
Tree-of-Code: A Tree-Structured Exploring Framework for End-to-End
Code Generation and Execution in Complex Task Handling

Anonymous ACL submission

Abstract

Solving complex reasoning tasks is a key real-001
world application of agents. Thanks to the pre-002
training of Large Language Models (LLMs)003
on code data, recent approaches like CodeAct004
successfully use code as LLM agents’ action,005
achieving good results. However, CodeAct006
greedily generates the next action’s code block007
by relying on fragmented thoughts, resulting in008
inconsistency and instability. Moreover, Code-009
Act lacks action-related ground-truth (GT),010
making its supervision signals and termination011
conditions questionable in multi-turn interac-012
tions. To address these issues, we first intro-013
duce a simple yet effective end-to-end code014
generation paradigm, CodeProgram, which015
leverages code’s systematic logic to align with016
global reasoning and enable cohesive problem-017
solving. Then, we propose Tree-of-Code (ToC),018
which self-grows CodeProgram nodes based on019
the executable nature of the code and enables020
self-supervision in a GT-free scenario. Experi-021
mental results on two datasets using ten popular022
zero-shot LLMs show ToC remarkably boosts023
accuracy by nearly 20% over CodeAct with024
less than 1/4 turns. Several LLMs even per-025
form better on one-turn CodeProgram than on026
multi-turn CodeAct. To further investigate the027
trade-off between efficacy and efficiency, we028
test different ToC tree sizes and exploration029
mechanisms. We also highlight the potential030
of ToC’s end-to-end data generation for super-031
vised and reinforced fine-tuning.032

1 Introduction033

Large language models (LLMs) significantly im-034

prove agents’ ability to leverage external tools.035

(Chen et al., 2023b; Hong et al., 2023; Paul, 2024).036

Effectively and efficiently handling complex real-037

world problems (Blount and Clarke, 1994), espe-038

cially those requiring multiple tools and calls (Li039

et al., 2023b; Wang et al., 2024), has become a key040

focus across industry and academia. Currently, the041

widely used paradigm, ReAct, (Yao et al., 2022),042

combines reasoning with action strategies, allow- 043

ing for actions to be performed incrementally and 044

adjusted based on environmental feedback. 045

The application of code generation techniques 046

to complex task planning and execution has gar- 047

nered significant attention (Holt et al., 2024; Wen 048

et al., 2024b; Xu et al., 2024), particularly with 049

the emergence of CodeAct (Wang et al., 2024) ap- 050

proaches. CodeAct moves the interaction unit from 051

ReAct’s individual tool calls to generating code 052

blocks with local reasoning, while uniquely using 053

code logic and libraries. Rather than JSON (Qin 054

et al., 2023) or text (Park et al., 2023), it treats code 055

as action, utilizing LLM’s pre-trained coding skills 056

for efficient handling of complex tasks. 057

However, each turn of CodeAct is based on indi- 058

vidual actions rather than the entire program. It can 059

not autonomously reason and generate complete 060

code in one turn. Instead, it follows a step-by-step 061

generation and interaction process. This is akin 062

to the brain’s control of motor actions, processing 063

tasks iteratively and incrementally, with the basal 064

ganglia supporting step-granularity execution and 065

the cerebellum refining and sequencing for the com- 066

plete complex motor task (Baladron et al., 2023). 067

On the one hand, the fragmented and stalled 068

thinking in code can hinder a thorough understand- 069

ing of the logical chains embedded within it, po- 070

tentially leading to redundant code (Wang et al., 071

2023; Guo et al., 2024). Repeatedly integrating all 072

prior thoughts causes context overload due to long 073

histories, making it more prone to accumulating 074

significant model hallucinations (Ji et al., 2023). 075

On the other hand, solving complex problems 076

can have multiple solutions (Mialon et al., 2023), 077

such as calling tools in different sequences. LLMs 078

also tend to explore randomly, resulting in varied 079

solutions, making it difficult to set a standard an- 080

swer for each step. Long action sequences over 081

multiple turns only provide sparse rewards (Xu 082

et al., 2023). When using these trajectories as train- 083

1

ing data for supervised fine-tuning (SFT), they can084

only be combined into an overall program response085

as one sample (Wang et al., 2024). Applying rein-086

forcement learning is challenging due to the lack087

of necessary process supervision (Zelikman et al.,088

2024), leading to fundamental issues.089

Therefore, we are considering how to use task-090

level feedback as a supervision signal for each turn.091

Additionally, how can we design a framework that092

incorporates reflection and refinement based on093

environmental feedback to create real multi-turn094

trajectory data?095

Here, we are inspired by the Dorsolateral Pre-096

frontal Cortex (DPC), which is involved in high-097

level global cognitive circuits (Kaller et al., 2015),098

to simulate how programmers form systematic rep-099

resentations and utilizations of code. We first pro-100

pose an end-to-end code reasoning and generation101

paradigm, dubbed CodeProgram. In this way, the102

final answer can serve as a direct evaluation metric.103

To utilize environmental feedback from code exe-104

cution, we further develop a framework called Tree-105

of-Code (ToC). In this method, task-level CodePro-106

grams serve as nodes, forming a self-expanding107

exploration tree driven by the verifiability of code108

execution. This differs from "Tree-of-Thoughts"109

(ToT) (Yao et al., 2024a), which enhances "Chain-110

of-Thought" (CoT) (Wei et al., 2022) by exploring111

varied approaches within the same solution. In con-112

trast, we generate diverse solutions through random113

settings, with each node representing a complete114

solution. This concept is akin to a Code "Random115

Forest" (Rigatti, 2017). Experimental results on116

two types of multi-turn, multi-tool, complex task117

datasets, using ten LLMs, demonstrate that ToC118

outperforms CodeAct in both accuracy and effi-119

ciency. The core contributions of this paper are120

summarized as follows:121

1. We introduce CodeProgram, an end-to-end122

paradigm designed to continuously generate123

complete code solutions using necessary tools.124

The purpose and its advantages are analyzed.125

2. We present Tree-of-Code (ToC), which self-126

grows CodeProgram nodes by leveraging the127

executable nature of the code. By exploring128

random settings, ToC enhances performance129

in solving complex tasks through ensembling.130

3. Empirical validation on two complex task131

datasets, M3ToolEval and API-Bank, demon-132

strates significant improvements in both133

Tool Agent
1 st turn 2 nd turn

Try Different Actions Step-by-Step

...

... n-1 th turn

A Conceptual Task for Illustration: Draw a circular smiley face with two black round
eyes and a black wide and slightly arched curved line as the mouth on a green background.

🟰 ❓ 🟰 ❓ 🟰 ❓ 🟰 ❓

n th turn

Program Agent

...

Diverse Completed Programs

Explore and Filter Completed Programs

 Successfully Executed Final
Program

one process

done correctly : wrong : correct :

/ : an action : a completed task Program Filter: Next Action:

: successfully executed
but uncorrectlly execution failed:

Action:

Figure 1: Illustration of our design motivation.

problem-solving performance and efficiency. 134

2 Design Motivation 135

In industry, complex tasks requiring multiple tools 136

and function calls, are typically driven by open- 137

ended user queries. This creates two key chal- 138

lenges: (1) For zero-shot queries, it is challenging 139

to pre-obtain task-level ground-truth (GT). Man- 140

ual annotation or assigning different rewards to 141

responses is required for subsequent SFT (Chung 142

et al., 2024) or reinforced fine-tuning (ReFT) (Lu- 143

ong et al., 2024). Moreover, without GT, the ter- 144

mination criteria become unclear. (2) Multi-turn 145

interactions lack a fixed trajectory, making it diffi- 146

cult to define the process supervised signals (Luo 147

et al., 2024). Current methods often rely on a 148

’judge’ model to evaluate whether the user’s needs 149

from the task query are met at each step (Chen 150

et al., 2024; Li et al., 2024a). However, each eval- 151

uation demands strong analytical and reasoning 152

skills from the model, making it costly and time- 153

consuming. Existing methods deliberately avoid 154

these challenges by assuming GT is known, match- 155

ing task-level GT with action-related outcomes at 156

each step. The process stops if they match, or con- 157

tinues until the step limit is reached. The tool agent 158

in Figure 1 illustrates this. 159

We aim to explore whether it is possible to de- 160

velop a method that can self-provide supervision 161

and termination criteria at each step while approxi- 162

mating GT in a GT-free scenario. 163

Unlike cerebellum-controlled step-by-step mo- 164

tor tasks, we learn from the DPC to treat each turn 165

as a complete task. By iteratively approaching the 166

feasible region, we collect a batch of feasible solu- 167

2

tions and then consider the optimal one. Inspired168

by it, we represent the program agent in Figure 1 to169

simulate the cognitive process of senior program-170

mers. When working on a project, they start with171

global planning, complete the entire code, and itera-172

tively debug until no errors are reported, leveraging173

the systematic logic and environmental feedback174

inherent to the code project.175

CodeProgram

Methods: CoT, ToT, In-
context learning, Self-
Reflection, System2...

Supervision signals

Rewards

OutComes: Successful /
Failed ? Error Types &

Messages？

Thoughts
SFT

ReFT

Training Label

Reasoning Execution Code

Data Pair: (Thoughts + Code, Label)

Figure 2: Illustration of CodeProgram.

3 CodeProgram176

A block of code in CodeAct’s actions corresponds177

to the eyes or mouths of the smiley face in Figure178

1, when faces represent complex tasks. We propose179

CodeProgram, which can draw the complete face in180

one turn. Figure 2 illustrates how it works. Specifi-181

cally, code serves as a bridge, aligning with natural182

language reasoning and connecting it to execution183

outcomes in the environment. By decoupling the184

reasoning process from code execution, we achieve185

flexibility while ensuring consistency.186

3.1 Code as Reasoning187

Code generation plays a crucial role in the con-188

cept of "code-as-reasoning," where the process of189

writing code itself reflects a reasoning process.190

Global reasoning is required to guide com-191

plete code generation in a single end-to-end pro-192

cess. This enables the seamless integration of var-193

ious reasoning methods for large language mod-194

els (LLMs), such as prompt engineering (Chen195

et al., 2023a), Chain-of-Thoughts (CoT) (Wei et al.,196

2022), Tree-of Thoughts (ToT) (Yao et al., 2024a),197

in-context learning (Kojima et al., 2022), self-198

reflection (Zhang et al., 2024), and System2 rea-199

soning (Frankish, 2010; OpenAI, 2024b; Yao et al.,200

2024b). Furthermore, longer chains of thought201

have consistently been shown to improve task per-202

formance (Wei et al., 2022; Zelikman et al., 2024).203

Building on this foundation of global reason-204

ing, we write the root prompt based on previous205

work (Wang et al., 2024) to guide the generation of 206

step-by-step CoT thoughts and the corresponding 207

complete code. LLMs are prompted to first analyze 208

and break down the problem, generate reasoning- 209

based thoughts for solving it, and then produce 210

the complete code that reflects and executes that 211

reasoning. The thoughts and codes are enclosed us- 212

ing the "<thought>-</thought>" and "<execute>- 213

</execute>" tags, respectively. The root prompt is 214

shown in Appendix A. 215

3.2 Two Helper Tools 216

CodeProgram struggles when LLMs must rely on 217

tool outputs to determine the next steps. For exam- 218

ple, we can only provide the final summary answer 219

based on the outputs of the tools; in web browsing 220

tasks, the next action is determined only after the 221

page content is viewed. To maintain end-to-end 222

flow, we introduce two additional functions that 223

call the LLM into our code: a general res_handler, 224

which defines a prompt to generate results that meet 225

the prompt requirements for final summarization, 226

and a next_action for web tasks, which decides the 227

next action from a given set of possible browsing 228

actions based on the page content. The tool descrip- 229

tions and functions are shown in Appendix B. They 230

help better understand the semantic relationships 231

between tools, ensuring a smooth and cohesive se- 232

quence of tool calls during code generation. 233

3.3 Execution Outcome can be Label 234

The code solution is task-level, and its execution 235

outcome is a self-provided annotation that can be 236

directly used as labels. Specifically, it includes 237

"successfully executed or failed", 0/1 supervision 238

signals for SFT, and various rich comments (such 239

as specific results or error messages) that can be 240

quantified as rewards for ReFT, as long as we re- 241

peat the CodeProgram in different settings multiple 242

times to receive feedback. In this way, the code 243

acts as a verifier. This idea inspires us to build a 244

single-layer multi-node Tree-of-Code (ToC). 245

Besides, thanks to the task-level granularity, 246

the code’s execution outcomes align with the task 247

query and thought-code output, which helps gen- 248

erate valuable training data as the thoughts, code, 249

and execution-based labels are strictly aligned. 250

In summary, CodeProgram is an annotation-free, 251

end-to-end generation approach well-suited for pro- 252

ducing large-scale training data, increasing effi- 253

ciency, and improving task-solving performance. 254

3

Thought 2 :
I apologize for the confusion. It seems there
is an issue with this tool. Let me try a
different approach.

CodeProgram
import math
......
def haversine_distance(lat1, lon1, lat2, lon2):
 R = 6371 # Earth's radius in kilometers
geocoding_result = llm_errhandler(Geocoding,
address="San Francisco")
if geocoding_result['status'] == 'success':

(a) CodeAct

Thought 1 :
I can use the NearbyRestaurants API.

Code Action 1 :
NearbyRestaurants({'latitude': 37.7749,
'longitude': -122.4194, 'distance': 1000}
Execution 1 :
TypeError: tool_gen.<locals>.tool_function()
takes 0 positional arguments but 1 was given

Code Action 2 :
Geocoding(address='San Francisco')
Execution 2 :
'latitude': 37.7749, 'longitude': 122.4194

…
…

Query

(b) Tree-of-Code (ToC)

Task Query

Valid Collections

 collect all Executed-Successfully nodes

Ans

majority vote from Valid Collections

Accepted

Awaited

Discarded

Reflect and Expand Nodes

Valid:

Invalid:

Node Execution Success

Node Execution Failure

Thoughts
Based on the previous implementations, we have
successfully find nearby restaurants‘ location.....
 1. Add more informative output, including......
 2. Round the distance to three decimal places.....
 3. Add error handling for the case......

Execution n:
['Restaurant B','Restaurant D']

Execution
Coordinates for San Francisco: (37.7749, 122.4194)
Found 2 restaurants within 1km of San Francisco:
1. Restaurant B (0.000 km away)
2. Restaurant D (0.000 km away)

Layer 1 -

Layer 2 -

Layer3 -

❌

❌

✅ Ans

Node InCorrect ❌

Continue Next Action
Node Correct ✅

Stop and Output answer
Vote and Output answer

❓

Figure 3: An Overview of CodeAct and ToC. (a) CodeAct regards code as action with step-by-step reasoning. (b)
ToC applies execution-based reflection in the tree structure, where each node generates end-to-end code with global
planning as its thoughts. At each layer, different nodes are executed in parallel; if executed successfully, they are
collected for voting. Yellow boxes with dashed borders indicate invalid nodes that fail execution. Both red and
green boxes represent valid nodes: red boxes are discarded through LLM voting, while green boxes are finally
accepted. The query is "Find nearby restaurants within 1km of San Francisco" from API-Bank level-3 dataset.

4 Tree-of-Code Method255

Following the design motivation in Figure 1, we256

need to collect all successfully executed solutions257

and identify the one closest to the GT. CodePro-258

gram introduced in Section 3 has allowed us to259

achieve two key goals: (1) to directly reflect on and260

refine the task-level code, and (2) to use its execu-261

tion results as terminal criteria. We now propose262

an execution-based, self-growing, and self-filtering263

tree, with CodeProgram as its nodes.264

4.1 Overview of Tree-of-Code265

We represent the ToC framework as T = (N, S),266

where N denotes a set of nodes (N), and S rep-267

resents the stems (unidirectional arrows in Figure268

3) , modeling the reflection reasoning process of269

LLMs when expanding the nodes. The overview270

of ToC and how it works is illustrated in Figure 3.271

Let L denote the max depth, l the layer index, M272

the expanded layer’s max width, m the node index,273

l ∈ {1, . . . , L}, m ∈ {1, . . . ,M}. We use T for274

the thoughts of the N , C for code, and E for its275

execution result. The next-layer N is denoted as:276

N(l+1)-m = Sl→(l+1)(f,

l∑
j=0

(Tj-m+Cj-m+Ej-m))277

where f represents the basic information of the278

task, such as the user’s query, and all tool descrip-279

tions. The sum
∑l

j=0 indicates that each reflection280

reasoning process for generating the next node re- 281

lies on the thoughts, code, and execution results 282

from all ancestor nodes in the history. The node 283

index is fixed for simplicity in the formula. 284

4.2 Tree Expansion 285

We initialize from a root node and recursively ex- 286

pand the tree. The expansion process follows: (1) 287

The breadth-first search (BFS) strategy is applied, 288

with each parent node branching into M child 289

nodes. (2) Whether the node continues to grow 290

depends solely on the evaluation of its own execu- 291

tion state (success or failure). For each Nl, 292{
stop and collect, if El ̸= None or error,
grow N(l+1), otherwise.

293

(3) Expansion continues until all child nodes 294

stop or the maximum depth (L) of 3 is reached. 295

Execution-based Reflection. We can not guaran- 296

tee that the end-to-end code solution will be cor- 297

rect on the first attempt. Treating task-level exe- 298

cution errors as continuation signals, we propose 299

execution-based reflection, which enables LLMs 300

to self-reflect, identify errors, refine thoughts, and 301

improve code through prompting, significantly en- 302

hancing problem-solving. The prompt for reflec- 303

tion is shown in Appendix A.2.1. 304

As long as execution fails, self-reflection con- 305

tinues iteratively, generating new nodes. This al- 306

lows the branch to grow as a data sample, with 307

4

Layer 1

1. We've added more detailed printing of the available
flights and hotels to better understand the data.
2. We removed the "luxury" preference from the hotel
booking function as it might not be a valid parameter.

def main():

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(LOC[2]) # Removed "luxury"
preference as it might not be valid

 # Step 3: Calculate the total budget
 ……
 rounded_budget = round(total_budget) # Round to nearest
integer

 return rounded_budget

result = llm_errhandler(main)
if result["status"] == "success":
 print(f"Final result: {result['result']}")
else:
 print(f"Error occurred: {result['error']}")

Best hotel: {'location': '"C"', 'preferences': ['wifi',
'pool'], 'price_per_night': 110, 'rating': 5}
Total budget for the trip: $1370

You are at LOC[4]. Plan a luxury trip to LOC[2] on 2023-10-05,
staying in the highest-rated hotel for 7 nights. Always choose
the cheaper flight. Give me the total budget for the trip.

4. max: Finds the maximum value among the given arguments.
5. min: Finds the minimum value among the given arguments.
6. sum: Sums the given float arguments.

1. find_flights: Finds flights based on source, destination and date.
2. book_hotel: Books a hotel based on location and preferences.
3. budget_calculator: Calculates the total budget for a trip.

1. The result is wrapped in the llm_errhandler for error
handling.
2. The main issue in the previous attempts was that we
were using "LOC[4]" and "LOC[2]" as literal strings,
which are not valid locations for the find_flights function.

def main():
 # Step 1: Find flights
 flights = find_flights(LOC[4], LOC[2], "2023-10-05")

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(LOC[2], "luxury")

 # Step 3: Calculate the total budget

 return total_budget

result = llm_errhandler(main)
if result["status"] == "success":
 print(f"Final result: {result['result']}")
else:
 print(f"Error occurred: {result['error']}")

Cheapest flight: {'from_location': '"E"',
'to_location': '"C“’, 'date': '2023-10-05', 'price':
600} ERR: Error occurred: max() arg is an
empty sequence

1. Find flights from LOC[4] to LOC[2] on 2023-10-05.
2. Book the highest-rated hotel in LOC[2] for 7 nights.
3. Calculate the total budget for the trip.

def main():
 # Step 1: Find flights
 flights = find_flights("LOC[4]", "LOC[2]", "2023-10-05")
 # Choose the cheaper flight
 cheaper_flight = min(flights, key=lambda flight: flight["price"])
 print(f"Selected flight: {cheaper_flight}")

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(“LOC[2]”, "luxury")
 # Choose the highest-rated hotel
 best_hotel = max(hotels, key=lambda x: x['rating'])
 print("Best hotel:", best_hotel)

 # Step 3: Calculate the total budget
 total_budget = budget_calculator(cheapest_flight['price'],
best_hotel['price_per_night'], 7)
 print(f"Total budget for the trip: ${total_budget:.2f}")

 return total_budget

main()

ERR: “LOC[4]” and “LOC[2]” are invalid. We can
not find the required flights.
“book_hotel” function can not find “LOC[2]” .

Layer 2 Layer 3

Figure 4: Illustrative example of a branch of ToC. We demonstrated the process of a node expanding into deeper
levels. Based on the user query, tool descriptions, and previous execution outcomes, ToC first thinks about how to
do it and then writes the end-to-end code. The example is selected from M3ToolEval dataset.

each node in the trajectory providing supervision308

signals. Since these supervision signals are inher-309

ently embedded within the CodeProgram node, the310

growth process is self-driven. Therefore, the whole311

tree is end-to-end generated. Figure 4 illustrates an312

example of a branch of ToC.313

Additionally, our flexible tree-structured frame-314

work allows for the integration of any reflection315

method in end-to-end code generation.316

Exploration strategy. Generating code in a single317

pass presents two main limitations on diversity:318

• 1) Limited strategy: It easily leads to cognitive319

narrowing, where the fundamental reasoning320

mechanism remains unchanged.321

• 2) Limited robustness: If an error occurs, the322

only option for the user is to re-run the whole323

process, without any proactive adjustments,324

which leads to inefficiencies.325

Research (Renze and Guven, 2024) has shown that326

performance benefits from diverse perspectives of327

error identification, which encourages models to328

generate multiple solutions.329

To enhance the diversity of ToC, we introduce330

randomness into the expansion process by vary-331

ing LLMs and prompts, inspired by the random332

forest (Rigatti, 2017). At the system level, differ-333

ent LLMs are randomly explored from our LLM334

list, which will be introduced in Section 5.1, with335

a consistent temperature setting of 0.1. At the in-336

struction level, prompts are randomly selected from337

a diverse pool, designed through self-evolution and338

human crafting phases. In the first phase, we used339

our ten LLMs to create ten various prompts based 340

on the prompt evolution with the root prompt (see 341

Appendix A). The prompt for prompt evolution 342

requires maintaining consistent core content with 343

the root prompt while encouraging orthogonal or 344

divergent expressions. Then, we manually selected 345

six distinct prompts, randomly applying one or 346

more of the following modifications: (1) Adding 347

more detailed usage examples (beyond just print- 348

ing "Hello world") to three prompts; (2) Adjusting 349

their format by adding line breaks and indentation; 350

(3) Randomly rearranging components, such as the 351

reflection part, usage examples, role instructions, 352

tool descriptions, and the chat history. 353

4.3 Final Result Generator 354

Once valid outputs from successfully executed 355

nodes are collected, the same LLM makes the final 356

decision by performing a majority vote and summa- 357

rization to determine the most likely answer — this 358

corresponds to the green node in Figure 3. Other 359

valid responses (red nodes) are discarded. 360

5 Experiment and Analysis 361

5.1 Setup 362

Datasets. Following CodeAct, our evaluation is 363

based on M3ToolEval1 (M3) (Wang et al., 2024) 364

and the test set of API-Bank2 (Li et al., 2023b). M3 365

1https://github.com/xingyaoww/code-act/tree/
main/scripts/eval/m3tooleval

2https://huggingface.co/datasets/
liminghao1630/API-Bank/tree/main

5

https://github.com/xingyaoww/code-act/tree/main/scripts/eval/m3tooleval
https://github.com/xingyaoww/code-act/tree/main/scripts/eval/m3tooleval
https://huggingface.co/datasets/liminghao1630/API-Bank/tree/main
https://huggingface.co/datasets/liminghao1630/API-Bank/tree/main

Model
M3ToolEval API-Bank level-3

ReAct CodeAct CodeProgram ToC (1-3) ReAct CodeAct CodeProgram ToC (1-3)

claude-instant-1 28.0% (8.7) 18.0% (8.9) 30.5% (1) 35.3% (1) 0.0% (10.0) 2.0% (10.0) 6.0% (1) 18.0% (1)

claude-2 40.2% (8.2) 54.9% (7.2) 57.3% (1) 59.8% (1) 0.0% (10.0) 20.0% (8.9) 8.0% (1) 18.0% (1)

claude-3-haiku 24.4% (9.0) 9.8% (9.4) 29.3% (1) 31.7% (1) 10.0% (9.4) 0.0% (10.0) 6.0% (1) 8.0% (1)

claude-3-5-sonnet 48.8% (7.7) 73.2% (5.7) 73.2% (1) 82.9% (1) 14.0% (9.3) 32.0% (7.8) 48.0% (1) 52.0% (1)

gpt-3.5-turbo-1106 18.3% (8.9) 25.6% (8.6) 12.2% (1) 17.1% (1) 14.0% (9.2) 2.0% (9.9) 4.0% (1) 8.0% (1)

gpt-4-1106-preview 54.9% (7.5) 75.6% (5.4) 72.0% (1) 73.2% (1) 18.0% (8.2) 30.0% (8.2) 34.0% (1) 38.0% (1)

gpt-4o-mini-2024-07-18 32.9% (8.4) 47.6% (7.0) 31.7% (1) 42.7% (1) 10.0% (9.6) 16.0% (9.5) 14.0% (1) 20.0% (1)

gpt-4o-2024-08-06 35.4% (8.5) 56.1% (6.7) 51.2% (1) 62.2% (1) 14.0% (9.4) 36.0% (7.8) 28.0% (1) 32.0% (1)

qwen2.5-72b-instruct 50.0% (7.9) 70.7% (5.6) 51.2% (1) 59.8% (1) 2.0% (9.9) 30.0% (8.2) 24.0% (1) 32.0% (1)

deepseek-chat 47.6% (7.6) 62.2% (5.9) 40.2% (1) 52.4% (1) 0.0% (9.8) 24.0% (8.6) 22.0% (1) 26.0% (1)

Avg. 38.05% (8.24) 49.37% (7.04) 43.53% (1) 50.98% (1) 8.2% (9.48) 19.2% (8.89) 19.4% (1) 24.4% (1)

Table 1: Detailed performance comparison of different models under ReAct, CodeAct, CodeProgram, and one-layer,
three-node Tree-of-Code (ToC) on the M3ToolEval and API-Bank level-3 datasets. The correctness is reported,
with the average number of turns in parentheses. The noteworthy point is that since the model is fixed, the ToC
mechanism at this time represents the ToC mechanism without model exploration (w/o model exploration).

consists of 82 tasks utilizing 100 tools in code/J-366

SON/txt action space respectively across 5 types367

of scenarios, including DNA sequencer, message368

decoder, trade calculator, travel itinerary planning,369

and web browsing. API-Bank contains 314 tool-370

use dialogues and 73 API tools, including level-1,371

2, 3. Unlike CodeAct, which evaluates only on372

level-1, we focus directly on the 50 most challeng-373

ing level-3 tasks, on which nearly all non-GPT4374

models score 0%, according to the original paper.375

For M3, we add the "next_action" tool, which376

is a customized function introduced in Section 3.2.377

For API-Bank, which only supports JSON format,378

we make the following modifications to adapt it for379

code interaction: (1) functionalize all API tools,380

(2) add output examples to each function descrip-381

tion (shown in Figure 7). We include all tool signa-382

tures in the prompt context and let LLMs inherently383

search and select tools, instead of using ToolSearch384

API, deemed the least essential in (Li et al., 2023b).385

(3) determine correctness by matching the response386

to the expected final output through conditional387

keywords, not by API call matching.388

Models. We include the following ten models389

in our model pool for evaluation: the GPT family390

from OpenAI (Achiam et al., 2023; Bubeck et al.,391

2023; OpenAI, 2024a), including gpt-3.5-turbo-392

1106, gpt-4o-mini-2024-07-18, gpt-4o-2024-08-06,393

and gpt-4-1106-preview checkpoints, excels in gen-394

eration capabilities. From the Anthropic’s Claude395

family (Anthropic, 2023, 2024), we select claude-396

instant-1, claude-2, claude-3-haiku-20240307, and397

claude-3-5-sonnet-20240620 known for their code398

generation and problem-solving capabilities. Be- 399

sides, we incorporate open-sourced deepseek-chat 400

from DeepSeek (Guo et al., 2024) and qwen2.5- 401

72b-instruct from Alibaba (Bai et al., 2023). 402

Baselines. ReAct (Yao et al., 2022) combines 403

reasoning and action in a dynamic, step-by-step 404

interaction, providing a flexible approach to task- 405

solving by adjusting action strategies based on envi- 406

ronmental feedback. CodeAct (Wang et al., 2024) 407

replaces the JSON in ReAct with a block of code as 408

the LLM agent’s action, enabling multi-turn inter- 409

actions and effectively expanding the action space 410

for solving complex real-world problems. 411

Metrics. The evaluation includes accuracy and 412

averaged turns. Accuracy represents the percentage 413

of complex tasks that are correctly solved. Each 414

LLM-generated code is considered one turn. For 415

parallel generation, the number of threads counts 416

as turns in terms of resource usage, but when con- 417

sidering time, multiple parallel generations count 418

as one turn. We use the latter approach. 419

Figure 6: Performance of 10 LLMs on ReAct, CodeAct,
CodeProgram, and 1-3 ToC for the M3 dataset is visual-
ized, with average and standard deviation reported.

6

Tool Available
find_flights, book_hotel, budget_calculator, max, min, sum

Task Query
You are at LOC[4]. Plan a luxury trip to LOC[2] on 2023-10-05, staying in the highest-rated

hotel for 7 nights. Always choose the cheaper flight. Give me the total budget for the trip.

Execution Res
No hotels found in C.

Reflection
Add error handling.

 Varying LLMs and Prompts

$ 1370

Reflection
Directly Estimate data.

$ 1900

Reflection
Correct Value Err.

 Exploration: Varying LLMs and Prompts

1370

Reasoning
First Thought

Execution Res
TypeError: Loc[C] is not a Dict.

......
......

Output

$ 1370

Execution Res
KeyError: ‘cost’

res[‘result’][‘cost’]

Execution Res
ValueError: max() arg
is an empty sequence

Execution Res
Try another destination or

remove the 'luxury'.

Reflection
Find more ditails.

 Exploration: Varying LLMs and Prompts

Reflection & Reasoning
Correct Type Err.

Figure 5: A detailed example illustrating ToC’s
execution-based reflection and expansion.

5.2 One-turn vs. Multi-turn420

CodeProgram enables global planning and com-421

plete solutions in a single turn by leveraging code’s422

ability to handle long logic chains, aligning with423

global reasoning in language, and defining clear424

tool inputs and outputs. With a significant advan-425

tage in the number of turn, Table 1 and Figure 6426

demonstrate that the performance of some models427

even surpasses the multi-turn CodeAct, particularly428

for the Claude series models. We grow CodePro-429

gram into a single-layer, three-node (1-3) Tree-of-430

Code (ToC). The prompt for each node is randomly431

sampled from our prompt pool. Compared to Code-432

Program, the simple 1-3 tree-structured ToC with433

random prompts significantly boosts performance.434

The average performance of 1-3 ToC already sur-435

passes CodeAct, highlighting the power of prompt436

randomness. Upon reviewing the generated code,437

we observe that LLMs often produce modular code438

for each step or add comments before modules,439

even when not explicitly required.440

We highlight the best-performing models in bold. 441

Experimental results show that the top models dif- 442

fer between the CodeAct and ToC, and even within 443

CodeAct, performance varies by dataset. For M3, 444

gpt-4 performs best, while for API-Bank level-3, 445

gpt-4o excels, likely because API-Bank level-3 em- 446

phasizes tool usage over scenario understanding, 447

with simpler problem expressions. For ToC, claude- 448

3-5-sonnet stands out due to its strong prompt- 449

following ability, which is key for aligning rea- 450

soning with code and tool selection. 451

Example of the Function Signature in API-Bank level-3
UserMoviePreferences():
 description: "API for retrieving user preferences for
movie recommendations. Here is an example of the output:
result = {'api_name': 'UserMoviePreferences', 'input':
{'user_name': 'John'}, 'output': {'preferences': ['Action',
'Comedy', 'Drama']}, 'exception': None}"
 input_parameters:{
 'user_name': {'type': 'str', 'description': 'Name of
the user.'},
 }
 output_parameters:{
 'preferences': {'type': 'list', 'description': 'List
of movie preferences.'},
 }

Figure 7: Example of the function signature in level-3.

5.3 ToC vs. CodeAct and ReAct 452

We primarily compare the ToC framework, which 453

is comprised of CodeProgram nodes, with the 454

CodeAct and ReAct framework, which are com- 455

prised of steps, using the M3 and the level-3 456

datasets. For ToC, we randomly sample the LLM 457

and prompt from the LLM list and prompt pool, re- 458

spectively, at each node exploration. For CodeAct 459

and ReAct, we report the average results across all 460

models used in this paper. Table 2 shows that ToC 461

consistently achieves superior performance and 462

demonstrates a significant advantage with fewer 463

interaction steps, highlighting its efficiency in man- 464

aging complex tool-use scenarios. 465

Mechanism M3ToolEval API-Bank level-3

Avg Turns Correct Avg Turns Correct

ReAct 8.2 38.1% 9.5 8.2%
CodeAct 7.0 49.4% 8.9 19.2%
Tree-of-Code 1.7 67.1%↑ 2.1 38.0% ↑

Table 2: Performance comparison of CodeAct and our
ToC in terms of averaged turns and accuracy on M3
and API-Bank level-3 tasks. Note: all numerical results
presented in this paper are rounded to one decimal place.

5.4 Analysis and Ablation Studies 466

Varying tree sizes. We test the performance of 467

the top model, claude-3-5-sonnet, on different tree 468

sizes to evaluate the trade-off between efficacy 469

7

Layer / Node Per Layer 1 2 3
1 73.2% (1) 75.6% (1) 82.9% (1)
2 73.2% (1.4) 76.8% (1.4) 84.1% (1.5)
3 74.4% (1.8) 79.3% (1.7) 84.1% (1.6)

Table 3: The performance of varying tree sizes.

and efficiency. Table 3 shows impressive results:470

with proper prompts and no additional training, the471

model achieves 84.1% accuracy (3-3) on the M3,472

10.9% higher than 73.2% (1-1).473

Visualization results for ReAct, CodeAct, and 3-474

3 ToC on the M3 dataset (Figure 8) show that ToC475

achieves near-perfect accuracy on all tasks except476

the web browsing task.477

Figure 8: Comparison across five tasks in the M3.

Prompt exploration. The ablation results in Table478

4 demonstrate the effectiveness of prompt explo-479

ration. By comparing the random model with the480

fixed model, prompt exploration proves more cru-481

cial in low-diversity scenarios.482

Mechanism M3ToolEval

Avg Turns Correct

Random Model (∆ = 3.7%)
ToC 1.7 67.1%
ToC w/o prompt exploration 1.9 63.4% ↓

Fixed Model (the best) (∆ = 8.5%)
ToC w/o model exploration 1.6 84.1%
ToC w/o model+prompt exploration 1.8 75.6% ↓↓

Table 4: Results of the ablation study.

6 Discussion483

Why we do not try a search tree? We initially484

explored using evolutionary algorithms to merge485

nodes from different branches for the next genera-486

tion, aiming to reduce the search space. However,487

after extensive testing, we found this approach im-488

practical and hard to implement. We analyzed error489

cases from ToC and found that a single branch490

can easily fall into specific errors. Since differ-491

ent branches follow distinct reasoning paths, they492

struggle to learn from each other. Even with reflec-493

tion and random exploration, LLMs are prone to494

early-stage errors that disrupt subsequent reasoning495

(An et al., 2023; Bao et al., 2024; Tong et al., 2024).496

This issue mirrors the human cognitive challenge of 497

breaking out of a "bistable state" — like the famous 498

"duck-rabbit illusion" or Rubin’s vase (Hancock, 499

2013). In such states, a person may generate multi- 500

ple parallel thoughts, but once one is chosen, it is 501

difficult to switch to another without external inter- 502

vention (Andreev et al., 2020). This highlights the 503

need for introducing random exploration and mul- 504

tiple nodes at each growth step, as these strategies 505

help overcome cognitive bottlenecks. 506

7 Related Work 507

LLM Code Generation. Chain of Codes frame- 508

work (Li et al., 2023a) expands the range of rea- 509

soning tasks that LLMs can solve by "thinking 510

in code." Similarly, CodePlan (Wen et al., 2024a) 511

utilizes pseudocode to guide structured reason- 512

ing. Additionally, the Structured Chain-of-Thought 513

Prompting (SCoT) technique (Esfahani et al., 2024) 514

has highlighted the potential of structured prompts 515

in this domain. Recent works combining code with 516

agents have primarily focused on task completion 517

within programming-related domains, such as soft- 518

ware development (Qian et al., 2024; Wang et al., 519

2023), programming assistance (Islam et al., 2024; 520

Wen et al., 2024c), and scientific problems (Chen 521

et al., 2022; Gao et al., 2023; Hong et al., 2024). 522

Few methods (Wang et al., 2024) treat code as a 523

scalable language format to call multiple tools for 524

solving complex real-world tasks. 525

Recently, we found a new work, CodeTree (Li 526

et al., 2024b), which uses a tree structure to explore 527

the search space of code generation tasks. Unlike 528

our approach, it focuses on multi-agent searching 529

rather than an end-to-end self-growing tree. Addi- 530

tionally, it was released three months later than the 531

initial submission of our work. 532

8 Conclusion 533

In this paper, we introduced the Tree-of-Code 534

(ToC) method, which combines execution-based 535

reflection with end-to-end thought-code generation 536

for complex task handling. With efficient model in- 537

tegration and prompt exploration, ToC significantly 538

outperformed the baselines on two complex task 539

datasets, boosting both efficiency and task-solving 540

capabilities. The ToC framework opens up exciting 541

possibilities for advancing human-like global cog- 542

nition, inspiring further exploration of tree struc- 543

tures in end-to-end code generation, particularly 544

for complex multi-tool tasks, data generation, and 545

reinforced fine-tuning. 546

8

Limitations547

Additional engineering effort548

We transform multi-turn interactions into a single-549

turn complete program containing a series of tool550

calls with great efficiency. However, this approach551

requires more detailed usage instructions for the552

tools, especially for actions with limited semantic553

information (e.g., webpage clicking and scrolling).554

Therefore, additional engineering effort would be555

required to implement our end-to-end code genera-556

tion approach.557

Limited reasoning scope for Program558

We emphasize that our method operates at the559

granularity of code "program" rather than "action".560

However, it is limited in fully open-ended scenarios561

requiring step-by-step exploration, such as a robot562

navigating an unfamiliar environment, or in han-563

dling tasks with extremely long sequences beyond564

the capabilities of current reasoning methods, like565

generating an entire paper. In such cases, it cannot566

provide a complete final solution. For larger and567

more complex system programs in the future, our568

method may serve as a "subprogram" within the569

overall solution, similar to a single agent’s role in570

multi-agent systems.571

Opportunities for Reflection Refinement572

While our framework provides a solid foundation573

inspired by human problem-solving, it uses a basic574

reflection mechanism, relying on execution feed-575

back alone. Whether tracking full execution history576

or selectively summarizing with LLMs offers better577

performance remains an open question. Future re-578

search could explore enhanced search strategies or579

adaptive pruning methods to handle more complex580

real-world tasks.581

References582

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama583
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,584
Diogo Almeida, Janko Altenschmidt, Sam Altman,585
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.586
arXiv preprint arXiv:2303.08774.587

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,588
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-589
ing from mistakes makes llm better reasoner. arXiv590
preprint arXiv:2310.20689.591

Andrey V. Andreev, Nikita S. Frolov, Natalija A. Alexan-592
drova, and Marija A. Chaban. 2020. Control of dy-593

namics of bistable neural network by an external 594
pulse. 595

Anthropic. 2023. Introducing claude. https://www. 596
anthropic.com/index/introducing-claude. 597
Accessed: 2023-10-20. 598

AI Anthropic. 2024. The claude 3 model family: Opus, 599
sonnet, haiku. Claude-3 Model Card, 1. 600

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 601
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 602
Huang, et al. 2023. Qwen technical report. arXiv 603
preprint arXiv:2309.16609. 604

Javier Baladron, Julien Vitay, Torsten Fietzek, and 605
Fred Henrik Hamker. 2023. The contribution of 606
the basal ganglia and cerebellum to motor learning: 607
A neuro-computational approach. PLOS Computa- 608
tional Biology, 19. 609

Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxi- 610
ang Wang, and Yue Zhang. 2024. Llms with chain- 611
of-thought are non-causal reasoners. arXiv preprint 612
arXiv:2402.16048. 613

GN Blount and S Clarke. 1994. Artificial intelligence 614
and design automation systems. Journal of Engeer- 615
ing Design, 5(4):299–314. 616

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 617
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, 618
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund- 619
berg, et al. 2023. Sparks of artificial general intelli- 620
gence: Early experiments with gpt-4. arXiv preprint 621
arXiv:2303.12712. 622

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and 623
Shengxin Zhu. 2023a. Unleashing the potential of 624
prompt engineering in large language models: a com- 625
prehensive review. arXiv preprint arXiv:2310.14735. 626

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, 627
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin 628
Shi. 2023b. Autoagents: A framework for automatic 629
agent generation. arXiv preprint arXiv:2309.17288. 630

Mouxiang Chen, Hao Tian, Zhongxi Liu, Xiaoxue Ren, 631
and Jianling Sun. 2024. Jumpcoder: Go beyond au- 632
toregressive coder via online modification. In Annual 633
Meeting of the Association for Computational Lin- 634
guistics. 635

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 636
William W Cohen. 2022. Program of thoughts 637
prompting: Disentangling computation from reason- 638
ing for numerical reasoning tasks. arXiv preprint 639
arXiv:2211.12588. 640

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 641
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 642
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 643
2024. Scaling instruction-finetuned language models. 644
Journal of Machine Learning Research, 25(70):1–53. 645

9

https://api.semanticscholar.org/CorpusID:216361341
https://api.semanticscholar.org/CorpusID:216361341
https://api.semanticscholar.org/CorpusID:216361341
https://api.semanticscholar.org/CorpusID:216361341
https://api.semanticscholar.org/CorpusID:216361341
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://api.semanticscholar.org/CorpusID:257922660
https://api.semanticscholar.org/CorpusID:257922660
https://api.semanticscholar.org/CorpusID:257922660
https://api.semanticscholar.org/CorpusID:257922660
https://api.semanticscholar.org/CorpusID:257922660
https://api.semanticscholar.org/CorpusID:266999066
https://api.semanticscholar.org/CorpusID:266999066
https://api.semanticscholar.org/CorpusID:266999066

Ali Mohammadi Esfahani, Nafiseh Kahani, and646
Samuel A Ajila. 2024. Understanding defects in647
generated codes by language models. arXiv preprint648
arXiv:2408.13372.649

Keith Frankish. 2010. Dual-process and dual-650
system theories of reasoning. Philosophy Compass,651
5(10):914–926.652

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,653
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-654
ham Neubig. 2023. Pal: Program-aided language655
models. In International Conference on Machine656
Learning, pages 10764–10799. PMLR.657

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,658
Kai Dong, Wentao Zhang, Guanting Chen, Xiao659
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:660
When the large language model meets programming–661
the rise of code intelligence. arXiv preprint662
arXiv:2401.14196.663

Roeland Hancock. 2013. Attentional processing in664
bistable perception is influenced by genetic effects665
associated with sinistrality. Cognitive Science, 35.666

Samuel Holt, Max Ruiz Luyten, and Mihaela van der667
Schaar. 2024. L2mac: Large language model auto-668
matic computer for extensive code generation. In669
The Twelfth International Conference on Learning670
Representations.671

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu,672
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang,673
Lingyao Zhang, Mingchen Zhuge, et al. 2024. Data674
interpreter: An llm agent for data science. arXiv675
preprint arXiv:2402.18679.676

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng677
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven678
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.679
Metagpt: Meta programming for multi-agent collabo-680
rative framework. arXiv preprint arXiv:2308.00352.681

Md Ashraful Islam, Mohammed Eunus Ali, and682
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent683
code generation for competitive problem solving.684
arXiv preprint arXiv:2405.11403.685

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan686
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea687
Madotto, and Pascale Fung. 2023. Survey of halluci-688
nation in natural language generation. ACM Comput-689
ing Surveys, 55(12):1–38.690

Christoph P. Kaller, Marco Reisert, Michael L. Katzev,691
Roza M. Umarova, Irina Mader, Jürgen Hennig, Cor-692
nelius Weiller, and Lena Köstering. 2015. Predicting693
planning performance from structural connectivity694
between left and right mid-dorsolateral prefrontal695
cortex: moderating effects of age during postadoles-696
cence and midadulthood. Cerebral cortex, 25 4:869–697
83.698

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 699
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 700
guage models are zero-shot reasoners. Advances in 701
neural information processing systems, 35:22199– 702
22213. 703

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, 704
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei- 705
Fei, Fei Xia, and Brian Ichter. 2023a. Chain of code: 706
Reasoning with a language model-augmented code 707
emulator. arXiv preprint arXiv:2312.04474. 708

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil- 709
vio Savarese, and Doyen Sahoo. 2024a. Codetree: 710
Agent-guided tree search for code generation with 711
large language models. 712

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil- 713
vio Savarese, and Doyen Sahoo. 2024b. Codetree: 714
Agent-guided tree search for code generation with 715
large language models. 716

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 717
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and 718
Yongbin Li. 2023b. Api-bank: A comprehensive 719
benchmark for tool-augmented llms. arXiv preprint 720
arXiv:2304.08244. 721

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat 722
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun 723
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. 724
2024. Improve mathematical reasoning in language 725
models by automated process supervision. ArXiv, 726
abs/2406.06592. 727

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, 728
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft: 729
Reasoning with reinforced fine-tuning. ArXiv, 730
abs/2401.08967. 731

Grégoire Mialon, Clémentine Fourrier, Craig Swift, 732
Thomas Wolf, Yann LeCun, and Thomas Scialom. 733
2023. Gaia: a benchmark for general ai assistants. 734
ArXiv, abs/2311.12983. 735

OpenAI. 2024a. Hello gpt-4o. https://openai.com/ 736
index/hello-gpt-4o/. Accessed: 2024-05-18. 737

OpenAI. 2024b. Openai o1 system card. https://cdn. 738
openai.com/o1-system-card-20240917.pdf. 739
Accessed: 2024-09-12. 740

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, 741
Meredith Ringel Morris, Percy Liang, and Michael S. 742
Bernstein. 2023. Generative agents: Interactive sim- 743
ulacra of human behavior. Proceedings of the 36th 744
Annual ACM Symposium on User Interface Software 745
and Technology. 746

Swarna Kamal Paul. 2024. Continually learning plan- 747
ning agent for large environments guided by llms. 748
In 2024 IEEE Conference on Artificial Intelligence 749
(CAI), pages 377–382. IEEE. 750

10

https://api.semanticscholar.org/CorpusID:9266728
https://api.semanticscholar.org/CorpusID:9266728
https://api.semanticscholar.org/CorpusID:9266728
https://api.semanticscholar.org/CorpusID:9266728
https://api.semanticscholar.org/CorpusID:9266728
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:14470865
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:265351664
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:258040990

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan751
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng752
Su, Xin Cong, et al. 2024. Chatdev: Communicative753
agents for software development. In Proceedings754
of the 62nd Annual Meeting of the Association for755
Computational Linguistics (Volume 1: Long Papers),756
pages 15174–15186.757

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,758
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,759
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,760
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,761
and Maosong Sun. 2023. Toolllm: Facilitating large762
language models to master 16000+ real-world apis.763
ArXiv, abs/2307.16789.764

Matthew Renze and Erhan Guven. 2024. Self-reflection765
in llm agents: Effects on problem-solving perfor-766
mance. arXiv preprint arXiv:2405.06682.767

Steven J Rigatti. 2017. Random forest. Journal of768
Insurance Medicine, 47(1):31–39.769

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei770
Teng, and Jingbo Shang. 2024. Can llms learn from771
previous mistakes? investigating llms’ errors to boost772
for reasoning. arXiv preprint arXiv:2403.20046.773

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,774
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable775
code actions elicit better llm agents. arXiv preprint776
arXiv:2402.01030.777

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and778
Heng Ji. 2023. Leti: Learning to generate from tex-779
tual interactions. arXiv preprint arXiv:2305.10314.780

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten781
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,782
et al. 2022. Chain-of-thought prompting elicits rea-783
soning in large language models. Advances in neural784
information processing systems, 35:24824–24837.785

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu,786
and Minlie Huang. 2024a. Codeplan: Unlock-787
ing reasoning potential in large langauge models788
by scaling code-form planning. arXiv preprint789
arXiv:2409.12452.790

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-791
ing Wang, and Minlie Huang. 2024b. Learning task792
decomposition to assist humans in competitive pro-793
gramming. In Proceedings of the 62nd Annual Meet-794
ing of the Association for Computational Linguistics.795

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-796
ing Wang, and Minlie Huang. 2024c. Learning task797
decomposition to assist humans in competitive pro-798
gramming. arXiv preprint arXiv:2406.04604.799

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,800
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei801
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering802
large pre-trained language models to follow complex803
instructions. In The Twelfth International Conference804
on Learning Representations.805

Pei Xu, Junge Zhang, and Kaiqi Huang. 2023. Ex- 806
ploration via joint policy diversity for sparse-reward 807
multi-agent tasks. In International Joint Conference 808
on Artificial Intelligence. 809

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 810
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 811
2024a. Tree of thoughts: Deliberate problem solving 812
with large language models. Advances in Neural 813
Information Processing Systems, 36. 814

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 815
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 816
React: Synergizing reasoning and acting in language 817
models. arXiv preprint arXiv:2210.03629. 818

Wenlin Yao, Haitao Mi, and Dong Yu. 2024b. Hdflow: 819
Enhancing llm complex problem-solving with hybrid 820
thinking and dynamic workflows. arXiv preprint 821
arXiv:2409.17433. 822

Eric Zelikman, Georges Harik, Yijia Shao, Varuna 823
Jayasiri, Nick Haber, and Noah D Goodman. 2024. 824
Quiet-star: Language models can teach them- 825
selves to think before speaking. arXiv preprint 826
arXiv:2403.09629. 827

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying 828
Peng, Jun Wang, Yueting Zhuang, and Weiming 829
Lu. 2024. Self-contrast: Better reflection through 830
inconsistent solving perspectives. arXiv preprint 831
arXiv:2401.02009. 832

11

https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260855038
https://api.semanticscholar.org/CorpusID:260855038
https://api.semanticscholar.org/CorpusID:260855038
https://api.semanticscholar.org/CorpusID:260855038
https://api.semanticscholar.org/CorpusID:260855038

A Prompt833

A.1 Root Prompt834

You a r e a h e l p f u l a s s i s t a n t a s s i g n e d wi th t h e t a s k o f problem − s o l v i n g .835
To a c h i e v e t h i s , you w i l l be u s i n g an i n t e r a c t i v e c od ing e n v i r o n m e n t e q u i p p e d wi th a v a r i e t y o f t o o l836

f u n c t i o n s t o a s s i s t you t h r o u g h o u t t h e p r o c e s s . \ n \ n837
At each t u r n , you s h o u l d f i r s t p r o v i d e your s t e p −by− s t e p t h i n k i n g f o r s o l v i n g t h e t a s k , f o r example : <838

t h o u g h t > I need t o p r i n t " h e l l o wor ld ! " < / t h o u g h t > .839
A f t e r t h a t , you can I n t e r a c t w i th a Python programming e n v i r o n m e n t and r e c e i v e t h e c o r r e s p o n d i n g o u t p u t .840
Your code s h o u l d be e n c l o s e d u s i n g "< e x e c u t e >" tag , f o r example : < e x e c u t e > p r i n t (" H e l l o World ! ") </841

e x e c u t e > . \ n \ n842
You can use t h e f o l l o w i n g f u n c t i o n s : \ n{ t o o l s e t _ d e s c s } \ n .843
Ensure t h e code matches t h e f n _ s i g n a t u r e and i n p u t − o u t p u t f o r m a t s f o r p r o p e r e x e c u t i o n . \ n844
Here ' s t h e c h a t h i s t o r y f o r your r e f e r e n c e : \ n{ c h a t _ h i s t o r y } \ n \ n845
H i s t o r y End : \ n846
User ' s Query : \ n{ que ry } \ nYour Thought And Code : \ n847

A.2 Additional Prompt848

A.2.1 Reflection Prompt849

Based on t h e p r o v i d e d c h a t h i s t o r y , r e f l e c t on t h e code and i t s e x e c u t i o n . I d e n t i f y p o t e n t i a l i s s u e s o r850
a r e a s f o r o p t i m i z a t i o n and p r o v i d e s p e c i f i c s u g g e s t i o n s t o r e f i n e and improve t h e code . C o n s i d e r851
edge c a s e s , e f f i c i e n c y , and c l a r i t y i n your r e f l e c t i o n s .852

A.2.2 The Prompt for Prompt Evolution853

In o r d e r t o g u i d e t h e d i v e r s i t y o f r e s u l t s and enhance t h e p e r f o r m a n c e t h r o u g h ensemble methods , we need854
t o i n c r e a s e t h e d i v e r s i t y o f prompts . We d i v e r s i f y t h e c u r r e n t prompt w h i l e m a i n t a i n i n g c o n s i s t e n c y855
i n c o r e c o n t e n t , a iming f o r o r t h o g o n a l e x p r e s s i o n s o r prompts t h a t l e a d t o d i f f e r e n t d i r e c t i o n s and856
d i v e r g e n t t h i n k i n g .857

A.2.3 The Prompt Sample from Prompt Pool for API-Bank858

Note :859
The o u t p u t s p roduced by t h e t o o l w i l l be f o r m a t t e d l i k e a JSON d i c t i o n a r y .860
For example , ' r e s u l t = { { ' api_name ' : ' QueryMeeting ' , ' i n p u t ' : { { ' user_name ' : ' John ' } } , ' o u t p u t ' : { { '861

meet ings ' : [{ { ' mee t i ng_ id ' : 1 , ' meeting_name ' : ' Meet ing wi th t h e c l i e n t ' , ' mee t ing_ t ime ' :862
'2021 −01 −01 1 0 : 0 0 : 0 0 ' , ' m e e t i n g _ l o c a t i o n ' : ' Room 1 ' , ' m e e t i n g _ a t t e n d e e s ' : [' John ' , ' Mary ' , ' P e t e r863
'] } } , { { ' mee t i ng_ id ' : 2 , ' meeting_name ' : ' Meet ing a b o u t t h e new p r o j e c t ' , ' mee t ing_ t ime ' :864
'2021 −01 −02 1 0 : 0 0 : 0 0 ' , ' m e e t i n g _ l o c a t i o n ' : ' Room 2 ' , ' m e e t i n g _ a t t e n d e e s ' : [' John ' , ' Mary ' , ' P e t e r865
'] } }] } } , ' e x c e p t i o n ' : None } } '866

Ensure t h a t t h e code s t r i c t l y a d h e r e s t o t h e f u n c t i o n d e s c r i p t i o n s and t h e i n p u t − o u t p u t f o r m a t p r o v i d e d .867
N a v i g a t e t h r o u g h t h e ' o u t p u t ' key c o r r e c t l y t o r e t r i e v e r e s u l t s .868
I f you e n c o u n t e r any u n f a m i l i a r f o r m a t s , f i r s t p r i n t t h e s t r u c t u r e t o e n s u r e p r o p e r h a n d l i n g i n t h e869

f u t u r e .870
C o n s i s t e n t l y f o c u s on t h e use r ' s r e q u e s t and a t t e m p t t o p roduce t h e c o m p l e t e s o l u t i o n w i t h o u t n e e d i n g871

m u l t i p l e s t e p s .872

B Helper tools873

B.1 ResHandler874

B.1.1 ResHandler Tool Description875

l l m _ r e s h a n d l e r () :876
name=" l l m _ r e s h a n d l e r " ,877
d e s c r i p t i o n = ' D e f in e a prompt t o g e n e r a t e r e s u l t s t h a t meet t h e prompt r e q u i r e m e n t s . Note t h a t you878

need t o d e f i n e t h e r e q u i r e m e n t s f o r t h e g e n e r a t e d r e s u l t s i n t h e prompt . i n p u t : prompt (s t r) :879
The i n p u t prompt f o r t h e l a r g e l a n g u a g e model , d e f i n i n g t h e t a s k r e q u i r e m e n t s f o r t h e g e n e r a t e d880
r e s u l t s . Common t a s k s i n c l u d e summar i za t i on , s t y l i s t i c w r i t i n g , t r a n s l a t i o n , q u e s t i o n answer ing ,881

e t c . o u t p u t : c o m p l e t i o n (s t r) : The i n f e r e n c e r e s u l t g e n e r a t e d by t h e l a r g e model , t y p i c a l l y a882
summary , w r i t i n g o u t p u t , t r a n s l a t i o n r e s u l t , o r answer t h a t meets t h e r e q u i r e m e n t s . ' ,883

f u n c t i o n = l l m _ r e s h a n d l e r ,884
f n _ s i g n a t u r e = ' l l m _ r e s h a n d l e r (prompt : s t r) −> s t r ')885

12

B.1.2 ResHandler Tool Function 886

from some_model_API i m p o r t l l m _ p l a y g r o u n d 887
888

d e f l l m _ r e s h a n d l e r (prompt) : 889
r e s u l t _ s t r = " " 890
r e s u l t = l l m _ p l a y g r o u n d (prompt [: 3 0 0 0] , s t r e a m = F a l s e) 891
f o r i t em i n r e s u l t : 892

r e s u l t _ s t r += i t em 893
r e t u r n r e s u l t _ s t r 894

B.2 NextAction for Web Task 895

B.2.1 NextAction Tool Description 896

n e x t _ a c t i o n () : 897
name=" n e x t _ a c t i o n " , 898
d e s c r i p t i o n = ' Examine t h e r e s u l t s o f t h e view f u n c t i o n t o d e t e r m i n e i f i t can answer t h e use r ' s 899

o r i g i n a l q u e s t i o n , and d e c i d e what t o do n e x t . The n e x t p o s s i b l e a c t i o n s i n c l u d e c l i c k _ u r l (URL) , 900
s c r o l l _ d o w n () , s c r o l l _ u p () , g o _ t o _ p r e v i o u s _ p a g e () and end () , which r e p r e s e n t c l i c k i n g a l i n k , 901

s c r o l l i n g down , s c r o l l i n g up , go t o p r e v i o u s page and end () means you have found t h e answer page 902
, r e s p e c t i v e l y . I f n e x t a c t i o n i s end () , i t means t h a t r e l e v a n t i n f o r m a t i o n t o u s e r que ry i s 903
found , you s h o u l d summarize s t r i n g r e s u l t based on l l m _ p r e d i c t i o n . c l i c k _ u r l (URL) , s c r o l l _ d o w n () 904
, s c r o l l _ u p () , g o _ t o _ p r e v i o u s _ p a g e () can be d i r e c t l y c a l l e d , and URL s h o u l d be C l i c k a b l e u r l ' , 905

f u n c t i o n = n e x t _ a c t i o n , 906
f n _ s i g n a t u r e =" n e x t _ a c t i o n (que ry : s t r , c u r r e n t _ p a g e _ c o n t e n t : s t r) −> s t r ") 907

B.2.2 NextAction Tool Description 908

from some_model_API i m p o r t l l m _ p l a y g r o u n d 909
910

d e f n e x t _ a c t i o n (query , c u r r e n t _ p a g e _ c o n t e n t) : 911
prompt = f "You a r e v iewing a web page , t h e c o n t e n t i s : { c u r r e n t _ p a g e _ c o n t e n t } , you s h o u l d make 912

d e c i s i o n on t h e n e x t s t e p . g i v e n u s e r que ry { que ry } , you have t h e f o l l o w i n g o p t i o n s . \ n1 . end () : 913
i t means c u r r e n t u s e r que ry can be answered by web page c o n t e n t . \ n2 . c l i c k _ u r l (URL) : i t means 914

c u r r e n t u s e r que ry s h o u l d be checked by c l i c k i n g one of t h e u r l s shown on t h e c u r r e n t webpage 915
f o r more d e t a i l s . s p e c i f y t h e d e t a i l e d u r l i n t o URL f i e l d . \ n3 . s c r o l l _ u p () : i t means c u r r e n t 916
page c o n t e n t i s n o t enough t o answer u s e r query , you s h o u l d s c r o l l up c u r r e n t page t o check t h e 917
answer o f t h e que ry . \ n4 . s c r o l l _ d o w n () : i t means c u r r e n t page c o n t e n t i s n o t enough t o answer 918
u s e r query , you s h o u l d s c r o l l down c u r r e n t page t o check t h e answer . g o _ t o _ p r e v i o u s _ p a g e () : i t 919
means t h a t c u r r e n t page does n o t have r e l e v a n t i n f o r m a t i o n t o c u r r e n t que ry o r does n o t have any 920

c l i c k a b l e u r l s , you s h o u l d go back t o p r e v i o u s viewed page t o s e a r c h more i n f o r m a t i o n . " 921
r e s u l t _ s t r = " " 922
r e s u l t = l l m _ p l a y g r o u n d (prompt [: max_leng th]) 923

924
f o r i t em i n r e s u l t : 925

r e s u l t _ s t r += i t em 926
p r i n t ("================= n e x t _ a c t i o n _ d e b u g ====================") 927

p r i n t (" que ry ") 928
p r i n t (que ry) 929
p r i n t (" c u r r e n t page c o n t e n t ") 930
p r i n t (c u r r e n t _ p a g e _ c o n t e n t) 931
p r i n t (" s t a t u s ") 932
p r i n t (r e s u l t _ s t r) 933

p r i n t ("===") 934
935

i f " s c r o l l _ u p () " i n r e s u l t _ s t r : 936
r e t u r n " s c r o l l _ u p () " 937

e l i f " s c r o l l _ d o w n () " i n r e s u l t _ s t r : 938
r e t u r n " s c r o l l _ d o w n () " 939

e l i f " c l i c k _ u r l " i n r e s u l t _ s t r : 940
i m p o r t r e 941
p a t t e r n = r " c l i c k _ u r l \ (' . * ' \) " 942
match = r e . s e a r c h (p a t t e r n , r e s u l t _ s t r) 943
i f match : 944

r e t u r n match . group () 945
e l i f " g o _ t o _ p r e v i o u s _ p a g e " i n r e s u l t _ s t r : 946

r e t u r n " g o _ t o _ p r e v i o u s _ p a g e () " 947
e l i f " end () " i n r e s u l t _ s t r : 948

13

r e t u r n " end () "949
950

r e t u r n " end () "951

14

	Introduction
	Design Motivation
	CodeProgram
	Code as Reasoning
	Two Helper Tools
	Execution Outcome can be Label

	Tree-of-Code Method
	Overview of Tree-of-Code
	Tree Expansion
	Final Result Generator

	Experiment and Analysis
	Setup
	One-turn vs. Multi-turn
	ToC vs. CodeAct and ReAct
	Analysis and Ablation Studies

	Discussion
	Related Work
	Conclusion
	Prompt
	Root Prompt
	Additional Prompt
	Reflection Prompt
	The Prompt for Prompt Evolution
	The Prompt Sample from Prompt Pool for API-Bank

	Helper tools
	ResHandler
	ResHandler Tool Description
	ResHandler Tool Function

	NextAction for Web Task
	NextAction Tool Description
	NextAction Tool Description

