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ABSTRACT

Large-scale latent variable models require expressive continuous distributions that
support efficient sampling and low-variance differentiation, achievable through
the reparameterization trick. The Kumaraswamy (KS) distribution is both expres-
sive and supports the reparameterization trick with a simple closed-form inverse
CDF. Yet, its adoption remains limited. We identify and resolve numerical insta-
bilities in the inverse CDF and log-pdf, exposing issues in libraries like PyTorch
and TensorFlow. We then introduce simple and scalable latent variable models to
improve exploration-exploitation trade-offs in contextual multi-armed bandits and
enhance uncertainty quantification for link prediction with graph neural networks.
We find these models to be most performant when paired with the stable KS. Our
results support the stabilized KS distribution as a core component in scalable vari-
ational models for bounded latent variables.

1 INTRODUCTION

Probabilistic models use probability distributions as building blocks to model complex joint distri-
butions between random variables. Such distributions can model unobserved ‘latent’ variables z,
or observed ‘data’ variables x. Bounded interval-supported latent variables are central to many key
applications, such as unobserved probabilities (e.g., user clicks in recommendation systems or links
between network nodes), missing measurements in control systems (e.g., joint angles in [0, 2π]), and
stochastic policies over bounded actions in reinforcement learning (e.g., motor torque in [−10, 10]).
To meet the demands of large-scale latent variable models, bounded interval-supported distributions
must satisfy the following criteria: (i) support the reparameterization trick through an explicit repa-
rameterization function, such as a closed-form inverse CDF, enabling efficient sampling and low-
variance gradient estimates; (ii) provide sufficient expressiveness to capture complex latent spaces;
and (iii) offer simple distribution-related functions (log-pdf, explicit reparameterization function,
and gradients) that allow fast and accurate evaluation. In Section 2, we argue that the Kumaraswamy
(KS) distribution uniquely meets these criteria, yet remains surprisingly underused.

In this paper, we make the following technical contributions:

• We identify and resolve numerical instabilities in the KS’s log-pdf and inverse CDF, impacting
core auto-differentiation libraries. To this end, we introduce an unconstrained logarithmic param-
eterization, enhancing its compatibility with neural network (NN) settings (Section 3).

• We propose the Variational Bandit Encoder (VBE), addressing exploration-exploitation trade-offs
in contextual Bernoulli multi-armed bandits (Section 4.2).

• We propose the Variational Edge Encoder (VEE) for improved uncertainty quantification in link
prediction with graph neural networks (Section 4.3).

With the stabilized KS distribution at their core, these simple and scalable variational models open
new avenues for addressing pressing challenges in large-scale latent variable models, including those
in recommendation systems, reinforcement learning, and network analysis.

2 BACKGROUND

The KS distribution (Kumaraswamy, 1980; Jones, 2009) has pdf f(x) = abxa−1(1 − xa)b−1 and
inverse CDF F−1(u) = (1−ub−1

)a
−1

, both defined for x, u ∈ (0, 1) and parameterized by a, b > 0.

1
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Figure 1: Comparison of relevant bounded interval-supported distributions. Left: Time for sampling
and differentiating through samples. The Beta lacks explicit reparameterization, and has slower
sampling and gradients. Right: Expressiveness in terms of attainable prototypical shapes.

Continuous distributions with bounded interval support. Among bounded interval-supported
distributions, the KS uniquely satisfies criteria (i)–(iii) in Section 1. It supports the reparameter-
ization trick through its closed-form, differentiable inverse CDF, providing efficient sampling and
low-variance gradients. The KS supports four distinct prototypical shapes — bell, U, increasing, and
decreasing (Figure 1, right) — providing expressivity for diverse modeling tasks. Its log-pdf and in-
verse CDF, along with their gradients, are composed only of affine transformations, exponentials,
and logarithms, and can be parameterized directly in terms of unconstrained logarithmic values. This
enables straightforward implementation with minimal dependencies and keeps most computation in
the more stable and accurate log-space. The unconstrained logarithmic parameterization makes it
well-suited for NNs, eliminating the need for positivity-enforcing link functions. Additionally, the
KS has differentiable, closed-form expressions for moments, entropy H, and the Kullback-Leibler
(KL) divergence to the Beta distribution, facilitating efficient incorporation of prior information.

Other common interval-supported distributions face limitations. The Continuous Bernoulli (CB)
distribution is less expressive with only a single parameter. Truncated distributions lack the repa-
rameterization trick and often require slower, rejection-based sampling methods (Figurnov et al.,
2018). Squashed Gaussian distributions, like the tanh-normal (tanhN ), support the reparameteriza-
tion trick but cannot represent the uniform distribution — limiting it’s ability to accurately capture
uncertainty — and suffer from numerical instabilities in the log-pdf and require sample approxima-
tions for moments, entropy, and KL divergences to distributions outside their family. Mitigating log-
pdf instability typically requires careful control of the underlying Gaussian parameters and clipping
of log-pdf values (Haarnoja et al., 2018). The two-parameter Beta distribution shares the same four
fundamental shapes as the KS and benefits from being in the exponential family, which provides
a rich set of KL divergences. However, it lacks the reparameterization trick, relying on rejection
sampling for generation and implicit reparameterization (reviewed later in this section) for gradient
computation. Figure 1 (left) shows Beta sampling is nearly an order of magnitude slower than KS
sampling on an Apple M2 CPU. See Appendix A.1 for more distributional comparisons.

Latent variable modeling with stochastic variational inference (SVI). The primary method for
fitting large-scale latent variable models is SVI (Hoffman et al., 2013). Consider a model pθ(x) =∫
pθ(x|z)p(z)dz, where x ∈ RM is the observation, z ∈ RD is a vector-valued latent variable,

pθ(x|z) is the likelihood function with parameters θ, and p(z) is the prior distribution. Except
for a few special cases, maximum likelihood learning in such models is intractable because of the
difficulty of the integrals involved. Variational inference (Jaakkola & Jordan, 2000) provides a
tractable alternative by introducing a variational posterior distribution qϕ(z|x) and maximizing a
lower bound on the marginal log-likelihood called the ELBO:

L(x,θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ p(z)) ≤ log pθ(x). (1)

Training models with modern SVI (Kingma & Welling, 2014; Rezende et al., 2014) involves
gradient-based optimization of this bound w.r.t. both the model parameters θ and the variational
parameters ϕ. The first term in (1) encourages the model to assign high likelihood to the data, but
its exact evaluation and gradients are typically intractable and so the expectation is often approx-
imated with samples from qϕ(z|x). The KL divergence term incorporates prior information by
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penalizing deviations of the variational posterior from the prior p(z). Closed-form expressions of
DKL (qϕ (z|x) ∥ p (z)) allow efficient encoding of prior information; otherwise, sample-based ap-
proximations are required. Modifying the ELBO by scaling the KL term with a parameter βKL > 0
is often necessary to balance the trade-off between data likelihood and prior regularization (Alemi
et al., 2018). We denote the sample-based approximation of this modified ELBO as L̂βKL .

Gradient reparameterization: explicit and implicit. A distribution qϕ(z) is said to be explicitly
reparameterizable, or amenable to the ‘reparameterization trick’, if it can be expressed as a deter-
ministic, differentiable transformation z = g(ϵ,ϕ) of a base distribution ϵ ∼ p(ϵ). This base
distribution is typically simple, such as Uniform or standard Normal, enabling fast sample genera-
tion by first sampling from the base and then applying g. This enables the use of backpropagation
to compute gradients of the form [cf. (1)]

∇ϕEqϕ(z)[f(z)] = Ep(ϵ)[∇ϕf(g(ϵ,ϕ))] = Ep(ϵ)[∇zf(z)|z=g(ϵ,ϕ)∇ϕg(ϵ,ϕ)], (2)

an expectation with form encompassing the ELBO. Explicit reparameterization is compatible with
distributions in the location-scale family (e.g., Gaussian, Laplace, Cauchy), distributions with
tractable inverse CDFs (e.g., exponential, KS, CB), or those expressible as deterministic transfor-
mations of such distributions (e.g., tanhN ). When explicit reparameterization is not available, im-
plicit reparameterization (Figurnov et al., 2018) is commonly used for distributions with numerically
tractable CDFs, such as truncated, mixture, Gamma, Beta, Dirichlet, or von Mises distributions. This
method expresses the parameter gradient through the sample ∇ϕz as a function only of the CDF
gradients, not its inverse. Such CDF gradients are either found analytically (if feasible) or more
commonly using numerical methods, e.g., forward mode auto-differentiation on CDF estimates, as
in the Gamma and Beta distributions. Without explicit reparameterization, sampling and gradient
computations tend to be slower and more complex, and produce higher-variance estimates of (2),
reducing learning efficiency and stability (Kingma & Welling, 2014; Jang et al., 2017).

3 STABILIZING THE KUMARASWAMY

Identifying the instability: log (1− exp (x)). Naive computation of log (1− exp (x)) for x < 0
leads to significant numerical errors as x approaches 0 (Figure 2, red). These errors grow so large
that they can cause numerical instability, i.e., an irrecoverable error such as -inf. These errors
result from catastrophic cancellation, which occurs when subtracting nearly equal numbers — here,
1 − exp(x). As x → 0, exp(x) ≈ 1, so 1 - exp(x) results in the cancellation of leading
significant bits, leaving only a few less significant, less accurate bits to represent the result. This
causes large relative errors in 1 - exp(x), which are amplified when input to the logarithm as its
magnitude grows sharply near zero. If the cancellation is complete, 1 - exp(x) underflows to 0
and the logarithm returns -inf, as seen in Figure 2 (red) when log2 |x| < −24.

Figure 2: Naive computation of log (1− exp (x)) (red) be-
comes unstable as x → 0 due to catastrophic cancellation,
while log1mexp(x) (blue) ensures accurate computation.

When x ≈ 0, log(1 + x) and
exp(x) − 1 can be accurately
computed using Taylor series ex-
pansions, implemented as log1p
and expm1, respectively (see Ap-
pendix A.2). These functions form
the basis for two common methods
to compute log (1− exp(x)):
log(-expm1(x)) and
log1p(-exp(x)). (Mächler,
2012) showed neither method pro-
vides sufficient accuracy across the
domain. However, each approach is
accurate in complementary regions,
leading to

log1mexp(x) :=

{
log(-expm1(x)) − log 2 ≤ x < 0

log1p(-exp(x)) x < − log 2,
(3)

which computes log (1− exp (x)) accurately throughout single precision, shown in Figure 2 (blue).
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Figure 3: Stabilizing log(1− exp(x)) terms eliminates numerical instabilities in the KS log-pdf and
inverse CDF. We compare the unstable PyTorch KS implementation (top row) and our stable KS
(bottom row) for realistic KS distributions (log2 b = 24, varying a). Catastrophic cancellation in the
log(1− exp(x)) terms in the PyTorch KS causes jagged curves and inverse CDF underflow beyond
u ≈ 1− 39.3, resulting in a point mass of ≈ 39.3 at x = 0 in the sampling distribution. Our stable
KS removes the instability by using log1mexp.

A Stable Kumaraswamy. The direct implementation of the KS’s log-pdf and inverse CDF — as
found in all core auto-differentiation libraries — produces numerical instabilities. Here, we in-
troduce a novel parameterization in terms of unconstrained logarithmic parameter values, which
isolates and makes explicit the unstable terms

wb−1(u) = log(1− ub−1

) = log(1− exp(b−1 log u))

wa(x) = log(1− xa) = log(1− exp(a log x)),

eliminates the need for positivity-enforcing link functions, and whose expressions involve only
affine, exponential, and logarithmic transformations. This allows the log-pdf, inverse CDF, and
their gradients to be expressed as:

log f(x) = log a+ log b+ (a− 1) log x+ (b− 1)wa(x) (4)
∇log x log f(x) = (a− 1)− (b− 1) · exp(a log x− wa(x) + log a) (5)
∇log a log f(x) = 1 + a log x · {1− (b− 1) · exp(a log x− wa(x))} (6)
∇log b log f(x) = 1 + b · wa(x) (7)

F−1(u) = (1− ub−1

)a
−1

= exp(a−1wb−1(u)) (8)

∇log aF
−1(u) = exp(− log a+ a−1wb−1(u)) · (−wb−1(u)) (9)

∇log bF
−1(u) = exp(− log a− log b+ b−1 log u+ (a−1 − 1)wb−1(u)) · log u. (10)

This parameterization’s algebraic form allows direct replacement of the dominant unstable terms,
substituting wb−1(u) with log1mexp

(
b−1 log u

)
and wa(x) with log1mexp(a log x). Access to

log a and log b avoids errors from unnecessary transitions in-and-out of log-space. We also avoid
the error prone expressions produced in backpropogation’s direct application of the chain rule, e.g.,
1
a · exp

(
1
a log

(
1- exp

(
1
b log u

)))
· -

(
1- exp

(
1
b log u

))−1 · exp
(
1
b log u

)
· log u · −1

b2 · b and (10)
are equivalent expressions for ∇log bF

−1, but their computed values can differ greatly for extreme
parameter values. Desirable KS distributions can obtain such problematic extreme parameter values,
e.g., the KS distributions in Figure 3 have b ≈ 106. See Appendix A.3 for further discussion on how
instability in the unmodified KS can worsen with increasing evidence.

Figure 3 compares the PDF, inverse CDF, and histograms of reparameterized samples for KS dis-
tributions which are typical to real-world modeling scenarios. The PyTorch implementation (top
row) shows jaggedness in both the PDF and inverse CDF, caused by catastrophic cancellation in
the unstable terms wa(x) and wb−1(u). Additionally, the PyTorch inverse CDF underflows beyond
u ≈ 1 − 39.3: here, wb−1(u) = −∞, and F−1(u) = exp(a−1 · −∞) = 0. This underflow results
in a point mass at x = 0 (a point outside of the KS support) with probability ≈ 39.3 in each of
the reparameterized sampling distributions, and produces infinite gradients via∇log aF

−1 =∞ [cf.
(9)]. This infinite gradient triggers a cascade: infinite parameter values after the optimizer step and
NaN activations in the next forward pass, which is what users ultimately observe when training fails.
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Table 1: VAE on MNIST and CIFAR-10.

Prior qϕ(z|x) pθ(x|z) MNIST CIFAR-10

ELBO K(ϕ) ELBO K(ϕ)

N(0,1) N CB 1825 97.3 1167 37.9
U(0,1) KS CB 1818 97.4 1172 41.5
U(0,1) Beta CB 1821 97.5 1167 40.3

N(0,1) N Beta 4073 92.1 3566 48.5
U(0,1) KS Beta 4061 91.3 3483 50.1
U(0,1) Beta Beta 4082 90.1 N/A N/A

N(0,1) N KS 3328 96.4 1720 47.1
U(0,1) KS KS 3355 96.8 1738 48.8
U(0,1) Beta KS 3348 97.1 N/A N/A

Table 2: MNIST test digit VAE reconstructions.

4 EXPERIMENTS AND NEW VARIATIONAL ARCHITECTURES

Using the well-established Variational Auto-Encoder (VAE) framework on MNIST and CIFAR-10
datasets, we show that the stabilized KS enables reliable training as both a variational posterior
[Eqns. (8)–(10)] and likelihood function [Eqns. (4)–(7)]. We then introduce two new deep varia-
tional architectures that leverage bounded interval-supported latent variables: the Variational Bandit
Encoder (VBE) for improving exploration-exploitation trade-offs in contextual multi-armed bandits
(Section 4.2), and the Variational Edge Encoder (VEE) for enhancing uncertainty quantification in
link-prediction with graph neural networks (Section 4.3). These novel architectures tend to be most
performant when using the KS as their variational posterior. Across the experimental domains, our
stable KS tends to be more performant and easier to use than alternative bounded interval-supported
variational distributions. For instance, tanhN models require log-pdf clipping for stability, while
Beta models show significant performance variability based on the chosen positivity-enforcing link
function and often fail to converge, e.g., on CIFAR-10 in Section 4.1. Finally, our new variational
models are fast: the VBEs in Section 4.2 are 8− 22× faster than the state-of-the-art baseline.
Remark 1. Across all three experimental settings, models using the unstable KS produce NaN
errors in training and are therefore excluded. Prior work using the KS in latent variable mod-
els (Nalisnick et al., 2016; Nalisnick & Smyth, 2017; Stirn et al., 2019) similarly find NaN errors,
and rely on parameter clamping (amin, amax), (bmin, bmax) and uniform base distribution constraints
(umin, umax) to avoid instability. While feasible for small-scale models addressed in such prior work
(≈ 102 KS latent variables), this approach is impractical for the large-scale settings addressed in
this work (107 latent variables), where an instability in a single KS latent can cause training failure.
Our stabilization approach directly resolves these numerical issues, eliminating the need for such
hyperparameter tuning and enabling stable training at scale. By ensuring robust computation, our
method prevents catastrophic failures in large models and simplifies development workflows.

4.1 IMAGE VARIATIONAL AUTO-ENCODERS

The VAE (Kingma & Welling, 2014) is a generative latent variable model trained using amortized
variational inference. Both the variational posterior qϕ(z|x) and the conditional likelihood pθ(z|x)
are parameterized using NNs, known as the encoder eϕ(x) : RM 7→ RD and decoder dθ(z) :
RD 7→ RM , respectively. VAEs typically use the standard Normal distribution as the prior and
a factorized Normal as the variational posterior. The use of alternative variational distributions
allows incorporating different prior assumptions about the latent factors of the data, such as bounded
support or periodicity (Figurnov et al., 2018).

Experimental setup and metrics. Inspired by (Loaiza-Ganem & Cunningham, 2019), we train
VAEs with fully factorized priors and variational posteriors on MNIST and CIFAR-10 without pixel
binarization, using an unmodified ELBO (βKL = 1). We adopt the most effective likelihoods from
their work (Beta and CB), identical latent dimension D (MNIST: D = 20, CIFAR-10: D = 50),
and the same standard NN architectures, which are detailed in Appendix A.5, along with the training

5
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Algorithm 1 Variational Bandit Encoder

Require: {xk}Kk=1, {vk}Kk=1, η, βKL
1: Variation posterior q ← KS
2: Replay buffer D ← ∅
3: for t = 1 . . . T do
4: Encode: (ak, bk) = eϕ(xk)
5: Sample: z̃k ∼ q(zk; ak, bk)
6: TS: a = argmaxk{z̃k}
7: Reward: r ∼ Ber(va)
8: D ← D ∪ {(xa, a, r)}
9: Construct L̂βKL as in (11)

10: ϕ← ϕ+ η∇ϕL̂βKL

11: end for Figure 4: Synthetic bandit performance over 5 runs.
VBE-KS best handles explore-exploit trade-offs.

hyperparameters. For each variational posterior factor, we choose the canonical prior: N(0,1) forN ,
and U(0,1) for KS and Beta. We evaluate the models using test Log Likelihood (LL), approximated
by decoding a single sample from the encoded posterior and computing the log conditional likeli-
hood. To assess usefulness of the learned latent representations, we encode test data xn, compute the
mean E[qϕ(zn|xn)], and classify the test labels using a 15-nearest neighbor classifier; the classifier
accuracy (%) is denoted K(ϕ). For subjective evaluation, we display the mean decoded likelihood
of a single sample from the encoded posterior of random test digits in Table 2.

Discussion of results. The sole purpose of this experiment is to provide evidence toward the sta-
bilization of the KS. Notably, stable KS VAEs maintain numerical stability while all VAEs with
the unstable KS produce unstable training. VAEs with Beta-distributed variational posteriors often
do not converge; indeed, (Figurnov et al., 2018) reported strong performance on binarized MNIST
using a softplus link function, but did not present results on CIFAR-10, nor could we find other
works that did. We suspect this is due to similar instability issues, with the higher gradient vari-
ance of the Beta’s implicit reparameterization a likely explanation. In an attempt to overcome this
instability in Beta VAEs we report the best metrics across softplus or exp link functions in Table 1.
When neither converges, we report N/A. The results in Table 1 show that across datasets, VAEs with
KS-distributed variational posteriors consistently produce useful latent spaces, evidenced by strong
K(ϕ), and yield reconstructions with high LLs and visual quality.

When paired with any variational posterior, a KS likelihood yields stronger MNIST reconstructions
than Beta likelihoods: compare rows ∗-Beta to ∗-KS in Table 2. As in (Loaiza-Ganem & Cunning-
ham, 2019), we find CB likelihoods produce the most subjectively performant VAEs on MNIST,
unsurprising as CB was introduced specifically for the approximately binary MNIST pixel data.

4.2 CONTEXTUAL BERNOULLI MULTI-ARMED BANDITS

The contextual Bernoulli multi-armed bandit (MAB) problem involves a decision maker who, at
each time step t = 1, . . . , T , selects one arm from a finite set of K options. Each arm has an asso-
ciated context xk ∈ Rd, and pulling an arm yields a binary reward rk ∼ Ber(vk), where vk ∈ [0, 1]
is the unknown mean reward. MABs originate by analogy to casino slot machines, where each
machine (arm) has a different payout rate, and the challenge lies in deciding which arms to pull
in order to maximize total winnings while learning about their payout rates, a situation called the
exploration-exploitation dilemma. MABs have found applications in modern recommendation sys-
tems (Li et al., 2010), clinical trials design (Villar et al., 2015), and mobile health (Tewari & Murphy,
2017). Thompson Sampling (TS) is a simple, empirically effective (Chapelle & Li, 2011), and scal-
able (Jun et al., 2017) arm selection heuristic. It selects the arm corresponding to the highest value
drawn from the posterior distributions over the latent zk’s. This approach naturally balances explo-
ration and exploitation: the uncertainty in the posteriors promote exploration, while concentration
of probability mass on large mean rewards drive exploitation.

Variational Bandit Encoder (VBE): VAE ∩ TS. Our novel VBE posits a fully factorized KS
variational posterior

∏
k qϕ(zk|xk), prior p(z) = UK

(0,1), and a Bernoulli reward likelihood p(r|vk)

6
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for each arm. Similar to VAEs, we employ amortized inference using a shared NN encoder eϕ(xk),
which defines a reparameterizable variational distribution qϕ(zk|xk). However, unlike VAEs, VBEs
omit the decoder; samples z̃k ∼ qϕ(zk|xk) directly parameterize the reward likelihood. The arm
selection at step t follows TS: a = argmaxk{z̃k}. We then draw reward r ∼ Ber(va) and record it
in the replay buffer D ← D ∪ {(xa, a, r)}. We construct a sample approximation of the modified
ELBO over the subset of arms Kt ⊂ {1, . . . ,K} that have been pulled by time t as

L̂βKL(D,ϕ) =
∑

(xa,a,r)∈D

log p(r|z̃a) + βKL

∑
k∈Kt

H[qϕ(zk|xk)], (11)

see Appendix A.4 for the derivation. The second term promotes exploration by penalizing over-
confidence with the exploration effect proportional to βKL. We maximize (11) w.r.t. ϕ via gradient
ascent, enabled by the reparameterizable KS. VBE execution is summarized in Algorithm 1.

VBE advantages. VBEs provide four primary advantages over alternative TS-based Bernoulli MAB
approaches, discussed in Section 5.

• Scalability and Compatibility. VBE training consists of a forward pass through a NN, sampling
an explicitly reparameterized distribution, and a backward pass for gradient-based updates. This
process is scalable and fully compatible with existing gradient-based infrastructure.

• Prior Knowledge Incorporation. When prior knowledge exists on an arm k it can be efficiently
encoded as p(zk) = Beta(ak, bk), replacingH[qϕ(zk|xk)] with −DKL (qϕ(zk|xk) ∥ p(zk)).

• Interpretability and Independence. Encoding xk produces KS distribution parameters, fully en-
capsulating the model’s beliefs about vk. This is independent of other arms and past data.

• Simplicity. VBEs lack numerous hyperparameters and complex architectural components.

Alternative methods lack some or all of these properties because they do not directly model the mean
rewards nor differentiate through mean reward samples; instead, they model the parameters ϕ.

Experimental setup. We construct synthetic data with K = 104 arms and T = 2 · 103 steps,
sample vector w and features {xk}Kk=1 fromN (0, I5), min-max normalize {w⊤xk}Kk=1 to produce
probabilities, and further raise them to power 5 to add non-linearity; see Appendix A.6 for details.
We evaluate VBEs with either a KS (VBE-KS), Beta (VBE-Beta), or tanhN (VBE-tanhN ) all using
βKL = |Kt|−1, which makes the second term in (11) a mean. VBE-tanhN ’s performance is sensitive
to the number of samples used in its entropy estimate: we found degraded performance beyond 10
samples. The learning rate is set to η = 10−2. As a baseline, we use LMC-TS, which employs
Langevin Monte Carlo (LMC) to sample posterior parameters of a NN, known for state-of-the-art
performance across various tasks (Xu et al., 2022). All models use an MLP with 3 hidden layers
of width 32. LMC-TS hyperparameters (inverse temperature, LMC steps, weight decay) are set or
tuned based on the authors’ code. We repeat experiments 5 times on an Apple M2 CPU and report
the mean and standard deviation across these runs in Figure 4.

Metrics and evaluation. The optimal policy always selects the arm with the highest mean re-
ward r∗. Our objective is to minimize regret, defined as the cumulative difference between the
expected reward of the chosen action and the optimal action (accessible in the synthetic setting), i.e.,∑T

t=1(r
∗ − rat). VBE-KS achieves lower regret and higher cumulative reward than all baselines.

VBE-Beta performs significantly worse than VBE-KS and VBE-tanhN , highlighting the impor-
tance of explicit reparameterization. LMC-TS is performant — worse than VBE-KS and better than
VBE-tanhN — but is 8–22× slower than VBEs: VBEs avoid the computational overhead of LMC.

4.3 VARIATIONAL LINK PREDICTION WITH GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have become a powerful tool for learning from graph-structured
data, with applications in critical areas like drug discovery (Zhang et al., 2022) and finance (Wang
et al., 2022). A key task is link prediction, where the goal is to infer unobserved edges between
nodes. However, real-world deployment of graph learning models is often hindered by a lack of
reliable uncertainty estimates and limited capacity to incorporate prior knowledge (Wasserman &
Mateos, 2024). To address these challenges, we propose a variational approach where the GNN
encodes a KS to model the unobserved probabilities of each network link’s existence, enabling
uncertainty quantification and prior knowledge integration with minimal computational overhead.
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In a typical link prediction setup, the GNN has access to the features X ∈ RN×d of all N nodes, but
only a subset of positive edges in the training Dtr and validation Dval sets. Edges are labeled as 1
(present) or 0 (absent). The GNN generates edge embeddings through message passing and neigh-
borhood aggregation, outputting probabilities zu,v ∈ (0, 1) that parameterize a Bernoulli likelihood.
The seminal work of (Kipf & Welling, 2016) proposed Variational Graph Auto-encoders (VGAEs),
which posits a Gaussian variational posterior over the final node embeddings. When used for link
prediction it samples final node embeddings from the variational posterior and decodes them to pro-
duce edge probabilities. In contrast, our approach directly models the probability of an edge using
the KS. An advantage of directly modeling edge probabilities is interpretability; deep nodal embed-
dings are often difficult to interpret, and priors are typically selected for computational tractability
rather than their ability to incorporate meaningful prior information. However, the probability of an
edge (u, v) existing between two nodes is an interpretable quantity that can often be informed by
domain expertise. For example, in gene regulatory networks, epidemiological networks, and social
networks experts often have prior knowledge about the likelihood of specific interactions, transmis-
sions, or friendships, respectively, which can be directly incorporated into edge prior p(z(u,v)). We
believe the limited exploration of variational modeling for edge probabilities is due to the previous
lack of an expressive, stable, explicitly reparameterizable bounded-interval distributions.

Variational Edge Encoder (VEE). We propose a fully factorized KS variational posterior∏
(u,v)∈Dtr

qϕ(zu,v|X,Dtr) with a uniform prior p(z) = U
|Dtr|
(0,1) . The GNN encoder eϕ param-

eterizes a KS distribution for each possible edge (u, v). The remaining structure is highly similar to
VBEs: a single sample z̃u,v ∼ qϕ(zu,v|X,Dtr) directly parameterizes the Bernoulli likelihood, and
we maximize a sample approximation of the modified ELBO

L̂βKL((X,Dtr),ϕ) =
∑

(u,v)∈Dtr

log p(z(u,v)|X,Dtr) + βKL

∑
(u,v)∈Dtr

H[qϕ(z(u,v)|X,Dtr)]. (12)

From their similarity with VBEs, VEEs inherit the same advantages outlined in Section 4.2.

Models, metrics, and datasets. All models use a 2-layer GNN with Graph Convolutional Net-
work (GCN) layers and a hidden/output nodal dimension of 32. In Base-GNN, an MLP decodes
the final nodal embeddings into link probabilities. In VEE-KS/Beta/tanhN an MLP parameterizes
the KS/Beta/tanhN variational distributions; all take βKL = .05|Dtr|−1. We use 10 samples in
tanhN ’s entropy estimate; more did not produce significant performance differences. We train for
300 epochs, with a learning rate of .01, averaging results over 5 runs with different seeds. The
posterior predictive distribution over binary links p(A|X, Dtr) =

∫
p(A|Z)qϕ(Z|X, Dtr)dZ

is estimated by using a single sample from each KS/Beta distribution, parameterizing each edge
Bernoulli distribution with such samples, followed by sampling binary edges. For Base-GNN
we directly sample binary edges from the likelihood. Using 30 posterior predictive samples,
we compute the edge-wise posterior predictive mean (pred. mean) and standard deviation (pred.
stdv.). We report the Pearson correlation ρ between predictive uncertainty (pred. stdv.) and er-
ror (ℓ1 difference between pred. mean and the true label), as a measure of uncertainty calibra-
tion: useful uncertainty estimates should show strong associations between uncertainty and error.
Additionally, we compute area under the ROC curve (AUC) using pred. mean as a predictor.
Figure 5 shows performance across 3 standard citation networks: Cora, Citeseer, and Pubmed.

Figure 5: VEE-KS produces informative and calibrated edge
posterior predictives across graph datasets.

Discussion of results. On all
datasets and all metrics, VEE-
KS outperforms or matches the
most performant baselines, pro-
viding higher predictive accu-
racy (AUC) and better uncer-
tainty calibration (higher ρ).
Similar to Section 4.2, we
find Beta distributed variational
posteriors perform significantly
worse than those using KS or
tanhN , further underlining the importance of explicit reparameterization. Moreover, models us-
ing explicitly reparameterizable latents are faster: on the largest dataset (Pubmed), the average time
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(ms) per epoch for VEE-KS, VEE-tanhN , and VEE-Beta was 381 ± 61, 301 ± 26, and 447 ± 86
respectively, on an Apple M2 CPU.

5 RELATED WORK

VBEs in context: TS-based Bernoulli MAB approaches. Existing TS-based approaches for
Bernoulli MABs assume a prior over model parameters p(ϕ), which map contexts to rewards
through eϕ. At each round, parameters are sampled from the posterior, ϕ̃t ∼ p(ϕ|D), and used
to compute mean reward posterior samples {eϕ̃t

(xk)}Kk=1. However, the Bernoulli likelihood often
leads to intractable posteriors, making parameter sampling difficult. Common methods use either
variational approximations (Chapelle & Li, 2011; Urteaga & Wiggins, 2018; Clavier et al., 2024),
primarily Laplace, or MCMC approaches like Gibbs sampling (Dumitrascu et al., 2018) or LMC (Xu
et al., 2022). These approaches face several limitations. First, incorporating prior knowledge is chal-
lenging since the relationship between a parameter’s value and its effect on rewards is often unclear,
except in the simplest models. Second, scalability is a concern: Laplace approximations become
inefficient with large context dimensions or model sizes, while MCMC-based methods are compute
and memory intensive, requiring long burn-in periods (typically 102 iterations) and large machine
memory to store the bufferD. Third, interpreting model beliefs over mean rewards requires drawing
numerous posterior samples, adding further computational cost. Finally, these methods often intro-
duce significant complexity through intricate algorithms, architectures, optimization steps, and hy-
perparameters, particularly MCMC parameters (e.g., burn-in iterations, chain length, LMC inverse
temperature/weight decay and their respective schedules). By directly modeling mean rewards with
a KS, instead of the parameters ϕ, VBEs offer a simple, scalable, and interpretable approach to
Bernoulli MABs.

Kumaraswamy as a Beta surrogate. A simple approach to overcome the Beta distribution’s lack of
explicit reparameterization is to use the KS as a surrogate. This surrogate approach is feasible due to
their significant similarities when defined by the same two parameters and the availability of a high-
fidelity closed-form approximation of the KL divergence between Beta and KS distributions. (Nalis-
nick et al., 2016; Nalisnick & Smyth, 2017) use KSs as surrogates for Betas in the Dirichlet Process
stick-breaking construction to allow for stochastic latent dimensionality in a VAE. However, both
require parameter clipping for numerical stability. In their published code (Nalisnick et al., 2016)
constrains KS parameters log a, log b ∈ [−2.3, 2.9], significantly limiting the expressiveness of la-
tent KS distributions. Also, (Nalisnick & Smyth, 2017) comments under a Computational Issues
section that ‘If NaNs are encountered...clipping the parameters of the variational Kumaraswamys
usually solve the problem.’ (Stirn et al., 2019) improved upon (Nalisnick et al., 2016) by resolv-
ing the order-dependence issue in approximating a Beta with a KS. Similarly, (Singh et al., 2017)
followed a comparable process using an Indian Buffet Process. Both works maintained numerical
stability by restricting the uniform base distribution’s support from the unit interval to a narrower
interval, before passing the samples through the inverse CDF producing a distortion of the reparam-
eterized sampling distribution. This work eliminates the need for such distortions, enabling more
accurate Beta approximations and simplifying the use of the KS distribution by ensuring numerical
stability without additional interventions.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We identified and resolved key numerical instabilities in the KS distribution, a uniquely attractive
option in scalable variational models for bounded latent variables. Our work demonstrates that the
stabilized KS can tackle a wide range of large-scale machine learning challenges by powering simple
deep variational models. We introduce the Variational Bandit Encoder, which enhances exploration-
exploitation trade-offs in contextual Bernoulli MABs, and the Variational Edge Encoder, which im-
proves uncertainty quantification in link prediction using GNNs. Our empirical results show these
models are both performant and fast, achieving their best performance with the KS while avoiding
the instability and complexity seen in alternatives like the Beta or tanhN distributions. These mod-
els open avenues for addressing other large-scale challenges, including in recommendation systems,
reinforcement learning with continuous bounded action spaces, network analysis, and uncertainty
quantification in deep learning, such as modeling per-parameter dropout probabilities using a Con-
crete distribution (Gal et al., 2017).
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KS generalizations (Usman & ul Haq, 2020) inherit log(1−exp(x)) instabilities, which future work
can resolve by building on our stabilization technique. A limitation of the current models is their
inability to capture multimodal posteriors. Future work could explore KS mixtures or hierarchical
latent spaces to bridge this gap. Further, optimizing the βKL parameter with techniques like warm-
up schedules could yield further performance gains (Alemi et al., 2018). Applications of our stable
KS distribution to non-parametric models like the Dirichlet Processes follows directly from prior
work (Nalisnick & Smyth, 2017; Stirn et al., 2019). Lastly, a theoretical analysis of the VBE,
particularly in proving regret bounds, could extend its applicability to critical areas like clinical
trials, where robust decision-making under uncertainty is essential.

REPRODUCIBILITY STATEMENT

We have made our anonymized code publicly available as supplementary material accompanying
this submission. Algorithmic details including hyperparameter selections are given in the body,
and included in config files in the code. Additional details regarding data generation for the MAB
experiment are included in Appendix A.6.
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A APPENDIX

A.1 BOUNDED INTERVAL-SUPPORTED DISTRIBUTIONS

Property / Distributions CB tanhN Beta KS

Expressiveness low high high high
Gradient Reparam. explicit explicit implicit explicit
Numerical Issues mild high low low
Complex Functions tanh−1 log(1- tanh2(x)) β, I None
Parameterization log λ ∈ R µ, log σ ∈ R a, b ∈ R+ log a, log b ∈ R
Analytical Moments ✓ ✗ ✓ ✓
Closed-form KL Functions Exp. Family tanhN Exp. Family Beta
EntropyH ✓ ✗ ✓ ✓

Table 3: Comparison of bounded interval-supported distribution families.

Table 3 compares workhorse bounded-interval supported distribution families across important
properties for latent variable modeling. Expressiveness refers to the variety of prototypical shapes
each distribution can represent. All but the CB distribution exhibit four shapes; CB is limited to two.
For more details, see Figure 1 (right) and Section 2. Numerical issues highlight the challenges in
stable evaluation of some distribution-related function. The CB requires a Taylor expansion to avoid
singularities when its parameter λ approaches 0.5. Similarly, the tanhN distribution requires log-
pdf clipping and parameter regularization, as appears in various implementations (Haarnoja et al.,
2018). Complex functions refer to any operation in a distribution-related function that are not affine,
logarithmic, or the exponential. The tanhN involves computing log

(
1− tanh2(x)

)
, which poses

stability challenges (Björck et al., 2021). The Beta distribution requires the Beta function β and the
regularized incomplete Beta function I , both of which rely on numerical approximation. In con-
trast, the KS distribution in our parameterization avoids complex functions; note a−1 is computed
via exp(− log a), avoiding division. Parameterization evaluates whether the distribution can be
effectively expressed using unconstrained parameters; all but the Beta have such an ability. Closed-
form KL functions refer to the availability of closed-form KL divergence expressions with other
distributions. All but tanhN have such expressions with exponential family members, whose sim-
ple moment expressions facilitate easier prior modeling. Entropy H refers to the availability of a
closed-form expression for differential entropy. This is available for all but the tanhN distribution.

A.2 PRECISION ENHANCING FUNCTIONS

When |x| ≪ 1, both log(1+x) and exp(x)− 1 suffer from severe cancellation: the former between
1 and x, the latter between exp(x) and−1. In both cases, a simple solution for accurate computation
in the presence of small |x| is to use a few terms of the Taylor series, as

log1p(x) := log(1 + x) = x− x2

2
+

x3

3
− . . . , for |x| < 1,

expm1(x) := exp(x)− 1 = x+
x2

2!
+

x3

3!
+ . . . , for |x| < 1,

where n! denotes the factorial.

A.3 COUNTER INTUITIVE STABILITY PROPERTIES OF THE UNSTABLE KS

When using the unstable KS to model latent variables with SVI, instability can worsen with increas-
ing evidence. Here, SVI will leverage the inverse CDF and its gradient expressions (8)–(10), which
depend on the term wb−1(u) = log(1− exp(b−1 log u)), to approximate the gradient of the ELBO.
Consider modeling the latent probability of heads in coin flipping using a KS, where the true proba-
bility is 0.5. With a uniform prior and few flip observations, the posterior will be well approximated
with a low entropy bell-shaped KS, representable with low magnitude parameters a, b > 1, keeping
b−1 away from zero. This avoids catastrophic cancellation in 1− exp(b−1 log u), as exp(b−1 log u)
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remains far from 1. However, as more flips are observed, the posterior sharpens (attains higher en-
tropy), requiring larger values of b to represent the increasing certainty. This pushes exp(b−1 log u)
closer to 1, increasing the risk of catastrophic cancellation and leading to numerical instability. We
believe this counter-intuitive behavior likely frustrated modelers, but is no longer an issue in the
stabilized KS.

A.4 VBE MODIFIED ELBO DERIVATION

Let X = [x1, . . . ,xK ] be a matrix where the k-th column corresponds to the context feature xk.
Assuming independence between arms and within-arm rewards, the data likelihood can be factorized
as p(D|z) =

∏
(xa,a,r)∈D p(r|za). We adopt a fully factorized variational posterior of the form

qϕ(z|X) =
∏K

k=1 qϕ(zk|xk). Recall that Kt ⊂ {1, . . . ,K} represents the subset of arms that have
been pulled, and thus for which we have reward data.

The modified ELBO is derived as follows:

Lβ(D,ϕ) = Eqϕ(z|X)[log p(D|z)]− βKLKL (qϕ(z|X) ∥ p(z))
= Eqϕ(z|X)[log p(D|z)] + βKLH [qϕ(z|X)] , p(z) = UK

(0,1)

= Eqϕ(z|X)[log p(D|z)] + βKL

∑
k∈Kt

H [qϕ(za|xa)]

= Eqϕ(z|X)

 ∑
(xa,a,r)∈D

log p(r|za)

+ βKL

∑
k∈Kt

H [qϕ(za|xa)]

≈
∑

(xa,a,r)∈D

log p(r|z̃a) + βKL

∑
k∈Kt

H [qϕ(za|xa)] , z̃a ∼ qϕ(za|xa)

where in the final step, we use a single sample approximation of the expectation.

A.5 VAE ARCHITECTURAL AND TRAINING CHOICES

The following is almost identical to that used in (Loaiza-Ganem & Cunningham, 2019), but provided
here for completeness. For both experiments (MNIST and CIFAR-10) we use a learning rate of
0.001, batch size of 500, and optimize with Adam for 200 epochs.

Enforcing positive variational parameters.

• Gaussian. When the variational posterior is Normal, the output layer of the encoder uses a softplus
nonlinearity for the positive standard deviation.

• KS. As we parameterize the KS by unconstrained log values, any required exponentiation occurs
internally, so we require no nonlinearity on the output of the encoder.

• Beta. The core software libraries do not implement the Beta distribution’s reparameterized sam-
pling with unconstrained log parameter values, so we use an exponential nonlinearity on the output
of the encoder to enforce positivity. A softplus nonlinearity was attempted which was found to be
less stable likely due to the model seeing very large latent parameter values, which is more stably
accessible via an exp.

Enforcing positive likelihood parameters.

• CB. When the likelihood is a CB, the output of the decoder has a sigmoid non-linearity to enforce
its parameter λ ∈ (0, 1).

• KS. As we parameterize the KS by unconstrained log values, any required exponentiation occurs
internally, so we require no further transformation on the output of the decoder.

• Beta. The core software libraries do not implement the Beta distribution’s log-pdf with uncon-
strained log parameter values, so we use a softplus nonlinearity on the output of the decoder to
enforce positivity. An exponential nonlinearity was attempted which was found to be less stable.
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Table 4: VAE on MNIST and CIFAR-10 with standard deviation.

Prior qϕ(z|x) pθ(x|z) MNIST CIFAR-10

ELBO K(ϕ) ELBO K(ϕ)

N(0,1) N CB 1825± 98 97.3 1167± 901 37.9
U(0,1) KS CB 1818± 104 97.4 1172± 908 41.5
U(0,1) Beta CB 1821± 98 97.5 1167± 907 40.3

N(0,1) N Beta 4073± 5701 92.1 3566± 1203 48.5
U(0,1) KS Beta 4061± 1932 91.3 3483± 1133 50.1
U(0,1) Beta Beta 4082± 1522 90.1 N/A N/A

N(0,1) N KS 3328± 989 96.4 1720± 884 47.1
U(0,1) KS KS 3355± 512 96.8 1738± 877 48.8
U(0,1) Beta KS 3348± 515 97.1 N/A N/A

Data augmentation for (0, 1) likelihood functions. The CB has support [0, 1] and handles data on
the support boundaries without issue. When the likelihood function is a Beta or KS, which have
support (0, 1), we clamp pixel intensities to [ 1

2×255 , 1−
1

2×255 ] to prevent non-finite gradient values.

For all our MNIST experiments we use a latent dimension of D = 20, an encoder with two hidden
layers with 500 units each, with leaky-ReLU non-linearities, followed by a dropout layer (with pa-
rameter 0.9). The decoder also has two hidden layers with 500 units, leaky-ReLU non-linearities
and dropout. For all our CIFAR-10 experiments we use a latent dimension of D = 40, an encoder
with four convolutional layers, followed by two fully connected ones. The convolutions have re-
spectively, 3, 32, 32 and 32 features, kernel size 2, 2, 3 and 3, strides 1, 2, 1, 1 and are followed by
leaky-ReLU non-linearities. The fully connected hidden layer has 128 units and a leaky-ReLU non
linearity. The decoder has an analogous “reversed” architecture.

Expanded Experimental Results. Table 4 includes identical data from image VAE experiments
from Section 4.1, but now with the standard deviations across test samples included for the ELBO.

A.6 BERNOULLI MULTI-ARMED BANDIT DATA GENERATION

Figure 6: High arm reward probabilities
are reduced via a power 5 exponentia-
tion, encouraging exploration.

In Section 4.2, we generate synthetic data for K = 104

arms by first sampling a weight vector w and features
{xk}Kk=1 from N (0, I5). We then compute {w⊤xk}Kk=1
and apply min-max normalization to produce probabili-
ties (referred to as “Original probabilities” in Figure 6).
To introduce non-linearity, we raise these probabilities to
the power 5 (shown as “Power (5) transformed probabili-
ties” in Figure 6).

Exponentiating the probabilities not only makes the map-
ping from features to mean rewards more challenging to
learn, but it also significantly reduces the number of arms
with high probabilities, forcing the agent to explore more.
For instance, when raising the probabilities to the power
of 5, the number of arms with large probabilities drops
from 167 to just 7.

A.7 KUMARASWAMY DIFFERENTIAL ENTROPY

For a continuous distribution q with interval support (l, h), the differential entropy H(q) is equal to
the KL divergence between q and U(l,h) plus a constant proportional to the interval’s width h− l:

DKL
(
q ∥U(l,h)

)
:= −Eq

[
log

q

U(l,h)

]
= −Eq [log q] + Eq

[
logU(l,h)

]
= H(q) + log

1

h− l
.
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When the support has h − l = 1, then DKL
(
q ∥U(0,1)

)
= H(q). Then the differential entropy of a

KS with parameters a, b is

H(KS) = DKL
(
KS ∥U(0,1)

)
= 1− b+ (1− a)

(
ϕ(0)

(
b−1 + 1

)
+ γ

)
− log a− log b,

where ϕ(0) is the digamma function and γ ≈ 0.577 is the Euler-Mascheroni constant. The digamma
function and its gradient, the trigamma function ϕ(1)(x), can represented as infinite series which
converge rapidly and thus can be used effectively in numerical applications. They are included as
standard functions in common auto-differentiation frameworks.

A.8 KUMARASWAMY-BETA KL DIVERGENCE

The KL divergence between the Kumaraswamy distribution q(v) with parameters a, b and the Beta
distribution p(v) with parameters α, β is given by:

Eq

[
log

q(v)

p(v)

]
=
a− α

a

(
−γ −Ψ(b)− 1

b

)
+ log ab+ logB(α, β)− b− 1

b

+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
)

where γ is Euler’s constant, Ψ(·) is the Digamma function, and B(·) is the Beta function. The infinite
sum in the KL divergence arises from the Taylor expansion required to represent Eq[log(1− vk)]; it
is generally well approximated by the first few terms.
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