al. (2020). We use an Adam optimizer (β1 = 0.9, β2 = 0.999)
with a learning rate that begins with 5× 10−4 and decays exponentially to 5× 10−5.

B ADDITIONAL VISUALIZATIONS

As noted in the main text, Fig. 10 (a) shows the failure to remove a light source. In Fig. 10 (b1 to
b4), we show, for the task of foreground object translation (Fig. 6), alternatives to the recombining
method of Eq. (4), with (a2) c′full

ir instead of c′fg
ir , (a3) w′

full
ir instead of w′

fg
ir , (a4) ccr =
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Figure 11: Sample of the masks used for our method for training views.

∑N
i=1(w

′
bg

ir +w′
fg

ir ) · (c′bg
ir + c′fg

ir ). Fig. 10 (c) shows examples of the noisy masks used for the
leaf scene disentanglement which our method handles correctly.

C TRAINING MASKS

We provide a sample of the training masks used for training views in Fig. 11.
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