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Abstract

Federated learning (FL) is an emerging machine
learning paradigm for preserving data privacy.
However, diverse client hardware often has vary-
ing computation resources. Such system het-
erogeneity limits the participation of resource-
constrained clients in FL, and hence degrades
the global model accuracy. To enable heteroge-
neous clients to participate in and contribute to
FL training, previous works tackle this problem
by assigning customized sub-models to individual
clients with model pruning, distillation, or low-
rank based techniques. Unfortunately, the global
model trained by these methods still encounters
performance degradation due to heterogeneous
sub-model aggregation. Besides, most methods
are heuristic-based and lack convergence analy-
sis. In this work, we propose the FedLMT frame-
work to bridge the performance gap, by assign-
ing clients with a homogeneous pre-factorized
low-rank model to substantially reduce resource
consumption without conducting heterogeneous
aggregation. We theoretically prove that the con-
vergence of the low-rank model can guarantee the
convergence of the original full model. To further
meet clients’ personalized resource needs, we ex-
tend FedLMT to pFedLMT, by separating model
parameters into common and custom ones. Fi-
nally, extensive experiments are conducted to ver-
ify our theoretical analysis and show that FedLMT
and pFedLMT outperform other baselines with
much less communication and computation costs.
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1. Introduction
Federated learning (FL) has received unprecedented atten-
tion due to its ability to preserve privacy. However, the
FL performance is susceptible to the inherent heterogeneity
in FL clients (Kairouz et al., 2021) due to giant discrep-
ancies of data distribution and resource capability among
FL clients, e.g., storage, communication, and computation.
How to handle data heterogeneity has been explored in ex-
isting works (Tan et al., 2023; Ye et al., 2023). Yet, how
to handle resource capability heterogeneity (namely system
heterogeneity) is still not fully studied (Pfeiffer et al., 2023).

The mainstream technique to address system heterogeneity
is to assign customized sub-models to individual clients in
accordance with their capabilities. These methods can be di-
vided into four main categories. 1) Width-scale methods that
create sub-models from the global full model by pruning
channels (Alam et al., 2022). 2) Depth-scale methods which
generate sub-models by dividing the global model based on
the model depth for layer-wise training (Kim et al., 2023).
3) Distillation methods where the server utilizes knowledge
distillation to allow clients to own heterogeneous models
(Zhang et al., 2022). 4) Low-rank based methods where
sub-models are created through low-rank decomposition
(Yao et al., 2021). However, most of them need to aggregate
heterogeneous sub-models, which may impair the perfor-
mance of the aggregated global model (Zhang et al., 2023).
The reason is that heterogeneous sub-models have distinct
characteristics and loss landscapes. Simply weighting the
average of these sub-models will cause inconsistency and
hence introduce errors (Kang et al., 2023). Besides, most
methods are heuristic-based and lack convergence analysis.

In this work, we propose FedLMT, a general FL framework
with low-rank model training, to tackle system heterogene-
ity. In FedLMT, each client trains a pre-factorized low-rank
model with the same model architecture, which is more
lightweight than the original full model and inherently re-
duces computation and communication costs. Since clients’
sub-models are homogeneous, we can bypass the problems
caused by heterogeneous aggregation. Indeed, our experi-
ments show that FedLMT outperforms other methods with
much lower computation overhead and is more robust under
typical heterogeneous FL settings described in (Diao et al.,
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2021). The core reason lies in that training a low-rank model
can have almost the same performance as training the origi-
nal full model, though the latter cannot be implemented due
to the existence of resource-constrained clients. The conver-
gence analysis is provided in Section 4 to justify the efficacy
of low-rank model training. To better meet the resource
needs of diverse clients, we further propose pFedLMT, a
personalized version of FedLMT, which splits the model
parameters into common and custom ones. The common
parts are the same among clients while the custom parts are
heterogeneous according to clients’ own requirements.

Our contributions. Our contributions are fourfold. 1)
We propose FedLMT, a low-rank FL training framework
to tackle system heterogeneity. Unlike traditional hetero-
geneous methods, we show that training a homogeneous
low-rank model on all clients is more robust and efficient
than training heterogeneous models on all clients. 2) We
theoretically analyze the convergence property of FedLMT,
and to the best of our knowledge, we are among the first to
reveal that a converged full model can be reached by train-
ing low-rank sub-models decomposed from the full model
under non-convex and smooth assumptions. 3) We propose
pFedLMT, a personalized version of FedLMT, which splits
the model weights into common and custom ones to better
adapt to the resource requirements of heterogeneous clients.
4) We conduct extensive experiments to validate our theoret-
ical analysis and show that FedLMT and pFedLMT achieve
better model performance than state-of-the-art methods.

2. Related Work
2.1. Federated Learning

Based on FedAvg (McMahan et al., 2017), the most standard
FL algorithm, many variants of FedAvg have been proposed
to reduce communication cost (Wang et al., 2022; Isik et al.,
2023), overcome data heterogeneity (Collins et al., 2021;
Marfoq et al., 2022; Xu et al., 2023; Liu et al., 2023), and
improve the convergence rate (Karimireddy et al., 2020;
Acar et al., 2021; Reddi et al., 2021). Our work focuses on
the system heterogeneity challenge but is compatible and
can be integrated with methods for solving other challenges.

There are also studies to deal with system heterogeneity
where clients are resource-constrained. One thread of work
creates customized sub-models by factorizing the global full
model with different low-rank decomposition ratios (Yao
et al., 2021; Mei et al., 2022). Among them, FedHM (Yao
et al., 2021) also uses low-rank model training, but our ap-
proach is completely different from FedHM. In FedHM,
the server needs to conduct Singular Value Decomposi-
tion (SVD) operations frequently to obtain clients’ factor-
ized sub-models, which will suffer inferior model utility
since SVD operations incur additional approximation errors,

while our approach avoids this by training pre-factorized
low-rank sub-models to get better model performance. A toy
example is presented in Appendix A.1 to illustrate this issue.
Besides, although the convergence of FedHM is theoreti-
cally derived, the analysis is not convincing since FedHM
fails to converge to a stationary solution. More discussions
on this are presented in Appendix A.2.

The second thread of work adopts knowledge distillation
(Hinton et al., 2015) where the server ensembles the knowl-
edge distilled from clients’ heterogeneous models (Li &
Wang, 2019; Cho et al., 2022; Zhang et al., 2022). However,
most of them require the availability of a public dataset,
which conflicts with secure aggregation protocols and is
susceptible to backdoor attacks (Wang et al., 2020). Finally,
width-scale methods are based on model pruning (Caldas
et al., 2018; Diao et al., 2021; Horvath et al., 2021; Alam
et al., 2022; Hong et al., 2022). This kind of method is sim-
ilar to previously proposed slimmable neural network (Yu
& Huang, 2019) where sub-networks with various widths
and shared weights are jointly trained with self-distillation
(Zhang et al., 2019). However, the inherent drawback of
pruning lies in the mismatch of channel parameters when
aggregating heterogeneous sub-models from clients (Kim
et al., 2023). To avoid this problem, some researchers
proposed dividing the global full model based on a fixed
model depth (Liu et al., 2022; Kim et al., 2023; Ilhan et al.,
2023). Such methods usually need extra classifiers for aux-
iliary training and deep layers may be trained inadequately.
Thereby, extra distillation methods are required to further
train deep layers. Despite their success, most of them are
heuristic-based and the global full model trained by these
methods still suffers performance degradation than training
the full model from scratch, while FedLMT is theoretically
guaranteed and can bridge the performance gap. Besides,
FedLMT outperforms other baselines with less computa-
tion and communication costs and can be easily extended to
pFedLMT that can handle not only the system heterogeneity
but also data heterogeneity, whereas most previous works
are limited in only addressing the system heterogeneity.

2.2. Low-rank Model Training

Training a low-rank neural network from scratch has been
studied in a centralized setting for a long time (Sainath et al.,
2013; Tai et al., 2016; Khodak et al., 2021). However, since
low-rank constraints are lossy, the model performance of
naive low-rank training is degraded compared with training
the original full model. Many practical techniques such as
hybrid model architecture (Wang et al., 2021) and Frobe-
nius decay (Khodak et al., 2021) have been proposed to
bridge the performance gap, but theoretical reasons behind
the effectiveness of these techniques are poorly understood
(Kamalakara et al., 2022). Our framework adopts these
technologies and our theory provides a new insight to un-
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derstand and explain the effectiveness of existing low-rank
techniques, from a theoretical perspective.

In federated and distributed settings, low-rank techniques
are mainly used to improve the communication efficiency.
(Konečnỳ et al., 2016) introduced low-rank approaches into
FL for the first time, but the global model performance is
not ideal. FedDLR (Qiao et al., 2021) further improved
the performance of the global model by using an ad-hoc
adaptive rank selection. In FedDLR, SVD operations are
conducted per up/down transmission round, which will also
encounter the same problem as FedHM. (Hyeon-Woo et al.,
2022) proposed FedPara with low-rank Hadamard product
parameterization. This way, they can construct a higher-rank
model to achieve a better performance with less communica-
tion cost. Pufferfish (Wang et al., 2021) suggested training a
homogeneous low-rank model to reduce the communication
cost, yet this work has no convergence analysis. Our frame-
work is theoretically guaranteed and we are more focused
on solving the system heterogeneity in FL.

It is worth mentioning that the training paradigm of modern
deep learning generally follows the pattern of pre-training
plus fine-tuning. In this case, users do not need to train
the model from scratch but instead focus on fine-tuning
the pre-trained model to adapt to their downstream tasks.
Low-rank techniques also have many applications in this
field. For instance, a series of variants (Dettmers et al., 2024;
Kopiczko et al., 2023; Lialin et al., 2023) based on LoRA
(Hu et al., 2022) provide an effective approach for large
pre-trained model fine-tuning. To some extent, fine-tuning
a pre-trained model can be seen as training the model at a
carefully selected initial point. In this paper, we pay more
attention to training a low-rank model from scratch without
the help of pre-training and the main conclusions of this
paper can be extended to other fields.

3. Preliminary
We assume that models trained in FL are composed of neural
network (NN) layers provided the prevalence and superb
recognition capability of NN models.

3.1. Low-rank Factorization of Neural Layers

Fully Connected Layers. A fully connected (FC) layer
takes a n-dimensional input denoted by z to output a m-
dimensional vector, i.e., z′ = σ(Wz), where σ : Rm 7→
Rm can be any element-wise activation function and W ∈
Rm×n represents parameters of the FC layer. W can be
factorized into the product of UVT , where U ∈ Rm×r,
V ∈ Rn×r, and r ≪ min{m,n} to reduce the computation
and memory complexity from O(mn) to O(mr + nr).

Convolutional Layers. There are multiple ways to factor-
ize convolution layers (Lebedev et al., 2015; Tucker, 1966;

Wang et al., 2021). The strategy in our work is the same
as that of in (Khodak et al., 2021) for the convolution layer
factorization. Specifically, for a 2D convolution layer with
dimension W ∈ Rcout×cin×k×k where cin and cout are the
number of input and output channels, and k is the size of
convolution filters. We first unroll the 4D tensor W lead-
ing to a 2D matrix W

′
with dimension Rcoutk×cink. Then,

we factorize W
′

to obtain U ∈ Rcoutk×r, V ∈ Rcink×r.
Finally, we reshape U and V matrices back to 4D filter,
yielding U ∈ Rcout×r×k×1, V ∈ Rr×cin×1×k. Therefore,
factorizing a convolution layer returns two 1D convolution
layers: 1) the first defined by V consists of r output chan-
nels and filters of size k along one input dimension; 2) the
second defined by U consists of cout output channels and
filters of size k along the other input dimension. Usually
r ≪ min{kcin, kcout} to reduce the computation complex-
ity from O(k2cincout) to O(kr(cin + cout)).

Definition 3.1. For an unfactorized layer denoted by W ∈
Rm×n, the low-rank ratio of the layer is defined by α =

r
rank(W) where rank(W) ≜ min{m,n}.

Here, α measures the size of the low-rank model. The
smaller α is, the smaller the low-rank model.

3.2. Training Methods for Low-rank Models

Hybrid Model Architecture. It has been observed that
factorizing initial layers may negatively impact the model
accuracy (Konečnỳ et al., 2016; Wang et al., 2021). A pos-
sible explanation is that initial layers can be regarded as
feature extractors and low-rank factorization on these layers
will introduce approximation errors. These errors will be ac-
cumulated and propagated throughout the entire model, lead-
ing to an inferior model performance. To address this issue,
the hybrid model architecture is designed as follows (Wang
et al., 2021). Let w = {W 1,W 2, · · · ,WL+1} denote the
weights of a full (L+ 1)-layer model. The weights of the
corresponding hybrid low-rank model can be represented by
x = {W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L,WL+1},
where ρ is a hyper-parameter denoting the number of layers
that are not factorized. Note that the last classification layer,
i.e., WL+1, is usually not factorized (Khodak et al., 2021;
Wang et al., 2021). To keep concise, WL+1 will not be
included in our presentation hereafter. Besides, we assume
that the rank ratio α of all layers is identical and fixed.

Initialization and Regularization. The performance of
low-rank models can be boosted through a customized
initialization called spectral initialization (Idelbayev &
Carreira-Perpinán, 2020) and a customized regularization
named Frobenius decay (Khodak et al., 2021). The former
uses SVD to initialize low-rank model parameters and the
latter applies Frobenius norm penalty, i.e., ∥U l(V l)T ∥2F ,
for each decomposed layer l during the low-rank model
training.
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4. FedLMT: Algorithm and Analysis
4.1. Problem Formulation

Assume that there are N clients with non identically and in-
dependently distributed local data D = {D1,D2, · · · ,DN}.
Traditional FL aims to learn a global L-layer model w =
{W 1,W 2, · · ·WL} by solving the following problem:

min
w∈Wf

f(w) ≜
1

N

N∑
i=1

fi(w), (1)

where the local objective fi(w) ≜ Eξi∼Di
[Fi (w; ξi)] is

the expected loss function of client i, ξi is a random sam-
ple on client i, and Wf represents the weight space of the
full model w with d-dimension. In resource-constrained
settings, clients may not have enough computation ca-
pacity or memory to train the full model w. Therefore,
we consider training the corresponding low-rank model x
of the full model w instead of training w directly. Us-
ing the hybrid model architecture technique, we define
x = {W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L} as the cor-
responding low-rank model of w, and the training objec-
tive is defined as g(x) ≜ 1

N

∑N
i=1 gi(x) with gi(x) ≜

Eξi∼Di
[Gi (x; ξi)]. Here, x ∈ Wg where Wg is the low-

rank weight space with d
′
-dimension, and usually d

′ ≪ d.
The general training process for a low-rank model x using
FedAvg (McMahan et al., 2017), named FedLMT, is shown
in Algorithm 1. Note that in the Algorithm, we do not need
to generate w explicitly.

In this way, if we can obtain the optimal low-rank model x
in Wg after training, we can recover it to obtain a full model
w by executing W l = U l(V l)T ,∀l > ρ. At this time, an
interesting phenomenon is that x and w will achieve the
same loss, i.e., Fi(w; ξ) = Gi(x; ξ) where ξ is a sample in
the supervised learning scenario, because the full model w
is obtained from x. Since the resource requirement for train-
ing x is generally much less than that for training w, we can
get w with less training cost. Extensive prior works (Sainath
et al., 2013; Wang et al., 2021; Khodak et al., 2021) have
empirically observed that the full model w obtained by train-
ing the low-rank x achieves almost the same performance as
training w from scratch directly, but the underlying theoret-
ical principles are unknown. Besides, it is not clear whether
w recovered from x converges in Wf or not.

In this work, we explore this problem from a theoretical
perspective. Intuitively speaking, we first obtain a station-
ary point xt that converges in the low-rank weight space
Wg, i.e., ∇g(xt) = 0, at the end of Algorithm 1 after t
iterations. Next, we prove that the corresponding full model
wt converges in the full weight space Wf as well. The
key that makes this conclusion valid lies in the low-rank
relation between xt and wt. Since wt is obtained from xt

by executing W l = U l(V L)T ,∀l > ρ, using the chain rule,

Algorithm 1 FedLMT
Input: Local epoch E, total iteration T , learn-
ing rate γ, a randomly selected client set N 0,
initial local low-rank model x0

i = x0 =
{W 1

i,t, · · · ,W
ρ
i,t, U

ρ+1
i,t , V ρ+1

i,t , · · · , UL
i,t, V

L
i,t}, ∀i.

Output: Final global model xT .
for t = 1 to T do

for client i ∈ N t−1 in parallel do
xt
i = xt−1

i − γ∇Gi(x
t−1
i , ξti)

end for
if t divides E then

Each client i ∈ N t−1 sends xt
i to the server

Server updates xt = 1
|N t−1|

∑|N t−1|
i=1 xt

i

Server randomly samples a new client set N t

Server broadcasts xt to all chosen clients and re-
places the local model

end if
end for
(Optional) Generate wT from xT .

we can deduce that for all l > ρ,∥∥∇gl(xt)
∥∥2
F
≥ (σ2

min(U
l
t) + σ2

min(V
l
t ))
∥∥∇f l(wt)

∥∥2
F
,

(2)

where σmin(·) denotes the smallest singular value of the ma-
trix (see Lemma D.5 for a detailed derivation). Noting that∥∥∇gl(xt)

∥∥2
F
= 0 at the end of the training in Algorithm 1,

if U l
t and V l

t are trained carefully so that σ2
min(U

l
t) > 0 and

σ2
min(V

l
t ) > 0, then we can conclude that ∇f l(wt) = 0,

implying that it is reasonable to approximate the full model
training by the low-rank model training in both convex and
non-convex settings. Since non-convex cases are more com-
mon, in the following subsection, we will theoretically prove
our statement under non-convex settings.

4.2. Convergence Analysis

Our analysis begins with the following assumptions.

Assumption 4.1. For each client i, fi(·) and gi(·) are con-
tinuously differentiable and smooth with modulus Ls.

Assumption 4.2. (Informal) For each client i, the stochastic
gradients ∇Fi(wi; ξi) and ∇Gi(xi; ξi) are both unbiased,
and the second moment of ∇Fi(wi; ξi) and ∇Gi(xi; ξi)
are bounded by constants G2 and G2

g , respectively. Besides,
∇fi(wi) have the σ2-bounded 2th central moment and the
fourth moment of ∇Fi(wi; ξi) is bounded by constant G4.

Assumption 4.3. There exist constants κu, κv and κuv
such that at each iteration t, for every client i and layer
l ∈ {ρ+ 1, · · · , L}:∥∥U l

i,t

∥∥
F
≤ κu,

∥∥V l
i,t

∥∥
F
≤ κv,

∥∥U l
i,t(V

l
i,t)

T
∥∥
F
≤ κuv,
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where ∥·∥F denotes the Frobenius norm and (·)T means the
transpose operation for the matrix.

Assumption 4.1 and Assumption 4.2 are commonly used in
convergence analysis under distributed settings (Yu et al.,
2019; Bottou et al., 2018). Note that here we need to as-
sume that the fourth moment of ∇Fi is bounded, which is
also used in some popular studies (Glasgow et al., 2022;
Blanchard et al., 2017). Assumption 4.3 has been widely
used for theoretical analysis of machine learning models
(Chen et al., 2020; Chérief-Abdellatif, 2020; Xue et al.,
2023; Zhao et al., 2024). The intuition of Assumption 4.3
is similar to the regularization technique in deep learning,
where a trained model with smaller parameter values is
more desirable since it can mitigate the risk of over-fitting
(Shalev-Shwartz & Ben-David, 2014). Since the dimension
of the model is finite, it is reasonable to assume that the
model weights have an upper bound. To complete the proof,
we introduce an extra assumption as follows.

Assumption 4.4. Let σmin(·) denote the smallest sin-
gular value. In training iteration t, we define ψuv ≜
minl,t{σmin(U

l
t), σmin(V

l
t )} ∀l,∀t, where U l

t and V l
t rep-

resents l-layer weights of xt, i.e., U l
t =

∑
i U

l
i,t, V

l
t =∑

i V
l
i,t. By the definition of the singular value, we have

ψuv ≥ 0, and this assumption further requires ψuv > 0.

Assumption 4.4 is supported by existing works. According
to the Marchenko-Pastur theory (Marchenko & Pastur, 1967;
Bai & Yin, 2008; Vershynin, 2010) (described in Appendix
B), if each layer weight U l ∈ Rml×rl in model x is a Gaus-
sian ensemble with scale 1√

rl
(rl is the input dimension),

which roughly aligns with common model parameter initial-
ization schemes proposed in (Glorot & Bengio, 2010; He
et al., 2015), and rl ≪ ml. Then, we have σmin(U

l) > 0
almost surely. We also do some experiments in Appendix
F.4 to verify that this statement can be true.

Theorem 4.5. (Informal) Under Assumption 4.1-
Assumption 4.4, let q0 be a constant and 1 < q0 < 2,

if 0 < γ ≤ min{ψ
2

q0−1
uv , 1

Ls
, 1}, for a full model w,

by training its corresponding low-rank model x using
Algorithm 1, for all T ≥ 1, we have:

1

T

T∑
i=1

E
[∥∥∇f(wt−1)

∥∥2

2

]
≤ 2

γq0T
(f(w0)− f⋆)

+ γ2−q0(
Lsσ

2

2N
+

3(L− ρ)G2Ls(κ
4
u + κ4

v)

2
)

+ γ2−q0(L− ρ)
G4

N2
(κ2

uv + κ2
uκ

2
v(N − 1)2) +O(γ3−q0),

(3)
where f⋆ is the minimum value of problem (1) and O(·)
ignores higher powers of γ and constant numerical factors.

The proof can be found in Appendix D. Theorem 4.5 reveals
the relationship between training x and training w. With

a fixed local epoch E on clients, by setting γ = 1√
T

and
q0 → 1 in Theorem 4.5, the asymptotic convergence rate
to obtain the full model w is O( 1√

T
) by using Algorithm 1.

This indicates that w can converge in the full weight space
Wf by only training x in the low-rank weight space Wg,
which is much faster than training w directly and consume
less cost. In comparison, previous works (Jiang & Agrawal,
2018; Yu et al., 2019) only show that the convergence rate
for training a low-rank model x in Algorithm 1 is O( 1√

T
)

by setting γ = 1√
T

, failing to link with the convergence of
w. Besides, in Theorem 4.5, as long as we set the learning

rate as γ = N
( 1
q0

− 1
2
)

√
T

, we can deduce that FedLMT has a
convergence rate O( 1

(NT )1−q0/2 ), indicating that FedLMT
can achieve a linear speed-up with respect to the number of
participating clients. An additional important observation
is that if Assumption 4.4 does not hold, which means that
ψuv might be zero, then in order for Theorem 4.5 to be true,
we must choose the learning rate γ to be 0. At this time, we
cannot efficiently update the model x and model w. From
this point of view, Assumption 4.4 is a key factor for the
validity of Theorem 4.5.

Effect of Regularization. Previous works have observed
that imposing Frobenius decay (i.e.,

∥∥UV T
∥∥2
F

) or L2 de-
cay (i.e., ∥U∥2F + ∥V ∥2F ) during a low-rank training can
enhance the model performance (Kamalakara et al., 2022)
under the centralized training setting, but the underlying
theoretical principle is unknown. Here, we provide a new
insight to explain the benefits of these techniques. Specifi-
cally, we find that these techniques can accelerate the model
convergence. From Eq. (3), we can find that if κ2uv , κ4u+κ

4
v

and (κuκv)
2 are small, the convergence upper bound will

be tighter which means that the error will be small. Since
κ2uv is the upper bound of

∥∥UV T
∥∥2
F

and κ4u + κ4v is the
upper bound of ∥U∥4F + ∥V ∥4F , Frobenius decay can re-
duce κ2uv, and L2 decay can reduce κ4u + κ4v and (κuκv)

2,
and hence they can reduce the error upper bound to speed
up the convergence. Besides, since (κuκv)

2 is the upper
bound of ∥U∥2F ∥V ∥2F , we can define an additional regu-
lar form ∥U∥2F ∥V ∥2F which is named as Kronecker decay
since ∥U∥F ∥V ∥F = ∥U ⊗ V ∥F , where ⊗ is the Kronecker
product. Besides, it is interesting to note that the Kronecker
decay is actually an upper bound of the Frobenius decay
since

∥∥UV T
∥∥2
F
≤ ∥U∥2F ∥V ∥2F . The experimental results

in Section 6.2 verify that all regularization forms are effec-
tive and better results can be obtained by simultaneously
using two regularization forms.

From Theorem 4.5, we have the following corollary.

Corollary 4.6. (Informal) Under Theorem 4.5, the upper
bound is a linear function of ρ and can be represented as
C1ρ + C2, (C2 ≥ 0) where C1 and C2 are related to γ.
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If we choose 0 < γ < min{ 3(κ4
u+κ4

v)
4LsE2 , ψ

2
q0−1
uv , 1

Ls
, 1}, the

error bound can be minimized by setting ρ = L.

Effect of the Hybrid Model Architecture. From Corol-
lary 4.6, we find that there exists a trade-off between the
model convergence and the model compression, tuned by
ρ. As ρ gets larger, the error bound in Eq. (3) gets smaller
while the size of the low-rank model is larger. In particular,
when ρ = L which means the full model w is trained, it can
minimize the upper bound error and the model converges at
the fastest rate. The experiments in Section 6.2 verify this
point. In practice, heterogeneous FL systems can choose ρ
properly according to Corollary 4.6 to adapt to the clients’
limited resources.

Discussion. Theorem 4.5 and Corollary 4.6 show that we
can obtain a converged large model in the large weight space
by training its corresponding low-rank model. The size of
the low-rank model is tuned by α and ρ, which can be ad-
justed as needed. Since the size of the low-rank model is
smaller than that of the original large model, we thereby
diminish the communication, computation, and storage over-
head during the FL training while maintaining a high model
utility. These advantages indicate that it is feasible to em-
ploy FedLMT in solving the system heterogeneity in FL.

5. pFedLMT: Personalized FedLMT
In practice, clients may have different needs. For exam-
ple, clients with sufficient computations may desire a larger
model for a better performance (system heterogeneity) or
clients may prefer a customized model due to their unique
data distribution (data heterogeneity). However, most previ-
ous works only consider one of these two challenges, and
ignore the other one. In this section, we show how to extend
FedLMT to tackle both problems at the same time.

Inspired by (Collins et al., 2021), in this paper, we
propose pFedLMT to tackle data heterogeneity and
system heterogeneity. For a low-rank model x =
{W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L}, we denote
those parts which are not factorized p = {W 1, · · · ,W ρ}
as the common layers and those factorized parts q =
{Uρ+1, V ρ+1, · · · , UL, V L} as the custom layers of x.

Overview. In pFedLMT, we first initialize a full model w =
{W 1,W 2, · · ·WL}. Then, we only factorize the custom
layers with different rank ratios αi to generate a customized
low-rank model xi for each client i adapting to its resource
capacity βi. Following the setup of previous works (Diao
et al., 2021; Kim et al., 2023), we assign a large model
to client i with large βi by setting large αi. During the
training process, each client only uploads the common layers
to the server for aggregation while the custom layers are
retained locally. The pseudo-code of pFedLMT is presented

in Algorithm 3 in Appendix C.

We point out several advantages of pFedLMT. 1) By setting
the commonly undecomposed layers, all clients can learn
a globally shared representation of all clients’ local data
(Collins et al., 2021; Oh et al., 2022); 2) By aggregating
the common layers, we can avoid the aggregation of het-
erogeneous parts of models which may lead to parameter
mismatch (Kim et al., 2023; Zhang et al., 2023); 3) The cus-
tom layers enable clients with sufficient resources to train a
larger model for better performance and learn a personalized
model to adapt to local data distribution.

Convergence guarantee for pFedLMT. pFedLMT can be
abstracted into the general algorithm FedSim mentioned in
(Pillutla et al., 2022). Therefore, the convergence analysis
of pFedLMT under the non-convex setting can be proved
by reusing the method in (Pillutla et al., 2022). Although
pFedLMT is a special case of FedSim, it is worth empha-
sizing that our contribution lies in the low-rank constraints
imposed by our method to handle the system heterogeneity.
Besides, the analysis in (Pillutla et al., 2022) can not be used
to prove Theorem 4.5 since they only prove that x is conver-
gent and do not explore the link between the convergence
of w and x, and thereby there is no theoretical guarantee of
the FL performance achieved by training low-rank models.

6. Experiments
6.1. Experiment Setup

Datasets, Tasks and Models. We conduct experiments
on five benchmark datasets: SVHN (Netzer et al., 2011),
CIFAR10, CIFAR100 (Krizhevsky et al., 2009), Tiny-
ImageNet (TINY) (Chrabaszcz et al., 2017) and WikiText2
(Merity et al., 2016). The former four datasets are used
for image classification, while we conduct a masked lan-
guage modeling task with a 15% masking rate for the
last dataset according to (Diao et al., 2021). We use
the ResNet-18 model which is the same as that in (Mei
et al., 2022) for image classification. For WikiText2, we
train a Transformer which is the same as that in (Alam
et al., 2022). More details can be found in Appendix E.1.
Codes to reproduce the main results are available here:
https://github.com/Sherrylife/FedLMT.

Baselines. We compare FedLMT with other state-of-the-art
methods including FedAvg with full resource availability
where all clients can train the full model in each round,
width-scale methods (FedDropout (Caldas et al., 2018),
HeteroFL (Diao et al., 2021) and FedRolex (Alam et al.,
2022)), depth-scale methods (DepthFL (Kim et al., 2023),
ProgFed (Wang et al., 2022)) and low-rank based methods
like FedHM (Yao et al., 2021) and FLANC (Mei et al., 2022).
The implementation details are described in Appendix E.3.
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Table 1. Number of parameters / [ # of FLOPs ] of clients with different model capacities using ResNet-18.

METHOD β1 β2 β3 β4

WIDTH-SCALE 701K [35.8M] 2.80M [141M] 6.29M [315M] 11.2M [559M]
DEPTH-SCALE 449K [231M] 1.58M [404M] 5.15M [557M] 13.2M [692M]
FEDHM 927K [296M] 1.96M [324M] 5.28M [415M] 11.2M [576M]
FLANC 531K [57.1M] 2.36M [207M] 6.01M [436M] 11.5M [744M]
FEDLMT(OURS) 422K [23.5M] 1.43M [140M] 3.43M [283M] —
PFEDLMT 927K [296M] 1.96M [324M] 5.28M [415M] 11.2M [576M]

Table 2. The performance of different methods under ‘β4 - β3 - β2’ settings. ACC means top-1 test accuracy, COMM means the total
communication cost including download and upload among all clients, and FLOPs denotes the total floating operations during FL training.

TASK FEDAVG FEDDROPOUT HETEROFL FEDHM FEDROLEX DEPTHFL FLANC FEDLMT

CIFAR10
ACC 91.91 73.31 85.02 83.33 89.11 86.79 75.83 91.03
COMM(GB) 223.5 134.7 134.7 122.6 134.7 132.9 132.0 28.62
FLOPS(1E12) 11.18 6.75 6.75 8.77 6.75 11.01 9.22 2.80

CIFAR100
ACC 72.20 64.84 63.59 66.10 68.56 69.35 58.32 71.08
COMM(GB) 335.2 201.5 201.5 183.3 201.5 198.6 197.6 42.93
FLOPS(1E12) 16.77 10.10 10.10 13.12 10.10 16.49 13.80 4.20

SVHN
ACC 94.39 93.68 92.08 94.26 94.62 92.41 88.05 95.35
COMM(GB) 223.5 134.7 134.7 122.6 134.7 132.9 132.0 28.62
FLOPS(1E12) 11.18 6.75 6.75 8.77 6.75 11.01 9.22 2.80

TINY
ACC 42.71 30.38 28.88 36.30 32.82 44.84 31.53 48.53
COMM(GB) 335.2 201.5 201.5 183.3 201.5 198.6 197.6 42.93
FLOPS(1E12) 67.02 40.36 40.36 52.50 40.36 65.94 55.20 16.74

WIKITEXT2
PERPLEXITY 3.52 4157.1 3.06 — 3.14 — — 2.93
COMM(GB) 10.36 7.50 7.50 — 7.50 — — 2.65
FLOPS(1E12) 0.39 0.275 0.275 — 0.275 — — 0.106

Data Heterogeneity. Unless otherwise stated, for image
classification tasks, the data is distributed in a non-IID
manner, as in (Kim et al., 2023), a Dirichlet distribution
zc ∼ Dir(η)(η = 0.5) is used to allocate samples to client
m with a fraction of pc,m of all training instances belonging
to class c. For WikiText2, we uniformly assign balanced
data examples to clients according to (Diao et al., 2021).

System Heterogeneity. We consider four different client
model capacities β = {β1, β2, β3, β4} according to (Kim
et al., 2023). Table 1 depicts the model size and the number
of FLOPs of baselines with different model capacities. Here
β4 means training the original full model and the partition
details of each method can be found in Appendix E.3. We
notice that there are a total number of 10 model capacity
combinations, as shown in Table 2. Unless stated otherwise,
the same number of clients are allocated to each of the
different model capacities. For example, ‘β4 - β3 - β2 -β1’
means 25% of the clients are allocated to each of β1, β2, β3
and β4 local models; ‘β2 -β1’ means that 50% clients are
allocated to each of β1 and β2 local models. Note that at
this time no client can train the complete full model.

Evaluation Metrics. For image classification tasks, we use
the average top-1 test accuracy which is defined as the mean
test accuracy of the global full model on each of the client’s
local datasets as our evaluation metric. For natural language
tasks, we use perplexity as the evaluation metric. The model

performance is better if the perplexity is smaller.

Training Setting. Similar to (Diao et al., 2021), in each
communication round, we sample 10 out of 100 clients for
image classification tasks and 5 out of 100 clients for natural
language tasks. The details of the hyper-parameters for the
model training are presented in Appendix E.3.

6.2. Experimental Results and Analysis

Performance Comparison. We first consider a setup with
only three model capacities ‘β4 - β3- β2’. For FedAvg, we
assume all clients train the largest full model with capac-
ity β4. For FedLMT, all clients train the low-rank model
with the smallest capacity β2. For other methods, the same
number of clients are allocated to each of the three different
model capacities. Table 2 shows the final performance of
the global full model obtained by each method. We observe
that even when training the smallest model, FedLMT is still
better than other baselines with less communication cost and
computation overhead on five datasets. This improvement
lies in that we train a homogeneous model on clients so that
we can avoid the problem caused by heterogeneous models
in the model aggregation stage (Zhang et al., 2023).

Impact of Model Distribution. We further evaluate the
performance of the global model obtained by each method
under different client model capacity distributions on the
CIFAR10 dataset, and the results are reported in Table 3.
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Table 3. Impact of client model heterogeneity distribution on model accuracy using CIFAR10 dataset.

MODEL DISTRIBUTION FEDAVG FEDDROPOUT HETEROFL FEDHM FEDROLEX DEPTHFL FLANC FEDLMT (OURS)
β4 91.91 89.79 91.91 91.56 91.90 88.99 90.65 —

β4- β3 — 85.08 88.40 82.11 91.75 88.78 82.41 91.98
β4 - β3- β2 — 73.31 85.02 83.33 89.11 86.79 75.83 91.03

β4 - β3 - β2 -β1 — 61.13 82.05 83.64 84.80 82.77 65.95 86.27
β3 — 80.57 29.94 79.73 86.03 87.79 90.96 91.98

β3 - β2 — 63.90 32.11 81.87 83.54 84.20 82.35 91.03
β3 - β2 -β1 — 47.30 31.95 81.83 72.49 80.54 75.32 86.27

β2 — 55.04 15.92 79.45 61.15 81.49 90.56 91.03
β2 -β1 — 33.71 19.61 81.92 52.20 77.72 82.88 86.27
β1 — 20.59 12.92 82.38 36.67 73.85 88.08 86.27
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Figure 1. Performance of different methods under typical person-
alized FL settings with Dir(η = 0.1) on the CIFAR10 dataset.

Note that no matter how the distribution is, FedLMT always
trains a homogeneous model adapting to clients with the
smallest model capacity. We find that for depth-scale and
width-scale methods, the lower the capacity of clients in-
volved in training, the worse the performance of the final
model trained. This is particularly evident in HeteroFL:
when no client can load a completely large model for train-
ing (e.g., without capacity β4), a giant performance decline
happens due to the static pruning of HeteroFL. Whereas, for
low-rank based methods FedHM and FLANC, they are more
robust to the model distribution. Besides, we can find that
when clients train a homogeneous model (e.g., ‘β1’ setting),
the performance of low-rank based heterogeneous methods
(FedHM, FLANC) is even better than that of the model in
heterogeneous setting (e.g., ‘β3 - β2- β1’ setting) with much
less cost, which manifests the negative effects caused by
heterogeneous sub-model aggregation (Zhang et al., 2023).
While FedLMT achieves better results by only training the
homogeneous smallest low-rank model, we believe this find-
ing will inspire more research in the future. Despite that
FedLMT is slightly less effective than FLANC under the
‘β1’ setting, FedLMT consumes less than 50% of the com-
putation of FLANC and a much lower communication cost.

Personalization Study. To evaluate pFedLMT, we consider
a scenario where data distribution is extremely pathologi-
cal with Dir(η = 0.1) followed by (Chen & Chao, 2022)

and resource constraints differ among clients with ‘β4 - β3-
β2’ setting. Figure 1 shows that pFedLMT consumes less
computation and communication costs to achieve a better
model utility than other baselines. Here, FedRep (Collins
et al., 2021), an advanced personalization method, is shown
as the performance upper bound since each client is well-
resourced and trains the same original full model. It can
be seen that pFedLMT can achieve the same performance
as FedRep with less communication and computation cost
while other methods cannot do this.

Hyper-parameters. To explore the impact of the hybrid
model architecture and rank ratio α, we train a ResNet-18
model on CIFAR10 and CIFAR100 datasets without regular-
ization under FL settings. The results are shown in Figure 2
where the value of ρ is the number of undecomposed layers.
For example, ρ = 1 means decomposing all layers except
the first one; ρ = 15 means decomposing the model starting
from the 16th layer. We find that when the model is highly
compressed (e.g., α = 0.05 and ρ = 1), the performance
of the low-rank model will significantly drop. At this time,
the larger the ρ, the better the model performance, which
means that the hybrid model architecture can effectively
mitigate the performance degradation. For a fixed ρ, as α
increases, implying that the model is larger, the improve-
ment brought by hybrid model architecture is less since at
this time the model is large enough to learn complex rep-
resentations. Figure 4 in Appendix F shows the effect of ρ
on the model performance and the convergence rate under
different learning rates γ with fixed α = 0.2. Per Corollary
4.6, the model converges faster with the increase of ρ. More
discussions and results can be found in Appendix F.1.

Effect of Regularization. According to Theorem 4.5,
Frobenius decay (FD), L2 decay (L2) and Kronecker de-
cay (KD) should be effective according to our theory. Table
4 verifies our conjecture by training a low-rank ResNet-18
model with ρ = 3 and α = 0.2 on the CIFAR10 and CI-
FAR100 datasets under the centralized setting. The training
details can be found in Appendix E.2. Here NONE means
training the low-rank model with no regularization and the
last three lines mean that training the low-rank model us-
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Figure 2. Effect of low-rank ratio α under different hybrid model
architectures.

Table 4. Effect of different types of regularization under the cen-
tralized setting. The results of the original full model are italicized.
ACC means the final top-1 test accuracy and ROUND (x%) means
the training rounds required to reach the target test accuracy x%.

REGULAR
TERM

CIFAR10 (93.06%) CIFAR100 (72.24%)
ACC (%) ROUND (90%) ACC (%) ROUND (65%)

NONE 91.27 142 68.54 117
L2 91.76 136 69.43 101
FD 92.67 129 71.21 110
KD 91.99 131 69.91 99

L2+KD 92.60 119 70.05 88
L2+FD 92.91 107 72.10 83
KD+FD 92.70 124 72.54 81

ing two forms of regularization at the same time. From
Table 4, we find that when using regular terms, the number
of rounds required to achieve the target accuracy is lower,
which means regular terms can make the model converge
faster, and the effect is more obvious under the action of two
regular terms, especially under the combination of L2+FD
or FD+KD. According to our theory, this is because L2 and
KD reduce the value of κu and κv directly (i.e., the upper
bound of U and V ) and FD aims to reduce the value of κuv
(i.e., the upper bound of UV T ). Therefore, a single regular
form only guarantees the reduction of one of the terms κu
(or κv) and κuv. The combination of L2+FD or FD+KD
can minimize the term κu (or κv) and κuv at the same time,
so as to achieve a faster convergence rate. Interestingly, in
addition to speeding up the model convergence, the use of
regularization also seems to allow the model to converge to
a better solution, thereby reducing the generalization error.
This is evident when two regular terms are used.

Supplementary experiments. We conduct supplemen-
tary experiments including the effect of model compression
among FedLMT, width-scale way and depth-scale way, and
comparison with ProgFed. All these results are presented in
Appendix F due to the page limit.

7. Conclusion and Future Work
In this paper, we propose FedLMT, a low-rank FL training
framework, and build a theoretical foundation for it. We
show that FedLMT can bridge the performance by avoiding
heterogeneous aggregation compared with other advanced
heterogeneous methods. Besides, our theory reveals that a
large converged model can be obtained with less training
cost by training it in the low-rank weight space, and also
provides new insights to support existing popular low-rank
model training techniques. Finally, we extend FedLMT to
pFedLMT to demonstrate how to handle system and data
heterogeneity at the same time. Extensive experimental re-
sults verify the theory and the effectiveness of our methods.

The numerical results indicate some promising results in
terms of efficiency and performance even when the low-
rank ratio is small. However, the physical implications
of the low-rank connection between the low-rank model
and the original model are still unclear. Some researchers
have found that deep neural networks can be trained in
low-dimensional subspaces (Li et al., 2022; Arora et al.,
2019), while in general, it is difficult to obtain a converged
high-dimensional model by training it in a low-dimensional
space since we may encounter saddle points during model
optimization. As a result, a precise explanation of how the
low-rank connection between low-dimensional space and
high-dimensional space can guarantee the convergence of
the high-dimensional model is necessary. Moreover, the
impact of the smallest singular value of the model parame-
ters and the low-rank ratio on the model performance and
the convergence rate is not well-reflected by Theorem 4.5.
More investigation of the correlation between the low-rank
ratio and convergence will allow us to better understand
how the low-rank model training affects the original high-
dimensional model.
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A. Discussion about FedHM (Yao et al., 2021)

Algorithm 2 FedHM and FedHMv2

Input: Local epoch E, total iteration T , learning rate γ, a set of randomly selected clients N 0, the initial
full model w0 = {W 1,W 2, · · · ,WL} with L layers, hyper parameters ρ, rank shrinkage ratios {αi}Ni=1 for N
clients, α1 = α2 = · · · = αN , SVD executing period Ts, the initial low rank models {x0

i }Ni=1 for N clients where
x0
i = {W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L} is obtained through SVD according to the corresponding αi and ρ.

Output: Final full model wt.
for t = 1 to T do

for client i ∈ N t−1 in parallel do
xt
i = xt−1

i − γ∇Gi(x
t−1
i , ξti)

end for
if t divides E then

Each client i ∈ N t−1 sends xt
i to the server

Server recovers the low rank models {xt
i}i∈N t−1 from clients to the corresponding full models {wt

i}i∈N t−1

Server updates the global full model wt = 1
|N t−1|

∑|N t−1|
i=1 wt

i

Server randomly samples a new client set N t

Server factorizes wt using SVD according to αi to get new {xt
i}i∈N t and broadcasts them to all chosen clients

if t divides Ts then
Server factorizes wt using SVD according to αi to get new xt and broadcasts xt to all chosen clients

else
Server updates the global low rank model xt = 1

|N t−1|
∑|N t−1|

i=1 xt
i

Server broadcasts xt to all chosen clients in N t

end if
end if

end for

A.1. A Toy Example

Despite the flexible design of FedHM, in this section, we empirically show that flexibly assigning heterogeneous sub-
models to clients in FedHM will introduce significant approximation errors over multiple SVD operations. Conversely, the
performance of our approach is better by training a homogeneous pre-factorized sub-model to avoid frequently conducting
SVD operations.

To adapt to the typical heterogeneous FL setting, we simulate a non-IID (non-identically and independently distributed)
scenario using the CIFAR10 dataset where 100 clients collaboratively train a ResNet-18 model over 2, 000 communication
rounds. In this setting, clients can not train the original full model w due to limited resources, and can only train the
sub-models factorized from the full model. Following from (Yao et al., 2021), we use hybrid model architecture technique
proposed in (Wang et al., 2021) to decompose the original full model w from the 10th layer to the 17th layer and adjust the
compression ratio to construct low-rank sub-model x, which is only 20.7% the size of the original full model. To be specific,
for a full model w = {W 1,W 2, · · · ,WL} with L layers, the corresponding low-rank model x can be represented as
x = {W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L} by executingW l = U l(V l)T using SVD for l = ρ+1, · · · , L, where (·)T
means the transpose operation of matrix and ρ+1 represents the index of the first decomposed layer. In each communication
round, only 10% of the clients are sampled for model training, and other hyper parameters for training can be found in Table
6 in Appendix E.3.

The workflows of FedHM (Algorithm 2 in the original paper1) and the modified version (FedHMv2) we make are present in
Algorithm 2: they share most procedures except the highlighted steps. Here the full model w = {W 1,W 2, · · · ,WL} with
L layers is recovered from the low-rank model x by executing W l = U l(V l)T for l = ρ+ 1, · · · , L. To visualize the effect
of SVD operation on model performance, we make the following two changes in FedHMv2. 1) We set α1 = α2 = · · · = αN

for all N clients participating in the training process, which means that all clients train the homogeneous low-rank sub-

1https://arxiv.org/pdf/2111.14655.pdf
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Figure 3. The impact of SVD operation on model accuracy using FedHMv2. Here Ts is the interval to conduct SVD. For example,
Ts = 10 means that SVD is conducted per 10 rounds. The results of the bar chart represent the accuracy of FedHMv2 under different Ts.
The dotted line represents the accuracy of training the original full model using FedAvg and the dashed line represents the accuracy of
training the pre-factorized low-rank model using FedAvg (FedLMT).

models. 2) We introduce an additional variable Ts to control the execution frequency of SVD. For example, Ts = 1 means
that we do SVD every communication round, just as the original FedHM does. Ts = 10 means that FedHMv2 executes the
SVD operation every 10 rounds. The larger Ts is, the fewer times the SVD operation is executed.

In FedHMv2, given that these sub-models are homogeneous, we can tune the frequency to conduct SVD for every Ts round
where Ts varies from 1 to 2, 000. We show the final model accuracy of FedHMv2 under different values of Ts, and as a
comparison, we also show the results of training homogeneous low-rank sub-models without SVD operations (FedLMT)
and training the original full model using FedAvg (McMahan et al., 2017). Figure 3 shows the final results. Notably, the
final model accuracy of FedHMv2 is higher as Ts is larger. In particular, when Ts = 2, 000, implying that no SVD is
executed, the accuracy of the low-rank model trained by FedHMv2 is very close to that of the full model trained by FedAvg.
If SVD is conducted more frequently with a smaller Ts, the model accuracy is lower, e.g., when Ts = 1, the original
FedHM algorithm is executed, and the model performance is the worst. This toy example shows the potential that training
a homogeneous low-rank model without SVD operation can improve model performance by minimizing approximation
errors, which motivates us to narrow our analysis on the case with homogeneous sub-models.

A.2. Discussion about Theoretical Results in FedHM

The upper bound in Theorem 1 proposed in (Yao et al., 2021) is a function of the learning rate γ and can be abbreviated as:

O(
1

TEη
+ C1η + C2η

2 + C3(1 +
1

Eη
)), (4)

where T is the number of total iteration, E is the number of local epoch and C1, C2, C3 are constants. The authors point
out that the establishment condition of Theorem 1 in their paper is 0 < η ≤ 1

Lg
where Lg is a Lipschitz constant. As the

number of iteration T increases, the first term 1
TEη can approach 0. For the last three terms, when η → 0, we have C1η → 0

and C2η
2 → 0, whereas the last term C3

Eη goes to infinity. The only possibility that C3

Eη approaches 0 is that E → ∞,
which means that each client trains an infinite number of local iterations, and this is impractical. Besides, there is also an
independent term C3 not affected by η, which will not be 0.

B. Marchenko-Pastur Theory
The Marchenko-Pastur (MP) theory defines the distribution of singular values of Gaussian random matrices in the infinite
limit but is applicable to finite matrices with very reasonable error bounds. Specifically, for a N ×M(N > M) gaussian
random matrix X where each element xij ∼ N (0, σ2), MP theory defines the distribution of the eigenvalue of matrix XXT

N
as:

ρ(λ) =

{
N

2πσ2M

√
(λ+−λ)(λ−λ−)

λ if λ ∈ [λ−, λ+]
0 otherwise

, (5)
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where λ+ = σ2
(
1 +

√
M
N

)2
and λ− = σ2

(
1−

√
M
N

)2
represent the largest and smallest eigenvalue, respectively. Since

the eigenvalues of XXT are the squares of the singular values of X , the smallest singular value of X can be greater than 0.

C. pFedLMT Algorithm
Algorithm 3 gives the details of the pFedLMT algorithm.

Algorithm 3 pFedLMT
Input: Local epoch E, total iteration T , learning rate γ, a set of randomly selected clients N 0, the initial low-rank model
x0
i = (p0,q0

i ) according to βi, ∀i. p are the common layers and qi are the custom layers of client i.
Output: Personalized models {xt

1, · · · ,xt
N}.

for t = 1 to T do
for client i ∈ N t−1 in parallel do
qt
i = qt−1

i − γ∇qt−1
i
Gi(x

t−1
i , ξti)

pt = pt−1 − γ∇pt−1Gi(x
t−1
i , ξti)

end for
if t divides E then

Each client i in N t−1 sends pt
i to the server

Server updates pt = 1
|N t−1|

∑|N t−1|
i=1 pt

i

Server randomly samples a new client set N t

Server broadcasts pt to all chosen clients and replaces the common layers of clients’ local models
end if

end for

D. Convergence Analysis
In this section, we first review the background of the problem and some of the assumptions and mathematical properties that
need to be used for the proof, and then we give a concrete proof process.

D.1. Preliminary

Table 5. Notations.

Symbol Description

N the number of all clients
i the index of client
l the index of the layer in the specific neural network
x the parameters of low rank model
w the parameters of the recovered full model
Di the dataset of client i
f the loss function for full model w
g the loss function for low rank model x
∇f the gradient of function f for full model w
∇g the gradient of function g for low rank model x
t the index of all iterations
γ the learning rate
T the total number of iterations
E the number of local iterations to be executed
L the number of layers in the specific neural network
ρ the number of layers which are not decomposed
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Algorithm 4 FedLMT: Federated Learning with Low-rank Model Training
Input: initial low-rank model x̄0 = x0

i = {W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L} for all clients, local epochs E, the
number of total iterations T such that T mod E = 0, learning rate γ.
Output: Final low-rank model x̄t.
for t = 1 to T do

for i = 1 to N do
Compute stochastic gradient Gi(x

t−1
i ; ξti).

xt
i =

{
1
N

∑N
j=1(x

t−1
j − γGj(x

t−1
j ; ξtj)), if t mod E = 0

xt−1
i − γGi(x

t−1
i ; ξti), otherwise.

end for
end for
x̄t = 1

N

∑N
j=1 x

t
i.

Traditional federated learning is to learn a global full model w = {W 1,W 2, · · · ,WL} by solving the following problem:

min
w∈Wf

f(w) ≜
1

N

N∑
i=1

fi(w), (6)

where Wf denotes the full model weight space with d dimensions, N is the number of client and each fi(w) ≜
Eξi∈Di

[Fi(w; ξi)]. Let x = {W 1, · · · ,W ρ, Uρ+1, V ρ+1, · · · , UL, V L} is the corresponding low-rank model of w, if
we want to train a low rank model x, we actually solve the following problem:

min
x∈Wg

g(x) ≜
1

N

N∑
i=1

gi(x), (7)

where Wg denotes the low rank model weight space with d′ dimensions and each gi(x) ≜ Eξi∈Di [Gi(x; ξi)]. Then, we use
the hybrid low rank model x to recover the corresponding full model w: x ∈ Wg 7→ w ∈ Wf by executing W l = U l(V l)T

for l = ρ+ 1, · · · , L where (·)T means the transpose operation of matrix. It is important to observe that for any identical
sample ξ = (z, y) where z is the input and y is the label under supervised learning scenario, the full model w and its
corresponding low-rank model x will get the same result, i.e. Fi(w; ξ) = Gi(x; ξ). Therefore, if we can obtain a good
low-rank model x, we can recover it and then gain the full model w with the same model performance. We use FedAvg
(McMahan et al., 2017) to train the low-rank model x under a FL scenario and rewrite Algorithm 1 in the form of Algorithm
4 for ease of proof. Note that Algorithm 1 and Algorithm 4 are mathematically equivalent. For a fix iteration index t, we
define xt

i =
{
W 1

i,t, · · · ,W
ρ
i,t, U

ρ+1
i,t , V ρ+1

i,t , · · · , UL
i,t, V

L
i,t

}
to represent the low rank model of client i at iteration t and the

corresponding full model is wt
i =

{
W 1

i,t, · · · ,W
ρ
i,t, · · · ,WL

i,t

}
. Since wt

i is recovered form xt
i, the full rank model also

can be represented as wt
i =

{
W 1

i,t, · · · ,W
ρ
i,t, U

ρ+1
i,t (V ρ+1

i,t )T , · · · , UL
i,t(V

L
i,t)

T
}

. Here U l
i,t and V l

i,t mean the lth layer low

rank model parameters of client i at iteration t, U l
i,t ∈ Rml×rl is a ml × rl matrix, V l

i,t ∈ Rnl×rl is a nl × rl matrix, and rl
means the low rank scale and usually rl ≪ min{ml, nl}. ρ means we decompose the full rank model only from layer ρ+ 1
to layer L. W l

i,t ∈ Rml×nl is a ml × nl matrix and W l
i,t = U l

i,t(V
l
i,t)

T for all l ≥ ρ+ 1, In this work, we only consider the
case where the decomposition ratio of each layer is identical, i.e. rl = r, ∀l = ρ+ 1, · · · , L. Next, we define

x̄t ≜
1

N

N∑
i=1

xt
i (8)

as the average of the local low-rank model overall N clients at the tth iteration. It is immediate that

x̄t = x̄t−1 − γ
1

N

N∑
i=1

∇Gi(x
t−1
i ). (9)

Correspondingly, for each layer l, we can define W̄ l
t ≜ 1

NW
l
i,t, Ū

l
t ≜ 1

NU
l
i,t, V̄

l
t ≜ 1

N V
l
i,t. Hence, x̄t =
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W̄ 1

t , · · · , W̄
ρ
t , Ū

ρ+1
t , V̄ ρ+1

t , · · · , ŪL
t , V̄

L
t

}
, and the corresponding full model w̄t of x̄t can be represented as

w̄t =
{
W̄ 1

t , · · · , W̄
ρ
t , Ū

ρ+1
t (V̄ ρ+1

t )T , · · · , ŪL
t (V̄

L
t )T

}
. (10)

Since we train the low rank model x using FedAvg (McMahan et al., 2017), assuming the total number of iterations is T , we
can get a sequence X ′ = {x̄1, x̄2, · · · , x̄t, · · · , x̄T } at the end of the training in Algorithm 4. Since w̄t can be recovered
from x̄t, we also have another imaginary sequence W ′ = {w̄1, w̄2, · · · , w̄t, · · · , w̄T }. We emphasize that in the whole
training process, only the sequence X ′ exists, while the sequence W ′ is only the theoretically existing sequence, since we
do not need to explicitly recover w̄t from x̄t at each training iteration. According to the existing convergence analysis
(Yu et al., 2019; Li et al., 2020; Khaled et al., 2020; Glasgow et al., 2022) of FedAvg, X ′ is convergent and since w̄t is
recovered from x̄t, W ′ is also convergent at the end of Algorithm 4. However, it only means xt is converged in the low rank
model weight space Wg, i.e., ∇g(x̄t; ξ) = 0 , and we can’t conclude ∇f(w̄T ; ξ) = 0 in the full model weight space Wf .
Theorem 4.5 proves that if we can obtain the optimal low-rank model x in Wg after training using Algorithm 4, then we can
conclude that the corresponding full model w will also converge in the full weight space Wf . This theorem implies that it is
reasonable to obtain the full model by training the corresponding low-rank model with much less training cost.

Next, we describe some important properties of learning with factorized layers. For each iteration t, client i and layer l > ρ,
according to the chain rule for derivatives, the stochastic gradient of layer l of the hybrid model xt

i satisfies

∇Gl
i

(
xt
i; ξ

t+1
i

)
=

[
∇F l

i

(
wt

i ; ξ
t+1
i

)
V l
i,t

∇F l
i

(
wt

i ; ξ
t+1
i

)T
U l
i,t

]
and ∇gli

(
xt
i; ξ

t+1
i

)
=

[
∇f li

(
wt

i ; ξ
t+1
i

)
V l
i,t

∇f li
(
wt

i ; ξ
t+1
i

)T
U l
i,t

]
. (11)

Note that in Eq. (11), both ∇Gl
i

(
xt
i; ξ

t+1
i

)
and ∇gli

(
xt
i; ξ

t+1
i

)
are (ml + nl) × r matrices. For ease of writing, without

causing ambiguity, we use the abbreviation ∇gli (xt
i) to denote ∇gli

(
xt
i; ξ

t+1
i

)
and ∇Gl

i (x
t
i) to denote ∇Gl

i

(
xt
i; ξ

t+1
i

)
.

Furthermore, since ∇g(x) = 1
N

∑N
i=1 ∇gi(x), we have

∇Gl
(
x̄t
)
=

[
∇F l (w̄t) V̄ l

t

∇F l (w̄t)
T
Ū l
t

]
and ∇gl

(
x̄t
)
=

[
∇f l (w̄t) V̄ l

t

∇f l (w̄t)
T
Ū l
t

]
. (12)

The following equations also hold.∥∥∇Gl
i

(
xt−1
i

)∥∥2
F
=
∥∥∇F l

i

(
wt−1

i

)
V l
i,t

∥∥2
F
+
∥∥∥∇F l

i

(
wt−1

i

)T
U l
i,t

∥∥∥2
F
.∥∥∇gli (xt−1

i

)∥∥2
F
=
∥∥∇f li (wt−1

i

)
V l
i,t

∥∥2
F
+
∥∥∥∇f li (wt−1

i

)T
U l
i,t

∥∥∥2
F
.

(13)

Besides, the whole gradient of xt−1
i and wt−1

i can be represented as

∇gi
(
xt−1
i

)
= {∇g1i

(
xt−1
i

)
, · · · ,∇gLi

(
xt−1
i

)
},

∇Gi

(
xt−1
i

)
= {∇G1

i

(
xt−1
i

)
, · · · ,∇GL

i

(
xt−1
i

)
},

∇fi
(
wt−1

i

)
= {∇f1i

(
wt−1

i

)
, · · · ,∇fLi

(
xt−1
i

)
},

∇Fi

(
wt−1

i

)
= {∇F 1

i

(
wt−1

i

)
, · · · ,∇FL

i

(
wt−1

i

)
},

(14)

where ∇gi
(
xt−1
i

)
, ∇Gi

(
xt−1
i

)
, ∇fi

(
wt−1

i

)
and ∇Fi

(
wt−1

i

)
are vectors, and

∥∥∇gi (xt−1
i

)∥∥2
2
=

L∑
l=1

∥∥∇gli (xt−1
i

)∥∥2
F
,
∥∥∇Gi

(
xt−1
i

)∥∥2
2
=

L∑
l=1

∥∥∇Gl
i

(
xt−1
i

)∥∥2
F

∥∥∇fi (wt−1
i

)∥∥2
2
=

L∑
l=1

∥∥∇f li (wt−1
i

)∥∥2
F
,
∥∥∇Fi

(
wt−1

i

)∥∥2
2
=

L∑
l=1

∥∥∇F l
i

(
wt−1

i

)∥∥2
F
.

(15)

In the following, we will try to show that the full model sequenceW ′ = {w̄1, w̄2, · · · , w̄t, · · · , w̄T } obtained by Algorithm
4 will also converge to a local stationary point in the full model weight space Wf under non-convex and smooth assumptions.
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D.2. Assumptions

Assumption D.1. For every client i, both the loss function fi(·) and gi(·) are continuously differentiable and have
Ls-Lipschitz continuous gradient.

Assumption D.2. For every client i, the stochastic gradient ∇Fi(w
t
i ; ξ

t
i) and ∇Gi(x

t
i; ξ

t
i) are both unbiased estimate, i.e.,

E [∇Fi(w
t
i ; ξ

t
i)] = ∇fi(wt

i), E [∇Gi(x
t
i; ξ

t
i)] = ∇gi(xt

i) for all t ∈ N. Besides, there exist constants σ > 0 σg > 0,
G > 0 and Gg > 0 such that:

Eξi∼Di ∥∇Fi (w; ξi)−∇fi(w)∥2 ≤ σ2,∀w,∀i,

Eξi∼Di ∥∇Fi (w; ξi)∥2 ≤ G2,∀w,∀i,

Eξi∼Di ∥∇Fi (w; ξi)∥4 ≤ G4,∀w,∀i,

Eξi∼Di ∥∇Gi (x; ξi)−∇gi(x)∥2 ≤ σ2
g ,∀x,∀i,

Eξi∼Di
∥∇Gi (x; ξi)∥2 ≤ G2

g,∀x,∀i.

Assumption D.3. There exists constants κu, κv and κuv such that at each iteration t and for every client i:∥∥U l
i,t

∥∥
F
≤ κu,

∥∥V l
i,t

∥∥
F
≤ κv,

∥∥U l
i,t(V

l
i,t)

T
∥∥
F
≤ κuv, ∀l ∈ {ρ+ 1, · · · , L},

where ∥·∥F denotes the Frobenius norm and (·)T means the transpose operation.

Assumption D.4. There exist a constant ψuv > 0 such that at each iteration t and for every client i:

σmin(Ū
l
t) ≥ ψuv, σmin(V̄

l
t ) ≥ ψuv, ∀l ∈ {ρ+ 1, · · · , L},

where σmin(·) denotes the smallest singular value.

D.3. Supporting Lemmas and Corresponding Proofs

We first prove Lemma D.5, Lemma D.6, Lemma D.7, Lemma D.8 and Lemma D.9, and then we give the proof of
Theorem D.10 (which is Theorem 4.5 in the main paper) and Corollary D.12 (which is Corollary 4.6 in the main paper).

Lemma D.5. Using Algorithm 1, at iteration t, given a full model wt = {W 1
t ,W

2
t , · · · ,WL

t } and the corresponding
low-rank model xt = {W 1

t , · · · ,W
ρ
t , U

ρ+1
t , V ρ+1

t , · · · , UL
t , V

L
t }, for l = ρ+ 1, · · · , L, we have∥∥∇gl(xt)

∥∥2
F
≥
(
σ2
min(V

l
t ) + σ2

min(U
l
t)
) ∥∥∇f l(wt)

∥∥2
F
, (16)

where σmin(·) represents the smallest singular value of any matrix and ∥·∥F denotes the Fronbenius norm.

Proof. Since w is recovered from x by executing W l = U l(V l)T , ∀l > ρ, using the derivative chain rule, we have∥∥∇gl(xt)
∥∥2
F
=
∥∥∇f l(wt)V l

t

∥∥2
F
+
∥∥(∇f l(wt))TU l

t

∥∥2
F

=
∥∥((V l

t )
T∇f l(wt)T )

∥∥2
F
+
∥∥(U l

t)
T∇f l(wt)

∥∥2
F

(a)

≥
(
σ2
min(V

l
t ) + σ2

min(U
l
t)
) ∥∥∇f l(wt)

∥∥2
F
,

(17)

where (a) follows from the basic inequality σmin(U) ∥V ∥F ≤ ∥UV ∥F for any matrix U ∈ Rm×r and matrix V ∈ Rr×n,
and the proof of this inequality can be found in Lemma B.3 proposed in (Zou et al., 2020).

Lemma D.6. Under Assumption D.1 and Assumption D.2, at each iteration t and for every client i it follows that

E
[∥∥x̄t − xt

i

∥∥2
2

]
≤ 4γ2E2G2

g, (18)

where x̄t is defined in Eq. (8) and G is the constant defined in Assumption D.2.
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Proof. For the fixed t ≥ 1 and i ∈ {1, 2, · · · , N}, noting that the aggregated model x̄t ≜ 1
N

∑N
i=1 x

t
i is updated every E

iterations, we can analyze it separately based on the value of t.

1. t mod E ̸= 0. At this time, there exists a largest t0 ≤ t such that x̄t0 = xt0
i . Besides, t0 also meets the condition

t− t0 ≤ E such that

xt
i = xt0

i − γ

t∑
τ=t0+1

∇Gi(x
τ−1
i ) = x̄t0 − γ

t∑
τ=t0+1

∇Gi(x
τ−1
i ). (19)

By Eq. (8), we have

x̄t = x̄t0 − γ
1

N

N∑
i=1

t∑
τ=t0+1

∇Gi(x
τ−1
i ). (20)

Thus, we have

E
[∥∥x̄t − xt

i

∥∥2
2

]
= E

∥∥∥∥∥γ
t∑

τ=t0+1

1

N

N∑
i=1

∇Gi(x
τ−1
i )− γ

t∑
τ=t0+1

∇Gi(x
τ−1
i )

∥∥∥∥∥
2

2


= γ2E

∥∥∥∥∥
t∑

τ=t0+1

1

N

N∑
i=1

∇Gi(x
τ−1
i )−

t∑
τ=t0+1

∇Gi(x
τ−1
i )

∥∥∥∥∥
2

2


(a)

≤ 2γ2E

∥∥∥∥∥
t∑

τ=t0+1

1

N

N∑
i=1

∇Gi(x
τ−1
i )

∥∥∥∥∥
2

2

+

∥∥∥∥∥
t∑

τ=t0+1

∇Gi(x
τ−1
i )

∥∥∥∥∥
2

2


(b)

≤ 2γ2(t− t0)E

 t∑
τ=t0+1

∥∥∥∥∥ 1

N

N∑
i=1

∇Gi(x
τ−1
i )

∥∥∥∥∥
2

2

+

t∑
τ=t0+1

∥∥∇Gi(x
τ−1
i )

∥∥2
2


(c)

≤ 2γ2(t− t0)E

[
t∑

τ=t0+1

1

N

N∑
i=1

∥∥∇Gi(x
τ−1
i )

∥∥2
2
+

t∑
τ=t0+1

∥∥∇Gi(x
τ−1
i )

∥∥2
2

]
(d)

≤ 4γ2E2G2
g.

(21)

where (a)-(c) follows by using the inequality ∥
∑n

i=1 zi∥
2

2
≤ n

∑n
i=1 ∥zi∥

2
2 for any vector zi and any positive integer n

(using n = 2 for (a), n = t− t0 for (b) and n = N for (c)); and (d) follows from Assumption D.2.

2. t mod E = 0. At this time we have

xt
i =

1

N

∑
j=1

(xt−1
j − γ∇Gj(x

t−1
j )) = x̄t−1 − γ

1

N

N∑
j=1

∇Gj(x
t−1
j ). (22)

By the definition of x̄t, we have

x̄t =
1

N

N∑
i=1

xt
i =

1

N

N∑
i=1

(
1

N

∑
j=1

(xt−1
j − γ∇Gj(x

t−1
j )))

= x̄t−1 − γ
1

N

N∑
j=1

∇Gj(x
t−1
j ).

(23)

Hence, E
[
∥x̄t − xt

i∥
2
2

]
= 0 ≤ 4γ2E2G2

g .

In conclusion, Lemma D.6 is valid.
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Lemma D.7. Under Assumption D.1, Assumption D.2 and Assumption D.3, at each iteration t and for every client i it
follows that

E
[∥∥w̄t −wt

i

∥∥2
2

]
≤ Γ, (24)

where Γ = 4ργ2E2G2 + 6γ2(κ4u + κ4v)E
2G2(L− ρ)(2 + γ2E2G2).

Proof. At this time the partial layers of model w̄t are recovered after low-rank training from x̄t, we need to distinguish
between the layer obtained by low-rank restoration and the normal layer in the proof. Note that

E
[∥∥w̄t −wt

i

∥∥2
2

]
= E

 ρ∑
l=1

∥∥W̄ l
t −W l

i,t

∥∥2
F
+

L∑
l=ρ+1

∥∥Ū l
t(V̄

l
t )

T − U l
i,t(V

l
i,t)

T
∥∥2
F

 (25)

We first consider the item E
[∑ρ

l=1

∥∥W̄ l
t −W l

i,t

∥∥2
F

]
. Similar to Lemma D.6, we consider two cases when t mod E ̸= 0 and

when t mode E = 0.

1. t mode E ̸= 0. At this time, there still exists a largest t0 ≤ t such that W l
i,t = W̄ l

t0 − γ
∑t

τ=t0+1 ∇F l
i (w

τ−1
i ) and

W̄ l
t = W̄ l

t0 − γ 1
N

∑N
i=1

∑t
τ=t0+1 ∇F l

i (w
τ−1
i ), so

E

[
ρ∑

l=1

∥∥W̄ l
t −W l

i,t

∥∥2
F

]
=

ρ∑
l=1

E
[∥∥W̄ l

t −W l
i,t

∥∥2
F

]

=

ρ∑
l=1

γ2E

∥∥∥∥∥
t∑

τ=t0+1

1

N

N∑
i=1

∇F l
i (w

τ−1
i )−

t∑
τ=t0+1

∇F l
i (w

τ−1
i )

∥∥∥∥∥
2

F


(a)

≤
ρ∑

l=1

2γ2E

∥∥∥∥∥
t∑

τ=t0+1

1

N

N∑
i=1

∇F l
i (w

τ−1
i )

∥∥∥∥∥
2

F

+

∥∥∥∥∥
t∑

τ=t0+1

∇F l
i (w

τ−1
i )

∥∥∥∥∥
2

F


(b)

≤
ρ∑

l=1

2γ2(t− t0)E

 t∑
τ=t0+1

∥∥∥∥∥ 1

N

N∑
i=1

∇F l
i (w

τ−1
i )

∥∥∥∥∥
2

F

+

t∑
τ=t0+1

∥∥∇F l
i (w

τ−1
i )

∥∥2
F


(c)

≤
ρ∑

l=1

2γ2(t− t0)E

[
t∑

τ=t0+1

1

N

N∑
i=1

∥∥∇F l
i (w

τ−1
i )

∥∥2
F
+

t∑
τ=t0+1

∥∥∇F l
i (w

τ−1
i )

∥∥2
F

]
(d)

≤ 4ργ2E2G2,

(26)

where (a)-(c) follows by using the inequality ∥
∑n

i=1 Zi∥
2

F
≤ n

∑n
i=1 ∥Zi∥2F for any matrix Zi and any positive integer

n (using n = 2 for (a), n = t− t0 for (b) and n = N for (c)); and (d) follows from Assumption D.2.

2. t mod E = 0. Similar to the proof of Lemma D.6, at this time we have E
[∑ρ

l=1

∥∥W̄ l
t −W l

i,t

∥∥2
F

]
= 0 ≤ 4ργ2E2G2.

Overall, we have

E

[
ρ∑

l=1

∥∥W̄ l
t −W l

i,t

∥∥2
F

]
≤ 4ργ2E2G2.

Next we consider the item E
[∑L

l=ρ+1

∥∥Ū l
t(V̄

l
t )

T − U l
i,t(V

l
i,t)

T
∥∥2
F

]
, similarly, we need to analyze case t mod E ̸= 0 and

case t mod E = 0.

1. t mod E ̸= 0. At this time there exists a largest integer t0 ≤ t such that U l
i,t = Ū l

t0 − γ
∑t

τ=t0+1 ∇F l
i (w

τ−1
i )V l

i,τ−1,
Ū l
t = Ū l

t0 − γ 1
N

∑N
i=1

∑t
τ=t0+1 ∇F l

i (w
τ−1
i )V l

i,τ−1, V l
i,t = V̄ l

t0 − γ
∑t

τ=t0+1 ∇F l
i (w

τ−1
i )TU l

i,τ−1, and V̄ l
t =

V̄ l
t0 − γ 1

N

∑N
i=1

∑t
τ=t0+1 ∇F l

i (w
τ−1
i )TU l

i,τ−1.
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We further note that

Ū l
t(V̄

l
t )

T − U l
i,t(V

l
i,t)

T =

− γ(

t∑
τ=t0+1

1

N

N∑
i=1

∇F l
i (w

τ−1
i )V l

i,τ−1 −
t∑

τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(V̄
l
t0)

T

− γŪ l
t0(

t∑
τ=t0+1

1

N

N∑
i=1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i )−

t∑
τ=t0+1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i ))

+ γ2[(
1

N

N∑
i=1

t∑
τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(
1

N

N∑
i=1

t∑
τ=t0+1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i ))]

− γ2[(

t∑
τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(

t∑
τ=t0+1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i ))].

(27)

Let

Al = −γ(
t∑

τ=t0+1

1

N

N∑
i=1

∇F l
i (w

τ−1
i )V l

i,τ−1 −
t∑

τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(V̄
l
t0)

T , (28)

Bl = −γŪ l
t0(

t∑
τ=t0+1

1

N

N∑
i=1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i )−

t∑
τ=t0+1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i )), (29)

Cl = γ2[(
1

N

N∑
i=1

t∑
τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(
1

N

N∑
i=1

t∑
τ=t0+1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i ))]

− γ2[(

t∑
τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(

t∑
τ=t0+1

(U l
i,τ−1)

T∇F l
i (w

τ−1
i ))].

(30)

Note that
E[
∥∥Al

∥∥2
F
]

= γ2E

∥∥∥∥∥(
t∑

τ=t0+1

1

N

N∑
i=1

∇F l
i (w

τ−1
i )V l

i,τ−1 −
t∑

τ=t0+1

∇F l
i (w

τ−1
i )V l

i,τ−1)(V̄
l
t0)

T

∥∥∥∥∥
2

F


(a)

≤ 2γ2E

∥∥∥∥∥(
t∑

τ=t0+1

1

N

N∑
i=1

∇F l
i (w

τ−1
i )V l

i,τ−1)(V̄
l
t0)

T

∥∥∥∥∥
2

F


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i,τ−1)(V̄
l
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T

∥∥∥∥∥
2

F


(b)
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N
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i,τ−1

∥∥∥∥∥
2

F
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 t∑
τ=t0+1
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[
t∑
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∥∥∇F l
i (w
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i )V l
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∥∥2
F

]
(d)

≤ 2κ2vγ
2(t− t0)[(t− t0)G

2κ2v + (t− t0)G
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≤ 4γ2κ4vE
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(31)
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where (a) and (c) follows by using the inequality ∥
∑n

i=1 Zi∥
2

F
≤ n

∑n
i=1 ∥Zi∥2F for any matrix Zi and any positive

integer n (using n = 2 for (a), n = t− t0 for (c)); (b) follows from the basic inequality ∥PQ∥2F ≤ ∥P∥2F ∥Q∥2F for
any matrix P and Q and Assumption D.3; (d) follows from Assumption D.2 and Assumption D.3. Similarly, noting
that there is a symmetrical form between A and B in mathematical form, it is easy to find that

E[
∥∥Bl

∥∥2
F
]

= γ2E

∥∥∥∥∥Ū l
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t∑
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(U l
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τ−1
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(U l
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i (w

τ−1
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∥∥∥∥∥
2

F
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 t∑
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T 1

N
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τ−1
i )

∥∥∥∥∥
2

F


+ 2κ2uγ

2(t− t0)E

[
t∑

τ=t0+1

∥∥(U l
i,τ−1)

T∇F l
i (w

τ−1
i )

∥∥2
F

]
≤ 4γ2κ4uE

2G2.

(32)

What’s more, we can find that

E[
∥∥Cl

∥∥2
F
]

≤ 2γ4E

∥∥∥∥∥( 1N
N∑
i=1

t∑
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τ−1
i )V l
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1

N
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∥∥∥∥∥
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F
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i (w

τ−1
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∥∥∥∥∥
2

F


(a)

≤ 2γ4E

∥∥∥∥∥ 1

N

N∑
i=1

t∑
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τ−1
i )V l

i,τ−1

∥∥∥∥∥
2

F

·

∥∥∥∥∥ 1

N
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i=1
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T∇F l
i (w

τ−1
i )

∥∥∥∥∥
2

F
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∥∥∥∥∥
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τ−1
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i,τ−1

∥∥∥∥∥
2

F

·

∥∥∥∥∥
t∑
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(U l
i,τ−1)

T∇F l
i (w

τ−1
i )

∥∥∥∥∥
2

F


≤ 2γ4(t− t0)

2

N2
E

[
N∑
i=1

t∑
τ=t0+1

∥∥∇F l
i (w

τ−1
i )V l

i,τ−1

∥∥2
F
·

N∑
i=1

t∑
τ=t0+1

∥∥(U l
i,τ−1)

T∇F l
i (w

τ−1
i )

∥∥2
F

]
︸ ︷︷ ︸

D1

+ 2γ4(t− t0)
2 E

[
t∑

τ=t0+1

∥∥∇F l
i (w

τ−1
i )V l

i,τ−1

∥∥2
F
·

t∑
τ=t0+1

∥∥(U l
i,τ−1)

T∇F l
i (w

τ−1
i )

∥∥2
F

]
︸ ︷︷ ︸

D2

(33)

where (a) follows from the basic inequality ∥PQ∥2F ≤ ∥P∥2F ∥Q∥2F for any matrix P and Q. Next, we con-
sider D1 and D2 respectively. To facilitate writing, we denote P l

i,τ−1 =
∥∥∇F l

i (w
τ−1
i )V l

i,τ−1

∥∥2
F

and Ql
i,τ−1 =
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i,τ−1)

T∇F l
i (w

τ−1
i )

∥∥2
F

. Noting that P l
i,τ−1 ≥ 0 and Ql

i,τ−1 ≥ 0, we have

D1 = E

 N∑
i=1

t∑
τ=t0+1

P l
i,τ−1 ·

N∑
j=1

t∑
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Ql
j,τ ′−1


(a)
=

1

2
E

∣∣∣∣∣
N∑
i=1

t∑
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P l
i,τ−1

∣∣∣∣∣
2

+

∣∣∣∣∣∣
N∑
j=1

t∑
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Ql
j,τ ′−1

∣∣∣∣∣∣
2


− 1

2
E


∣∣∣∣∣∣

N∑
i=1
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N∑
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2


(b)
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2
E

∣∣∣∣∣
N∑
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t∑
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P l
i,τ−1

∣∣∣∣∣
2

+

∣∣∣∣∣∣
N∑
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τ ′=t0+1

Ql
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∣∣∣∣∣∣
2


(c)

≤ 1

2
N(t− t0)E

 N∑
i=1

t∑
τ=t0+1

∣∣P l
i,τ−1

∣∣2 + N∑
j=1
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∣∣∣Ql
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=
1

2
N(t− t0)E

[
N∑
i=1

t∑
τ=t0+1

(
∣∣P l

i,τ−1

∣∣2 + ∣∣Ql
i,τ−1

∣∣2)] ,

(34)

where (a) follows from the basic identity ab = 1
2 (a

2 + b2 − (a − b)2) for any two real numbers, (b) follows from
a2 + b2 − (a− b)2 ≤ a2 + b2 and (c) follows from |

∑n
i=1 zi|

2 ≤ n
∑n

i=1 |zi|
2 for any real number zi and any positive

integer n. Since

∣∣P l
i,τ−1

∣∣2 + ∣∣Ql
j,τ−1

∣∣2 =
∥∥∇F l

i (w
τ−1
i )V l

i,τ−1

∥∥4
F
+
∥∥(U l

i,τ−1)
T∇F l

i (w
τ−1
i )

∥∥4
F

≤(κ4u + κ4v)
∥∥∇F l

i (w
τ−1
i )

∥∥4
F

≤(κ4u + κ4v)G
4,

(35)

where the first inequality comes from ∥PQ∥4F ≤ ∥P∥4F ∥Q∥4F and the last inequality comes from Assumption D.2.
Therefore, we finally have

D1 ≤ 1

2
(κ4u + κ4v)(t− t0)

2G4N2. (36)

In the same way, we have

D2 = E

 t∑
τ=t0+1

P l
i,τ−1 ·

t∑
τ ′=t0+1

Ql
j,τ ′−1

 ≤ 1

2
E

∣∣∣∣∣
t∑

τ=t0+1

P l
i,τ−1

∣∣∣∣∣
2

+

∣∣∣∣∣∣
t∑

τ ′=t0+1

Ql
j,τ ′−1

∣∣∣∣∣∣
2


≤ 1

2
(t− t0)E

[
t∑

τ=t0+1

(
∣∣P l

i,τ−1

∣∣2 + ∣∣Ql
j,τ−1

∣∣2)] ≤ 1

2
(κ4u + κ4v)(t− t0)

2G4.

(37)

Substituting Eq. (36) and Eq. (37) into Eq. (33) yields

E[
∥∥Cl

∥∥2
F
] ≤ γ4(κ4u + κ4v)(t− t0)

4G4 + γ4(κ4u + κ4v)(t− t0)
4G4 ≤ 2γ4(κ4u + κ4v)E

4G4. (38)
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Combining the results of Eq. (31), Eq. (32), and Eq. (38), we get

E

 L∑
l=ρ+1

∥∥Ū l
t(V̄

l
t )

T − U l
i,t(V

l
i,t)

T
∥∥2
F

 = E

 L∑
l=ρ+1

∥∥Al +Bl + Cl
∥∥2
F


≤

L∑
l=ρ+1

3E
[∥∥Al

∥∥2
F
+
∥∥Bl

∥∥2
F
+
∥∥Cl

∥∥2
F

]
≤ 6γ2(κ4u + κ4v)E

2G2(L− ρ)(2 + γ2E2G2).

(39)

2. t mod E = 0. At this time it is easy to find that Ū l
t = U l

i,t and V̄ l
t = V l

i,t, hence

E

 L∑
l=ρ+1

∥∥Ū l
t(V̄

l
t )

T − U l
i,t(V

l
i,t)

T
∥∥2
F

 = 0 ≤ 6γ2(κ4u + κ4v)E
2G2(L− ρ)(2 + γ2E2G2). (40)

In short, we have

E
[∥∥w̄t −wt

i

∥∥2
2

]
≤ 4ργ2E2G2 + 6γ2(κ4u + κ4v)E

2G2(L− ρ)(2 + γ2E2G2). (41)

Lemma D.8. Under Assumption D.1, Assumption D.2 and Assumption D.3, at each iteration t and for every client i, it
follows that

E
[∥∥w̄t − w̄t−1

∥∥2
2

]
≤γ2

ρ∑
l=1

E

∥∥∥∥∥ 1

N
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∇f li (wt−1
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∥∥∥∥∥
2
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N

+ 3γ2(L− ρ)G2[κ4u + κ4v +
2γ2G2

N2
(κ2uv + (N − 1)2κ2uκ

2
v)].

(42)

Proof. According to the definition of w̄t in Eq. (10), we have

E
[∥∥w̄t − w̄t−1

∥∥2
2

]
= E
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T
∥∥2
F

 (43)

It’s easy to find that

E

[
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(44)
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where (a) follows by noting that E[∇F l
i (w

t−1
i )] = ∇f li (w

t−1
i ) and applying the basic equality E[∥Z∥2F ] =

E[∥Z − E[Z]∥2F ] + ∥E[Z]∥2F for any matrix Z; (b) follows because each ∇F l
i (w

t−1
i )−∇f li (w

t−1
i ) has zero mean and is

independent across clients; (c) follows because
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follows from Assumption D.2. While for the item E
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, we first note that
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It is easy to find that
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where the last inequality holds because ∇F l
i (w

t−1
i ) and ∇F l

j(w
t−1
j ) are independent for i ̸= j. Therefore, we can deduce

that

E

 L∑
l=ρ+1

∥∥Ū l
t(V̄

l
t )

T − Ū l
t−1(V̄

l
t−1)

T
∥∥2
F

 =

L∑
l=ρ+1

E
[
∥A+B + C∥2F

]

≤
L∑

l=ρ+1

3E
[
∥A∥2F + ∥B∥2F + ∥C∥2F

]
≤ 3γ2(L− ρ)G2[κ4u + κ4v +

2γ2G2

N2
(κ2uv + (N − 1)2κ2uκ

2
v)].

(49)

Combining the result of Eq. (44) and Eq. (49), we finally can get

E
[∥∥w̄t − w̄t−1

∥∥2
2

]
≤γ2

ρ∑
l=1

E

∥∥∥∥∥ 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F

+
γ2σ2

N

+ 3γ2(L− ρ)G2[κ4u + κ4v +
2γ2G2

N2
(κ2uv + (N − 1)2κ2uκ

2
v)].

(50)

Lemma D.9. Under Assumption D.1, Assumption D.2 and Assumption D.3, at each iteration t it follows that

E[
〈
∇f(w̄t−1), w̄t − w̄t−1

〉
]

≤
ρ∑

l=1

(−γ
2
)E
[∥∥∇f l(w̄t−1)

∥∥2
F

]
+

ρ∑
l=1

(−γ
2
)E

∥∥∥∥∥ 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F


+

L∑
l=ρ+1

(−γ
2
)E
[∥∥∇f l(w̄t−1)V̄ l

t−1

∥∥2
F

]
+

L∑
l=ρ+1

(−γ
2
)E

∥∥∥∥∥ 1

N

N∑
i=1

∇f li (wt−1
i )V l

i,t−1

∥∥∥∥∥
2

F


+

L∑
l=ρ+1

(−γ
2
)E
[∥∥(Ū l

t−1)
T∇f l(w̄t−1)

∥∥2
F

]
+

L∑
l=ρ+1

(−γ
2
)E

∥∥∥∥∥ 1

N

N∑
i=1

(U l
i,t−1)

T∇f li (wt−1
i )

∥∥∥∥∥
2

F


+

L∑
l=ρ+1

(
γ2

2
)E
[∥∥∇f l(w̄t−1)

∥∥2
F

]
+
γ

2
L2
sΓ + 4γ3L2

sE
2G2

g + (L− ρ)
γ2G4

N2
(κ2uv + κ2uκ

2
v(N − 1)2).

(51)

Proof. Note that ∇f(w̄t−1) = {∇f1(w̄t−1), · · · ,∇fL(w̄t−1)} and w̄t − w̄t−1 = {W̄ 1
t − W̄ 1

t−1, · · · , W̄
ρ
t −

W̄ ρ
t−1, Ū

ρ+1
t (V̄ ρ+1

t )T − Ūρ+1
t−1 (V̄

ρ+1
t−1 )T , · · · , ŪL

t (V̄
L
t )T − ŪL

t−1(V̄
L
t−1)

T }. We use the notation vec(·) to denote the vector-
ization of a matrix (the result defaults to a column vector), therefore,

E[
〈
∇f(w̄t−1), w̄t − w̄t−1

〉
] = E

[
ρ∑

l=1

vec(∇f l(w̄t−1))T · vec(W̄ l
t − W̄ l

t−1)

]
︸ ︷︷ ︸

part 1

+ E

 L∑
l=ρ+1

vec(∇f l(w̄t−1))T · vec(Ū l
t(V̄

l
t )

T − Ū l
t−1(V̄

l
t−1)

T )


︸ ︷︷ ︸

part 2

(52)
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For part 1, we have

E

[
ρ∑

l=1

vec(∇f l(w̄t−1))T · vec(W̄ ρ
t − W̄ ρ

t−1)

]

=

ρ∑
l=1

(−γ)E

[
vec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

∇F l
i (w

t−1
i ))

]
(a)
=

ρ∑
l=1

(−γ)E

[
vec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

∇f li (wt−1
i ))

]

(b)
=

ρ∑
l=1

(−γ
2
)E

∥∥vec(∇f l(w̄t−1))
∥∥2
2
+

∥∥∥∥∥vec(
1

N

N∑
i=1

∇f li (wt−1
i ))

∥∥∥∥∥
2

2


+

ρ∑
l=1

γ

2
E

∥∥∥∥∥vec(∇f l(w̄t−1))− vec(
1

N

N∑
i=1

∇f li (wt−1
i ))

∥∥∥∥∥
2

2


(c)
=

ρ∑
l=1

(−γ
2
)E

∥∥∇f l(w̄t−1)
∥∥2
F
+

∥∥∥∥∥ 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F


+

ρ∑
l=1

γ

2
E

∥∥∥∥∥∇f l(w̄t−1)− 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F


(d)

≤
ρ∑

l=1

(−γ
2
)E

∥∥∇f l(w̄t−1)
∥∥2
F
+

∥∥∥∥∥ 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F

+
γ

2
L2
sΓ.

(53)

where (a) follows because

E

[
vec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

∇F l
i (w

t−1
i ))

]

= E

[
E

[
vec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

∇F l
i (w

t−1
i ))|ξ[t−1]

]]

= E

[
vec(∇f l(w̄t−1))T · 1

N

N∑
i=1

E
[
vec(∇F l

i (w
t−1
i ))|ξ[t−1]

]]

= E

[
vec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

∇f li (wt−1
i ))

]
.

(54)

The first equality in Eq. (54) follows by the iterated law of expectations, the second equality in Eq. (54) follows because
w̄t−1 is determined by ξ[t−1] = [ξ1, · · · , ξt−1] and the third equality in Eq. (54) follows by E[vec(∇F l

i (w
t−1
i ))|ξ[t−1]] =

vec(∇f li (w
t−1
i )). (b) follows from the basic identity zT1 z2 = 1

2 (∥z1∥
2
2 + ∥z2∥22 − ∥z1 − z2∥22) for any two column vectors
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z1 and z2 with the same length; and (c) follows because ∥Z∥2F = ∥vec(Z)∥22 for any matrix Z. (d) follows because

ρ∑
l=1

E

∥∥∥∥∥∇f l(w̄t−1)− 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F


=

ρ∑
l=1

E

∥∥∥∥∥ 1

N

N∑
i=1

∇f li (w̄t−1)− 1

N

N∑
i=1

∇f li (wt−1
i )

∥∥∥∥∥
2

F


≤ 1

N

N∑
i=1

E

[
ρ∑

l=1

∥∥∇f li (w̄t−1)−∇f li (wt−1
i )

∥∥2
F

]

≤ 1

N
L2
s

N∑
i=1

E
[∥∥w̄t −wt

i

∥∥2
2

]
≤ L2

sΓ,

(55)

where the first inequality follows by using ∥
∑n

i=1 Zi∥
2

F
≤ n

∑n
i=1 ∥Zi∥2F for any matrix Zi; the second inequality follows

from the fact that
∑ρ

l=1

∥∥∇f li (w̄t−1)−∇f li (w
t−1
i )

∥∥2
F
≤
∥∥∇fi(w̄t−1)−∇fi(wt−1

i )
∥∥2
2

and the smoothness of each fi by
Assumption D.1; and the last inequality follows from Lemma D.7. Now let us consider part 2. Since

L∑
l=ρ+1

E
[
vec(∇f l(w̄t−1))T · vec(Ū l

t(V̄
l
t )

T − Ū l
t−1(V̄

l
t−1)

T )
]

=

L∑
l=ρ+1

E

[
−γvec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

∇F l
i (w

t−1
i )V l

i,t−1(V̄
l
t−1)

T )

]

+

L∑
l=ρ+1

E

[
−γvec(∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

Ū l
t−1(U

l
i,t−1)

T∇F l
i (w

t−1
i ))

]

+

L∑
l=ρ+1

E

[
γ2vec(∇f l(w̄t−1))T · vec

(
(
1

N

N∑
i=1

∇F l
i (w

t−1
i )V l

i,t−1)(
1

N

N∑
i=1

(U l
i,t−1)

T∇F l
i (w

t−1
i ))

)]

(a)
=

L∑
l=ρ+1

E

[
−γvec(∇f l(w̄t−1)V̄ l

t−1)
T · vec(

1

N

N∑
i=1

∇f li (wt−1
i )V l

i,t−1)

]
︸ ︷︷ ︸

A

+

L∑
l=ρ+1

E

[
−γvec((Ū l

t−1)
T∇f l(w̄t−1))T · vec(

1

N

N∑
i=1

(U l
i,t−1)

T∇f li (wt−1
i ))

]
︸ ︷︷ ︸

B

+

L∑
l=ρ+1

E

[
γ2vec(∇f l(w̄t−1))T · vec

(
(
1

N

N∑
i=1

∇F l
i (w

t−1
i )V l

i,t−1)(
1

N

N∑
i=1

(U l
i,t−1)

T∇F l
i (w

t−1
i ))

)]
︸ ︷︷ ︸

C

.

(56)

Denoting Im means the m ×m identity matrix and ⊗ means Kronecker product, (a) follows by using the basic identity
vec(PQ) = (Im ⊗ P )vec(Q) = (QT ⊗ Ik)vec(P ), for any matrix P ∈ Rk×r, Q ∈ Rr×m and the iterated law of
expectations. Now we consider A, B and C respectively. Using the basic identity zT1 z2 = 1

2 (∥z1∥
2
2 + ∥z2∥22 − ∥z1 − z2∥22)
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for any two column vectors z1 and z2, we have

A = −γ
2
E

 L∑
l=ρ+1

∥∥∇f l(w̄t−1)V̄ l
t−1

∥∥2
F
+
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∥∥∥∥∥ 1
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∇f li (wt−1
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∥∥∥∥∥
2

F
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+
γ

2
E

 L∑
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∥∥∥∥∥∇f l(w̄t−1)V̄ l
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1

N

N∑
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∇f li (wt−1
i )V l
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∥∥∥∥∥
2

F
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≤ −γ

2
E

 L∑
l=ρ+1
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F
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∥∥∥∥∥ 1
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∇f li (wt−1
i )V l
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∥∥∥∥∥
2

F

+ 2γ3L2
sE

2G2
g,

(57)

where the first inequality follows because

γ

2
E

 L∑
l=ρ+1

∥∥∥∥∥∇f l(w̄t−1)V̄ l
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E
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2
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2
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≤ 2γ3L2
sE

2G2
g,

(58)

where the first inequality follows from Eq. (11), Eq. (12) and the fact that ∥Z1∥2F ≤
∥∥∥∥[Z1

Z2

]∥∥∥∥2
F

for any matrix Z1 and

Z2 with the same number of columns; the second inequality follows because ∇gl(x̄t−1)− 1
N

∑N
i=1 ∇gli(x

t−1
i ) is only a

partial element in vector ∇g(x̄t−1)− 1
N

∑N
i=1 ∇gi(x

t−1
i ); the third inequality follows by using Assumption D.1 and the

last inequality holds from Lemma D.6. In the same way, we have
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2
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(59)
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Finally, using the inequality zT1 z2 ≤ 1
2 (∥z1∥

2
2 + ∥z2∥22) for any two column vectors z1 and z2, we have

C ≤
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(60)
Here (a) follows from ∥P +Q∥2F ≤ 2 ∥P∥2F + 2 ∥Q∥2F for any two matrices P and Q; (b) comes from the inequality
∥
∑n

i=1 Zi∥
2

F
≤ n

∑n
i=1 ∥Zi∥2F for any matrix Zi; (c) follows form ∥PQ∥F ≤ ∥P∥F ∥Q∥F for any two matrices P and Q,

and the last inequality comes from Assumption D.2 and Assumption D.3. Substituting the results of Eq. (57), Eq. (59) and
Eq. (60) into Eq. (56), we can get
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Combining the results of Eq. (53) and Eq. (61), we finally get
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D.4. Proof of Theorem D.10 (Theorem 4.5)

Theorem D.10. Under, Assumption D.1, Assumption D.2, Assumption D.3 Assumption D.4, let q0 be a constant and

1 < q0 < 2, if 0 < γ ≤ min{ψ
2
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uv , 1
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, 1}, then for all T ≥ 1, we have:
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where f⋆ is the minimum value of problem (6).

Proof. Fix t ≥ 1. According to Assumption D.1, we have
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Following the results of Lemma D.8 and Lemma D.9, we have
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Consider the item γ2Lsσ
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v(N − 1)2), since the lowest power with respect to γ in this term is 2, we use the notation O(γ2) to
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represent this item. Then we have
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where (a) follows by noticing that E
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where the first inequality follows from inequality σmin(U) ∥V ∥F ≤ ∥UV ∥F for any matrix U ∈ Rm×r and matrix
V ∈ Rr×n (the proof of this inequality can be found in Lemma B.3 in (Zou et al., 2020)). The last inequality fol-
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Dividing Eq. (67) both sides by γq0

2 , summing over t ∈ {1, 2, · · · , T} and dividing both sides by T yields
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(68)

where the last inequality follows because f⋆ is the minimum value of problem (6).
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D.5. Proof of Corollary D.11

Corollary D.11. Consider problem (6) under Assumption D.1, Assumption D.2, Assumption D.3 and Assumption D.4, and
recall that 1 < q0 < 2. If we choose γ = 1√
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1

T

T∑
i=1

E
[∥∥∇f(w̄t−1)

∥∥2
2

]
≤ 2

T
2−q0

2

(f(w̄0)− f⋆)

+
1

T (
2−q0

2 )

[
Lsσ

2

2N
+

3

2
L2(L− ρ)G2(κ4u + κ4v) +

(L− ρ)G4

N2
(κ2uv + κ2uκ

2
v(N − 1)2)

]
+

1

T (
3−q0

2 )

[
2ρL2

sE
2G2 + 6(L− ρ)L2

sE
2G2(κ4u + κ4v) + 4L2

sE
2G2

g

]
+

1

T (
4−q0

2 )

[
3Ls(L− ρ)G4

N2
(κ2uv + (N − 1)2κ2uκ

2
v)

]
+

1

T (
5−q0

2 )

[
3(L− ρ)L2

sE
4G4(κ4u + κ4v)

]
.

(69)

Proof. Since Γ = 4ργ2E2G2 + 6γ2(κ4u + κ4v)E
2G2(L− ρ)(2 + γ2E2G2), we have
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Dividing Eq. (70) both sides by γq0 and replacing γ with 1√
T

into Eq. (63) yield the result.

D.6. Proof of Corollary D.12 (Corollary 4.6)

Corollary D.12. Consider problem (6) and problem (7) under Assumption D.1, Assumption D.2, Assumption D.3 and
Assumption D.4, and recall that 1 < q0 < 2, if we choose
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then the optimal ρ⋆ = L which can minimize the error bound in Eq. (63).

Proof. Revisiting the constant term Eq. (63), if we think of it as a function of ρ, then we can rewrite it as
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C2 = γ2−q0

[
Lsσ

2

2N
+

3

2
L2LG

2(κ4u + κ4v) +
LG4

N2
(κ2uv + κ2uκ

2
v(N − 1)2)

]
+ γ3−q0

[
6LL2

sE
2G2(κ4u + κ4v)

]
+ γ3−q0

[
4L2

sE
2G2

g

]
+ γ4−q0

[
3LsLG

4

N2
(κ2uv + (N − 1)2κ2uκ

2
v)

]
+ γ5−q0

[
3LL2

sE
4G4(κ4u + κ4v)

]
.

(74)

We find that O(γ2) is a linear function of ρ, furthermore, if γ < 3(κ4
u+κ4

v)
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0, then we have C1 < 0, at this time to minimize the error bound O(γ2), we have the optimal ρ⋆ = L.

D.7. Proof of Theorem D.13

Theorem D.13. Under Assumption D.1, Assumption D.2, Assumption D.3, if 0 < γ < 1
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where f⋆ is the minimum value of problem (6).

Proof. According to Eq. (66), we have
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according to Assumption D.2, we have
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Substituting Eq. (78) into Eq. (76), dividing Eq. (76) both sides by γ
2 , summing over t ∈ {1, 2, · · · , T}, dividing both sides

by T and noticing that g(x̄0) = f(w̄0) yields
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where f⋆ is the minimum value of problem (6).

Remark D.14. The whole process of training low-rank model x by solving problem (7) can be thought of as a vanilla
federated learning process, therefore, according to the result of previous work (Yu et al., 2019), if 0 < γ ≤ 1
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, we also have
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Table 6. Hyper parameters and model architecture used in experiments.

Dataset SVHN CIFAR10 CIFAR100 Tiny-ImageNet WikiText-2
Model ResNet-18 ResNet-18 ResNet-18 ResNet-18 Transformer
Hidden size [64, 128, 256, 512] [64, 128, 256, 512] [64, 128, 256, 512] [64, 128, 256, 512] [64, 128, 256, 512]
Local epoch E 1 1 1 1 1
Local Batch size B 64 64 64 64 100
Optimizer SGD SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9 0.9
Communication round 2000 2000 3000 3000 200
Learning rate γ 0.1 0.1 0.1 0.1 0.01
Scheduler Cosine Anneal Cosine Anneal Cosine Anneal Cosine Anneal Cosine Anneal
Embedding size 128
Number of head N/A 8
Dropout 0.1
Sequence length 64

where g⋆ is the minimum value of problem (7). If we choose γ = 1√
T

and T is large enough, both Eq. (79) and Eq. (80)
show that we can solve problem (7) with convergence rate O( 1√

T
).

E. Details of Experimental Setup
E.1. Datasets and Models

CIFAR10 and CIFAR100. CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are labeled subsets of the 80 million tiny
images dataset. The CIFAR10 dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class, and
there are 50,000 training images and 10,000 test images; The CIFAR100 dataset consists of 60,000 32x32 colour images in
100 classes, with 600 images per class and there are 500 training images and 100 test images. We normalize the images with
channel means and standard deviations for pre-processing. The data augmentation is performed by 4x4 random translation
followed by random horizontal flip (He et al., 2016).

SVHN. SVHN (Netzer et al., 2011) consists of 32x32 colored images of digits. 73,257 images for training and 26,032 images
for testing are provided. We also normalize the images with channel means and standard deviations for pre-processing.

Tiny-ImageNet. Tiny-ImageNet (Chrabaszcz et al., 2017) is constructed from ImageNet and it consists of 100,000 64x64
color images in 200 classes. There are 500 training images, 50 validation images, and 50 testing images for each class. We
normalize the images with channel means and standard deviations for pre-processing.

WikiText2. The WikiText2 language modeling dataset (Merity et al., 2016) is a collection of over 2,000,000 word count
from the set of verified Good and Featured articles on Wikipedia. As it is composed of full articles, this dataset is well-suited
for models that can take advantage of long-term dependencies.

For CIFAR10, CIFAR100, SVHN, and Tiny-ImageNet, we use ResNet-18 which is the same as that in (He et al., 2016;
Mei et al., 2022). For WikiText2, we train a Transformer which is the same as that in (Alam et al., 2022). As for the data
partitioning, for image classification tasks, the data is distributed in a non-IID manner, as in (Hsu et al., 2019; Kim et al.,
2023), a Dirichlet distribution zc ∼ Dir(η)(η = 0.5) is used to allocate to client m a fraction of pc,m of all training instances
belonging to class c. For WikiText2, we conduct a masked language modeling task with a 15% masking rate and uniformly
assign balanced data examples for each client, as the same in (Diao et al., 2021). For all datasets, we maintained the original
train/test data split and used 20% of the training dataset as the validation dataset.

E.2. Experimental Details of Table 4

We train a complete low-rank ResNet-18 model on CIFAR10 and CIFAR100 datasets. The batch size is 128, the initial
learning rate is 0.1 with the cosine annealing schedule, and the training epoch is 200. For all datasets, we maintain the
original train/test data split and used 20% of the training dataset as the validation dataset. The coefficient of regularization is
tuned on the validation dataset via search on the grid {10−9, 10−8, · · · , 101}.
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E.3. Implementation Details

Model Heterogeneity. Let us start by introducing the model partitioning of each approach in detail using ResNet-18 as
an example. We set β = {β1, β2, β3, β4} following the description of their original papers (Diao et al., 2021; Alam et al.,
2022; Kim et al., 2023). Here, β4 means training the original full model, which has a maximum model size than β3, β2, and
β1 setting. Under the β4 setting, the model size may vary slightly among different baselines. For example, since depth-scale
methods require additional classification headers for distillation, the model trained by depth-scale methods is larger than
that trained by width-scale methods under β4 setting.

• For width-scale and depth-scale methods, following the original papers, we set β = {β1 = 1/4, β2 = 1/2, β3 =
3/4, β4 = 1}. Here β2 = 1/2 means the number of channels per layer in the client’s local sub-model is half of the
full model for width-scale methods, while for depth-scale methods it means the number of layers in the client’s local
sub-model is half of the full model.

• For FedHM, following the original paper, we set ρ = 9 and adjust the compression ratio α so that it is similar to
width-scale methods under β1, β2, β3 and β4 setting. For FLANC, we adjust the compression ratio so that it is similar
to width-scale methods, too.

• For FedLMT, we adjust the rank ratio α and ρ so that FedLMT only consumes the lowest communication and
computing resources than other methods. For instance, for all clients with model capacity β1, the communication and
computational overhead required by FedLMT is lower than all other methods. The purpose of this setting is to show
that even if all clients train a homogeneous model with the lowest capacity, the resulting model trained by FedLMT can
still perform better than the global full model trained by other methods. Specifically, we set ρ = 1 and α = 0.03 for β1,
ρ = 3 and α = 0.15 for β2, ρ = 5 and α = 0.4 for β3.

• For pFedLMT, since the aim of pFedLMT is to demonstrate how each client can get a customized model to address
both data heterogeneity and system heterogeneity problems at the same time, we just need to ensure that there is a
difference in computation and communication costs among the participating clients. Therefore, we let pFedLMT and
FedHM have the same heterogeneous model setup.

Implementation of FedLMT and other baselines. By default, Frobenius decay is used for FedLMT, and the regularization
coefficient is tuned via grid search on the grid {10−7, 10−6, 10−5, 10−4, 10−3}. Besides, for image classification tasks,
FedLMT decomposes the convolutional layers according to the value of ρ while for the NLP task, only the feedforward layers
are decomposed. For FedDropout, HeteroFL, and FedRolex, we follow the division of sub-models in the original paper,
and the specific implementation can be found in the open source repository2. For FLANC, we refer to the hyper-parameter
settings of their open source repository3, and only adjust the number of feature maps in the hidden layers to generate different
heterogeneous models. For FedHM, since they don’t publish the source code, we reproduced their Algorithm 2 according
to their experimental description. The construction of the hybrid low-rank model is consistent with the description in the
original paper4 and we generate different heterogeneous models by adjusting the low-rank ratio. Similarly, to implement
DepthFL, since there is no open source code, we reproduce it with reference to the paper (Zhang et al., 2019) they cite and
the corresponding repository published in (Zhang et al., 2019). The distillation temperature in DepthFL is finetuned on the
grid {0.1, 1, 10} and the weighting coefficient of the KL loss is tuned on the grid {0.1, 0.2, 0.5, 0.9, 1}.

Evaluation. Except for the experiments in Figure 1, we used the global model to calculate the model accuracy or perplexity.
In the experiment of personalized scenarios (Figure 1), for pFedLMT, we use the personalized model of each client for
evaluation. For other methods, since they only train a single global model, we use the global model for evaluation.

Training setting. For image classification tasks, we follow the setting in (Diao et al., 2021; Alam et al., 2022; Kim et al.,
2023) and in each communication round, 10% of the clients are randomly selected from a pool of 100 clients. For the
language modeling task, 5% of the clients are randomly selected from the total 100 clients in each communication round.
Most of the hyper-parameters used in our experiments (Table 2 and Table 3) are depicted in Table 6.

Platforms and libraries. We implement FedLMT and other baselines using PyTorch-2.0 (Paszke et al., 2019) and Ray-1.13

2https://github.com/AIoT-MLSys-Lab/FedRolex
3https://github.com/HarukiYqM/All-In-One-Neural-Composition
4https://arxiv.org/abs/2111.14655
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Figure 4. 4(a) and 4(b) show the number of communication rounds required when the model test accuracy exceeds x for the first time
under different initial low-rank layer indices (ρ+ 1) on the CIFAR10 and CIFAR100 datasets (x = 70% for the CIFAR10 dataset and
x = 50% for the CIFAR100 dataset). 4(c) and 4(d) show the final test accuracy of the hybrid ResNet-18 with various initial low-rank
layer indices (ρ+ 1) over the CIFAR10 and CIFAR100 datasets.

(Moritz et al., 2018), and conduct all experiments on a server with two Intel(R) Xeon(R) E5-2640 CPUs (20 cores) and 4
NVIDIA RTX 3090 GPUs running Ubuntu 20.04.

F. Additional Experiments
F.1. Effect of Hyper-parameters and Verification of Corollary 4.6

Figure 9 and Figure 10 (actually the heat map of Figure 2) show the final test accuracy of the low-rank model trained
under different values of ρ which means the number of undecomposed layers and low-rank ratio α. Please note that in
order to better reflect the influence of ρ and α on the model performance, we don’t use any regularization technique in
these experiments. We observe that the hybrid model architecture technique can significantly improve the performance
of the final trained low-rank model when the number of model parameters is very small (i.e., small α), and the model
performance becomes better with the increase of ρ. When the size of the model is large (i.e., large α), the model performance
under different ρ is similar, which indicates that as the model capacity increases, the model’s ability to learn complex
representations is enhanced. At this time, the use of hybrid model architecture technology can no longer significantly
improve the model performance.
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Figure 5. Comparison of different compression methods on CIFAR10 and CIFAR100 datasets under FL setting. The two sub-graphs in
5(a) and 5(b) show the relationship between the global model’s performance and the model size, and the relationship between the global
model’s performance and computation budget, respectively.

To verify Corollary 4.6, Figure 4 shows the effect of ρ on model performance and convergence rate with different initial
learning rates γ using ResNet-18 under FL setting. We find that the global model can’t be trained well if the learning rate γ
is too large, so we only show the case when γ is less than 1. Other training details can be found in Table 6. From Figure 4(a)
and Figure 4(b), we can see that as ρ increases, the number of rounds required to exceed the target accuracy is lower, which
means that the final model converges faster. In particular, when ρ = L, the convergence rate is fastest, and this result is
consistent with Corollary 4.6. Besides, from Figure 4(c) and Figure 4(d), we also find that the larger the ρ, the better model
performance. This observation coincides with our intuition. As ρ increases, i.e., the number of model parameters increases,
the representational ability of the model becomes stronger and therefore we can obtain a better model (Neyshabur et al.,
2019).

F.2. Effect of Model Compression under Homogeneous Setting

To study the effect of different compression methods, we conduct experiments on training models with low-rank method
(FedLMT), width-scale method and depth-scale method under homogeneous setting, respectively. In this setting, all clients
train the same global model and there is no parameter mismatch problem caused by heterogeneous aggregation. Figure 5
reports the final model accuracy under different model sizes and computational costs. We find that under the condition of
limited model size, the performance of the three methods is similar, FedLMT is slightly better than the width-scale method
and depth-scale method. However, under limited computing budget, it is obvious that FedLMT and width-scale method are
better than depth-scale method, which indicates that depth-scale method requires a very large amount of computation. In
summary, if not compressed severely (e.g., model size ≥ 1MB), FedLMT consistently outperforms the width-scale method
and depth-scale method.

F.3. Comparison with ProgFed (Wang et al., 2022)

In this section, we consider another popular FL scenario with system heterogeneity proposed in (Wang et al., 2022). In this
setting, they assume that all clients have the ability to train the original large model, but the available resource capacity of all
clients is dynamic. For example, at the moment t1, the resources of client i are not enough to train the complete large model
since at this time client i needs to perform other tasks. At the moment t2 (t2 > t1), client i is idle and therefore has enough
capacity to train the complete large model. Obviously, this setting is significantly different from the heterogeneous setting
proposed in (Diao et al., 2021; Alam et al., 2022; Kim et al., 2023; Mei et al., 2022) where clients have heterogeneous
resource capacity and only partial clients have the ability to train the original large model. In the following, we first review
the method of ProgFed and then design experiments for performance comparison.

F.3.1. PROGFED

Recently, ProgFed (Wang et al., 2022) proposes a kind of progressive training framework for efficient and effective federated
learning. It is essentially a dynamic model training method based on a fixed network depth partitioning. The authors divide
the whole federated learning process into S stages, and divide the model to be trained M into S stages according to the
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Figure 6. The communication cost of a single client in each round under different methods.

depth, which can be represented as (following the notation in the original paper):

M := GS ◦⃝S
i=1Ei = GS ◦ ES ◦ · · · ◦ E2 ◦ E1, (81)

where GS is the classification head for the task and the Ei could denote, e.g., a stack of residual blocks or simply a single
layer. In stage s (s ∈ {1, · · · , S} associated with the split indices) of FL training, ProgFed additionally introduces local
supervision heads for supervision training and only trains the growing sub-model Ms, which is defined as:

M := Gs ◦⃝s
i=1Ei, (82)

where Gs is a newly introduced head for the FL training of stage s. It is easy to see that all clients train the same model
throughout the training process, and in the final training stage S, all clients train the complete full model.

F.3.2. EXPERIMENTS

As we have mentioned above, ProgFed needs to assume that all clients have enough resource capacity to load the full large
model, which is different from the assumption of other methods focusing on solving the system heterogeneity in FL where
each client has heterogeneous resources and maybe only a few clients can train the large full model. Therefore, in order
to make a fair comparison, we change the training settings of other classical work proposed in (Diao et al., 2021; Alam
et al., 2022; Kim et al., 2023; Caldas et al., 2018). We also divide the training of these methods into S stages, and following
the original experimental setting in (Wang et al., 2022), we set S = 4 and the number of training rounds in each stage s is
Ts = T

2S for s < S and TS = T (S+1)
2S where T is the total iteration and T =

∑S
s=1 Ts. In each stage, every client trains

a homogeneous sub-model and all clients can only train the complete full model in the last stage. For example, in stage
i(1 ≤ i ≤ 4), all clients train the same model with model capacity βi. Since under this setting, each client has the ability to
train a complete large model, therefore, for FedLMT, we let all clients train a homogeneously low-rank model with β2 model
capacity during the whole training process. The communication cost at each training round for a client is shown in Figure 6
and Table 7 shows the final top-1 test accuracy of different methods using four different datasets. The hyper-parameters
used in this experiment can be found in Table 6. We find that the performance of ProgFed seems to depend on the selected
dataset. For example, on CIFAR10 and CIFAR100, the performance of ProgFed is worse than HeteroFL, while on SVHN
and TINY datasets, the performance of ProgFed is much better than HeteroFL. All in all, FedLMT can get better model
performance than other methods with less communication and computation costs.

F.4. Verification of Assumption D.4 (Assumption 4.4)

We conduct experiments in both centralized and distributed settings to verify that Assumption 4.4 is valid.

In the centralized setting, we train a fully low-rank ResNet-18 model (i.e., ρ = 1 and we set α = 0.2) on CIFAR10 and
CIFAR100 datasets, and record the smallest singular value of each layer throughout the training. The detailed training
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Table 7. The performance of different methods under the same setting as ProgFed (Wang et al., 2022). ACC means top-1 test accuracy,
COMM means the total communication cost including download and upload among all clients, and FLOPs denotes the total floating
operations during FL training.

Task FedAvg FedDropout HeteroFL FedRolex DepthFL ProgFed FedLMT

CIFAR10
Acc 91.91 73.66 89.77 90.12 85.16 74.95 91.03
Comm(GB) 223.5 164.1 164.1 164.1 183.7 148.7 28.62
FLOPs(1e12) 11.18 8.22 8.22 8.22 11.63 9.16 2.80

CIFAR100
Acc 72.20 39.76 59.37 57.06 62.38 56.02 71.08
Comm(GB) 335.2 246.2 246.2 246.2 275.5 223.0 42.93
FLOPs(1e12) 16.77 12.32 12.32 12.32 17.44 13.73 4.20

SVHN
Acc 94.39 92.76 92.93 92.67 93.78 95.06 95.35
Comm(GB) 223.5 164.1 164.1 164.1 183.7 148.7 28.62
FLOPs(1e12) 11.18 8.22 8.22 8.22 11.63 9.16 2.80

TINY
Acc 42.71 21.83 27.61 33.32 48.12 43.34 48.53
Comm(GB) 335.2 246.2 246.2 246.2 275.5 223.0 42.93
FLOPs(1e12) 67.02 49.26 49.26 49.26 69.76 54.91 16.74
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Figure 7. The smallest singular value of each block in ResNet-18 over communication round on the CIFAR10 and CIFAR100 datasets
with centralized training setting.

setting is the same as Table 4 and can be found in Appendix E.2. There are a total of 18 layers in ResNet-18 and they can be
divided into 8 residual blocks where each block has two convolutional layers. For the sake of demonstration, we record the
smallest singular value in each block (this value is the smallest value among the two low-rank convolutional layers). Figure
7 shows the final results and Table 8 gives the specific value of the smallest singular value for each block. From the final
results, we can see that Assumption 4.4 is valid.

In the distributed setting, we simulate a non-IID FL scenario using the CIFAR10 and CIFAR100 datasets where 10 clients
collaboratively train a fully low-rank ResNet-18 model over 500 communication rounds. In each communication round, we
record the smallest singular value among all the decomposition layers of the global model, and plot a curve of how this
value changes with the number of communication rounds. Figure 8 shows the results. We find that the smallest singular
value of the global model gradually decreases and becomes stable with the process of training. Using the CIFAR10 dataset,
the final value is stable at 0.0013, and using the CIFAR100 dataset, the final value is stable at 0.0042. Both the results verify
that Assumption 4.4 is valid.
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Table 8. The smallest singular value of each block on the CIFAR10 and CIFAR100 datasets using ResNet-18 during the whole training
process in the centralized setting.

Dataset Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8
CIFAR10 0.501 0.167 0.086 0.402 0.079 0.125 0.044 0.028
CIFAR100 0.103 0.156 0.066 0.354 0.068 0.341 0.086 0.302
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Figure 8. The smallest singular value of the global model over communication round on the CIFAR10 and CIFAR100 datasets with
distributed training setting.
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Figure 9. Heatmap of the hyper-parameters on the CIFAR10 dataset. The x-axis represents the low-rank ratio α, and the y-axis represents
the value of ρ which means the number of layers that are not decomposed.
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Figure 10. Heatmap of the hyper-parameters on the CIFAR100 dataset. The x-axis represents the low-rank ratio α, and the y-axis
represents the value of ρ which means the number of layers that are not decomposed.
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