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Abstract
Class-Incremental Learning (CIL) seeks to learn
new concepts without forgetting previously
learned knowledge. To achieve this, rehearsal-
based methods keep a replay memory consisting
of a small number of trained samples from pre-
vious tasks. However, recent studies show that
rehearsal-based methods are prone to overfitting
on rehearsal samples, resulting in poor generaliza-
tion on previous tasks. Since the generalization
error is bounded by the margin on the training
dataset, in this paper, we study the generaliza-
tion by all-layer margin on deep neural networks
to alleviate catastrophic forgetting. Specifically,
we show that the average margin of the rehearsal
samples are smaller during incremental learning.
To acquire larger margin thus better generaliza-
tion on rehearsal samples, we propose Multi-layer
Rehearsal Feature Augmentation (MRFA) in re-
hearsal training to optimize the all-layer margin
on rehearsal samples. The proposed method aug-
ments the features of rehearsal samples at each
layer by gradient ascent step of the current model
with respect to the feature. With such augmenta-
tions on layer features, the margin on rehearsal
samples are larger, rehearsal samples are able to
provide more information for refining the deci-
sion boundary during incremental learning, thus
alleviating catastrophic forgetting. Extensive ex-
periments show the effectiveness of MRFA on
various CIL scenarios.

1. Introduction
In traditional supervised learning, the training samples are
assumed to be drawn i.i.d. from a stationary distribution.
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However, in real-world situations, this assumption does not
hold since new concepts and knowledge increase over time.
It is necessary for learning systems to adapt to new knowl-
edge while keeping the previously learned knowledge. This
motivates the research in Continual Learning (or Incremen-
tal Learning). Class-Incremental Learning (CIL) (Zhou
et al., 2023b) is one of the scenarios where new concepts in-
crementally emerge as new classes. The main challenge for
Continual Learning is catastrophic forgetting (McCloskey
& Cohen, 1989), where the learning system usually forgets
previously learned knowledge fast and catastrophically. The
forgetting is caused by the distribution shift on the input
samples and labels, especially at the task boundary where
the rapid shift occurs. When the distribution shift occurs, the
gradients, intermediate representations are biased towards
the new task, causing the test accuracy drop on old tasks.

One of the widely adopted strategies to avoid catastrophic
forgetting is to keep a small number of samples from pre-
viously learned tasks for replay. Such methods are called
rehearsal-based approaches (Robins, 1995; Rebuffi et al.,
2017; Chaudhry et al., 2019; Liu et al., 2020). This strategy
is generally effective since it mitigates the distribution shift
during new task training. However, recent studies show
that rehearsal-based methods are prone to overfitting on re-
hearsal samples (Verwimp et al., 2021). When the model
is training with additional rehearsal samples, the gradients
are initially dominated by the new task because of the sig-
nificant loss gap between rehearsal samples and training
samples from the new task. After some epochs, their losses
are balanced, the model will end up at a high-loss ridge,
harming the generalization on previous tasks.

There are various ways to bound the generalization error,
margin-based generalization bounds are important for clas-
sification models (Koltchinskii & Panchenko, 2002; Kakade
et al., 2008). All-layer margin (Wei & Ma, 2020) is one
of the margin-based generalization bounds for deep neural
networks. It is defined as the minimal perturbation required
to alter the prediction of the model for a sample. Generally,
large margin means good generalization. It is also true for
all-layer margin, the larger the minimal perturbation is, the
larger the margin is, thus better generalization the model will
achieve. All-layer margin offers a finegrained and tractable
way to estimate the generalization error for deep networks.
Therefore, we wonder if we can reveal the loss of generaliza-

1



Multi-layer Rehearsal Feature Augmentation for Class-Incremental Learning

tion on rehearsal samples by studying the evolution of the
all-layer margin on rehearsal samples, then try to alleviate
catastrophic forgetting by enlarging the margin.

In this paper, we reveal the overfitting on rehearsal sam-
ples from another perspective by studying how the all-layer
margin of the network evolves in CIL. Specifically, we inves-
tigate the all-layer margin of the network quantitatively with
its upper bound and show the decision boundary visually.
As a result, we find that the margin shrinkage indeed hap-
pens in rehearsal samples. Therefore, we can alleviate the
overfitting on the rehearsal samples by making the margin
larger. Furthermore, we propose multi-layer rehearsal fea-
ture augmentation (MRFA) for class-incremental learning.
The proposed method augments the features of rehearsal
samples at each layer by gradient ascent step of the current
model with respect to the feature. With such augmentation
on layer features, rehearsal samples are able to provide more
information for refining the decision boundary during in-
cremental learning, thus alleviating catastrophic forgetting.
Moreover, extensive experiments are performed to show the
effectiveness of MRFA on various settings of CIL.

Our contributions can be summarized as 1) We investigate
the overfitting on rehearsal samples from the perspective
of all-layer margin of the network, quantitatively and vi-
sually. 2) We propose MRFA to make the margin of the
rehearsal samples larger, thus alleviating the forgetting of
the network. 3) We perform extensive experiments to verify
the effectiveness of the proposed method.

2. Related Works
2.1. Class-Incremental Learning

Class-Incremental Learning (CIL) is an incremental learn-
ing scenario where the model is learned task by task with a
different set of classes. During inference, no task informa-
tion about the samples is available. Many techniques and
frameworks are proposed to alleviate catastrophic forgetting
and improve the performance in CIL.

Rehearsal-based methods Buzzega et al. (2020) store exem-
plars of previous tasks and replay them in follow-up tasks. It
makes the learned representation less forgetful by adjusting
the input distribution towards the learned tasks. Many works
focus on how to select exemplars (Rebuffi et al., 2017; Wu
et al., 2019; Tiwari et al., 2022; Liu et al., 2020). Exemplars
can also be obtained by generative models (Shin et al., 2017).
However, recent studies show that rehearsal-based methods
are prone to overfitting on rehearsal samples (Verwimp et al.,
2021).

There are several works aiming to enhance the utilization
of the rehearsal samples, which coincides with the root
motivation of this paper. RAR (Kumari et al., 2022) pairs

each rehearsal sample with the sample of the task, and
interpolates them to generate marginal samples for rehearsal.
GMED (Jin et al., 2021) use gradient-based methods to edit
the raw image of the rehearsal samples, making the network
focus more on the samples with the most increased loss.

There are works also consider augmentations on rehearsal
samples (Zhang et al., 2022; Yang et al., 2023). Zhang et al.
(2022) proposes to combine data augmentation with multi-
ple iterations in online continual learning (OCL), and further
adopts bootstrapped policy gradient strategy to automati-
cally determine the number of iterations and the augmen-
tation strength. although it studies the rehearsal samples,
their methods do not apply to CIL, since it studies the bal-
ance between the number of iterations and the augmentation
strength in OCL.

There are other works mentioned margin in CIL. Hou et al.
(2019) proposes a margin ranking loss to separate the em-
beddings of old and new. However, the margin in this loss
only considers the final output embedding of the deep neural
network, which is different from the all-layer margin that
considers all of the layers in this paper.

Overall, although the utilization of the rehearsal samples
are studied in previous works, the margin on the rehearsal
samples has never been explored and studies related to the
margin are limited.

We discuss additional related works in Appendix A.

2.2. Margin and Generalization

Margin is an important notion throughout the machine learn-
ing history. Large margin principle produces remarkable
and empirical results for classification (Vapnik, 1999) and
regression (Drucker et al., 1996). For linear models, the
generalization error can be easily bounded by normalized
output margin (Koltchinskii & Panchenko, 2002; Kakade
et al., 2008). However, for deep models, the generalization
bounds are more complicated and requiring the normaliza-
tion by a quantity that either scales exponentially in depth or
depends on complex properties of the network (Neyshabur
et al., 2015; Golowich et al., 2018). Therefore, generaliza-
tion bounds on the input margin become the alternatives for
deep networks. Sokolić et al. (2017) provides generaliza-
tion bounds based on the input margin of the network, but
the bounds depend exponentially on the dimension of the
data manifold. Yan et al. (2019) optimizes the adversarial
margin in the input space. All-layer margin (Wei & Ma,
2020) considers all of the layers simultaneously, avoiding
explicit dependency on exponential exponential dependency
on network depth.

To the best of our knowledge, the margin of the network on
the rehearsal memory during CIL has never been explored.
Our work aims to investigate the overfitting on rehearsal

2



Multi-layer Rehearsal Feature Augmentation for Class-Incremental Learning

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation Scale

0.8

0.9

1.0

A
cc

ur
ac

y 
A

fte
r P

er
tu

rb
in

g

Upper Bound
Model 1
Model 5
Model 9

(a) Block 1

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation Scale

0.875

0.900

0.925

0.950

0.975

1.000

A
cc

ur
ac

y 
A

fte
r P

er
tu

rb
in

g

Upper Bound
Model 1
Model 5
Model 9

(b) Block 2

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation Scale

0.94

0.96

0.98

1.00

A
cc

ur
ac

y 
A

fte
r P

er
tu

rb
in

g

Upper Bound
Model 1
Model 5
Model 9

(c) Block 3

Figure 1. Accuracy drop after different scales of perturbation. With the approximations in section 4.1, the all-layer margin is estimated by
the rate of decline of the accuracy after input perturbations along a certain direction. Model k represents the model trained after task k, the
model has trained on k + 1 tasks (0, . . . , k). Upper Bound represents the accuracy drop on the samples from the current task. As we can
see from the figures, samples in the rehearsal memory show more rapid accuracy decline with the same amount of perturbation scale as
the task goes on. It happens for every layer of the network, which means the margin of the rehearsal samples is averagely smaller as
the model is incrementally updated for new tasks.

samples from the perspective of the margin, providing better
understanding about the catastrophic forgetting.

3. Preliminaries
In this section, we provide background knowledge about the
problem formulation of class-incremental learning and the
formal formulation of all-layer margin with its generaliza-
tion bound for deep neural networks.

3.1. Problem Formulation

In CIL scenarios, we have multiple classification tasks to
learn sequentially. Let Dt be the training dataset of the
tth task. (x

(t)
i , y

(t)
i ) ∈ Dt is a sample. x

(t)
i is the input,

y
(t)
i is the label. Let Ct =

⋃
i{y

(t)
i } be the class set of

task t. In CIL, ∀t1 ̸= t2, Ct1 ∩ Ct2 = ∅. In each task, we
only train the model on Dt, but test on all the tasks the
model has trained on, i.e., the seen tasks. For example,
when the model is training on task ti, the seen tasks are
tasks tj(j ≤ i). In rehearsal-based CIL, a small number of
rehearsal samples M are allowed to be stored for later tasks.
The total number of rehearsal samples should be constant
during the CIL training. The goal is to make the model get
better performance on all the seen tasks.

3.2. All-layer Margin

The margin is conventionally defined on the output space
which equals the gap between predictions on the true la-
bel and the second confident label. For shallow network
architectures, such margin produces great theoretical and
empirical results for classification and regression. For ex-
ample, kernel SVMs (Boser et al., 1992) has an analytical
form for the output margin. However, for deep network
architectures, the theoretical generalization bound is com-
plicated and intractable to estimate (Golowich et al., 2018;

Nagarajan & Kolter, 2019).

In order to overcome the limitations of the output margin on
deep models, an alternative margin is defined on the input
space (Elsayed et al., 2018) which measures how much
perturbation a layer can resist to alter its final prediction for a
sample. One of such margins with theoretical generalization
bound is all-layer margin (Wei & Ma, 2020). Suppose the
classification model F (x) = fL ◦ · · · ◦ f1(x) is composed
of L layers, and δ1, . . . , δL are perturbations intended to be
added to each layer’s input. The margin is defined by the
minimum norm of δ required to alter the correct prediction:

mF (xi, yi) := min
δ1,...,δL

√√√√ L∑
l=1

∥δl∥22,

s.t. argmaxF (xi, δ1, . . . , δL) ̸= yi,

(1)

where (xi, yi) is a pair of sample and label from the training
set, F (xi, δ1, . . . , δL) is the model with perturbations δl
added at the input of layer l.

The generalization error can be bounded without explicit
exponential dependency on network depth using all-layer
margin (Wei & Ma, 2020). To state it formally, with prob-
ability 1 − δ over the draw of the training data, all of the
classifiers F ∈ F that achieve training error 0 is proved to
satisfy the following bound in terms of the all-layer margin:

EP [ℓ0-1(F (x), y)]

≲

∑
i Ci√
n

√
E(x,y)∼Pn

[
1

mF (x, y)2

]
log2 n+ ζ, (2)

where ζ := O
(

log(1/δ)+logn
n

)
is a low-order term. It offers

the theoretical guarantee that with larger expected margin on
the training set, we can achieve lower generalization error.
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(a) Input Space of Model 1 (b) Input Space of Model 5 (c) Input Space of Model 9

(d) Input Space of Model 1 (e) Input Space of Model 5 (f) Input Space of Model 9

Figure 2. Evolution of decision boundary around rehearsal samples. The number leading the class name is the task number of the class.
For example, 0.road means class road is from task 0. The two sub-figure rows show the decision boundaries around two samples in
rehearsal memory from the initial task, whose decision regions are in darker color (at the left bottom of each figure, i.e. 0.road and
0.shrew in two rows). The other two samples are from the current task, whose decision regions. Since the all-layer margin is formulated
by the minimal amount of perturbation that alter the prediction of the network, the visualizations of decision boundary reflect the margin
intuitively. As the task goes on, the decision boundary shrinks towards the sample, which means it can no longer resist the same
amount of perturbation, leading to smaller margin for rehearsal samples.

4. Methodology
With the preliminaries above, the next issue we care about
is that can we attribute the loss of generalization on old
tasks to the smaller margin of the rehearsal samples? Does
the margin shrinkage actually happen in rehearsal-based
CIL? To find it out empirically, in this section, we first
approximate the margin for better tractability. Then, with
the approximations, we investigate how the all-layer margin
of the network evolves during CIL training in two aspects.
Finally, we propose our method.

4.1. Evolution of Margin in Rehearsal-based CIL

In this section, we approximate the margin for better
tractability. The definition of all-layer margin is a min-max
formulation, and contains multiple optimizable variables,
which is hard to estimate. Alternatively, we turn to estimate
its upper bound. In fact, all-layer margin is bounded by the
margin with perturbation at only one layer, which is for any
l ∈ [L], we have

mF (xi, yi) ≤ m̃F,l(xi, yi) := min
δl

∥δl∥2,

s.t. argmaxF (xi,0, . . . , δl, . . . ,0) ̸= yi.
(3)

Otherwise we find better minimizers for equation 1. The
complete proof is provided in Appendix B. This offers us
possibilities to investigate the input margin for every layer
independently.

The minimal perturbation for each layer that alters the pre-
diction of the model requires complete knowledge about
the decision boundary around the sample, which is hard to
find. However, with the classification loss function ℓ, we can
find the steepest direction towards loss increment, approxi-
mating the direction towards misclassification for a sample.
Therefore, we approximate the perturbation direction with
the gradient of the layer with respect to its input, that is

m̃F,l(xi, yi) = min
δl

∥δl∥2

≈ min
αi,l

∥αi,l∇zℓ (Fl(zi,l))∥2,

s.t. argmax F (xi,0, . . . , δl, . . . ,0) ̸= yi,

(4)

where αi,l is a optimizable variable to control the magni-
tude of the gradient, zi,l is the intermediate feature of xi,
the input of fl, Fl(z) = fL ◦ · · · ◦ fl(z), and ℓ is some
classification loss function, in our case, the cross entropy
loss. Denoting the minimizer for equation 4 as α∗

i,l, we have

m̃F,l(xi, yi) ≈ α∗
i,l∥∇zℓ (Fl(zi,l))∥2. (5)

So far, we have got the approximation of the margin for
sample i and layer l. For the average margin on rehearsal
samples, we set αi,l to a fixed value for each sample, and
count the number of samples that alter their predictions,
which is the accuracy under the gradient magnitude of αi,l.
Since the accuracy drop reflects the number of samples that
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alter their predictions due to the increasing magnitude of
the perturbation, the rate of decline of the accuracy is an
estimator of the average margin on rehearsal samples. With
lower rate of decline, less samples alter their prediction for
the same magnitude of perturbation, which means larger
expected margin, and vice versa.

Now we can investigate the evolution of margin in rehearsal-
based CIL. We perform experiments on the networks trained
by iCaRL (Rebuffi et al., 2017) on CIFAR100 for 10 evenly
split tasks with 2000 maximum number of rehearsal samples.
We investigate the accuracy change on the rehearsal sam-
ples from the initial task when applying different scales
of the perturbation for the first three residual blocks of
ResNet32 (He et al., 2016). We plot the accuracy on these
samples with different perturbation scale αl, for each model
after training each task.

The results are shown in Figure 1. As we can see from the
plots, the accuracy of the rehearsal samples drops mono-
tonically when the scale of the perturbation is increasing.
Note that Upper Bound in each plot is the accuracy drop on
the samples from the current task. We find that this curve
is roughly the same for each model, so there are few over-
lapped dotted lines in each figure. Comparing the curve
between rehearsal samples and samples from the current
task, we find that rehearsal samples show more higher rate
of accuracy decline, indicating the margin of the rehearsal
samples are much smaller than that of the samples form the
current task. More importantly, samples in the rehearsal
memory show more rapid accuracy decline with the same
amount of perturbation scale as the task goes on. And it
happens for every block of the network, which means the
margin of the rehearsal samples is averagely smaller when
they run through more training tasks. More plots with dif-
ferent settings can be found in Appendix C.

4.2. Decision Boundary Perspective

According to equation 3, the margin requires to find the min-
imal perturbation that alters the prediction of the sample,
which is closely related to the decision boundary. We plot
the decision boundary between the rehearsal samples and the
samples from the current task by plotting the predictions of
the interpolated samples between three samples (Somepalli
et al., 2022). The interpolated samples form a grid on the
plane of these three samples. Therefore, we can assign color
to each sample according to the model’s prediction on the
sample. The results are shown in Figure 2. From the plots
we can easily find that the samples from the current task oc-
cupies a lot more decision space than the rehearsal samples.
Also, visually, there are regions with much smaller volume
at the decision boundary around the rehearsal samples, re-
flecting the volatility around the decision boundary. For the
evolution in CIL, as the task goes on, the decision bound-

Algorithm 1 Multi-layer Rehearsal Feature Augmentation

1: Input: batch B, current model Ft(x)
2: for xi, yi ∈ B do
3: if xi, yi ∈ M then
4: Sample l ∼ U{1, L}, β̂ ∼ U(0, β)
5: Lcls,i = AugmentedForward(Ft(x), xi, yi, l, β̂)
6: else
7: Lcls,i = ℓ(Ft(xi), yi)
8: end if
9: end for

10: Lcls =
1
|B|

∑
i Lcls,i

11: Output: Lcls

12: function AugmentedForward(F (x), x, y, l, β̂)
13: zl = fl−1 ◦ · · · ◦ f1(x)
14: ẑl = zl + β̂∥zl∥2∇zℓ(Fl(zl), y) {Eq. 6}
15: return ℓ(Fl(ẑl), y) {Eq. 7}
16: end function

ary shrinks towards the sample from the rehearsal memory,
which means it can no longer resist the same amount of
perturbation, leading to smaller margin for rehearsal sam-
ples. Therefore, we reveal the margin shrinkage from the
perspective of visualizations of decision boundary.

4.3. Multi-layer Rehearsal Feature Augmentation

In order to get better generalization for old tasks, we seek
for acquiring larger all-layer margin on rehearsal samples.
Therefore, we propose to augment the rehearsal samples
at each block’s input to generate competitive augmented
features for training, which is Multi-layer Rehearsal Feature
Augmentation (MRFA). These augmented samples push
the rehearsal samples away from the decision boundary
and offer robustness against perturbations, leading to larger
margin thus better generalization on old tasks.

Rehearsal-based methods often train incremental tasks to-
gether with the rehearsal memory. Each batch is comprised
of both samples from current task and rehearsal memory.
To augment the rehearsal samples, for each batch, we first
compute the gradients of the model with respect to each
block’s input as the direction of the augmentation. Then
for each rehearsal sample in the batch, we uniformly se-
lect one of the blocks’ inputs to apply the augmentation,
and compute the loss with augmented features, update the
model parameters according to the augmented loss. Specifi-
cally, for each rehearsal sample xi in the batch, we do the
following computations:

ẑi,l = zi,l + λ∇zℓ(Fl(zi,l)), (6)
Lcls,i = ℓ(Fl(ẑi,l), yi), (7)

where l ∼ U{1, L}, zi,l = fl−1◦· · ·◦f1(xi) is the interme-
diate feature for xi, λ is the magnitude of the augmentation.
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Table 1. Performance Experiment Results on CIFAR100. Bold font represents our method improves the baseline in this scenario.
Memory Size 500 1000 2000
Scenarios 10-10 50-10 10-10 50-10 10-10 50-10

Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg
Replay 30.50 50.83 30.29 41.66 38.55 56.65 38.33 47.72 45.57 61.95 45.80 54.63
w/ MRFA 31.69 51.61 31.98 42.85 39.42 57.12 39.78 48.54 46.85 62.59 47.24 55.51
iCaRL 32.11 53.24 36.16 50.59 41.50 59.98 44.79 56.23 48.65 64.52 50.56 60.08
w/ MRFA 33.51 54.84 37.89 51.48 42.84 60.82 46.02 57.96 49.73 65.17 52.49 61.50
FOSTER 41.54 63.15 48.98 60.32 56.06 71.55 51.40 61.91 62.20 74.49 59.80 67.54
w/ MRFA 42.12 63.90 49.51 60.83 56.76 71.94 52.06 62.34 63.41 75.23 60.74 68.02
DyTox+ 52.61 69.29 53.16 65.97 58.47 73.48 56.29 66.71 62.06 75.54 66.75 73.36
w/ MRFA 54.31 70.56 54.03 66.82 59.38 74.17 57.96 67.56 63.80 76.23 68.21 74.73
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Figure 3. Accuracy drop after different scales of perturbation with MRFA. Dashed curves represent the models trained with MRFA. With
MRFA, the accuracy decline is slower with the same amount of perturbation scale. This indicates the margin of the rehearsal samples is
averagely larger with our method.

For the value of λ, we use random scaled L2 norm of zi,l,
which is λ = β̂∥zi,l∥2. Introducing the L2 norm in the
augmentation intuitively balances the different scales for
each block. Random scaled L2 norm diversifies the aug-
mentation with different levels of difficulty, especially when
the model is approaching convergence. The scale factor is
drawn from a uniform distribution β̂ ∼ U(0, β), where β is
a hyperparameter, to avoid adversarial overfitting (Yu et al.,
2022). Equation 6 performs the gradient ascent step to the
selected layer l, and augments the input feature zi,l with
the magnitude of λ. Equation 7 calculates the augmented
loss for the actual backward process. The pseudocode for
MRFA is presented in Algorithm 1.

Distillation Compatibility. Knowledge distillation (Zhou
et al., 2003; Zhou & Jiang, 2004; Hinton et al., 2015) is
a well-known technique in transfer learning, and widely
used in CIL. Some of the methods in CIL store the model
trained on previous tasks for distillation (Li & Hoiem, 2017;
Rebuffi et al., 2017; Douillard et al., 2022). This model is
often called as teacher model, it provides knowledge about
previous tasks in order to prevent the forgetting in current
task training. The classification loss with MRFA is based
on the augmented features of the current model. To make

the best use of the teacher model with our augmentations,
we apply exactly the same configuration of augmentation
as current model in the teacher model for each rehearsal
sample in the batch. We can do this easily because the
teacher model shares the same architecture with the current
model. The augmentation can be easily added to the layer-
wise features in the teacher model.

5. Experiments
5.1. Experiment Settings

Datasets. Following most of the image classification bench-
marks in CIL (Rebuffi et al., 2017; Wu et al., 2019), we use
CIFAR100 and ImageNet100 to train the model incremen-
tally. CIFAR100 (Krizhevsky, 2009) has 50,000 training and
10,000 testing samples with 100 classes in total. Each sam-
ple is a tiny image in 32 × 32 pixels. ImageNet100 (Deng
et al., 2009) has 1,300 training samples and 50 test samples
for each class.

Data Split. There are two common types of splits in CIL.
The small base one equally divides all of the classes in a
dataset (Rebuffi et al., 2017). The large base one uses half
of the classes in a dataset as the base task (task 0), and
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Table 2. Performance Experiment Results on ImageNet100. Bold font represents our method improves the baseline in this scenario.
Memory Size 500 1000 2000
Scenarios 10-10 50-10 10-10 50-10 10-10 50-10

Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg
Replay 34.46 54.82 36.68 47.27 45.06 61.79 46.00 53.28 51.10 66.00 52.02 58.33
w/ MRFA 36.15 56.02 38.32 48.41 46.78 62.47 47.83 54.51 52.51 67.22 53.61 59.54
iCaRL 35.90 57.11 38.14 54.83 45.98 62.59 47.50 59.59 50.90 66.83 54.22 64.08
w/ MRFA 37.24 58.14 39.88 55.35 47.15 63.62 48.89 60.24 52.05 67.34 55.78 65.15
FOSTER 37.62 60.25 60.82 73.54 52.64 68.50 64.26 74.60 65.68 76.74 71.60 77.37
w/ MRFA 39.45 61.57 62.03 74.36 53.87 69.77 65.93 75.44 66.93 77.61 72.88 78.49
DyTox+ 56.22 72.84 61.98 74.48 60.41 74.69 65.24 76.25 65.78 76.35 71.32 78.08
w/ MRFA 57.54 73.38 62.46 75.25 61.84 75.57 65.99 76.68 66.56 77.31 72.57 79.29

(a) Input Space of Model 1 (b) Input Space of Model 5 (c) Input Space of Model 9

(d) Input Space of Model 1 (e) Input Space of Model 5 (f) Input Space of Model 9

Figure 4. Evolution of decision boundary around rehearsal samples with MRFA. Compared to Figure 2, the decision boundary around
the rehearsal samples shrinks slower with our method.

equally divides the remaining classes (Hou et al., 2019; Yu
et al., 2020). For a dataset with 100 classes, 10-10 means 10
classes in the base task and all of the following incremental
tasks are also with 10 classes, 50-10 means 50 classes in the
base task and 10 classes in the incremental tasks.

Backbones and Baselines. In this paper, we test our method
on four baselines. Replay is the baseline method with only
the fixed number of rehearsal samples and no other tech-
niques. We use ResNet32 (He et al., 2016) for CIFAR100
and ResNet18 for ImageNet100 as the backbone in Replay.
iCaRL (Rebuffi et al., 2017) is a classic non-expanding
method for CIL, which also uses ResNet32 and ResNet18
as the backbones for CIFAR100 and ImageNet100 respec-
tively. FOSTER (Wang et al., 2022a) is based on feature
boosting, which boosts the final representation for predic-
tion. Dytox+ (Douillard et al., 2022) is a ViT-based method
with expanding task tokens, which uses Convit (d’Ascoli
et al., 2021) as the backbone.

Implementation. The experiments based on ResNet are
implemented with the open-source code PyCIL (Zhou et al.,
2023a). The experiments based on ViT-based backbones are
implemented with the open-source code of DyTox (Douil-
lard et al., 2022). The code is available on GitHub1.

5.2. Performance Experiments

To verify the effectiveness of our proposed methods in CIL,
we test MRFA on four baselines, covering both convolu-
tional and transformer-based backbones, also covering both
non-expandable and expandable architectures. The results
for CIFAR100 and ImageNet100 are shown in Table 1 and
Table 2. The results show that MRFA successfully improves
rehearsal-based CIL in most of the scenarios by 1∼2%.
This indicates that our method effectively alleviates the

1https://github.com/bwnzheng/MRFA_
ICML2024
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Class 1
Class 3
Pristine
Augmented

Class 5
Class 8
Pristine
Augmented

Class 9
Class 2
Pristine
Augmented

Figure 5. Visualizations of feature space augmented by MRFA. From the figures, we can conclude that the features augmented by MRFA
adaptively fill the feature space around rehearsal samples, helping the model to attain refined decision boundaries.

Table 3. Average accuracy of MRFA with different selection strate-
gies of rehearsal samples.

Memory Size 500 2000
Scenarios 10-10 50-10 10-10 50-10
Replay w/ herding 54.82 47.27 61.95 54.63
w/ MRFA 56.02 48.41 62.59 55.51
Replay w/ random 54.20 46.61 61.29 54.05
w/ MRFA 55.48 47.86 62.17 54.95

Table 4. Average accuracy of MRFA on both current task and re-
hearsal samples (MRFA-a).

Memory Size 500 2000
Scenarios 10-10 50-10 10-10 50-10
Replay w/ MRFA 51.61 42.85 62.59 55.51
Replay w/ MRFA-a 50.16 41.03 61.54 54.28
iCaRL w/ MRFA 54.84 51.48 65.17 61.50
iCaRL w/ MRFA-a 52.31 49.85 64.23 59.82

overfitting on rehearsal samples. We also record the train-
ing duration of the methods with MRFA, which shows that
MRFA improves the baselines without additional samples
with small overhead. Details are in section 5.6.

5.3. Margin Evolutions and Decision Boundaries

To verify the effectiveness of MRFA on making the margin
larger, we plot the accuracy drop after different scales of
perturbation when applying MRFA in CIL, just like we have
done in section 4.1. The results are shown in Figure 3. As
we can see from the figure, MRFA actually makes the rate
of accuracy decline slower, indicating a larger upper bound
on the margin of the rehearsal samples.

Also, we plot the evolution of the decision boundary around
rehearsal samples when applying MRFA, just like we have
done in section 4.1. The results are shown in Figure 4. As
we can see from the figure, compared to Figure 2, MRFA
effectively alleviates the shrinkage of the decision bound-
ary, also indicating that a larger margin is acquired for the
rehearsal samples.

5.4. Feature Space Visualization

In addition to the visualizations of the decision boundary,
which focuses on the input space of the model, we also
investigate the augmented feature in the feature space. To
show the properties of the augmented features, we plot the
final features of the rehearsal samples before and after the

augmentation, using Principle Component Analysis. For
the tidiness and clarity, we only show two classes in one
plot. The results are shown in Figure 5. The magnitude of
the augmentation is exaggerated for better illustration of the
augmentation direction. As we can see from the figure, the
augmented features are closer to other classes, which means
MRFA adaptively augments the feature towards the decision
boundary. The augmented features would fill the feature
space around the rehearsal samples and help the model to
attain refined decision boundaries.

5.5. Reducing Computational Cost

According to Alg. 1, the MRFA requires an extra forward-
backward pass before each batch. However, it introduces
large computational cost during the training of each task.
There is a simple way to reduce such computational com-
plexity, which is to perform such a pass for every p batch.
To find out the effectiveness of such reduction, we perform
experiments on CIFAR100 50-10, with different values of
p, showing the average incremental accuracy (Avg) and to-
tal training duration in seconds. The results are shown in
Figure 6. As we can see from the figure, the computational
cost is reduced dramatically with such modification, with
negligible performance loss.

5.6. Further Analysis

MRFA with different selection strategies of rehearsal
samples. Herding (Welling, 2009) is a widely-adopted re-
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Figure 6. Training durations and accuracies of MRFA with different
augmentation batch interval p.
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Figure 7. Average accuracy with different values of β.

hearsal selection strategy in CIL. It selects the samples
greedily one by one to make the current selected samples
approximate the prototype feature of the class. It is also
the strategy we use in the performance experiments. We
also test MRFA on different selection strategies of rehearsal
samples on CIFAR100. The results are shown in Table 3.
We perform MRFA with random selection and eviction for
rehearsal samples. As the results show, MRFA also achieves
performance improvement with random selection.

MRFA on both current task and rehearsal samples. The
experiments above shows that larger margin on rehearsal
samples indeed improves the generalizations on old tasks.
But can we further improve the performance by applying
MRFA on both current task and rehearsal samples (MRFA-
a)? We find out the answer is no after performing experi-
ments on CIFAR100 about this. As we can see in Table 4,
MRFA-a performs generally worse than that only augments
the rehearsal samples for each batch. This is caused by the
imbalanced number of samples between rehearsal samples
and samples form current task. Therefore, feature augmen-
tation has stronger impact on the samples from current task,
depriving more feature space occupied by old tasks, which
leads to worse forgetting on old tasks.

Hyperparameter Sensitivity. MRFA requires one hyperpa-
rameter β which controls the maximum scale of the feature
augmentations. We test the performance of MRFA for dif-
ferent values of β. The results are shown in Figure 7. As
we can see from the figure, for 10-10, the best β is around
1e-4, while for 50-10, the best β is around 1e-3. The hyper-
parameter selections for each experiment are presented in
Appendix D.

6. Conclusion
In this paper, we start from studying the overfitting on re-
hearsal samples in CIL. We reveal the overfitting on re-

hearsal samples from another perspective by studying how
the all-layer margin of the network evolves in CIL. Specif-
ically, we investigate the all-layer margin of the network
quantitatively with its upper bound and show the decision
boundary visually. As a result, we find that the margin
shrinkage indeed happens in rehearsal samples. Therefore,
we can alleviate the overfitting on the rehearsal samples by
making the margin larger. Furthermore, we propose multi-
layer rehearsal feature augmentation (MRFA) for class-
incremental learning. The proposed method augments the
features of rehearsal samples at the input of each block by
gradient ascent step of the current model with respect to
the feature. With such augmentation on block features, re-
hearsal samples are able to provide more information for
refining the decision boundary during incremental learning,
thus alleviating catastrophic forgetting. Moreover, exten-
sive experiments are performed to show the effectiveness of
MRFA on various settings of CIL.
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A. Additional Related Works
In this section, we discuss additional related works in class-incremental learning.

Model expansion comes from the idea of parameter isolation for each task (Yan et al., 2021; Ostapenko et al., 2021;
Douillard et al., 2022; Zhou et al., 2023c). It expands the representation space as the task goes on. DER (Yan et al., 2021)
trains a separate backbone for each task, aggregating all of the representations for classification. DyTox (Douillard et al.,
2022) learns a separate task token for each task.

Knowledge distillation (Li & Hoiem, 2017; Douillard et al., 2020) uses the model trained on previous tasks as a teacher
and distillation losses to keep the previously learned knowledge in the representation. LwF (Li & Hoiem, 2017) proposes to
use the response of the old model to guide the training of the new model’s old tasks. PODNet (Douillard et al., 2020) uses
the pooled intermediate feature maps of the ResNet to be the distillation target in training.

Regularization methods (Kirkpatrick et al., 2017; Zhu et al., 2021; Shi et al., 2022; Cha et al., 2020) come from various
ideas. Kirkpatrick et al. (2017) proposes to restrict the updates of important parameters. Zhu et al. (2021) proposes a dual
augmentation framework to make the eigenvalues of the representation’s covariance matrix larger. Shi et al. (2022) proposes
to make the representation scatter uniformly, making the representation contains more information about the input sample.

Pre-Trained Model-based methods leverage pretrained models and adapt the model for class-incremental learning (Wang
et al., 2022d;b;c; Zhou et al., 2023d). Wang et al. (2022d) uses visual prompt tuning (Jia et al., 2022) to learn a prompt for
each task. Wang et al. (2022c) proposes the dual prompt scheme in ViT. Due to the head start of the pre-trained models
in learning representations, these methods outperform the methods which train the model from scratch, even without the
rehearsal memory samples.

Other perspectives to boost CIL are also considered. (Zhu et al., 2021) proposes a dual augmentation framework to make the
eigenvalues of the feature’s covariance matrix larger. In the parameter space, (Mirzadeh et al., 2020) studies the linear mode
connectivity in CIL and proposes to enhance the linear mode connectivity between learned models. (Lin et al., 2022) also
considers the linear mode connectivity between learned models and proposes to combine two models learned in different
ways to get better linear mode connectivity. (Zheng et al., 2023) proposes a locality-preserving attention module to remedy
the locality degradation during the training of CIL.

B. Proof of Formula 3
Let the minimizers of all-layer margin in equation 1 be δ∗l′ for l′ ∈ [L]. Formally,

δ∗1 , . . . , δ
∗
L := argmin

δ1,...,δL

√√√√ L∑
l=1

∥δl∥22,

s.t. argmaxF (xi, δ1, . . . , δL) ̸= yi.

(8)

Let the minimizer for equation 3 be δ̃∗l . Formally,

δ̃∗l = argmin
δl

∥δl∥2,

s.t. argmaxF (xi, 0, . . . , δl, . . . , 0) ̸= yi.
(9)

The objective is formulated as ∀l ∈ [L],

∥δ̃∗l ∥2 ≥

√√√√ L∑
l′=1

∥δ∗l′∥22. (10)

We will prove it by contradiction. Suppose ∥δ̃∗l ∥2 <
√∑L

l′=1 ∥δ∗l′∥22, we find better minimizers for equation 1. The better

minimizers are (0, . . . , δ̃∗l , . . . , 0), they have lower cost than (δ∗1 , . . . , δ
∗
L). Therefore, ∥δ̃∗l ∥2 ≥

√∑L
l′=1 ∥δ∗l′∥22 holds for

any l ∈ [L].

13



Multi-layer Rehearsal Feature Augmentation for Class-Incremental Learning

C. More Empirical Analysis Results
We perform empirical analysis on accuracy drop after different scales of perturbation with various settings. The results are
shown in Figure 8. We find similar results as in the main text from these plots.
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(a) iCaRL, Memory Size 500, Block 1
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(b) iCaRL, Memory Size 500, Block 2
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(c) iCaRL, Memory Size 500, Block 3
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(d) Replay, Memory Size 500, Block 1
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(e) Replay, Memory Size 500, Block 2
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(f) Replay, Memory Size 500, Block 3
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(g) Replay, Memory Size 2000, Block 1
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(h) Replay, Memory Size 2000, Block 2
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(i) Replay, Memory Size 2000, Block 3

Figure 8. Accuracy drop after different scales of perturbation with various settings.
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D. Hyperparameter Selections
The values of the hyperparameter β for each experiment in section 5.2 are listed in Table 5.

Table 5. Hyperparameter (β) selections for each experiment in section 5.2

Memory Size 500 1000 2000

Scenarios 10-10 50-10 10-10 50-10 10-10 50-10

Replay w/ MRFA 1e-3 1e-3 1e-4 1e-3 1e-4 1e-3

iCaRL w/ MRFA 1e-3 1e-3 1e-4 1e-3 1e-4 1e-3

FOSTER w/ MRFA 1e-3 1e-3 1e-4 1e-3 1e-4 1e-3

DyTox+ w/ MRFA 1e-3 1e-3 1e-4 1e-3 1e-4 1e-3

E. More Implementation Details
We provide more implementation details for performance experiments in Table 6. We use the same configuration for
CIFAR100 and ImageNet100 without additional specification.

Table 6. Training settings for baselines in section 5.2

Baselines
# of Base # of Incremental

Batch Size Learning Rate # of GPUs
Epochs Epochs

Replay 200 70 128 0.1 1
iCaRL 200 170 128 0.1 1
FOSTER 200 170 128 0.1 1

DyTox+ 500 500 128 5e-4
2 (CIFAR100)

4 (ImageNet100)
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