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Abstract

The expansion of neural network sizes and the enhanced resolution of modern image sensors
result in heightened memory and power demands to process modern computer vision models.
In order to deploy these models in extremely resource-constrained edge devices, it is crucial to
reduce their peak memory, which is the maximum memory consumed during the execution of
a model. A naive approach to reducing peak memory is aggressive down-sampling of feature
maps via pooling with large stride, which often results in unacceptable degradation in network
performance. To mitigate this problem, we propose residual encoded distillation (ReDistill)
for peak memory reduction in a teacher-student framework, in which a student network with
less memory is derived from the teacher network using aggressive pooling. We apply our
distillation method to multiple problems in computer vision, including image classification
and diffusion-based image generation. For image classification, our method yields 4x-5x
theoretical peak memory reduction with less degradation in accuracy for most CNN-based
architectures. For diffusion-based image generation, our proposed distillation method yields
a denoising network with 4x lower theoretical peak memory while maintaining decent
diversity and fidelity for image generation. Experiments demonstrate our method’s superior
performance compared to other feature-based and response-based distillation methods when
applied to the same student network. The code is available at https://github.com/mengtang-
lab/ReDistill.

1 Introduction

Convolutional neural networks (CNN) have demonstrated impressive capabilities across diverse computer
vision tasks such as image recognition (Simonyan & Zisserman (2014)), object detection (Redmon & Farhadi
(2018)), semantic segmentation (Long et al. (2015)), and image generation (Creswell et al. (2018)). However,
the ever-growing network size and image resolution of modern imaging sensors pose significant challenges
in deploying neural networks on standard edge devices with limited memory footprint. For example, a
standard STM32H5 MCU provides only 640 KB of SRAM and 2 MB of Flash storage. These constraints
make it impractical to execute off-the-shelf deep learning models: ResNet-50 surpasses the storage limit
by 44×, while MobileNetV2 exceeds the peak memory limit by 8×. Even the int8 quantized version of
MobileNetV2 surpasses the memory limit by 2×, underscoring a substantial disparity between desired and
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Figure 1: (a) Left: For ImageNet classification, our distillation method significantly reduces the theoretical
peak memory of ResNet-based models while achieving accuracy better than existing distillation methods. (b)
Right: For diffusion-based image generation, our distilled network with 4× lower theoretical peak memory
generates images indistinguishable from the generated images of a teacher network.

available hardware capacity. Hence, it is very important to reduce the peak memory during inference for edge
deployment. Note that our primary focus in this work is reducing peak memory usage, as there are existing
solutions for addressing other metrics, such as parameter count and the number of operations when deploying
CV models at the extreme edge. Similar to (Lin et al. (2021); Chowdhery et al. (2019)), we estimate the
theoretical peak memory by summing the size of the input & output allocation for each operation (e.g.,
convolution, non-linear activation, pooling). Through empirical measurements, we determined that peak
memory usage is predominantly influenced by the initial layers of convolutional neural networks (CNNs) that
are characterized by large feature maps. For U-shaped CNN architectures, however, the last few layers also
significantly contribute to peak memory consumption.

A naive approach to reducing peak memory is aggressive downsampling via pooling with large kernel size and
large stride, which often leads to unacceptable degradation of network performance due to loss of information
in small feature maps. Given a teacher network with large peak memory, we propose residual encoded
distillation (ReDistill) to train a student network with significantly lower peak memory. This student network
can be considered a variant of the teacher network with aggressive pooling. We demonstrate the effectiveness
of our methods for multiple problems including image classification and diffusion-based image synthesis. For
image classification with ResNet-based models shown in Fig. 1 (a), our method reduces the theoretical peak
memory by 4−5× with a lower accuracy drop compared to existing distillation methods.For diffusion-based
image generation shown in Fig. 1 (b), our distilled network generates images similar to original networks, yet
the theoretical peak memory is reduced by 4× on average.

Our ReDistill method outperforms existing response-based or feature-based distillation methods regarding the
accuracy-memory trade-off. Our method differs from these existing counterparts in four regards. Firstly, our
distillation method is tailored for peak memory reduction. In contrast, existing distillation techniques focus
on transferring knowledge from a high-capability teacher network with a large number of parameters to a
student network with fewer parameters. Our student networks apply a large kernel size and stride in the initial
pooling layers with the same number of parameters as the teacher networks while consuming significantly
lower peak memory. Secondly, the student network, utilizing aggressive pooling, has fewer pooling layers
and consequently fewer stages than the teacher network, resulting in mismatched features at different stages
between the two. We add novel non-linear mapping modules termed residual encoded distillation (RED)
blocks between the teacher and student network during both training and inference. Thirdly, our proposed
RED block is lightweight and effective with additive residual learning and multiplicative gating mechanism.
We optimize the trade-off between peak memory and accuracy, while it slightly increases the model size due
to extra parameters. Lastly, we align teacher and student network features asynchronously at pooling layers
with matching feature sizes, while previous approaches align features at different stages of the networks.
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Our key contributions are summarized below.

• We propose ReDistill, a distillation framework tailored for reducing the peak memory of convolutional
neural networks. Our method allows aggressive downsampling of feature maps via pooling layers with
a large stride for a student network while incurring a less accuracy drop. To the best of our knowledge,
ReDistill is the first distillation method focused on peak memory reduction for efficient deep learning.

• The core of our ReDistill framework is a residual encoded distillation (RED) block to align features between
high-peak-memory teacher networks and low-peak-memory student networks. Our RED block is based on
a multiplicative gating mechanism and additive residual learning and is shown to be simple and effective
for peak memory reduction with minimum computational overhead.

• For image classification tasks, our distillation method outperforms state-of-the-art response-based or
feature-based distillation methods when applied to the same student network assigned with a large pooling
stride, as shown in extensive experiments with multiple datasets. Our method yields 4× ∼ 5× reduction
in theoretical peak memory with a slight decrease in classification accuracies for CNN based models.

• We also show the versatility of our distillation method for denoising diffusion probabilistic models for
image generation. For a U-Net based denoising network, our method reduces the theoretical peak memory
by 4× by downsampling the feature maps of the first few encoder layers and last few decoder layers while
maintaining the fidelity and diversity of synthesized images.

2 Related Work

Memory-constrained deep learning Limited memory capacity in GPU cards and edge platforms
has been a critical hurdle in CNN training and inference. Multiple GPUs can be utilized through model
and data parallelism (Langer et al. (2020)) to mitigate the memory bottleneck. Other solutions include
optimization methods such as network quantization (Hubara et al. (2016)), compression (Han et al. (2016b)),
and pruning (Molchanov et al. (2017); Lu et al. (2024)), which focus on maintaining essential bits of weights
or parameters while minimizing accuracy loss. To produce correct outputs with compressed data, these
solutions are typically designed with specialized accelerators to accommodate meta-data processing (Han
et al. (2016a)). There are also CNNs specifically designed for resource-constrained applications, such as
variants of MobileNet (Howard et al. (2019)) and SqueezeNet (Iandola et al. (2017)). These approaches to
memory-constrained deep learning are orthogonal to our ReDistill framework, which focuses on peak memory
reduction during inference. Nevertheless, recent work has explored neural architecture search (NAS) to create
networks with minimized peak memory (Lin et al. (2020)). Reference (Lin et al. (2021)) takes this a step
further by leveraging NAS to introduce patch-based inference and network redistribution (Lin et al. (2021)),
consequently shifting the receptive field to later stages. While NAS significantly exacerbates the training
complexity, patch-based inference necessitates compiler libraries that may not be compatible with standard
GPUs and incurs additional computation and latency overhead. Another recent work (Chen et al. (2023))
proposed self-attention-based pooling to aggressively compress the activation maps in the first few layers to
reduce the peak memory at the cost of increased compute complexity.

Knowledge distillation for image classification can be roughly categorized into two groups:
response-based KD and feature-based KD. Response-based KD methods derive the distillation loss by
leveraging the logit outputs from the fully connected layers of the student model and the teacher model. For
example, KD (Hinton et al. (2015)) distills knowledge by matching the prediction probability distributions of
the student architecture and the teacher architecture. DKD (Zhao et al. (2022)) decouples the classical KD
loss into two parts, target class knowledge distillation (TCKD) and non-target class knowledge distillation
(NCKD) enhancing training efficiency and flexibility. MLLD (Jin et al. (2023)) performs logit distillation
through a multi-level alignment based on instance prediction, input correlation, and category correlation,
delivering state-of-the-art performance. In contrast, feature-based KD methods (Adriana et al. (2015);
Zagoruyko & Komodakis (2016); Passalis & Tefas (2018); Lee et al. (2018); Tung & Mori (2019); Ahn
et al. (2019)) reduce the disparity between features in the teacher and student models, compelling the
student model to replicate the teacher model at the feature level. RKD (Park et al. (2019)) employs a
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relation potential function to convey information from the teacher’s features to the student’s features.
ReviewKD (Chen et al. (2021)) aggregates knowledge of the teacher from different stages into one stage
of the student, the so-called ‘knowledge review’, which achieved impressive performance. KCD (Li et al.
(2022)) iteratively condenses a compact knowledge set from the teacher to guide the student learning by the
Expectation-Maximization (EM) algorithm, which would empower and be easily applied to other knowledge
distillation algorithms. Existing methods focus on the distillation from a high-capacity teacher model with a
large amount of parameters to an efficient student model with limited parameters. In this work, the student
model, employing a large kernel size and stride in the initial pooling layer possesses the same number of
parameters as the teacher architecture but incurs significantly lower peak memory.

Knowledge distillation for diffusion models has gained popularity. For example, One Step Diffu-
sion (Yin et al. (2023)) defines two score functions, one of the target distribution and the other of the
synthetic distribution produced by a one-step generator. By minimizing the KL divergence between these two
score functions, the one-step generator is enforced to match the diffusion model at the distribution level and
achieves impressive performance. Adversarial Diffusion (Sauer et al. (2023)) utilizes both score distillation
loss and adversarial loss. The score distillation loss occurs between the teacher diffusion sampler with a large
number of T steps and the student diffusion sampler with one or two steps. Meanwhile, the adversarial loss
originates from a discriminator trained to differentiate between generated samples and real images. Auto
Diffusion (Li et al. (2023)) searches for the optimal time steps and compressed models in a unified framework
to achieve effective image generation for diffusion models. In summary, existing KD methods for diffusion
models mainly focus on time-step reduction and model compression. We offer a unique and orthogonal
approach by minimizing peak memory that can be easily integrated with existing methods.

3 Proposed Method

3.1 Preliminaries

Knowledge Distillation We are given a dataset X , a high-capacity teacher architecture T and a to-learned
student architecture S. For an input image x sampled from X , πT (x) and πS(x) denote the outputs or
intermediate features of the teacher and student, respectively. The knowledge distillation task aims to
optimize the student’s parameters ŵ:

ŵ = arg min
w

∑
x∈X

L(πS(x; w), πT (x)), (1)

where w denotes the trainable weights of πS and L denotes the loss function defined by different knowledge
distillation methods. For instance, Hinton et al. (2015) defines πS and πT as the logit outputs (without
applying the softmax function) of the student and the teacher, while L as the Kullback-Leibler divergence
between πS and πT after applying the softmax function with temperature tp:

LKL =
∑
x∈X

KL(softmax(πS(x)
tp

), softmax(πT (x))
tp

). (2)

Some other methods (Zagoruyko & Komodakis (2016); Park et al. (2019); Chen et al. (2021)) define different
πS and πT , such as the intermediate activation maps from various stages of the student and teacher, or
different L, like the p-norm, to achieve various distillation methods.

KD methods can be categorized as response-based methods with πS , πT defined as the logit outputs, or
feature-based methods with πS , πT defined as the intermediate activation maps. Response-based KD methods
generally keep the same peak memory with the student model, since they don’t alter the student architecture.
For feature-based KD methods, some might increase the student’s peak memory due to extra trainable
modules. However, none of these KD methods can lead to peak memory lower than the student, which is
a lower bound. Our method reaches such a lower bound and achieves the highest accuracy compared to
existing KD methods, as shown in our comprehensive experiments.
Denoising Diffusion Probabilistic Models Diffusion models (Ho et al. (2020)) are latent variable models
of the form pθ(x0) :=

∫
pθ(x0:T )dx1:T , where x1, ..., xT are latents of the same dimensionality as the data
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Figure 2: Our proposed residual encoded distillation framework (ReDistill). RED blocks are incorporated
into the student model following the pooling layers to minimize the discrepancy between the down-sampled
features of the student and teacher models.

x0 ∼ q(x0). The joint distribution pθ(x0:T ) is defined as a Markov chain with learned Gaussian transition
starting at p(xT ) = N (xT ; 0, I), where T is the maximum time step. In the training process, we are given a
noisy input xt, which is derived from the data x0 and noise ϵ ∼ N (0, I):

xt =
√

ᾱtx0 +
√

1 − ᾱtϵ, (3)

where ᾱt :=
∏t

s=1(1 − βs), and βs is the forward process variances fixed as constant in DDPM (Ho et al.
(2020)). The loss of diffusion model is generally defined as follows:

Ldiff = ||ϵ − ϵθ(xt, t)||22. (4)

The noisy input xt, accompanied by a time step embedding t, is input into a denoising autoencoder, specifically
a U-Net network as in Ho et al. (2020), to estimate the noise component ϵθ(xt, t).

3.2 Proposed Distillation Framework

Our proposed framework is illustrated in Fig. 2. To reduce the activation peak memory, the initial pooling
layer of the student is assigned a larger pooling stride. However, we still keep the same spatial dimensions of
the activations to the final fully connected layer for the teacher and student. Thus, the student has fewer
pooling layers but with a larger pooling stride at the initial pooling layer compared to the teacher.

Take an input image x ∈ RH×W ×C as the example. The teacher and the student network are divided into
several stages by pooling layers as shown in Fig. 2. We assume that all pooling layers of the teacher have
the same pooling stride ρ for simplicity. The initial pooling layer of the student at stage 1 is assigned with
a stride ρk. Hence, the student feature map fS

1 ∈ R
H

ρk × W

ρk ×C1 at the output of this pooling layer has the
same spatial dimension as the teacher feature map fT

k ∈ R
H

ρk × W

ρk ×Ck at the output of the k-th pooling layer.
Then the matched feature maps fS

1 and fT
k will be fed into the residual encoded distillation (RED) block

illustrated in Fig. 3, to compute the distillation loss. The output fD
1 is to be fed into the following layers of

the student network.

Similarly, the feature map fS
2 of the student at stage 2 also has the same spatial dimension as the feature

map fT
k+1 of the teacher at stage k + 1. They are fed into another RED block to calculate distillation loss
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Figure 3: Residual Encoded Distillation (RED) Block. We use a logit module for the multiplicative gating
mechanism and a residual encoder for additive residual learning.

and output fD
2 to the following layers. This process is repeated until the last pooling layer pT (◦; ρ) at stage

n of the teacher. We assume the size of the output feature map fT
n of the teacher is identical to the output

feature map fS
i of the student at stage i, where i − 1 + k = n. The following pooling layers of the student at

stages i + 1, i + 2, ..., n are all assigned with stride 1. Hence, these pooling layers do not change the spatial
dimension and are similar to standard convolution. As a result, the final aggregated features of the student
and the teacher have the same spatial dimensions. In Fig. 5, we show an example of ResNet18 with aggressive
pooling and how to integrate our proposed RED blocks.

3.3 Residual Encoded Distillation Block

The proposed Residual Encoded Distillation (RED) Block, depicted in Fig. 3, serves as the central module of
our framework. It is designed to ensure that the output of a pooling layer closely resembles the distribution
of the input while preserving essential features at a reduced spatial dimension. To accomplish this, the RED
Block is designed to be lightweight, enabling it to modify the feature space distribution of the student’s
pooling layer effectively. This allows the student model to learn the down-sampled features of the teacher
model. Meanwhile, this block introduces non-linearity to the pooling layer, enabling the student’s pooling
layer to aggregate features like a standard pooling layer and adjust the feature distribution similar to a
convolutional layer with an activation function. Specifically, we use a logit module for the multiplicative
gating mechanism and a residual encoder for additive residual learning. The residual encoded distillation
block could be formulated as follows:

fD = fR + fS ∗ f̂S , (5)
ResidualEncoder = ReLU6(BN(Conv3×3(·))), (6)

logit = Sigmoid(BN(Conv1×1(·))), (7)

where fS is the feature map from the student model. The logit module consists of a 1 × 1 convolution
layer, a batch norm layer, and a sigmoid activation function, generating element-wise weights f̂S like a gate
to suppress non-significant components of fS . The residual encoder module consists of a 3×3 convolution
layer, a batch norm layer, and a relu-6 activation function, yielding the residual item fR. We use relu-6 to
bound activations to prevent exploding gradients. Besides, relu-6 is widely used in efficient neural network
design (Sandler et al. (2018); Howard et al. (2019); Lin et al. (2020)) since it is particularly useful for
fixed-point or low-precision inference in quantization. For kernel size in RED module, we choose 1 × 1 kernel
for the logit module (LM), because LM is a gating mechanism to select critical components of the activations.
We choose BatchNorm layer because the proposed framework is primarily used for the distillation of CNNs,
for which BatchNorm is commonly used. We hypothesize that the output of the student pooling layers might
lack some crucial information compared to the teacher’s down-sampled features, which could be compensated
by the residual item fR.
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Figure 4: ReDistill for denosing network in DDPM (Ho et al. (2020)). We integrate RED blocks into the
student model after the down-sampling layer in the encoder and before the up-sample layer in the decoder.

3.4 Loss Function

The RED loss first calculates the mean value alongside the channel dimension and then minimizes the cosine
distance between the teacher’s feature map fT and the RED block’s output fD, which is formulated as:

LRED(fT , fD) = d{

∑
c∈CT

fT
c

|CT | ,

∑
c∈CS

fD
c

|CS | }, (8)

where fD is calculated by Equation 5, and d denotes the distance measurement. CT and CS denote the
channel dimension of teacher’s feature map fT and the RED block’s output fD, respectively. The final loss
function of the proposed method is as follows:

L = Ltask +
I∑

i=1

αLREDi , (9)

where Ltask is the vanilla loss from the task, such as the Binary-Cross-Entropy (BCE) loss for image
classification. I denotes the number of RED blocks. α is an experimental hyper-parameter to scale RED loss.

3.5 Distillation for Diffusion Model

In this section, we introduce how to integrate the proposed distillation framework into a U-Net based denoising
network described in DDPM (Ho et al. (2020)), as shown in Fig. 4. For convenience, let’s assume the teacher
model is a U-Net with two down-sample layers, each having a stride of 2, while the student is a U-Net with
the aggressive pooling setting, i.e., it just has one down-sample layer with the stride 4. We use the output
fS

down from the down-sample layer of the student model and the output fT
down from the second down-sample

layer of the teacher model, as they share the same spatial dimension. fS
down and fT

down are input into a RED
block incorporated into the student model, producing the output fD

down, which is then fed into the subsequent
convolutional layers. Symmetrically, the student model has one up-sample layer with an expansion ratio of
×4, while the teacher model has two up-sample layers, each with an expansion ratio of ×2. The input fS

up of
the student’s up-sample layer and the input fT

up of the teacher’s first up-sample are input into another RED
block, producing the output fD

up. This output replaces the fS
up as the new input of the student’s up-sample

layer. For DDPM distillation, the loss function is defined as Equation 9, while the Ltask is replaced by Ldiff

defined in Equation 4.
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4 Experiments

In Sections 4.1 and 4.2, datasets and implementation details for image classification and image generation
tasks are introduced separately. In Sections 4.3 and 4.4, we conduct experiments on various vision tasks to
illustrate the effectiveness of the proposed method with state-of-the-art distillation methods under different
backbone architectures and datasets. We also compare the memory footprint of our method with the teacher
and the student architectures, and deploy our method on the edge device. Results are reported in Section 4.5.
At last, some ablation study related with module discussion, loss function, and distillation strategy are
reported in Section 4.6.

4.1 Datasets

Datasets for Image Classification 1) STL10 (Coates et al. (2011)) contains 5K training images with
10 classes and 8K testing images of resolution 96 × 96 pixels. Specifically, we resize the image resolution to
128 × 128 pixels for aggressive pooling. 2) ImageNet (Russakovsky et al. (2015)) is a widely-used dataset of
classification, which provides 1.2 million images for training and 50K images for validation over 1,000 classes.
We keep the same resolution of 224 × 224 pixels as the origin for aggressive pooling.

Datasets for Image Generation 1) CIFAR-10 (Krizhevsky et al. (2009)) comprises 60,000 color images
of 32x32 resolution across 10 classes, with each class containing 6,000 images. The dataset is divided into
50,000 training images and 10,000 test images. We keep the original resolution of 32 × 32 in our experiments.
2) Celeb-A (Liu et al. (2015)) is a large-scale face attributes dataset containing over 200,000 celebrity
images, each annotated with 40 attributes. We use the resized resolution of 64 × 64, which is widely used in
diffusion-based methods (Song et al. (2020); Bao et al. (2023)) in our experiments.

4.2 Implementation Details and Baselines

Details for Image Classification Unlike traditional distillation tasks, we only modify the pooling layer
strides instead of the depth and width of the network to get the student model, which is called the aggressive
pooling setting. The advantage of the aggressive pooling setting is to reduce the peak memory and also reduce
the computational complexity and inference time of the network. Specifically, we increase the first pooling
layer stride ×2 ∼ ×8 times and adjust the last several pooling layer strides to ensure the final output of the
student model has the same information density as the teacher model. All experiments are implemented in
Pytorch and evaluated on 4 NVIDIA A100 GPUs.

On STL10 dataset, we experiment with three representative and widely-used network architectures, including
MobileNetV2 (Sandler et al. (2018)), MobileNetV3 (Howard et al. (2019)), and ResNext (Xie et al. (2017)).
The proposed method is compared with several distillation methods (Hinton et al. (2015); Adriana et al.
(2015); Zagoruyko & Komodakis (2016); Tung & Mori (2019); Ahn et al. (2019); Park et al. (2019); Heo
et al. (2019); Kim et al. (2018); Huang & Wang (2017)). Specifically, the student architecture is trained from
scratch as being distilled from pre-trained teacher architecture by different methods for 300 epochs. The
batch size is set to 8 and the dropout rate is set to 0.2. The SGD with momentum equal to 0.9 is used as the
optimizer. The initial learning rate is set to 0.01, which is reduced by a factor 0.2 at the 180th, 240th and
270th epoch, respectively. The α in Equation 9 is set to 50.

On ImageNet dataset, we experiment on the MobileNetV2 (Sandler et al. (2018)), and ResNet (He et al.
(2016)), which are widely used in distillation benchmarks (Jin et al. (2023); Chen et al. (2021); Tian et al.
(2020)). The proposed method is compared with response-based methods like KD (Hinton et al. (2015)),
DKD (Zhao et al. (2022)), MLLD (Jin et al. (2023)), LSKD (Sun et al. (2024)), and feature-based methods
like FitNet (Adriana et al. (2015)), RKD (Park et al. (2019)), ReviewKD (Chen et al. (2021)), CRD (Tian
et al. (2020)), and OFAKD (Hao et al. (2023)). All these methods are widely used in knowledge distillation
and, to the best of our knowledge, yield SOTA performance. We use the same experiment settings as (Jin
et al. (2023)) but keep training for 300 epochs and decay the learning rate at the 180th, 240th and 270th

epoch with factor 0.1, since the student architectures with the aggressive pooling setting generally require
more epochs to converge. The α in Equation 9 is set to be 1.
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Details for Image Generation For the teacher model, we keep the same experiment settings as DDPM (Ho
et al. (2020)) with applying T = 1000, β1 = 10−4, βT = 0.02, and the U-Net backbone with 4 different feature
map resolutions (32 × 32 to 4 × 4 for CIFAR-10, while 64 × 64 to 8 × 8 for Celeb-A). For the student model,
we increase the first pooling layer stride of the U-Net backbone ×2 times while adjusting the last pooling
layer stride to keep the same latent feature resolution. The same stride modification is symmetrically applied
to the up-sample layers of the U-Net, and thus with 3 different feature map resolutions (16 × 16 to 4 × 4 for
CIFAR-10, while 32 × 32 to 8 × 8 for Celeb-A). For our method, the RED blocks are inserted after not only
the down-sample layers but also the up-sample layers. For CIFAR-10 dataset, we train all models for 1000K
iterations and sample 50K images for FID (Heusel et al. (2017)) & IS (Salimans et al. (2016)) evaluation.
For Celeb-A dataset, we train all models with 250K iterations and sample 50K images for FID (Heusel et al.
(2017)) & IS (Salimans et al. (2016)) evaluation. All experiments are implemented in Pytorch and evaluated
on an NVIDIA 4090 GPU.

Details for Theoretical Peak Memory For the theoretical peak memory analysis, we follow previous
work, MCUNet (Lin et al. (2020; 2021; 2022)), for calculating peak memory. Generally, it traces the memory
consumption for each layer. For the standard convolutional layer, the maxpool layer, or the average pool
layer, the memory consumption is the summation of the input activation memory size and output activation
memory size. For a group convolutional layer, the memory consumption is the summation of the input
activation memory size, the output activation memory size, and a buffer with size equal to one channel
convolutional kernel in the group. For the residual connection in the network, the residual activations memory
size will be added into memory tracing until the residual item is added with the output activations.

Details for Aggressive Pooling Setting. To explain how exactly the image classification models are
configured, we list the network config details for the ‘T: ResNet18’ and ‘S: ResNet18×4’ distillation pair that
we used in the third column of Table 1. As shown in Fig. 5, we aggressively increase the stride of the first
downsampling layer ‘Conv 1’ from 2 to 8 following the aggressive pooling setting, while setting the stride to 1
of maxpool layer and the last downsampling layer, i.e., the first conv layer in ‘Stage 4’, for keeping the same
activation size for average pool and fc layer. Then the student network possesses only three downsampling
layers less than five downsapling layers of the teacher network. We integrate the proposed RED block after
each downsampling layer of the student in our ReDistill framework to improve the student’s performance
while maintaining low peak memory.

4.3 CNN-based Image Classification

Table 1 shows the results on the ImageNet (Russakovsky et al. (2015)) dataset, with the setting that the
teacher model and student model are in identical architecture families or different architectures. ‘×n’ denotes
that we increase the 1st pooling layer stride of this architecture with n times, and the best results are
highlighted in boldface. Our method achieves the best performance compared with different response-based
and feature-based distillation methods, no matter for identical architecture family knowledge distillation, as
shown in the 3rd and 4th columns of Table 1, or different architecture knowledge distillation, as shown in the
5th column of Table 1.

We find some distillation methods perform even worse than the student model itself without any distillation
since these methods are not specially designed for the aggressive pooling setting and would be sensitive to
the resolution of the feature maps, like FitNet, or require multi-scale feature maps, like RKD. Generally,
conventional feature-based methods match the activations of the teacher model and student model stage
by stage. In each stage, these activations possess the same resolution. However, in our aggressive pooling
setting, the resolution of student activations and teacher activations are mismatched in each stage, and thus,
traditional distillation methods are not guaranteed to be positively effective in knowledge distillation with
aggressive pooling. This observation also illustrates the necessity of the proposed ReDistill framework.

Table 2 shows the classification results on STL10 dataset with the setting that the teacher model and student
model are in identical architecture family. Same as ImageNet, ‘×n’ denotes we increase the 1st pooling layer
stride of this architecture with n times, and the best results are highlighted in boldface. Some KD methods
in Table 1 require a customized dataloader with a contrastive version of the input data, like CRD Tian et al.
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Network Config
T: ResNet18 S: ResNet18×4 S + RED (ours)

layer config activation size layer config activation size layer config activation size

Input - 224×224 - 224×224 - 224×224

Conv 1 𝑐𝑜𝑛𝑣 7×7: 𝑐_64, 𝑠_2 112×112 𝑐𝑜𝑛𝑣 7×7: 𝑐_64, 𝑠_8 28×28 𝑐𝑜𝑛𝑣 7×7: 𝑐_64, 𝑠_8
+ 𝑹𝑬𝑫 𝒃𝒍𝒐𝒄𝒌

28×28

Max Pool + Stage 1

𝑚𝑎𝑥𝑝𝑜𝑜𝑙 3×3: 𝑠_2

56×56

𝑚𝑎𝑥𝑝𝑜𝑜𝑙 3×3: 𝑠_1

28×28

𝑚𝑎𝑥𝑝𝑜𝑜𝑙 3×3: 𝑠_1

28×28

𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_64, 𝑠_1

Stage 2

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_2
𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1

28×28

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_2
𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1

14×14

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_2
+𝑹𝑬𝑫 𝒃𝒍𝒐𝒄𝒌

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1 14×14

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_128, 𝑠_1

Stage 3

𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_2
𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_1

14×14

𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_2
𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_1

7×7

𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_2
+ 𝑹𝑬𝑫 𝒃𝒍𝒐𝒄𝒌

𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_1 7×7

𝑐𝑜𝑛𝑣 3×3: 𝑐_256 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_256 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_256 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_256, 𝑠_1

Stage 4

𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_2
𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1

7×7

𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1

7×7

𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1

7×7
𝑐𝑜𝑛𝑣 3×3: 𝑐_512 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_512 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1

𝑐𝑜𝑛𝑣 3×3: 𝑐_512 𝑠_1
𝑐𝑜𝑛𝑣 3×3: 𝑐_512, 𝑠_1

Avg Pool + FC average pool, 1000-d 
fc, softmax

1×1 average pool, 1000-d fc, 
softmax

1×1 average pool, 1000-d fc, 
softmax

1×1

Figure 5: Example of our proposed Aggressive Pooling Setting with ResNet18. We highlight all downsampling
layers (either conv layer or maxpool layer with the stride larger than 1) in red color. For example, in the
‘Conv 1’ cell of ‘T: ResNet18’, ‘conv 7 × 7 : c_64, s_2’ denotes this convolution layer is with kernel size 7 × 7,
number of channels 64, and stride 2. In the following row, ‘maxpool 3 × 3 : s_2’ denotes the max pool layer
with kernel size 3 × 3 and stride 2. In the student network ‘S: ResNet18×4’, we increase the stride of the first
downsampling layer ‘Conv 1’ to 4× from s_2 to s_8, while setting the stride to 1 of the maxpool layer and
the last downsampling layer (i.e., the first conv layer in Stage 4), in order to get the same activation size
before average pool and fc layer.

Table 1: Top-1 accuracy (%) on ImageNet. The 3rd and 4th columns show the results with identical teacher
and student architecture families, while the 5th column shows the results with different teacher and student
architectures.

Method

Teacher ResNet18 ResNet50 ResNet152
Top1 Acc. (%) 69.75 76.13 78.32

Student ResNet18×4 ResNet50×4 MbNetV2×2
Top1 Acc. (%) 61.79 69.50 62.65

Response

KD (Hinton et al. (2015)) 63.63 70.60 62.85
DKD (Zhao et al. (2022)) 63.22 - 66.27
MLLD (Jin et al. (2023)) 64.66 70.77 68.36
LSKD (Sun et al. (2024)) 63.81 72.28 66.21

Feature

FitNet (Adriana et al. (2015)) 62.13 71.77 60.79
RKD (Park et al. (2019)) 61.49 66.88 -

ReviewKD (Chen et al. (2021)) 63.30 70.22 63.07
CRD (Tian et al. (2020)) 64.01 71.07 65.60

OFAKD (Hao et al. (2023)) 64.83 - 68.49
RED (ours) 65.23 73.23 68.89

‘-’ denotes that we do not get reasonable results for the student architecture with the distillation
method under the aggressive pooling setting.
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(2020), MLLD Jin et al. (2023). However, they don’t provide the corresponding dataloader for STL10 dataset
in their original code implementations. Thus, we compare our method on STL10 dataset with some feasible
KD methods in Table 1, like KD, FitNet and RKD, and also compare with some other commonly-used KD
methods, like AT, VID, NST, etc. Under the identical architecture family setting, our method performs
the best among all state-of-the-art distillation methods. We also measure the average distillation time for
different distillation methods, as shown in the last column of Table 2. Our method achieves similar time
consumption compared to most distillation methods. For different architecture knowledge distillation, as
shown in Table 3, our method achieves better performance compared with other distillation methods as well.

4.4 Image Generation

Table 4: Results on U-Net (Ronneberger et al. (2015))
based DDPM (Ho et al. (2020)).

Dataset Method IS↑ FID↓

CIFAR10

T: U-Net w/ DDPM 9.70 ±0.13 3.75
S: U-Net×2 w/ DDPM 9.12 ± 0.14 14.28
S + MSE-Distill 9.62 ± 0.11 12.04
S w/ RED (ours) 9.63 ± 0.10 10.85

Celeb-A

T: U-Net w/ DDPM 2.97 ± 0.04 19.61
S: U-Net×2 w/ DDPM 2.77 ± 0.02 23.03
S + MSE-Distill 2.71 ± 0.02 22.34
S w/ RED (ours) 2.88 ± 0.03 21.16

Quantitative Results Table 4 shows the results
on CIFAR10 (Krizhevsky et al. (2009)) dataset and
Celeb-A (Liu et al. (2015)) dataset. Our method
reduces the fidelity degradation of the student
model with a first pooling stride that is twice that
of the teacher model. Specifically, our method
achieves 3.43 lower FID and 0.51 higher IS score
than the student model on CIFAR10 dataset, while
1.6 lower FID and 0.11 higher IS score than the
student model on Celeb-A, respectively. We also
compare to a simple distillation method, which we
termed MSE-Distill-DDPM, by directly matching
the final output activations of the teacher model
and student model using MSE loss. On CIFAR10 dataset, the student with MSE-Distill achieves 12.04 FID
and 9.62 IS score, while our method achieves a better 10.85 FID and 9.63 IS score. Due to implementation
specifics, the models are not augmented with EMA (Hunter (1986)), leading to results slightly different from
those in the original paper.

Visualization To further illustrate how the proposed method improves the fidelity of image generation, we
visualize some samples generated by the teacher model, the student model, and our method. Specifically,
we utilize the same noise item ϵt in each time step for all these three models. In this way, the generated
images are expected to be visually similar if the two models have comparable capabilities. As shown in
Fig. 6, generally, the images generated by our method are semantically closer to those generated by the

Table 2: Top-1 accuracy (%) on STL10 with identical teacher and student architecture family.

Method

T: MbNetV2 T: MbNetV3-Small T: ResNext18
Distill Time
(s/epoch)

85.34 83.74 85.12
S: MbNetV2×4 S: MbNetV3-S×4 S: ResNext18×4

76.18 71.27 79.07
KD (Hinton et al. (2015)) 79.26 71.56 81.27 3.23
FitNet (Adriana et al. (2015)) 78.55 71.93 80.21 3.28
AT (Zagoruyko & Komodakis (2016)) 81.35 75.88 82.90 3.33
SP (Tung & Mori (2019)) - 72.42 77.59 3.31
VID (Ahn et al. (2019)) 77.53 71.83 76.99 3.40
RKD (Park et al. (2019)) 78.00 67.27 75.80 3.33
AB (Heo et al. (2019)) 80.79 72.94 81.42 3.69
FT (Kim et al. (2018)) 74.74 72.11 80.64 3.35
NST (Huang & Wang (2017)) 82.66 76.11 81.89 9.33
RED (ours) 83.97 77.31 84.80 3.88

‘-’ denotes that we do not get reasonable results for the student architecture with the distillation method under the aggressive
pooling setting.
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Table 3: Top-1 accuracy (%) on STL10 with different teacher and student architecture.

Method

T: ResNext18 T: ResNext18 T: MbNetV2
85.12 85.12 85.34

S: MbNetV2×4 S: MbNetV3-Small×4 S: MbNetV3-Small×4
76.18 71.27 71.27

KD (Hinton et al. (2015)) 78.14 69.98 70.95
FitNet (Adriana et al. (2015)) 80.46 73.23 72.88
AT (Zagoruyko & Komodakis (2016)) 80.63 74.58 73.39
SP (Tung & Mori (2019)) 67.56 63.91 -
VID (Ahn et al. (2019)) 74.40 69.19 71.69
RKD (Park et al. (2019)) 70.63 72.10 68.78
AB (Heo et al. (2019)) 81.46 73.98 75.20
FT (Kim et al. (2018)) 77.33 69.79 66.85
NST (Huang & Wang (2017)) 79.09 65.04 73.26
RED (ours) 83.23 77.15 77.19

‘-’ denotes that we don’t get reasonable results for the student architecture with the distillation method under the
aggressive pooling setting.
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Figure 6: Generated images on CIFAR10 and Celeb-A with the same noise item ϵt for all models. Generally,
our results are semantically closer to the teacher’s.

teacher model, although in some cases, they are closer to those generated by the student model. Due to the
high capability of the teacher model, our method, as an intermediate model from the teacher to the student,
achieves higher fidelity than the student model.

4.5 Memory Footprint and Edge Device Deployment

Memory Footprint To intuitively demonstrate the peak memory reduction enabled by our proposed
method, we trace the memory footprint in layer-wise for all identical architecture family teacher-student
pairs, as shown in Fig. 7. Compared to CNN models with vanilla pooling, our method with aggressive
pooling settings achieves significantly lower memory consumption, particularly in the initial layers where
peak memory usage occurs. For DDPM, which utilizes a U-Net architecture with both down-sampling and
up-sampling layers, our method reduces memory consumption in both the initial layers and the final layers
where peak memory usage occurs.
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Figure 7: Memory footprint for each layer in teacher and student networks (top-all: STL10 classification task;
bottom-left, bottom-mid: ImageNet classification task; bottom-right: Celeb-A generation task). The student
model is the teacher model’s modified version of being assigned with the aggressive pooling strategy and
enhanced with our proposed RED blocks, representing our method.

Edge Device Deployment In Table 5, we measure theoretical peak memory consumption, actual peak
memory consumption, and other efficiency related metrics like model size, maximum power, and latency,
for all the models we use in STL10 & ImageNet classification and image generation tasks. Specifically, the
1st-9th rows are for models we use in STL10 classification, and the 10th-18th row are for models we use in
ImageNet classification, while the last 3 rows are for models we use in image generation task. We estimate
the theoretical peak memory by summing the size of the input & output allocation for each operation and
assume a batch size of 1 for theoretical estimation to emulate most inference use-cases, similar to (Lin et al.
(2021); Chowdhery et al. (2019)). Our method achieves 3.9 × ∼14.7× reduction in theoretical peak memory
for image classification and 4× reduction in theoretical peak memory for image generation, as shown in
Table 5. In addition to the theoretical peak memory, we also measure the actual peak memory consumed on
an NVIDIA Jetson TX2 device. Moreover, we measure the maximum GPU power (to ensure we satisfy the
power budget of edge devices), model size, and latency incurred by the baseline teacher, student, and our
RED models on the same edge GPU. Our models yield similar peak memory as the student models (due to
similar levels of aggressive striding) and ∼2×∼3.2× lower peak memory for image classification and ∼2×
lower peak memory for image generation tasks compared to the teacher models. Note that our theoretical
and measured peak memory reduction factors are different due to varying device setups and buffer allocations.
However, our models incur worse latency and power compared to the student models due to the additional
RED blocks and improved latency compared to the teacher models.

4.6 Ablation Study

Module Discussion As shown in Table 6, we conduct the ablation study on STL10 dataset with the
MobileNetV3-Small backbone by removing the logit module, residual encoder, shortcut, and the whole RED
block, respectively. The performance of our proposed model degrades slightly without the logit module but
seriously degrades without the residual encoder, which illustrates that the residual encoder plays a more
significant role in the RED block. Without RED blocks, the student model has poor performance when
only applying RED loss on the student activation maps and teacher activation maps, which illustrates the
necessity to integrate RED blocks into the student model. Naively stacking the logit module and residual
encoder, i.e., without Shortcut, performs even worse than without RED blocks, illustrating the effectiveness
of our designed shortcuts in the logit module and residual encoder. We also conduct the ablation study on
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Table 5: Edge Device Deployment. We analyze the theoretical Peak Memory (T-PkMem), and measure
actual GPU Peak Memory (A-PkMem), Model Size (MS), Maximum Power (MxP), and Latency for models
on an NVIDIA Jetson TX2 device. For theoretical Peak Memory analysis, the batch size is assumed to be
1. For each actual measurement, the batch size (BS) is reported in the table and set to the maximum load
allowed by the device, which is restricted by the teacher. The 1st-9th rows are for models we use in STL10
classification, and the 10th-18th row are for models we use in ImageNet classification, while the last 3 rows
are for models we use in image generation task. The overheads of RED modules on top of student networks is
minimal in particular for cases with more aggressive pooling, e.g., distillation of MbNetV2 with ×8 pooling.

Model Theoretical Analysis Actual Measurement
T-PkMem (MB) BS A-PkMem (GB) MS (MB) MxP (mW) Latency (ms)

T: MbNetV2 7.50
20

2.30 13.50 1830 221.53 ± 2.34
S: MbNetV2×8 0.51 0.78 13.50 458 49.51 ± 1.98
S w/ RED (ours) 0.51 0.78 14.25 534 55.43 ± 1.80
T: MbNetV3-Small 1.41

50
2.30 9.75 1526 195.63 ± 1.09

S: MbNetV3-Small×4 0.31 1.10 9.75 611 69.76 ± 1.55
S w/ RED (ours) 0.31 1.10 10.18 687 83.74 ± 1.40
T: ResNext18 5.00

50
2.40 21.47 3276 448.38 ± 6.97

S: ResNext18×4 0.75 1.10 21.47 1450 173.23 ± 1.92
S w/ RED (ours) 0.75 1.10 25.56 2058 275.02 ± 3.25
T: ResNet18 3.83

50
2.70 44.63 3273 395.42 ± 4.21

S: ResNet18×4 0.77 1.20 44.63 1297 151.59 ± 1.50
S w/ RED (ours) 0.77 1.20 48.72 1830 208.43 ± 1.53
T: ResNet50 9.19

10
2.00 97.70 2591 293.81 ± 1.09

S: ResNet50×4 2.30 1.00 97.70 1068 125.49 ± 1.17
S w/ RED (ours) 2.30 1.00 160.44 2136 246.68 ± 1.73
T: ResNet152 9.19

8
2.80 230.20 3880 612.03 ± 3.55

S: MobileNetV2×2 1.15 0.71 16.23 305 23.98 ± 0.84
S w/ RED (ours) 1.15 0.71 32.73 611 72.65 ± 1.01
T: UNet w/ DDPM 3.50

30
2.90 133.09 4257 684.31 ± 5.39

S: UNet×2 w/ DDPM 0.88 1.30 133.09 1983 249.92 ± 3.76
S w/ RED (ours) 0.88 1.30 149.92 2362 304.97 ± 1.87

Table 6: Module Discussion on STL10 dataset with MbNetV3-Small×4 with α=50, and cosine distance for
the RED loss. LM denotes Logit Module, and RE denotes Residual Encoder. ks denotes the kernel size of
the convolution layer in RE.

Method RED block Top1 Acc. (%)LM RE Shortcut ks
w/o LM - ✓ ✓ 3 76.66
w/o RE ✓ - ✓ - 72.30
w/o Shortcut ✓ ✓ - 3 52.42
w/o RED block - - - - 69.31
RE w/ ks=1 ✓ ✓ ✓ 1 73.86
RE w/ ks=5 ✓ ✓ ✓ 5 76.26
RED (ours) ✓ ✓ ✓ 3 77.31

the kernel size of the residual module of our RED block. It shows that the proposed method achieves the
best performance with kernel size 3.

Distillation Strategy We conduct the ablation study to compare different strategies during distillation,
including the feature alignment strategy and pooling stride of the initial layer. Specifically, we train the
ResNext18 network on the STL10 dataset with three different strategies while enlarging the stride of the first
pooling layer to ×2, ×4, and ×8. The results are shown in Table 7. ‘RED w/o Distillation’ is the baseline of
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Table 7: Ablation study of distillation strategies on STL10 dataset with ResNext18.

Backbone: ResNext18 Top1 Acc. (%)
1st Pooling Stride ×2 ×4 ×8
RED w/o Distillation 81.43 79.07 73.16
RED w/ Stage-Align 80.59 81.99 74.00
RED w/ Pooling-Align (ours) 85.51 84.80 77.48

training an aggressive pooled ResNext18 without distillation. ‘RED w/ Stage-Align’ applies the traditional
stage-based feature alignment between the student and the teacher activations for distillation. ‘RED w/
Pooling-Align’ is the proposed pooling-based feature alignment strategy. Compared to traditional stage-based
alignment, the proposed pooling-based alignment performs much better for the aggressive pooling strategy.

Table 8: Loss Function Discussion on STL10 dataset with
ResNext18×4. We conduct ablation study on α and distance
measurement for LRED. We also compare our method with the
student integrated with the proposed RED block but distilled
only by LKD and distilled by both our LRED and LKD.

Method LRED LKD Top1 Acc. (%)
α Distance

RED (ours)

0 - - 82.26
50 Euclidean - 82.66
1 Cosine - 82.04
5 Cosine - 82.86
10 Cosine - 83.41
50 Cosine - 84.80
100 Cosine - 85.10
200 Cosine - 84.95

REDw/oLRED
+KD 0 - ✓ 81.94

RED (ours)+KD 50 Cosine ✓ 84.82

Loss Function We also conduct the abla-
tion study for the proposed RED loss func-
tion, an equally important portion of distil-
lation. The results are based on ResNext18
backbone and STL10 dataset, as shown in
Table 8. Without the RED loss, i.e. setting
α to 0 and then the loss function L = Ltask,
the student model is just integrated with
RED blocks but without distillation. In this
circumstance, the poor performance of the
student model illustrates the need to apply
the loss of RED. The proposed method per-
forms worse when applying the Euclidean
distance instead of the cosine distance to cal-
culate the RED loss. Averaging along the
channel dimension with different CT and CS

in Equation 8 might mitigate the absolute
difference in Euclidean space, while cosine
distance measures the angle between two vec-
tors, preserving their relative difference. By
adjusting α from 200 to 1, the performance degradation shows that the proposed method is sensitive to the
hyper-parameter α in Equation 9. Besides, we evaluate the proposed method’s performance when incorporated
with other knowledge distillation methods, such as KD (Hinton et al. (2015)). Specifically, we first evaluate
the student model integrated with the proposed RED blocks by applying only KD loss, which is denoted as
‘REDw/oLRED

+KD’. Then we apply both RED loss and KD loss into the same student model, denoted as
‘RED (ours)+KD’. Performance improvement illustrates the effectiveness of the proposed RED loss.

Table 9: Distillation w/o Aggressive
Pooling Setting.

Method Top1 Acc. (%)
T: ResNext50 83.54
S: MbNetV3-Small 72.62
KD 77.06
FitNet 76.35
AT 76.76
VID 74.83
RKD 73.96
AB 77.50
NST 73.78
RED (ours) 79.71

Distillation w/o Aggressive Pooling In addition to aggressive
pooling, we conduct experiments to compare several distillation
methods from the teacher network ResNext50 to the student network
MobileNetV3-Small without aggressive pooling on STL10 dataset.
As shown in Table 9, our method still achieves the best performance,
illustrating the generalization ability of the proposed framework.

Comparison to Non-distillation Method We compare our
methods to quantization-aware-training (QAT) method by using
the pytorch native architecture optimization toolkit TorchAO (tor-
chao maintainers & contributors (2024)) and a 6 bits QAT method,
INQ (Aojun Zhou (2017)). We also deploy Intel Neural Compres-
sor (INC) (Cheng et al. (2023)) to conduct int8 fully precision and
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int8/fp32 mixed precision post-training-quantization (PTQ) methods. As shown in Table 10, the ResNext18
quantized by INC to int8 achieves 20.12% accuracy and 1.25MB peak memory. The ResNext18 quantized by
INC to mixed precision achieves 84.18% accuracy and 4.19 MB peak memory. The ResNext18 quantized by
INQ to 6 bits achieves 84.07% accuracy and 5.00 MB peak memory. Our distillation method achieves the
optimal trade-off between accuracy and peak memory, with 84.80% accuracy and 0.75 MB peak memory.
Due to the extra RED blocks, our method possesses the higher model size of 25.557 MB. However, our
method is orthogonal to these quantization methods and thus can be applied with the quantization method
to further optimize the student model’s overhead. As shown in the last row of Table 10, the student model
ResNext18×4 distilled by our method and quantized by INC to mixed precision achieves 84.78% accuracy,
0.44 MB peak memory, and 5.621 MB model size.

Table 10: Comparison w/ Non-distillation Method.

Method Top1 Acc.(%) T-PkMem (MB) Model Size (MB)
T: ResNext18 - fp32 85.12 5.00 21.47

w/ TorchAO - dynamic, QAT 83.37 5.00 19.513
w/ INC - int8, PTQ 20.12 1.25 4.960
w/ INC - mixed prec., PTQ 84.18 4.19 5.015
w/ INQ - 6 bits, QAT 84.07 5.00 4.026

S: ResNext18×4 - fp32 79.07 0.75 21.47
w/ INC - mixed prec., PTQ 78.50 0.44 5.015

S + RED (ours) - fp32 84.80 0.75 25.557
w/ INC - mixed prec., PTQ 84.78 0.44 5.621

5 Conclusions and Future Work

We propose ReDistill, a novel residual encoded distillation method to reduce the peak memory of convolutional
neural networks during inference. Our method enables the deployment of these networks in edge devices,
such as micro-controllers with tight memory budgets, while accommodating high-resolution images necessary
for intricate vision tasks. The reduced peak memory can also enable these networks to be implemented with
recently proposed in-sensor computing systems (Datta et al. (2022; 2023)), thereby significantly reducing
the bandwidth between the image sensor and the back-end processing unit. Our method is based on a
teacher-student distillation framework, where the student network using aggressive pooling with reduced
peak memory is distilled from the teacher network. For image classification, our method outperforms
existing response-based and feature-based distillation methods in terms of accuracy-memory trade-off. For
diffusion-based image generation, our method significantly reduces the peak memory of the denoising network
with slight degradation in the fidelity and diversity of the generated images. While we focus on distillation of
CNNs in this work, we leave as future work peak memory reduction of vision transformer via distillation for
image classification (Wu et al. (2022)) and image generation (Peebles & Xie (2023)).

Acknowledgement This work is supported by Department of Defense under funding award W911NF-241-
0295, National Science Foundation Career award #2341039, and Google Cloud research credits program.

References
Romero Adriana, Ballas Nicolas, K Samira Ebrahimi, Chassang Antoine, Gatta Carlo, and Bengio Yoshua.

Fitnets: Hints for thin deep nets. In Proceedings of the International Conference on Learning Representations,
2(3):1, 2015.

Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Variational information
distillation for knowledge transfer. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9163–9171, 2019.

16



Published in Transactions on Machine Learning Research (04/2025)

Yiwen Guo Lin Xu Yurong Chen Aojun Zhou, Anbang Yao. Incremental network quantization: Towards lossless
cnns with low-precision weights. In International Conference on Learning Representations, ICLR2017,
2017.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words: A
vit backbone for diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22669–22679, 2023.

Fang Chen, Gourav Datta, Souvik Kundu, and Peter A Beerel. Self-attentive pooling for efficient deep
learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
3974–3983, 2023.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge review. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017,
2021.

Wenhua Cheng, Yiyang Cai, Kaokao Lv, and Haihao Shen. Teq: Trainable equivalent transformation for
quantization of llms, 2023. URL https://arxiv.org/abs/2310.10944.

Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky Rhodes. Visual wake
words dataset. arXiv preprint arXiv:1906.05721, 2019.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath.
Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–65, 2018.

Gourav Datta, Souvik Kundu, Zihan Yin, Ravi Teja Lakkireddy, Joe Mathai, Ajey P Jacob, Peter A
Beerel, and Akhilesh R Jaiswal. A processing-in-pixel-in-memory paradigm for resource-constrained tinyml
applications. Scientific Reports, 12(1):14396, 2022.

Gourav Datta, Zeyu Liu, Md Abdullah-Al Kaiser, Souvik Kundu, Joe Mathai, Zihan Yin, Ajey P. Jacob,
Akhilesh R. Jaiswal, and Peter A. Beerel. In-sensor & neuromorphic computing are all you need for energy
efficient computer vision. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10094902.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. Eie:
Efficient inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture
News, 44(3):243–254, 2016a.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. International Conference on Learning Representations,
2016b.

Zhiwei Hao, Jianyuan Guo, Kai Han, Yehui Tang, Han Hu, Yunhe Wang, and Chang Xu. One-for-all: Bridge
the gap between heterogeneous architectures in knowledge distillation. In Advances in Neural Information
Processing Systems, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge transfer via distillation of
activation boundaries formed by hidden neurons. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 3779–3787, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

17

https://arxiv.org/abs/2310.10944


Published in Transactions on Machine Learning Research (04/2025)

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity transfer. arXiv
preprint arXiv:1707.01219, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks. Advances in neural information processing systems, 29, 2016.

J Stuart Hunter. The exponentially weighted moving average. Journal of quality technology, 18(4):203–210,
1986.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. International
Conference on Learning Representations, 2017.

Ying Jin, Jiaqi Wang, and Dahua Lin. Multi-level logit distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24276–24285, 2023.

Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compression via
factor transfer. Advances in neural information processing systems, 31, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
Report, University of Toronto, 2009.

Matthias Langer, Zhen He, Wenny Rahayu, and Yanbo Xue. Distributed training of deep learning models: A
taxonomic perspective. IEEE Transactions on Parallel and Distributed Systems, 31(12):2802–2818, 2020.

Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. Self-supervised knowledge distillation using singular
value decomposition. In Proceedings of the European conference on computer vision (ECCV), pp. 335–350,
2018.

Chenxin Li, Mingbao Lin, Zhiyuan Ding, Nie Lin, Yihong Zhuang, Yue Huang, Xinghao Ding, and Liujuan
Cao. Knowledge condensation distillation. In European Conference on Computer Vision, pp. 19–35.
Springer, 2022.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei Chao, and
Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architectures for automated
diffusion model acceleration. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7105–7114, 2023.

Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. Mcunet: Tiny deep learning on iot devices.
Advances in Neural Information Processing Systems, 33:11711–11722, 2020.

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. Mcunetv2: Memory-efficient patch-based
inference for tiny deep learning. arXiv preprint arXiv:2110.15352, 2021.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device training under
256kb memory. Advances in Neural Information Processing Systems, 35:22941–22954, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

18



Published in Transactions on Machine Learning Research (04/2025)

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.

Yiheng Lu, Ziyu Guan, Yaming Yang, Wei Zhao, Maoguo Gong, and Cai Xu. Entropy induced pruning
framework for convolutional neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 3918–3926, 2024.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural
networks for resource efficient inference. International Conference on Learning Representations, 2017.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 3967–3976, 2019.

Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge transfer.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 268–284, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767,
2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241.
Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation.
arXiv preprint arXiv:2311.17042, 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Shangquan Sun, Wenqi Ren, Jingzhi Li, Rui Wang, and Xiaochun Cao. Logit standardization in knowledge
distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15731–15740, 2024.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In International
Conference on Learning Representations, 2020.

torchao maintainers and contributors. torchao: Pytorch native quantization and sparsity for training and
inference, October 2024. URL https://github.com/pytorch/torchao.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 1365–1374, 2019.

19

https://github.com/pytorch/torchao


Published in Transactions on Machine Learning Research (04/2025)

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast
pretraining distillation for small vision transformers. In European conference on computer vision, pp. 68–85.
Springer, 2022.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1492–1500, 2017.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and
Taesung Park. One-step diffusion with distribution matching distillation. arXiv preprint arXiv:2311.18828,
2023.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the performance of
convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928, 2016.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11953–11962,
2022.

20


	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Proposed Distillation Framework
	Residual Encoded Distillation Block
	Loss Function
	Distillation for Diffusion Model

	Experiments
	Datasets
	Implementation Details and Baselines
	CNN-based Image Classification
	Image Generation
	Memory Footprint and Edge Device Deployment
	Ablation Study

	Conclusions and Future Work

