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Abstract

Multi-modal object Re-IDentification (RelD) has gained considerable attention
with the goal of retrieving specific targets across cameras using heterogeneous
visual data sources. At present, multi-modal object RelD faces two core challenges:
(1) learning robust features under fine-grained local noise caused by occlusion,
frame loss, and other disruptions; and (2) effectively integrating heterogeneous
modalities to enhance multi-modal representation. To address the above chal-
lenges, we propose a robust approach named Uncertainty-Guided Graph model for
multi-modal object ReID (UGG-RelID). UGG-RelD is designed to mitigate noise
interference and facilitate effective multi-modal fusion by estimating both local
and sample-level aleatoric uncertainty and explicitly modeling their dependen-
cies. Specifically, we first propose the Gaussian patch-graph representation model
that leverages uncertainty to quantify fine-grained local cues and capture their
structural relationships. This process boosts the expressiveness of modal-specific
information, ensuring that the generated embeddings are both more informative
and robust. Subsequently, we design an uncertainty-guided mixture of experts
strategy that dynamically routes samples to experts exhibiting low uncertainty.
This strategy effectively suppresses noise-induced instability, leading to enhanced
robustness. Meanwhile, we design an uncertainty-guided routing to strengthen
the multi-modal interaction, improving the performance. UGG-RelD is com-
prehensively evaluated on five representative multi-modal object ReID datasets,
encompassing diverse spectral modalities. Experimental results show that the
proposed method achieves excellent performance on all datasets and is significantly
better than current methods in terms of noise immunity. Our code is available at
https://github.com/wanxixi11/UGG-RelD.

1 Introduction

Multi-modal data has emerged as a significant trend in artificial intelligence [1-4]. Especially driven
by large model technology, more and more applications have begun to utilize multi-modal information
for comprehensive analysis [5H7]. Multi-modal object Re-IDentification (ReID) [8H11]], as a cutting-
edge direction of this research, not only broadens the application boundaries of traditional object
RelD [12H14], but also effectively makes up for some limitations in cross-modal object ReID [15H17]].

Recently, researchers have extensively explored multi-modal feature fusion and matching strategies to
bridge the representation gap between different modalities for object ReID [9}18-20]. For example,
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Figure 1: Modeling aleatoric uncertainty in multi-modal ReID. (a) The challenges in multi-modal
object RelD. (b) Local uncertainty modeling for modality-specific refinement. (c) Joint uncertainty
modeling in samples and modalities for improved fusion.

Zheng et al. [9] propose a progressive fusion method to achieve effective fusion of multi-modal data.
Wang et al. 18] propose HTT that exploits the relationship on unseen test data between heterogeneous
modalities to improve performance. On the other hand, existing methods [21-24]] have begun to
pay attention to the effect of modal noise on the discriminative properties of local regions, such as
the introduction of local region alignment, noise suppression module or sample reconstruction, to
enhance the robustness and improve the performance of the model. Among these, Zhang et al. [22]
propose EDITOR to suppress interference from background information and promote feature learn.
Wang et al. [23]] propose utilizing CDA to focus on localized regions of the discriminatory. We can
observe that some methods usually assume that the quality and representation of each modal data are
balanced and stable, and ignore the local and sample noise disturbances within the modality caused
by factors such as occlusion, low resolution [9}[18]. Although existing works [22} 23] [25H27]] have
achieved some success in mitigating the impact of noise on network performance, there are still
significant shortcomings in their approaches when confronted with inconsistent local noise patterns
and samples with different noise intensities. As depicted in Fig.[I] (a), the lack of fine-grained local
noise learn and sample-level noise handling compromises the robustness of multi-modal fusion,
which increases multi-modal uncertainty and impairs overall model performance.

Therefore, to solve the above problems, we provide a robust approach named Uncertainty-Guided
Graph model for multi-modal object ReID (UGG-RelID). The proposed method quantifies local
aleatoric uncertainty and models their structural dependencies. Following this, leveraging per-sample
uncertainty guides feature refinement, promoting more reliable modality interaction. To be specific,
we first propose the Gaussian Patch-Graph Representation (GPGR), which encourages fine-grained
local features to conform to Gaussian distributions. Meanwhile, a Gaussian patch graph is constructed
to explicitly model the dependencies among these local features, thereby capturing fine-grained
consistency information. As illustrated in Fig.[T](b), the uncertainties of local tokens are effectively
evaluated and explored via uncertainty-based modeling. Second, we design an Uncertainty-Guided
Mixture of Experts (UGMOoE) strategy, which dynamically assigns samples to different experts
based on their uncertainty levels. Besides, this strategy incorporates an uncertainty-guided routing
mechanism to enhance multi-modal interaction. As shown in Fig.[T](c), multi-modal data is jointly
learned to improve the overall performance based on uncertainty. The entire framework is trained in
an end-to-end manner. Through extensive experimentation on five public multi-modal object ReID
datasets, our method not only achieves competitive performance but also consistently outperforms
prior methods in noisy scenarios, validating its effectiveness and robustness.

In summary, the key contributions of this method are outlined as follows:

e We propose the Uncertainty-Guided Graph model for multi-modal object ReID (UGG-RelD).
UGG-RelD first enhances features within each modality by considering the distribution of
global and local cues and then leveraging experts’ interaction to jointly capture complemen-
tary information among multi-modal data, improving model robustness and performance.

e We design a Gaussian Patch-Graph Representation (GPGR) to quantify aleatoric uncertain-
ties for global and local features while modeling their relationships. GPGR can further
alleviate the impact of noisy data and effectively reinforce modal-specific information. To
our knowledge, this is the first work that leverages uncertainty to quantify fine-grained
local details and explicitly model their dependencies in multi-modal data.



e We introduce the Uncertainty-Guided Mixture of Experts (UGMOoE) strategy, which makes
different samples select experts based on the uncertainty and also utilizes an uncertainty-
guided routing mechanism to strengthen the interaction between multi-modal features,
effectively promoting modal collaboration.

2 Related Works

2.1 Multi-Modal Object ReID

The existing multi-modal ReID methods can be summarized into two types: one focuses on feature
fusion and integration between modalities, aiming to alleviate the semantic representation differences
between different modalities [[19, 24} 128} 29]. For instance, Yang et al. [29] propose the tri-interaction
enhancement network (TIENet). This method applies spatial-frequency interaction to enhance feature
extraction and multi-modal fusion. Wang et al. [19] propose a novel method called MambaPro, which
utilizes mamba aggregation to fuse the information of multi-modal Object RelD. Zhang et al. [24]
propose PromptMA to establish effective connections among different multi-modal information.
The other type focuses on the local noise interference within the modality and improves the overall
recognition performance by enhancing the local region discrimination [10, [21H23]]. Zheng et al. [10]
proposes CCNet, which seeks to simultaneously mitigate identification uncertainty due to modal
variability and sample appearance changes by jointly modeling multi-modal heterogeneity and
intraclass perturbations under view angle and lighting changes. Zhang et al. [22] propose EDITOR
that uses Spatial-Frequency Token Selection (SFTS) module to select diverse tokens and suppress
the effects of background interference. Wang et al. [23]] propose the Inverted text with cooperative
DEformable Aggregation (IDEA) framework to solve noise interference, enhancing feature robustness.
However, the existing methods generally lack explicit modeling of fine-grained local information
quality and sample-level uncertainty, which makes it difficult for the model to effectively perceive
and suppress local noise in the face of complex modal degradation or multi-source noise interference,
which limits its robustness and generalization ability.

2.2 Uncertainty in Multi-Modal Learning

Multi-modal learning faces the challenge of uncertainty from the data layer and the model layer [[1} 30+
35]]. The former is embodied in aleatoric uncertainty, which arises from indelible perceived noise;
The latter manifests as an epistemic uncertainty due to the limitations of the model’s capabilities. In
practice, aleatoric uncertainty is more common and has a direct impact on model performance. To
this end, many works in recent years have focused on the introduction of uncertainty mechanisms
to multi-modal learning to effectively identify and suppress unreliable information, improving the
performance of the model. Ji et al. [30] propose the Probability Distribution Encoder (PDE) module
to aggregate all modalities into a probability distribution, framing the uncertainty and optimizing
multi-modal representations. Gao et al. [[1]] propose quantifying the intrinsic aleatoric uncertainty of
single modality to enhance multi-modal features. Zhang et al. [34] propose UMLMC that employs
uncertainty-guided meta-learning to mitigate feature-level bias. Therefore, reasonable modeling
and quantification of the uncertainty in multi-modal data can not only improve the robustness and
generalization ability of multi-modal models but also provide more reliable decision support for
practical applications.

3 Methodology

We propose a novel Uncertainty-Guided multi-modal object ReID (UGG-RelD) framework, as
shown in Fig. 2] Specifically, the proposed UGG-RelD first designs the Gaussian Patch-Graph
Representation (GPGR) model as Fig. [2] (a), which quantifies both global and local uncertainties
and models the dependencies between them. This enables richer feature representations for each
modality and yields semantically more consistent embeddings. Subsequently, the Uncertainty-Guided
Mixture of Experts (UGMOoE) strategy makes samples select experts of low uncertainty, promoting
multi-modal interactions while mitigating the propagation of excessive noise. Overall, this framework
injects a controlled amount of sample noise during the learning process and effectively captures
multi-modal information, thereby enhancing the model’s robustness and performance. Below, we
will introduce each component of UGG-ReID with details.



1 1
. ) H

,uGCN 1

/ NIR Experts !
e G ate N |
RGB/TIR Expen |

1

1

1

1

1

1

1

1

1

1

|

e

RGB Experts 2
Vi) E @ [ Gateg| -~

NIR/TIR Experts_—’ : (-/ L
Sampling i :> LR Boens @E e

RGB/N IR Expert:

Un—Erc

Sampling R/e/sampling
i — 2,

1

Pooling L. Li r L ReLU Activati S ti Ci tenati Soft Activati 1

® ooling Layer @ inear Layer @ €. clivation @ ummation © oncatenation @ oltmax Activation .
Gaussian Distribution [GPGL]| Gaussian Patch-Graph Learning PGCN| Gaussian Patch-Graph Convolutional Network XD GPGCN Layers :

Figure 2: The overall framework of the proposed Uncertainty-Guided multi-modal object ReID
(UGG-RelD), which is composed of two main components: Gaussian Patch-Graph Representation
(GPGR) and Uncertainty-Guided Mixture of Experts (UGMOoE).

3.1 Feature Initialization

To align with prior research [36}119], we adopt the visual encoder of CLIP with a shared backbone to
extract initial features 2™ = {z"", x" } of multi-modal data. Here, m € {R, N, T'} indexes the RGB,
Near-Infrared (NIR), and Thermal Infrared (TIR) modalities, while z;* and x" = {2, 25" - - 2}'}
denote class tokens and local tokens, respectively. n is the number of local tokens.

3.2 Gaussian Patch-Graph Representation

The proposed Gaussian Patch-Graph Representation (GPGR) model aims to adopt Gaussian distri-
butions as node representations and then conduct message passing between Gaussian distributions.
GPGR mainly contains two key components: Gaussian Patch-Graph Learning for relationship model-
ing and Gaussian Patch-Graph Convolutional Network for message passing. Next, we will introduce
the above two modules in detail.

3.2.1 Gaussian Patch-Graph Learning

In this section, we construct a Gaussian Patch-Graph Learning (GPGL) based on the extracted initial
features to capture context-aware dependencies. Let G(V™, E™) be a Gaussian patch-graph, V'™
denotes the node set of the m-th modality and E™ represents the corresponding edge set. Different
from deterministic learning, we assume that node representation follows a Gaussian distribution
N (u, 02) to distinguish between regions with sufficient and insufficient cues and enhance the
ability to learn complex localizations. To be specific, given the initial global-local feature set
x™ = {x™ g o 2™} € RV*P where N = n + 1 and D are the number of nodes and the
dimension of each node. We first obtain the mean and standard deviation for global and local nodes
as follows,

Be' :Fcﬂ(x?)7 i :FC;L(T/;"), t=1---n, (D
=FC,(z7"), o =FC,(x]*), i=1--'m,
where FC,, and FC, are projection layers to learn the mean and standard deviation, respec-

tively. We denote the means and variances by p™ = {u™, u*, puy---p™} € RV*P and
o™ ={o" o, o -0} € RVXP respectively. Then, we calculate the edge weight in E™ and
construct the structural relationship to achieve global and local information interaction. Let ™ be
the adjacency matrix and encode structural relationships of m-th modality. Specifically, we compute
the similarity by utilizing the mean vectors p™ to avoid the interference of high uncertain nodes,



where p7" and p7f" are the mean representations of -th and j-th nodes in m-th modality. Similarity
is a metric function and we adopt Euclidean distance [37/] in our experiments.

3.2.2 Gaussian Patch-Graph Convolutional Network

After contructing the Gaussian Patch-Graph, we further employ a Gaussian Patch-Graph Convo-
lutional Network (GPGCN) to facilitate message passing among distributional nodes. Since each
node is modeled as a Gaussian distribution, traditional graph convolution operations are not directly
applicable. Thus, we adopt GPGCN to separately conduct message passing based on the mean and
variance [38]] and thus enable effective propagation of both semantic representations and uncertainty
information. Formally, the message passing process is defined as,

ﬂ(m,lJrl) — RelLU [(Dm)—%am(Dm)—%ﬂ(m,l)wﬁ(m,l)} 7
(€)
&4 = ReLU [(D™)~Fam(D™) ~h 6 Dy 0]

where 4™ = p™ and 6™ = ¢(™) | = 0,1--- L — 1 denotes the I-th layers of GGCN and
D™ is corresponding degree matrix of ™. wﬂ(m’l) and ws (") are trainable weight matrices.

After stacking multiple layers, we can obtain the final output p“”’L ) and &™) For convenience,

let 2™ = ™) and 6™ = &™) in the following text. Considering that node representations
follow Gaussian distributions, we adopt the sampling operation to obtain final output, i.e., 2™ ~
N (™, 62™). However, this sampling process is not differentiable. Therefore, we employ the

reparameterization trick to generate node representations as follows,
2" =a"+e™, e~N(0,1I) 4)

where e follows a normal distribution. £™ = {Z7*, £]" - - - 1} represents the final node representa-
tions. To alleviate the effect of extremely unbalanced standard deviation, we adopt a sigmoid function
to map & to [0, 1]. In addition, we also introduce a learnable hyperparameter ¢ that can dynamically
adjust the constraint strength of the standard deviation according to the data. This allows the model
to flexibly cope with different noise levels while maintaining robustness. Finally, to extract a more
effective embedding of global information, local cues are aggregated into global messages to enhance
features as follows,
3= 2 nlat, 2y AR W ®)
where 7 denotes a pooling operation. [-, -] is the concatenation operation and W™ is the transformation
matrix. To further promote joint aggregation representation, Kullback-Leibler divergence [39] is
applied to the class token as,
L7 = KL (o)) [N (elo, 1)) = —5 (1 4+ 1og(o7") = () = (o)) ©)

(& C

3.3 Uncertainty-Guided Mixture of Experts

Based on the proposed GPGR, we obtain a more abundant feature representation in each modality.
To further suppress the possible noise interference in each modality and enhance the multi-modal
semantic consistency, we propose the Uncertainty-Guided Mixture of Experts (UGMOoE) strategy,
which aims to achieve robust and deep multi-modal collaboration by modeling the sample-level
uncertainty and guiding the sharing of more expressive experts among modalities.

3.3.1 Uncertainty-Guided Experts Network

In the traditional MoE, the selection of experts is often based on the input content. In the application
of multi-modal data, experts are usually selected independently in each modality, which makes it easy
to ignore the sample noise and complementarity between modalities [36}40]]. The proposed experts
network can bridge this weakness. To be specific, we first model the uncertainty of the extracted
features of each modality to enhance the ability of experts to process samples with different noise
levels. The multivariate Gaussian distribution that maps the features of each modality is defined as,

p("E™) ~ N (5™, (6™)?), @)
where the means fi and variances ¢ are obtained by two independent fully connected layers, respec-
tively. Then, to model the uncertainty, we resample from the distribution as follows,

2 =" +ed™, e~N(0,I). (8)



However, to ensure the stability and robustness of the model expression, we do not directly use the
noisy sampled feature z" in the prediction process of the final task, but use the mean as the final
feature representation of the sample for the downstream decision modeling. In addition to this, to
further the uncertainty modeling capabilities, we introduce the KL divergence [39] regularization
term to ensure that the sample distribution is close to the normal distribution as follows,

£ = KLV, (6™ | N0, D] = —3 1+ Toa(6™)? — (™)~ (5™). ©)

3.3.2 Uncertainty-Guided Routing

To better manage input features effectively, we design an uncertainty-guided routing that includes a
gate mechanism to gain modal interaction by selecting different modal experts. The routing process
first applies a linear transformation to the input feature. Then, using a softmax activation acts on the
result of this transformation to obtain a probability score S(™) € R where C denotes the number
of experts. Finally, the 7’0 P}, operation is employed to select the top k (k = 1) excellent experts of
the current modality to learn other modalities, optimizing multi-modal interactions. Thus, each gate
involves the total number C' + M — 1 experts, where M denotes the total number of multi-modal
data. Besides, to improve the experts’ ability, we further add this constraint term [31]] as follows,

1 C+M-1
m __ ~m\2 om /~m
L= e ; (3)280" (E™). (10)

As ¢ increases, the corresponding expert assigns smaller weights by this constraint.

3.3.3 Interactive Aggregation

We use gate scores as weights to fuse the expert output results by the uncertainty-guided routing

operation above as follows,
C+M-—1

=3 S(FM)E.(E™). (11)

c=1

The learned feature tends to be obtained by specific experts, which means that the existence of some
experts can not be optimized. To solve this problem, we further add regular terms [31] as,

1 C+M-1 1

e 2 | X {aemasram =) (5 3 s,
TN Ares Xneh (12)

where B denotes the batch size and X" is the features collection of samples in batch for the m-th
modality. The former item refers to the proportion of samples assigned to expert ¢, and the latter item
refers to the proportion of weights assigned by the router to expert c. Then, we aggregate interactive

features via the concatenation operation as z = %, 2V 27,

m
L

3.4 Train Loss

In the training of the proposed UGG-RelD, we combine multiple loss functions to optimize the
overall framework. First, EZ}S is used to constrain the global features, which represents the sum of
L7 and L7'. Then, to improve the network of uncertainty-guided experts, we introduce £, which
prioritizes experts with low uncertainty by dynamically adjusting expert selection, while adopting
L7 to prevent over-reliance on certain experts. Finally, cross-entropy loss L., and triplet loss L;,;
are used to supervise the entire network. This optimization loss can be expressed by the following
formula,

L=Loot Lorit >, (LT 4 XL+ ALY, (13)

me{R,N,T}

where A1, A2 and A3 are the balancing coefficients of this overall loss term.

4 Experiments

In this section, we evaluate the effectiveness of the proposed UGG-RelD on five commonly used
datasets and compare it with some state-of-the-art methods.



Table 1: Comparison with state-of-the-art methods on the multi-modal person RelD datasets(in %).

‘ Methods ‘ Publication ‘ Structure ‘ RGBNT201 ‘ Market1501-MM
\ \ \ \ mAP R-1 R-5 R-10 \ mAP R-1 R-5 R-10
HAMNet [8] AAAI20 CNN 277 263 415 517 | 60.0 828 925 95.0
PFNet [9] AAAI21 CNN 38,5 389 520 584 | 609 836 928 955
IEEE [41] AAAI22 CNN 46.4 47.1 585 642 | 643 839 930 957
= TIENet [29] TNNLS25 CNN 545 544 663 71.1 | 674 86.1 941 96.0
B UniCat [42] NIPSW23 ViT 57.0 557 - - - - - -
£ | EDITOR [22] CVPR24 ViT 66.7 687 822 879 | 774 90.8 968 98.3
é RSCNet [43] TCSVT24 ViT 682 725 - - - - - -
5 HTT [18] AAAI24 ViT 71.1 734 831 873 | 672 815 958 978
TOP-RelD [21] AAAI24 ViT 722 752 849 894 | 820 924 976 98.6
ICPL-RelD [28] TMM25 CLIP 751 774 842 879 - - - -
PromptMA [24] TIP25 CLIP 784 809 870 889 | 83.6 933 - -
MambaPro [19] AAAI25 CLIP 789 834 89.8 919 | 84.1 928 977 98.7
DeMo [36] AAAI25 CLIP 79.7 818 894 925 | 83.6 931 975 987
IDEA [23] CVPR25 CLIP 80.2 82.1 90.0 933 - - - -
\ UGG-RelD \ Ours \ CLIP \ 81.2 86.8 92.0 94.7 \ 854 943 984 99.1

4.1 Experiments Setting

Datasets. We conduct five multi-modal object ReID datasets, including two person RelD datasets
(e.g., RGBNT201[9], Market1501-MM [41]]) and three vehicle datasets (e.g., MSVR310 [10],
RGBNT100 [8], WMVEIDS863 [11]). These datasets pose multi-dimensional challenges such as
perspective changes and environmental disturbances, reflecting the broad applicability of this method.

Implementation Details. All experiments are conducted using PyTorch on a single NVIDIA RTX
4090 GPU. A pre-trained CLIP model serves as the visual encoder. Person and vehicle images
are resized to 256x128 and 128x256, respectively. We extract features using a 16x16 patching
strategy, yielding 128 local tokens and one global token, which jointly serve as nodes in a Gaussian
patch-graph for modeling. The model is fine-tuned with Adam (learning rate: 0.00035) for 40 epochs.
More details of the experiments are provided in the supplementary material.

Evaluation Protocols. We utilize mAP and Rank to evaluate the performance of the model, where
mAP means the accuracy of RelD, while Rank shows the probability that the correct match is included
in the top results. The combination of the two can more accurately reflect the ability to identify.

4.2 Comparison with State-of-the-Art Methods

Evaluation on Multi-modal Person ReID. We evaluate our proposed UGG-RelD on two multi-
modal person ReID datasets in Table[I] We can observe that both datasets achieve state-of-the-art
results for all metrics. Particularly, RGBNT201 [9] outperforms the next most popular method in the
metric rank-1 by 3.4%. In addition, our method surpasses DeMo [36] in multiple metrics, highlighting
the effectiveness of our architectural design. DeMo [36]] relies on modality decoupling to preserve
specific cues and uses attention to assign expert weights in MoE. In contrast, our proposed GPGR
builds stronger modality-specific representations by incorporating aleatoric uncertainty from local
details. Meanwhile, the UGMOE strategy utilizes sample uncertainty to guide expert selection and
applies a novel routing strategy to facilitate more effective multi-modal collaboration.

Evaluation on Multi-modal Vehicle ReID. We further conduct experiments on three multi-modal
vehicle datasets, which contain challenges such as large view discrepancies and intense glare con-
ditions, to fully validate the robustness and effectiveness of the proposed UGG-ReID. As shown in
Table 2] our method maintains stable performance under various complex interference conditions,
clearly demonstrating the practical effectiveness of the proposed method in enhancing the model’s
generalization capability. Notably, on WMVEID863 [ 1] with severe dazzle interference, our method
outperforms the suboptimal method by 2.8% and 3.6% in the mAP and R-1, respectively. This result
further validates the robustness and effectiveness in the face of significant noise interference.

4.3 Ablation Study

To analyze the contribution of each module, we conduct systematic ablation experiments around the
two core components, UGMoE and GPGR, on RGBNT201 [9] and WMVEIDS863 [11]. We first



Table 2: Comparison with state-of-the-art methods on the multi-modal vehicle RelD datasets(in %).

‘ Methods ‘ Publication ‘ Structure ‘ MSVR310 ‘ RGBNT100 ‘ WMVEID863
\ \ | mAP R-1 | R-5 R-10 | mAP R-1 R-5 R-10
HAMNet [8] AAAI20 CNN 27.1 423|745 933 | 456 485 63.1 68.8
PFNet [9] AAAI21 CNN 235 374 | 68.1 94.1 50.1 559 68.7 751
IEEE [41] AAAI22 CNN 21.0 410|613 87.8 | 459 486 643 679
= CCNet [10] INFFUS23 CNN 364 552|772 963 | 503 527 69.6 75.1
< | EDITOR [22] CVPR24 ViT 39.0 493 | 821 964 | 656 738 80.0 823
g RSCNet [43] TCSVT24 ViT 395 49.6 | 823 96.6 - - - -
£ | TOP-RelD [21] AAAI24 ViT 359 446 | 81.2 964 | 67.7 753 80.8 835
E’ FACENeT [11] | INFFUS25 ViT 36.2 54.1 | 81.5 969 | 69.8 77.0 81.0 842
PromptMA [24] TIP25 CLIP 552 645|853 974 - - - -
MambaPro [19] AAAI2S CLIP 470 565|839 947 | 695 769 80.6 83.8
DeMo [36] AAAI2S CLIP 492 598|862 976 | 688 772 815 838
IDEA [23] CVPR25 CLIP 470 624 | 872 965 - - - -
ICPL-RelD [28] TMM25 CLIP 569 7771870 986 | 672 740 813 85.6
| UGG-ReID | Ours | CLIP | 60.1 780 | 88.0 98.1 | 72.6 80.8 84.2 87.2
Table 3: Ablation study results on the RGBNT201 and WMVEIDS863 datasets (in %).
UGMOoE GPGR \ RGBNT201 \ WMYVEIDS863
MoE Uncer. PGR Uncer. \ mAP R-1 R-5 R-10 \ mAP R-1 R-5 R-10
(a) X X X X 722 7277 822 873 | 664 724 794 829
(b) v X X X 750 763 86.5 895 | 68.7 758 80.2 829
(c) v v X X 76.0 804 888 91.7 | 69.7 770 81.5 845
(d) v v v X 773 817 903 9211 | 70.2 774 835 86.7
(e) v v v v \ 81.2 868 92.0 94.7 \ 72.6 80.8 842 87.2

use the pre-trained shared CLIP visual encoder as the baseline in Table[3] and gradually introduce
each component for comparative analysis. UGMOE. Introducing the traditional Mixture of Experts
(MoE) strategy to the baseline can bring some performance improvement in Table [3|(b). We further
incorporate uncertainty modeling into the MoE strategy and the model performance continues to
improve. Compared with the baseline, the proposed method improves mAP/R-1 by 4.8%/7.7%
and 3.3%/4.6% on RGBNT201 [9] and WMVEIDS863 [11]], respectively, which indicates that the
introduction of uncertainty helps to estimate the expert’s credibility more accurately, thus realizing
a more reasonable sample assignment and improving the effectiveness of multi-modal information
fusion. GPGR. In the case of relying only on the above strategy for multi-modal modeling, the
modal-specific information is still not fully explored. To further promote the model’s ability, we
introduce GPGR to enhance the modeling ability of fine-grained local cues by using uncertainty.
In the experiment, we first evaluate the effect of the standard Patch-Graph Representation (PGR)
module in Table 3] (d), and then integrate the uncertainty into the network. The results show that
GPGR delivers significant improvements based on the integrated UGMoE. Compared to using
UGMOoE alone, our method improves mAP/R-1 by 5.2%/6.4% on RGBNT201 [9] and by 2.9%/3.8%
on WMVEIDS863 [L1], respectively. This fully shows that GPGR can effectively suppress noise
interference and mine richer information. In summary, our proposed method enhances features within
each modality and jointly captures complementary information among multi-modal data, improving
model robustness and effectiveness. More ablation is provided in the supplementary material.
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Figure 3: Robustness analysis on RGBNT201. Evaluation results with (a) different levels of Gaussian
noise added during dataset generation, and (b) varying noise intensities added during testing after
training on clean data.
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Figure 4: Retrieval results under different testing conditions after training on clean data. (a) Clean.
(b) Gaussian noise. (c) Arbitrary noise. Green/Red boxes indicate correct/incorrect retrieval results.

Table 4: Expert-balanced analysis of Table 5: Efficiency analysis and accuracy comparison with

each modality on WMVEIDS63. SOTA methods on RGBNT201.

M Score | Ex E; Es E, RGBNT201 | Params(M) FLOPs(G) FPS mAP R-1
Uncer. | 031 027 030 0.12 TOP-RelD [21] 324.5 35.5 3989 722 752

R Gate | 007 012 007 074 EDITOR [22] 119.3 40.8 3351 667 687
PromptMA [24] 107.9 36.2 3435 784 809

N Uncer. ‘ 034 034 0.27 0-54 MambaPro [19] 74.8 524 2432 789 834
Gate | 028 026 0.18 028 DeMo [36] 98.8 35.1 4036 797 81.8

T Uncer. | 028 0.26 029 0.18 IDEA [23] 91.7 43.7 299.5 80.2 82.1
Gate | 0.17 021 0.14 048 UGG-RelD 103.2 35.0 3714 812 868

4.4 Robustness Analysis

To systematically evaluate the robustness of the proposed UGG-ReID under noise interference, we
inject Gaussian noise of different intensities into the RGBNT201 dataset [9]], and increase the noise
intensity € from 5 to 30 to generate multiple noisy versions of the dataset. Compared to the four
mainstream methods (EDITOR [22]], TOP-ReID [21], ICPL-RelD [28] and DeMo [36])), the proposed
method maintains superior performance under all noise intensities, as shown in Fig. [3| (a). These
results indicate that the method has good robustness and generalization ability.

Furthermore, we evaluate the model’s performance by injecting Gaussian noise of different intensities
in the testing phase after completing training on clean data. As Fig.[3|(b) shows, the proposed method
is stable and superior to other methods under multi-level noise conditions. Meanwhile, we perform
rank-list retrieval evaluations on clean data and different types of noise in Fig.[d] The results show that
the proposed method achieves excellent performance under various interference conditions, which
is significantly better than the advanced method DeMo [36]], which fully reflects its robustness and
practicability under complex perceptual interference.

4.5 Expert Balanced Analysis

We show the router average gate scores and uncertainty scores of all test samples for each modality
on WMVEID863 in Table d We observe that N and T modalities show a more balanced expert
activation distribution, while Expert 4 in the R modality has a heavy weight when the uncertainty
is low. These results indicate that the routing mechanism dynamically adjusts expert allocation
according to different modalities and sample uncertainty.

4.6 Efficiency Analysis

To further validate the effectiveness of our proposed UGG-RelD, we conduct an efficiency analysis, as
shown in Table[5] We evaluate the inference speed of each method on the RGBNT201 dataset, using
Frames Per Second (FPS) as the evaluation metric. As shown in the TableE[, UGG-RelD reaches an
inference speed of 371.4 FPS while maintaining a relatively low parameter count of 103.2 million
and a computational cost of 35.0G FLOPs. This speed is only slightly lower than that of the lighter
DeMo [36], and is significantly higher than most mainstream approaches, including MambaPro [19]
and EDITOR [22]. Notably, despite its high efficiency, UGG-RelD still achieves excellent results.
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Figure 6: T-SNE visualization of extracted features with different model component combinations on
the RGBNT201 dataset.

4.7 Visual Results

Multi-modal Activation Maps: We adopt the Grad-CAM method to visualize the extracted
features of each modality. Samples with backpacks are above the dotted line, and samples with-
out backpacks are below the dotted line. The proposed UGG-RelD consistently attends to more
semantically rich object regions compared to the baseline model that lacks our module, as shown
in Fig.[5] Notably, under challenging conditions such as motion blur or occlusion, our method still
effectively focuses on key target features, further validating its robustness and discriminative power.
This suggests that our method effectively captures the diversity of multi-modal information through
uncertainty-guided multi-modal local and sample-level joint learning, which significantly improves
the robustness and the performance of object re-identification.

Multi-modal Feature Distributions: We adopt the T-SNE method [43]] to visualize the extracted
features to intuitively show the feature distribution of the model under different combinations of mod-
ules. With the gradual introduction of the proposed modules, the feature distribution gradually shows
obvious clustering in Fig. [6] This compact clustering structure is consistent with the performance
enhancement results in Table [3] which further validates the effectiveness of our method in enhancing
modal feature representation and multi-modal interaction modeling. More visualizations are provided
in the supplementary material.

5 Conclusion

In this paper, we propose a novel Uncertainty-Guided Graph model for multi-modal object (UGG-
RelD), effectively mining modal-specific information and boosting modal collaboration for multi-
modal object ReID. This UGG-RelD consists of two main aspects. One design is the Gaussian
Patch-Graph Representation (GPGR) model for quantifying the aleatoric uncertainty of local and
global features and modeling the relationship between them. This manner mitigates the noise
interference and enhances the learning ability and robustness of modality-specific information. The
other introduces the Uncertainty-Guided Mixture of Experts (UGMOoE) strategy to select appropriate
experts based on sample uncertainty and facilitate deep multi-modal interactions through a novel
routing mechanism. These two core schemes synergistically optimize the overall network structure
and achieve the current optimal performance on all five multi-modal object ReID datasets.

10



Acknowledgements

This work was supported by the National Natural Science Foundation of China (62372003, 62576004),
the Natural Science Foundation of Anhui Province (2308085Y40, 2408085J037), the Key Technolo-
gies R&D Program of Anhui Province (202423k09020039), and the Open Research Project of the
Anhui Provincial Key Laboratory of Security Artificial Intelligence (SAI202401).

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

Z. Gao, X. Jiang, X. Xu, F. Shen, Y. Li, and H. T. Shen, “Embracing unimodal aleatoric uncertainty for
robust multimodal fusion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 26 86626 875.

X. Wang, S. Wang, C. Tang, L. Zhu, B. Jiang, Y. Tian, and J. Tang, “Event stream-based visual object
tracking: A high-resolution benchmark dataset and a novel baseline,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp. 19 248-19 257.

J.Li, S. Wang, Q. Zhang, S. Yu, and F. Chen, “Generating with fairness: A modality-diffused counterfactual
framework for incomplete multimodal recommendations,” in Proceedings of the ACM on Web Conference
2025, 2025, pp. 2787-2798.

L. Bao, X. Zhou, B. Zheng, R. Cong, H. Yin, J. Zhang, and C. Yan, “Ifenet: Interaction, fusion, and
enhancement network for v-d-t salient object detection,” IEEE Transactions on Image Processing, vol. 34,
pp. 483-494, 2025.

B. McKinzie, Z. Gan, J.-P. Fauconnier, S. Dodge, B. Zhang, P. Dufter, D. Shah, X. Du, F. Peng, A. Belyi,
et al., “Mml: methods, analysis and insights from multimodal llm pre-training,” in Proceedings of the
European Conference on Computer Vision, 2024, pp. 304-323.

X. Wang, B. Zhuang, and Q. Wu, “Modaverse: Efficiently transforming modalities with llms,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 26 59626 606.

S. Wu, H. Fei, L. Qu, W. Ji, and T.-S. Chua, “Next-gpt: any-to-any multimodal llm,” in Proceedings of the
International Conference on Machine Learning, 2024.

H. Li, C. Li, X. Zhu, A. Zheng, and B. Luo, “Multi-spectral vehicle re-identification: A challenge,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 11 345-11353.

A. Zheng, Z. Wang, Z.-H. Chen, C. Li, and J. Tang, “Robust multi-modality person re-identification,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 3529-3537.

A. Zheng, X. Zhu, Z. Ma, C. Li, J. Tang, and J. Ma, “Cross-directional consistency network with adaptive
layer normalization for multi-spectral vehicle re-identification and a high-quality benchmark,” Information
Fusion, vol. 100, p. 101901, 2023.

A.Zheng, Z. Ma, Y. Sun, Z. Wang, C. Li, and J. Tang, “Flare-aware cross-modal enhancement network for
multi-spectral vehicle re-identification,” Information Fusion, vol. 116, p. 102800, 2025.

K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning for person re-identification,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3701-3711.

P. Wang, X. Zheng, L. Qing, B. Li, E. Su, Z. Zhao, and H. Chen, “Drformer: A discriminable and reliable
feature transformer for person re-identification,” IEEE Transactions on Information Forensics and Security,
vol. 20, pp. 980-995, 2025.

A. Zheng, J. Liu, Z. Wang, L. Huang, C. Li, and B. Yin, “Visible-infrared person re-identification via
specific and shared representations learning,” Visual Intelligence, vol. 1, no. 29, 2023.

P. Dai, R. Ji, H. Wang, Q. Wu, and Y. Huang, “Cross-modality person re-identification with generative
adversarial training,” in International Joint Conference on Artificial Intelligence, 2018, pp. 677-683.

Y. Hao, N. Wang, X. Gao, J. Li, and X. Wang, “Dual-alignment feature embedding for cross-modality
person re-identification,” in Proceedings of the ACM International Conference on Multimedia, 2019, pp.
57-65.

S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Transreid: Transformer-based object re-
identification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.
15013-15022.

11



(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Z. Wang, H. Huang, A. Zheng, and R. He, “Heterogeneous test-time training for multi-modal person
re-identification,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2024, pp. 5850-5858.

Y. Wang, X. Liu, T. Yan, Y. Liu, A. Zheng, P. Zhang, and H. Lu, “Mambapro: Multi-modal object
re-identification with mamba aggregation and synergistic prompt,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2025.

X. Yang, W. Dong, D. Cheng, N. Wang, and X. Gao, “Tienet: A tri-interaction enhancement network for
multimodal person reidentification,” IEEE Transactions on Neural Networks and Learning Systems, pp.
1-12, 2025.

Y. Wang, X. Liu, P. Zhang, H. Lu, Z. Tu, and H. Lu, “Top-reid: Multi-spectral object re-identification with
token permutation,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 5758-5766.

P. Zhang, Y. Wang, Y. Liu, Z. Tu, and H. Lu, “Magic tokens: Select diverse tokens for multi-modal
object re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 17 117-17 126.

Y. Wang, Y. Lv, P. Zhang, and H. Lu, “Idea: Inverted text with cooperative deformable aggregation for
multi-modal object re-identification,” arXiv preprint arXiv:2503.10324, 2025.

S.Zhang, W. Luo, D. Cheng, Y. Xing, G. Liang, P. Wang, and Y. Zhang, “Prompt-based modality alignment
for effective multi-modal object re-identification,” IEEE Transactions on Image Processing, vol. 34, pp.
2450-2462, 2025.

M. Yang, Z. Huang, P. Hu, T. Li, J. Lv, and X. Peng, “Learning with twin noisy labels for visible-infrared
person re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 14288-14297.

M. Yang, Z. Huang, and X. Peng, “Robust object re-identification with coupled noisy labels,” International
Journal of Computer Vision, vol. 132, no. 7, pp. 2511-2529, 2024.

Y. Qin, Y. Chen, D. Peng, X. Peng, J. T. Zhou, and P. Hu, “Noisy-correspondence learning for text-to-image
person re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 27 187-27 196.

S. Li, A. Zheng, C. Li, J. Tang, and B. Luo, “Icpl-reid: Identity-conditional prompt learning for multi-
spectral object re-identification,” IEEE Transactions on Multimedia, 2025.

X. Yang, W. Dong, D. Cheng, N. Wang, and X. Gao, “Tienet: A tri-interaction enhancement network for
multimodal person reidentification,” IEEE Transactions on Neural Networks and Learning Systems, pp.
1-12, 2025.

Y. Ji, J. Wang, Y. Gong, L. Zhang, Y. Zhu, H. Wang, J. Zhang, T. Sakai, and Y. Yang, “Map: Multimodal
uncertainty-aware vision-language pre-training model,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 23 262-23271.

Z. Gao, D. Hu, X. Jiang, H. Lu, H. T. Shen, and X. Xu, “Enhanced experts with uncertainty-aware routing
for multimodal sentiment analysis,” in Proceedings of the ACM International Conference on Multimedia,
2024, pp. 9650-9659.

S. Li, X. Xu, C. He, F. Shen, Y. Yang, and H. Tao Shen, “Cross-modal uncertainty modeling with diffusion-
based refinement for text-based person retrieval,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 35, no. 3, pp. 2881-2893, 2025.

Z. Gao, X. Jiang, H. Chen, Y. Li, Y. Yang, and X. Xu, “Uncertainty-debiased multimodal fusion: Learn-
ing deterministic joint representation for multimodal sentiment analysis,” in Proceedings of the IEEE
International Conference on Multimedia and Expo, 2024, pp. 1-6.

D. Zhang, M. A. Bashar, and R. Nayak, “A novel multi-modal fusion method based on uncertainty-guided
meta-learning,” Pattern Recognition, vol. 158, p. 110993, 2025.

Y. Deng, Z. Chen, C. Li, and J. Tang, “Uncertainty-aware coarse-to-fine alignment for text-image person
retrieval,” Visual Intelligence, vol. 3, no. 6, 2025.

Y. Wang, Y. Liu, A. Zheng, and P. Zhang, “Demo: Decoupled feature-based mixture of experts for
multi-modal object re-identification,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2025.

12



(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Z. Liu, H. Li, R. Li, Y. Zeng, and J. Ma, “Graph embedding based on euclidean distance matrix and
its applications,” in Proceedings of the ACM International Conference on Information & Knowledge
Management, 2021, pp. 1140-1149.

D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional networks against adversarial attacks,”
in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019, p. 1399-1407.

J. Chang, Z. Lan, C. Cheng, and Y. Wei, “Data uncertainty learning in face recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5709-5718.

S. Yun, I. Choi, J. Peng, Y. Wu, J. Bao, Q. Zhang, J. Xin, Q. Long, and T. Chen, “Flex-moe: Modeling
arbitrary modality combination via the flexible mixture-of-experts,” in Proceedings of the Conference on
Neural Information Processing System, 2024.

Z. Wang, C. Li, A. Zheng, R. He, and J. Tang, “Interact, embed, and enlarge: Boosting modality-specific
representations for multi-modal person re-identification,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2022, pp. 2633-2641.

J. Crawford, H. Yin, L. McDermott, and D. Cummings, “Unicat: Crafting a stronger fusion baseline for
multimodal re-identification,” arXiv preprint arXiv:2310.18812, 2023.

Z. Yu, Z. Huang, M. Hou, J. Pei, Y. Yan, Y. Liu, and D. Sun, “Representation selective coupling via token
sparsification for multi-spectral object re-identification,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 35, no. 4, pp. 3633-3648, 2025.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual
explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2017, pp. 618-626.

D. Kobak and G. C. Linderman, “Initialization is critical for preserving global data structure in both t-sne
and umap,” Nature Biotechnology., vol. 39, pp. 156-157, 2021.

P. Kaushik, A. Kortylewski, and A. Yuille, “A bayesian approach to ood robustness in image classification,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2024, pp. 22 988-22997.

S. Li, X. Xu, Y. Yang, F. Shen, Y. Mo, Y. Li, and H. T. Shen, “Dcel: Deep cross-modal evidential learning
for text-based person retrieval,” pp. 6292-6300, 2023.

Q. Zha, X. Liu, Y.-m. Cheung, X. Xu, N. Wang, and J. Cao, “Ugncl: Uncertainty-guided noisy corre-
spondence learning for efficient cross-modal matching,” in Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2024, pp. 852-861.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are well aligned with the paper’s
contributions and overall scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work in Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:

14



Justification: This paper is primarily empirical, focusing on model architecture and evalua-
tion. Therefore, no theoretical claims are made that would require formal assumptions or
full proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide detailed experimental settings in Section[4.T|and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code will be released upon acceptance, and implementation details are
provided in Section4.T]and Appendix to assist readers.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes all necessary information, such as data splits, optimizer
configuration, and hyperparameter selection, to support reproducibility and result verification
in section . T]and in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Statistical significance analysis and error bars are not included, as the experi-
ments are deterministic and yield consistent results under fixed conditions.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include information about the computing environment (CPU, GPU, and
memory) in Section[4.T|and Appendix to ensure our experiments can be reliably reproduced.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide a discussion of the broad societal impacts in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited and acknowledged relevant prior works.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not involve the release of any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research involving human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research involving human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as essential, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Material

In the supplementary materials, we provide a detailed description of the UGMOoE strategy and
present additional experiments to further validate the robustness and effectiveness of the proposed
UGG-RelD.

A.1 Details of UGMoE

In the main text, we set the value of & in Top & to be 1. In this case, each modality will have C' — 1
unique experts and M shared experts, so the total number of experts is C' + M — 1. If k # 1, we
analyze it further to get C' + k(M — 1) experts for each modality. Thus, Eq. is defined as follows,

1 C+k(M—1)
=) 5 )ESTH(E™). 14
LErhar-n & (6187 (E™) (19

Next, we utilize gate scores as weights to fuse the expert output results by the above routing operation

as follows,
C+k(M—1)

= Y S(EM)E(EM). (15)

c=1

The learned feature tends to be obtained by specific experts, which means that the existence of some
experts can not be optimized. To solve this problem, we further add regular terms [31] as,

1 C+k(M-1) 1 5 1 -
L :m ; BX;Bl{argmaXSC (X ):C} BXge:BSC )

where B denotes the batch size and X" is the features collection of samples in batch for the m-th
modality. The former item refers to the proportion of samples assigned to expert ¢, and the latter
item refers to the proportion of weights assigned by the router to Expert c. B denotes the batch size.
Finally, we aggregate interactive features via the concatenation operation as 2 = [, 2V 277,

A.2 Comparison with Prior Works

For conceptual comparison, we first utilize a Gaussian-based random graph for object representation,
where nodes are described by Gaussian distributions to represent the uncertainty of image patches
in the presence of noise, whereas previous works generally employ a deterministic graph model,
represented by a feature vector. We design a Gaussian Patch-Graph Representation (GPGR) to
quantify aleatoric uncertainties for global and local features while modeling their relationships. To
our knowledge, this work is the first attempt to exploit a random patch-graph model for the object
RelD problem. Second, for the Mixture-of-Experts approach, we design the Uncertainty-Guided
Mixture of Experts (UGMOoE) strategy, which enables different samples to select experts based
on uncertainty and utilizes an uncertainty-guided routing mechanism to strengthen the interaction
between multi-modal features, effectively promoting modal collaboration.

For a technical comparison, we first further analyze the impact of different uncertainty modeling
approaches on the performance of multi-modal object ReID [} 30, 31]]. As shown in Table[6] works
EUAR [31] and EAU [1] are able to perceive inter-sample uncertainty. In contrast, MAP [30]
introduces a more comprehensive uncertainty modeling mechanism to quantify the uncertainty

Table 6: Component-wise comparison of different methods on RGBNT201 (in %).
Method | Uncer. MoE Local Gloabl Graph | mAP R-1

EUARBI] | v v X v x | 741 776

EAU (1] v X X v x | 756 803
MAP[30] | X v v x | 768 782
DeMo [36] |  x v v v x | 797 818
UGG-ReID | v v v v | 812 868
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of local cues. Although the above methods take uncertainty into account, they either neglect the
modeling of uncertainty in local cues or the structural relationships between local regions. Second,
we perform comparisons under different MoE strategies. As shown in Table [6] we substitute two
existing MoE methods [31}136]. Compared with DeMo [36], UGMOoE better exploits the diversity
of samples by introducing uncertainty modeling, and compared with EUAR [31]], UGMOoE further
strengthens the interaction between different modalities.

A.3 Details of Experiments

A.3.1 Experiments Setting

Datasets. To comprehensively evaluate the generalization ability of the proposed UGG-RelD frame-
work, we conduct experiments on five public datasets. These include two person re-identification
datasets, RGBNT201 [9] and Market1501-MM [41], as well as three challenging vehicle re-
identification benchmarks: MSVR310 [10], RGBNT100 [8], and WMVEID863 [11]]. These datasets
collectively reflect a wide range of real-world scenarios and associated challenges. Table [/|summa-
rizes the partition protocols and the specific challenges posed by each dataset.

Table 7: Details of the datasets partition settings and their corresponding challenges, */* represents
ID/Sample.

| RGBNT201 | Market1501-MM | MSVR310 | RGBNT100 | WMVEID863
Train 171/3951 751/12936 155/1032 50/8675 603/10446
Query 30/836 750/3368 52/591 50/1715 210/2904
Gallery 30/836 751/15913 155/1055 50/8575 272/3678
Challenges Wide Views, Simulate the Longer Time Span, Different Views, Intense Flare
g Occlusions Night Scene Complex Conditions | Illumination Issue )

Implementation Details. For all experiments, we set the number of experts at C' = 4 and utilize
k = 1 for the TOP;, selection. The loss terms are weighted with A\; = 0.1 and A2, A3 = 0.0001,
respectively. The number of layers for GPGCN L is set to 2. Our code is implemented in Python
using the PyTorch framework and will be released publicly upon acceptance.

A.3.2 Ablation Analysis

To verify the role of each loss in the model, we conduct systematic ablation experiments, as shown in
Table@ L. s represents the sum of L. and L, which is used to impose constraints on the global token.
From the experimental results, one can observe that when the L. ; constraint on the global token
is removed, the performance of the model on multiple evaluation indicators decreases, indicating
that the constraint has a positive effect on improving modeling ability. Then, £ is removed to
verify performance for adding the loss constraint on the expert. We can find that adding the loss,
our mAP/R-1 increases by 2.2%/3.1% and 2.0%/1.6% in RGBNT201 [9] and WMVEIDS863 [ 1],
respectively, which verifies its enhancement effect on the expert selection strategy Finally, we verify
the effectiveness of £7*, which aims to ensure that the number of similar samples assigned to each
expert in the training process is balanced. Meanwhile, the expert weights are relatively evenly
distributed among the experts, and the experimental results show that it can effectively prevent the
imbalance of distribution among experts and improve the ability of the model.

Table 8: Ablation results for different loss on the RGBNT201 and WMVEID863 datasets (in %).
Loss \ RGBNT201 \ WMYVEIDS63

Type | mAP R-1 R-5 R-10 | mAP R-1 R-5 R-10

(a) wlo L s 78.8 848 896 91.7 | 696 769 824 858
(b) w/o L, 79.0 837 916 941 | 706 792 842 86.8
(c) wlo L. 81.0 84.6 90.7 925 | 71.2 783 845 87.7

(d) UGG-ReID | 81.2 868 92.0 947 | 72.6 80.8 842 87.2
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Table 9: Results of the analysis on hyperparameters C' and & on the RGBNT201 and WMVEID863
datasets (in %).

| RGBNT201 | WMVEIDS863 | RGBNT201 | WMVEID863

Expert C Top k
| mAP R-1 | mAP R-1 | mAP  R-1 | mAP  R-1
2 803 837 | 714 788 0 783 831 | 713 788
3 80.8 852 | 72.0 80.1 1 81.2 868 | 72.6 80.8
4 812 868 | 72.6 808 2 799 846 | 71.7 792
5 80.0 84.6 | 720 79.7 3 802 853 | 71.2 785
6 80.1 83.7 | 71.1 78.1 4 790 816 | 703  77.6

Table 10: Results of the analysis on hyperparameters L and n on the RGBNT201 dataset (in %).

L \ RGBNT201 \ RGBNT201
ayers L Nodes n
| mAP  R-1 mAP R-1 | mAP R-1 mAP R-1
1 80.1 853 913 939 32 793 837 913 939
2 812 868 92.0 94.7 64 80.1 829 900 94.0
3 79.1 84.6 90.8 933 96 814 846 904 926
4 784 825 903 928 128 81.2 868 92.0 94.7
5 763 80.7 89.1 91.7 160 798 836 902 919

A.3.3 Hyperparameter Analysis

We analyze the effects of the hyperparameters C' and k on model performance, where C controls the
number of experts and k denotes the number of shared experts selected for each modality. As shown
in Table[9] a moderate increase in C' enhances the model’s expressive capacity, while an appropriate
choice of k strikes a balance between stability and flexibility. This facilitates dynamic collaboration
and complementarity among experts, ultimately improving overall model performance.

We further analyze the local nodes n of GPGL and Layers L of GPGCN of the GPGR for the effect
of the model in the RGBNT201 dataset in Table[I0} For nodes n, we observe that n=128 achieves
excellent results. Too few nodes are not enough to cover rich local information, and too many
introduce redundancy and noise, interfering with graph structure learning. For layers L, GPGCN
works best when L=2. The number of layers is too shallow and may lead to insufficient fusion of
local structures, while too deep may cause over-smoothing, resulting in the loss of discriminative
representation of nodes and weakening the expression ability of local discriminative features.

A.3.4 Visual Results

Visualization of Rank List. To analyze the performance of the proposed UGG-ReID method in
cross-camera retrieval scenarios, we perform rank-list visualization of the retrieval results of different
methods as Fig.[/| Compared with baseline and baseline+UMOoE, UGG-RelD can rank the objects
more accurately, demonstrating stronger model robustness and discriminative ability.

Visualization of Class Activation Maps. As shown in Fig.|8] we visualize the proposed UGG-RelD
using Class Activation Maps (CAMs) [44]. The results further demonstrate that our approach is
capable of capturing discriminative local regions, even under complex environmental conditions.

A.4 Discussion

Multi-modal object RelD exploits fine-grained local cues and the complementary information of
modalities to effectively enhance the robustness and accuracy of recognition in complex scenarios [9]
211 23} 24, 136]. As is well known, significant distributional differences exist among different
modalities, and noise arising from sample quality and environmental factors further impacts the
accuracy of feature representations. The proposed UGG-RelD effectively guides the feature fusion
process by explicitly quantifying local and sample-level epistemic uncertainties and modeling the
relationship between them, enhancing the model’s robustness and effectiveness. UGG-RelD is the
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Figure 7: Rank- hst V1suahzat1ons for four persons from the RGBNT201 dataset under different model
configurations: (a) Baseline, (b) Baseline + UGMOoE, and (c) UGG-RelID (Ours).

Figure 8: Visualization of Class Activation Maps (CAMs) under different environmental conditions
for six vehicles from the WMVEIDS863 dataset: (a) Normal, (b) Occlusion, and (c) Intense Flare.

first work that leverages uncertainty to quantify fine-grained-local details and explicitly model their
dependencies in multi-modal data.

Limitations and In the Future. Our framework employs uncertainty-guided learning to enhance
robustness against local noise; it may still struggle under extreme conditions where local cues are
heavily corrupted or missing. In future work, we will focus on advancing uncertainty quantification
and reasoning techniques, exploring the integration of Bayesian inference and evidence theory into
multi-modal object ReID [46-48]). This aims to enhance the model’s robustness to modality and label
noise, thereby improving its overall performance and reliability in complex environments.
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