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ABSTRACT

We propose NEURONA, a modular neuro-symbolic framework for fMRI decoding
and concept grounding in neural activity. Leveraging image- and video-based
fMRI question-answering datasets, NEURONA learns to decode interacting con-
cepts from visual stimuli from patterns of fMRI signals, integrating symbolic
reasoning and compositional execution with fMRI grounding across brain regions.
We demonstrate that incorporating structure into the decoding pipeline improves
both decoding accuracy and generalization performance. NEURONA shows that
modeling the compositional structure of concepts through hierarchical predicate-
argument dependencies enables more precise decoding from fMRI, highlighting
neuro-symbolic frameworks as promising tools for neural decoding.

1 INTRODUCTION

A long-standing hypothesis in cognitive science, the Language of Thought (LoT) hypothesis (Fodor,
1975), proposes that human cognition operates over structured, symbolic representations that compose
systematically. Rather than storing concepts as isolated units, the brain is thought to organize
knowledge into compositional structures—such as predicates and their arguments—that enable
flexible and generalizable reasoning. To test whether such structures can improve neural decoding,
we study concept grounding in functional magnetic resonance imaging (fMRI), with the goal of
predicting symbolic concepts (e.g., person, baseball-bat, and holding) from patterns of
neural activity (Mitchell et al., 2008). This alignment offers insights into whether incorporating
structural priors can enable more accurate, precise, and generalizable neural decoding.

There has been vast literature on concept grounding in the past decades, with several influential
works studying how concepts are organized across the cortex (Mitchell et al., 2008; Palatucci et al.,
2009; Huth et al., 2016; Pereira et al., 2018). Recent advances in machine learning has enabled
growing efforts toward data-driven approaches to concept grounding. However, most large-scale
fMRI decoding studies focus on isolated concepts or holistic stimulus reconstruction (Nishimoto
et al., 2011; Naselaris et al., 2011; Chen et al., 2023a; Takagi & Nishimoto, 2023; Scotti et al., 2023;
Chen et al., 2023b), leaving open the question of how the to decode relational meaning between
interacting visual concepts. Specifically, we ask, does the decoding of relational concepts (e.g.,
holding) improve by accounting for the systematic combination of their constituent arguments
(e.g., person and baseball-bat) across multiple brain regions?

To explore these questions, we leverage rich data from image- and video-based fMRI datasets, which
naturally encode complex semantic and compositional structure. Naturalistic stimuli such as images
and videos often involve multiple interacting concepts (e.g., a person holding a baseball-bat), making
them well-suited for probing how to decode entities and their relations from neural activity. Hence, we
build challenging fMRI-question-answering (fMRI-QA) datasets based on BOLD5000 (Chang et al.,
2019) and CNeuroMod (Gifford et al., 2024; Boyle et al., 2023), with the goal of learning concept
grounding and improving decoding accuracy based on computational hypotheses on composition.

However, neither simple linear models nor purely end-to-end neural decoding models are sufficient for
solving this task. Linear models lack the capacity to capture interactions between multiple interacting
components, while large neural decoders (e.g., those with language model backbones) tend to
encode stimuli holistically, without explicitly modeling modular concepts or their relationships. To
address these limitations, we adopt a neuro-symbolic approach that integrates the compositionality of
symbolic systems with the expressivity of neural networks for fMRI-QA: each query is decomposed
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into a symbolic expression composing concepts, and neural activities in the brain are routed through
corresponding concept modules (implemented as neural networks) to answer the given query.

Specifically, we build upon the general neuro-symbolic framework of the Logic-Enhanced Foundation
Model (LEFT) (Hsu et al., 2023), and adapt it for the domain of fMRI-based question answering,
enabling the use of QA supervision to learn disentangled concept groundings. Crucially, we introduce
the incorporation of various compositional priors into the model, by defining candidate entities in
neural activity and specifying how they are composed based on the symbolic expressions. From
this paradigm, we propose NEURONA, a NEURO-symbolic framework for decoding in Neural
Activity, which integrate symbolic reasoning and compositional execution with fMRI grounding, and
significantly improves decoding accuracy compared to prior works.

With NEURONA, we find that incorporating structural priors to explicitly guide the concept ground-
ing process, such as enforcing hierarchical predicate-argument dependencies (e.g., grounding for
holding conditioned on the grounding of baseball-bat)—notably improves decoding accu-
racy on fMRI-QA tasks. These priors guide the model to compose high-level relational concepts
from their constituent entity groundings, showing that relational meaning is better predicted across
multiple co-activated brain networks via its arguments, rather than localized to a single region or to
multiple regions without guidance.

Evaluating concept grounding in fMRIs is inherently challenging due to the lack of direct supervision:
there is no ground truth mapping from abstract concepts to specific brain regions. Instead, we
report experiments on BOLD5000 and CNeuroMod fMRI-QA datasets, which demonstrate that
our neuro-symbolic framework significantly outperforms baseline neural decoding methods, and
importantly, exhibits strong generalization to unseen compositional queries. Notably, ablation studies
with NEURONA highlight the importance of encoding hierarchical structure: conditioning predicate
grounding modules on the regions associated with their subject and object arguments consistently
yields large performance gains in decoding of neural activity.

2 RELATED WORKS

Visual decoding from fMRI. Reconstructing visual content from fMRI signals has become a central
research focus of works in the field, with many approaches leveraging state-of-the-art generative
backbones for the task, following early studies (Thirion et al., 2006; Miyawaki et al., 2008; Kay
et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011). Takagi et al. demonstrated that a pre-
trained diffusion model can reconstruct high-resolution images from fMRI (Takagi & Nishimoto,
2023). MinD-Vis uses masked brain modeling with a diffusion model for semantically faithful image
generation (Chen et al., 2023a). MindEye projects fMRI into a CLIP embedding space and applies
a diffusion prior for pixel-level synthesis (Scotti et al., 2023). Extending to video, MinD-Video
and NeuroCLIP incorporate spatiotemporal masked modeling and keyframe-perception flow cues,
respectively, into diffusion-based reconstruction (Chen et al., 2023b; Gong et al., 2024). These visual
reconstruction works focus on recovering stimulus appearance from neural data; in contrast, our work
addresses a distinct goal of concept grounding: rather than generating pixel-level images or videos,
we aim to predict modular concepts and their relationships from neural activity.

Concept grounding. Several influential works have focused on how semantic information is
organized across the cortex. As a representative work, Huth et al. used voxel-wise encoding models
with natural narrative stimuli to construct a semantic atlas, showing that different semantic domains
selectively ground to distinct brain regions (Huth et al., 2016). Mitchell et al. predicted fMRI
patterns for concrete nouns using corpus-derived semantic features, showing generalization to unseen
words (Mitchell et al., 2008). SOC enables zero-shot decoding by mapping fMRI to semantic
codes and recognizing novel object categories (Palatucci et al., 2009). Pereira et al. introduced a
general decoder that maps fMRI into a shared semantic space, enabling generalization from limited
data (Pereira et al., 2018). Beyond semantic mapping, several studies also explored how concepts
are organized in the brain (Frankland & Greene, 2015; Eichenbaum, 2001). There is converging
evidence that certain brain regions support invariant concept and rule representations. For example,
the prefrontal cortex—spanning networks such as the dorsal attention and default mode networks—
and the medial temporal lobe have been implicated in abstract concept and rule processing (Quiroga
et al., 2005; Rey et al., 2015; Tian et al., 2024; Dijksterhuis et al., 2024). Additionally, single-neuron
recordings in the human prefrontal cortex have revealed neurons that encode abstract task rules
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independently of sensory or motor details (Mian et al., 2014). In contrast to these prior works,
our approach emphasizes compositional grounding in the neural decoding process, with focus on
functional instead of representational compositionality, where we explicitly model not only individual
concepts, but also the relationships between them. This modeling allows us to investigate how
relational concepts can be more accurately decoded through guided grounding across brain networks.

fMRI-question answering. Recent works have explored using fMRI data for question-answering
by integrating large vision-language models (VLMs). These methods typically map neural activity to
visual embeddings, then generate answers using pre-trained VLMs. For example, SDRecon (Takagi
& Nishimoto, 2023) projects fMRI signals into BLIP (Li et al., 2022) embeddings for captioning;
BrainCap (Ferrante et al., 2023) maps fMRI to GIT (Wang et al., 2022) features for visual description;
and UMBRAE (Xia et al., 2024) aligns fMRI to multimodal embeddings with subject-specific
tokenization and answers questions via LLaVA (Liu et al., 2023). These methods commonly use
BLEU scores (Papineni et al., 2002) to measure alignment with ground-truth text, but they do not
explicitly verify whether the predicted answer captures exact concepts or relational structure. In
contrast, our framework grounds fMRI signals to modular concepts before performing structured
reasoning, enabling precise, accurate, and generalizable question answering.

3 METHOD

3.1 NEURO-SYMBOLIC FRAMEWORK

We introduce NEURONA as a neuro-symbolic framework for concept grounding and decoding in
neural activity. Neuro-symbolic models are a class of methods that decompose queries into symbolic
expressions containing concepts, and then differentiably execute those expressions over input data,
using learned concept grounding modules to perform a variety of downstream tasks (Yi et al., 2018;
Mao et al., 2019; Hsu et al., 2023; Mao et al., 2025). Each symbolic concept (e.g., person,
holding) is associated with a small neural network that maps entity-centric representations from
input data to a predicted semantic signal, enabling the learning of intermediate concept grounding
from weak supervision of reasoning tasks. Execution is conducted via differentiable functions
combining concept grounding modules, which enables end-to-end training.

In this work, we build our model, NEURONA, based on the Logic-Enhanced Foundation Model
(LEFT) (Hsu et al., 2023). LEFT is a general neuro-symbolic framework that unifies grounding
and reasoning via a differentiable executor for logic programs. It is designed to support concept
grounding across various visual domains (e.g., 2D images, 3D scenes), notably, where the relevant
entities are known a priori, such as objects in a room. In contrast, our setting introduces a unique
challenge: concept grounding from fMRI signals, where the relevant neural “entities” (i.e., brain
regions) are not predefined, and must instead be inferred as part of the learning process. This makes
our setting significantly more challenging than prior works: we are testing hypotheses for what these
entities should be, as well as learning how they best compose to precisely decode neural activity.

Concretely, we frame concept grounding in neural activity as a weakly supervised fMRI-question
answering (fMRI-QA) task. Each input consists of two elements (See Figure 1). The first is a visual
stimuli v that is parsed into a symbolic query that describe possible concepts in v. The second is
an fMRI recording f ∈ RN×T of the neural activity recorded when the stimuli was viewed, where
N is the number of fine-grained brain networks, and T is the number of time steps. The goal is to
predict an answer a, either as a Boolean label (e.g., True/False) or as a classification over a concept
vocabulary. Crucially, no supervision is provided on which brain regions are relevant to each concept.

To enable modular concept grounding to neural activity, we first map the fine-grained networks N to
P functional networks defined by an atlas. We experiment with Yeo-7, Yeo-17 (Yeo et al., 2011),
DiFuMo-64, DiFuMo-128 (Dadi et al., 2020), and Schaefer-100 (Schaefer et al., 2018) atlases, where
P is 7, 17, 64, 128, 100 respectively. While all atlases yield consistently strong performance with
NEURONA, we report decoding accuracy with the Yeo-17 atlas in the main text, as performance is
highest. Experiment results across all atlases can be found in Appendix A. Hence, we have P = 17
resulting network-specific fMRI signals, which we then encode to form a unified set E of embeddings
{e1, . . . , eP }, to form parcellation embeddings. From these base embeddings, we propose hypotheses
of candidate entities from which concepts can be mapped to. Here, neural entities precisely are
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exists(holding(person, baseball bat))

Hypotheses of candidate entities 𝜀
Single region 

Multi region 

Multi regions guided by arguments 

…

person:

Symbolic expression parsed from stimulus
holding:

Linear 
layer

Yes

baseball bat:

Executor

Weakly supervised concept grounding 
from fMRI-QA

fMRI signal

Visual stimulus

…

… …

Entities 𝜀

Possible grounding for 
concept holding

ContB
SomMotA

ContC
DorsAttnA

Figure 1: NEURONA is a neuro-symbolic framework for neural decoding that parses visual stimuli
into symbolic expressions and fMRI signals into candidate entities, optionally guided by the concepts
in the expression. These composed concepts are then grounded to the entities via a linear layer for
question answering; the predicted answer provides weak supervision for the grounding process.

region-specific fMRI signals derived from functional parcellations (e.g., Yeo-17, DiFuMo-128 atlases)
that serve as possible groundings for symbolic concepts.

In NEURONA, each concept is associated with a grounding module that maps between the concepts
and such candidate neural entity embeddings—intuitively, selecting the brain regions that best predict
the modular concept. Then, NEURONA uses a differentiable executor to compose these concept
groundings according to the structure of the symbolic expression, yielding a final output a of either a
Boolean value or a distribution over concept labels. Together, these components allow NEURONA to
accurately decode concepts from fMRI, and test hypotheses on how to guide the grounding process
to patterns of neural activity without direct supervision. In the following sections, we describe our
method for grounding concepts in fMRI data, our hypotheses, and NEURONA’s training objective.

3.2 GROUNDING CONCEPTS ONTO NEURAL ACTIVITIES

In concept grounding, we aim to identify which neural entities predict modular concepts or compo-
sitions of concepts, over C total concepts. Let us consider a base set of candidate neural entities,
which we extract by aggregating fMRI signals into functional parcellations. This yields a set of entity
embeddings E = [e1, . . . , eP ] for each network p, where each entity is embedded to dimension d.

To model unary concepts (e.g., subject and objects such as person and baseball-bat), we
formulate grounding as a C-way classification problem over E using a linear classifier with weight
matrix Wunary ∈ Rd×C and bias bunary ∈ RC . For each entity ep, the predicted logits are computed
via a linear layer zp = W⊤

unaryep + bunary ∈ RC . The overall predicted logits Zunary ∈ RP×C is the
grounding probability of all concepts, and the grounding score for concept c across all entities is
Gunary(c) = [z1c, . . . , zPc]

⊤ ∈ RP .

To model high-arity relational concepts (e.g., predicates such as holding), we augment the neural
entity embeddings E with learnable embeddings Eb ∈ RP×d and concatenate them to form Ec ∈
RP×2d, where Ec = E ⊕ Eb and ⊕ denotes feature concatenation. Eb provides features that represent
each brain network. For each pair of entities (i, j), we concatenate their embeddings eci ⊕ ecj and
apply a learnable transformation Wpair ∈ R4d×d to obtain a pairwise representation E ′

ij ∈ Rd. We
then apply a linear classifier to compute the logits zij for each pair. The overall logits of high-arity
concept are Zbinary ∈ RP×P×C , which represents the grounding probability of all concepts. The
grounding score for a concept c is Gbinary(c) = [zij,c]1≤i,j≤P ∈ RP×P .

These grounded concepts are then used (and optionally composed) to answer queries from our weakly
supervised fMRI-question answering task. Let cp, cs, and co be the concepts for predicate, subject,
and object, respectively. For Boolean queries, we first optionally condition Gbinary(cp) on the unary
groundings Gunary(cs) and Gunary(co), and aggregate the resulting scores. Then, we apply a sigmoid
over the scores, and threshold the result to produce a binary decision in inference. For concept
classification queries, given a concept vocabulary V of size |V|, we compute grounding scores for
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each v ∈ V . Since the grounding logits Zunary and Zbinary have already been computed for all concepts,
we can directly extract the grounding scores for any vocabulary concept v, treating them as the unary
similarity Sunary and relational similarity Sbinary between each neural candidate and v. Unary and
relational similarity scores are computed as

Sunary = [ziv]1≤i≤P,v∈V ∈ RP×|V|, Sbinary = [zij,v]1≤i,j≤P,v∈V ∈ RP×P×|V|. (1)

When subject and object groundings are available, we compute guided scores

Sguided
unary = Gunary(cs)

⊤Sunary +Gunary(co)
⊤Sunary ∈ R|V|, (2)

Sguided
binary = Gunary(cs)

⊤(Gunary(co)
⊤Sbinary

)
∈ R|V|, (3)

and combine them as Sfinal = Sguided
unary + Sguided

binary ∈ R|V|, with the final predicted concept selected by
v̂ = argmaxv∈V Sfinal

v . This formulation enables unified, differentiable concept grounding for unary
and high-arity concepts, over Boolean and vocabulary-based queries. Additionally, NEURONA’s
role-conditioned aggregation mechanism enables flexible hypothesis testing.

3.3 TESTING HYPOTHESES OF GROUNDING STRUCTURES

Notably, we propose and evaluate five hypotheses on how concepts can be composed during grounding
in brain networks. Due to NEURONA’s modular structure, we can conduct guided grounding via
conditioning the representation of a relational concept on the activations of its constituent arguments,
rather than modeling each concept independently, which we see in the latter three hypotheses.

H1: Single-region localized. Concepts are localized to a single brain network, where the grounding
score is defined as GH1(c) = Gunary(c).

H2: Multi-region co-activation. Concepts are represented by co-activation across region pairs,
where the grounding score is defined as GH2(cp) = Gbinary(cp).

H3: Subject-guided multi-region. Predicate representations are guided by subject region activa-
tion, with the grounding score defined as GH3(cp) = Gbinary(cp) +Gunary(cs).

H4: Object-guided multi-region. Predicate representations are guided by object region activation,
with the grounding score defined as GH4(cp) = Gbinary(cp) +Gunary(co).

H5: Full argument-guided multi-region. Multi-region groundings are combined with argument-
specific guidance. The predicate grounding score is computed as GH5(cp) = G(cp)+G(cs)+G(co),
where G(c) aggregates unary and binary grounding as G(c) = Gunary(c) +

1
P

∑P
i=1 Gbinary(ci).

The subject and object scores are implemented as above.

Together, these hypotheses define different subspaces and ways of grounding E , allowing us to test
with NEURONA whether structure-guided grounding leads to better decoding. Full derivations and
experimental details are provided in Appendix D.

3.4 TRAINING OBJECTIVE

Our model is trained in a weakly supervised fMRI-QA setting, where ground-truth answers are
provided for each query, but no supervision is given on intermediate concept groundings, as none are
available. We optimize a standard cross-entropy loss over the model’s predicted output distribution
LCE = −

∑K
i=1 ai log(âi). Here, â ∈ RK is the predicted probability distribution over K possible

answer classes, and a is the ground-truth label. The prediction â is the model’s prediction for the full
symbolic expression after composing the neural groundings of its component concepts.

4 DATASETS

To train NEURONA, we create fMRI-question-answering (fMRI-QA) datasets by adapting existing
large-scale fMRI-vision datasets. We first extract structure defining multiple interacting concepts
from the rich visual data. Each visual stimuli is processed with a pre-trained vision-language model,
which outputs a scene graph that captures both object-level and relational semantics (e.g., unary
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Q: Is there a red motocycle?

P: describe(Action, lambda k: action(k, iota(Object, lambda 
x: person(x)) and iota(Object, lambda y: motorcycle(y))))

Q: What is the action between the person and motorcycle?

P: exists(Object, lambda x: red(x) and motorcycle(x))
A: No

A: Riding
P: describe(Position, lambda k: position(k, iota(Object, 
lambda x: couch(x)) and iota(Object, lambda y: plant(y))))
A: Beside

Q: What is the position between the couch and plant?

P: exists(Object, lambda x: woman(x) and talk(x, 
iota(Object, lambda y: man(y))))
A: Yes

Q: Is there a woman talking with a man?

BOLD5000-QA CNeuroMod-QA

Figure 2: We include example queries and dataset distribution overviews for BOLD5000-QA and
CNeuroMod-QA; both datasets span diverse queries and tasks.

objects such as person, baseball-bat, and high-arity predicates that capture their interaction
such as holding (person, baseball-bat)). We then convert the scene graph into a set of
structured question-answer pairs, where each question corresponds to a symbolic query and each
answer serves as a weak supervision signal for concept grounding. For example, given the above
scene graph, we construct questions such as: “What is the relation between person and baseball-bat?”.
We additionally generate negative samples by randomly sampling concepts from other stimuli in
the dataset. This process produces diverse fMRI-QA examples covering both unary entities and
high-arity relations, and notably, with precise answers. Specifically, we apply our pipeline to two
datasets: BOLD5000 (Chang et al., 2019) and CNeuroMod (Gifford et al., 2024; Boyle et al., 2023)
(See Figure 2). More dataset details can be found in Appendix C.

BOLD5000-QA. The BOLD5000 dataset is a large-scale fMRI dataset collected while participants
viewed naturalistic images. The dataset consists of approximately 5, 000 distinct images from three
datasets: Scene Images (Xiao et al., 2010), COCO (Lin et al., 2014), and ImageNet (Deng et al.,
2009). Four participants viewed these images while undergoing whole-brain fMRI scanning. To
create BOLD5000-QA, we follow the process above, and generate queries containing 4, 258 unary
and 135 relational concepts, with 133, 146 train and 2, 095 test examples.

CNeuroMod-QA. The CNeuroMod dataset is a large-scale fMRI dataset that includes recordings
of participants watching full-length naturalistic videos. Specifically, we build upon the Friends
dataset, and set season 1 to 5 to be the train samples, and unseen season 6 to be the test. To create
CNeuroMod-QA, we sample video frames based on motion energy, defined as the absolute difference
between consecutive frames. We then extract scene graphs for each sampled frame, aggregate the
changes, and construct corresponding symbolic queries. The CNeuroMod-QA dataset includes 1, 966
unary and 106 relational concepts, with 157, 046 train and 30, 059 test examples.

5 RESULTS

Our goal is precise neural decoding and consistent concept grounding in neural activity. We present
quantitative metrics in Section 5.1, qualitative analyses in Section 5.2, and discussion in Section 5.3.

5.1 QUANTITATIVE PERFORMANCE

We test quantitative performance of NEURONA on both the BOLD5000-QA and CNeuroMod-
QA datasets. We compare against baseline fMRI decoding methods, evaluate generalization to
unseen compositional queries, conduct ablation studies to test hypotheses about grounding structures,
and report quantitative consistency metrics of concept grounding. Results on performance across
atlases, effect sizes between atlases, evaluation over all subjects, statistical tests across hypotheses,
cross-dataset transfer experiments, network ablations, detailed concept accuracy, predicate argument
binding, fine-grained generalization analyses, additional null models, and fMRI retrieval results are
provided in Appendix A.

Comparison to prior works. We first evaluate NEURONA on the fMRI-question-answering (fMRI-
QA) task, compared against existing decoding methods: a linear baseline, UMBRAE (Xia et al., 2024),
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Table 1: We evaluate NEURONA on BOLD5000-QA (subject-CSI1) and CNeuroMod-QA (subject-
01), comparing its performance to prior fMRI language decoding models and a linear baseline.

BOLD5000 CNeuroMod

Method Overall Action Position T/F Overall Action Position T/F

Linear 0.4692 0.2069 0.1778 0.5260 0.4638 0.3043 0.1285 0.5192
UMBRAE 0.4668 0.2069 0.1238 0.5328 0.4614 0.0549 0.1439 0.5442
SDRecon 0.4711 0.2414 0.1937 0.5248 0.4430 0.1350 0.1481 0.5238
BrainCap 0.4773 0.1937 0.1724 0.5551 0.4417 0.1257 0.1477 0.5112
NEURONA (Ours) 0.7041 0.6207 0.5079 0.7407 0.7046 0.6514 0.5746 0.7250

Table 2: Generalization results of NEURONA and prior work on unseen queries.
BOLD5000 CNeuroMod

Method Overall Action Position T/F Overall Action Position T/F

Linear 0.4587 0.0690 0.0794 0.5231 0.4143 0.0398 0.0323 0.5003
UMBRAE 0.4162 0.1724 0.0540 0.4854 0.4306 0.1315 0.1022 0.5018
SDRecon 0.4702 0.2414 0.1937 0.5237 0.4341 0.1236 0.1473 0.5008
BrainCap 0.4754 0.1724 0.1937 0.5311 0.4347 0.1198 0.1402 0.5042
NEURONA (Ours) 0.6840 0.6207 0.4984 0.7184 0.6583 0.4365 0.5261 0.6991

SDRecon (Takagi & Nishimoto, 2023), and BrainCap (Ferrante et al., 2023). All models are trained
on subject CSI1 (BOLD5000) and subject sub-01 (CNeuroMod). As shown in Table 1, NEURONA
consistently outperforms prior approaches across both the BOLD5000-QA and CNeuroMod-QA
datasets. Compared to prior linear or language model-based approaches, NEURONA achieves a
47% relative improvement on the top performing prior work. These results show that linear methods
lack in expressivity, and purely end-to-end decoding pipelines struggle to learn fMRI embeddings
that capture the detailed concepts required for fMRI-QA. In particular, NEURONA demonstrates
significant gains on queries about actions and positions, which involve precise relational reasoning
over subject and object roles. This highlights the strength of our neuro-symbolic framework, which
explicitly grounds neural activity guided by hierarchical structures to answer compositional queries.

We further evaluate NEURONA’s ability to generalize to unseen compositions of concepts, which
robustly tests whether learned concept groundings are semantically meaningful. Specifically, we
construct evaluation splits where all training and testing queries are disjoint, with no overlapping
combinations of entities and relations, ensuring that the model must generalize. For example, the
training set may contain only queries such as in front of(person,baseball-bat), while
the test set includes novel compositions such as in front of(baseball-bat,person). As
shown in Table 2, NEURONA achieves the strongest performance across both datasets, substantially
outperforming all baselines. Notably, prior methods suffer significant performance degradation, often
falling to near-random levels when generalizing to unseen compositions. The language model-based
baselines retain slightly better performance due to their use of pre-trained language models, which
carry general linguistic priors. However, since they lack explicit concept grounding, their performance
remains well below NEURONA. Overall, these results show that NEURONA’s neuro-symbolic
framework learns meaningful decoding from neural activity and generalizes to new compositional
queries for robust fMRI-QA.

Ablations & hypotheses testing. Notably, we conduct ablation studies on different hypotheses
about the candidate neural entity space E , and analyze how they affect decoding performance.
We summarize results in Table 3 and Table 4: we compare single-region grounding, multi-region
grounding without guidance, and forms of guided grounding based on subject and object arguments.
We report standard deviation across 4 subjects in BOLD5000-QA and 3 subjects in CNeuroMod-QA,
and our analyses evaluate how different grounding assumptions affect QA accuracy. With NEURONA,
we answer the following questions.

DOES GROUNDING TO MULTIPLE REGIONS IMPROVE PERFORMANCE? We first test whether
allowing concepts to ground to combinations of brain regions improves decoding performance relative
to grounding to a single region. As shown in Table 3 and Table 4, we observe that multi-region
grounding alone does not yield substantial gains over single-region grounding in terms of overall
accuracy. This is especially evident in vocabulary classification tasks, where both approaches tend to
overfit to the most frequent vocabulary labels without capturing finer variations.
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Table 3: We ablate our hypotheses about the structure of concept grounding on BOLD5000-QA.
BOLD5000

Method Overall Action Position T/F

Single region 0.6451 ± 0.0161 0.2973 ± 0.0361 0.2005 ± 0.0047 0.7293 ± 0.0191
Multi-region (MR) 0.6476 ± 0.0048 0.2973 ± 0.0361 0.2005 ± 0.0047 0.7324 ± 0.0056
Subject-guided MR 0.6678 ± 0.0029 0.2881 ± 0.0299 0.3469 ± 0.0134 0.7308 ± 0.0024
Object-guided MR 0.6733 ± 0.0051 0.3892 ± 0.0752 0.3429 ± 0.0164 0.7363 ± 0.0045
Full argument-guided MR 0.7102 ± 0.0053 0.5965 ± 0.0322 0.5378 ± 0.0135 0.7425 ± 0.0057

Table 4: We evaluate our hypotheses about compositional priors in neural activity on CNeuroMod.
CNeuroMod

Method Overall Action Position T/F

Single region 0.6429 ± 0.0013 0.2165 ± 0.0193 0.2445 ± 0.0009 0.7400 ± 0.0016
Multi-region (MR) 0.6162 ± 0.0027 0.2165 ± 0.0193 0.2445 ± 0.0009 0.7042 ± 0.0023
Subject-guided MR 0.6265 ± 0.0042 0.2339 ± 0.0043 0.3722 ± 0.0045 0.7008 ± 0.0051
Object-guided MR 0.6872 ± 0.0040 0.6320 ± 0.0019 0.4933 ± 0.0172 0.7149 ± 0.0045
Full argument-guided MR 0.7189 ± 0.0009 0.6422 ± 0.0072 0.5931 ± 0.0084 0.7417 ± 0.0005

DOES GUIDED GROUNDING IMPROVE PERFORMANCE? Next, we evaluate whether guiding multi-
region grounding based on the subject and object arguments of relational concepts improves per-
formance. As shown, models that incorporate guided grounding significantly outperform both
single-region and unguided multi-region baselines. We find that guiding NEURONA by object
improves performance over by subject. In particular, grounding based on both subject and object
regions achieves the highest accuracy, notably on action and position queries that require precise
relational reasoning. With NEURONA, we demonstrate the importance of argument-conditioned
composition for interpreting relational semantics in neural activity. Overall, these results demonstrate
that while multi-region grounding provides a more flexible representation space, explicit structural
guidance based on predicate-argument relationships is crucial. The consistent results on both natural
image and video datasets validate NEURONA ability to conduct complex neural decoding.

Concept grounding consistency. As there is no ground truth to evaluate the reliability of inter-
mediate concept grounding, we introduce a consistency metric to test whether the same concept
grounds to consistent brain regions across different fMRI-QA instances. We calculate consistency
as follows. Let a concept c appear in N QA examples, and let the predicted grounding in the i-th
example be a set of brain regions B(i)(c) ⊆ {1, . . . , P}, where P is the total number of regions,
and each B(i)(c) is the set of regions selected as the grounding for concept c in that example. We
compute the frequency count for each region r as Count(r) =

∑N
i=1 1[r ∈ B(i)(c)]. Then, the score

for concept c is defined as Consistency(c) = 1
|R|

∑
r∈R

Count(r)
N , where R is the set of all regions that

appear in any grounding of c, and Count(r)
N is the fraction of times region r was selected.

Our proposed metric captures how concentrated the concepts groundings are: a score of 1.0 implies
perfect consistency (all instances of the concept used the same region set), while lower scores
indicate more variability in the grounding of concept c. We report these consistency scores over
all concepts in BOLD5000 and CNeuroMod. As a baseline, we define a null model that randomly
assigns each concept to a region subset via uniform sampling. In Table 5, we see that NEURONA
significantly outperforms the null baseline. These results highlight that NEURONA not only improves
QA accuracy but also grounds concepts in a structured and reproducible way across different stimuli.
Consistency results over all other atlases can be found in Appendix A.

5.2 QUALITATIVE CONCEPT GROUNDING ANALYSES

Table 5: Consistency of concept grounding
between NEURONA and a null baseline.

BOLD5000 CNeuroMod

Null 0.5357 0.5358
NEURONA 0.8220 0.8700

Finally, we qualitatively examine how NEURONA
learns to decode high-level relational concepts from
neural activity using intermediate concept ground-
ings, focusing on how this grounding varies with
different subject-object pairs. Figure 3 shows repre-
sentative examples from both BOLD5000-QA and
CNeuroMod-QA, where we project the learned grounding scores onto network parcellations that
define our neural entities. We observe that the same relational predicate, such as hold or look, is
best decoded from different brain networks depending on the object. For example, in BOLD5000,
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Figure 3: We show examples of learned concept grounding from NEURONA. On both BOLD5000-
QA and CNeuroMod-QA, we see that predicate concepts ground to the brain regions that their
constituent objects are grounded to, following hierarchical predicate-argument structure.

holding (person, kite) is best decoded using the Control B network, while holding
(person, surfboard) is decoded using both the Somatomotor B and Control A networks. This
suggests that decoding accuracy improves when the grounding of a relational concept is modulated
by its arguments, supporting the importance of argument-dependent composition in neural decoding.

Interestingly, the model-inferred concept groundings are not confined to early visual areas, despite the
task involving visual stimuli. Instead, objects such as baseball-bat and surfboard receive
high grounding scores in motor-related regions, including the Somatomotor network. This qualitative
pattern resembles prior findings that perceiving action-related objects is linked to motor and premotor
areas (Martin, 2007; Gallese et al., 1996). Additionally, both hold and look are often decoded
using prefrontal networks, including the Dorsal Attention and Salience/Ventral Attention networks,
which have been associated with high-level cognitive control and abstract rule processing (Miller &
Cohen, 2001; Quiroga et al., 2005; Tian et al., 2024). We emphasize that these analyses reflect model-
dependent decoding patterns rather than direct estimates of underlying encoding representations.
Additional concept grounding visualizations are provided in Appendix B.

5.3 DISCUSSION

Our findings demonstrate that incorporating compositional structure into the decoding pipeline signifi-
cantly improves performance. While NEURONA does not establish representational compositionality
in neural patterns, the substantial gains from modeling hierarchical predicate–argument structure
provide proof-of-concept that compositional principles can inform neural decoding. However, our
study also has several limitations. First, participants in our datasets engaged only in passive viewing,
and the ground truth symbolic expressions were extracted through automated scene-graph parsing
rather than participant-driven reasoning, limiting the cognitive conclusions that can be drawn. Second,
we restrict candidate neural entities to predefined parcellations from established atlases (e.g., Yeo-7,
Yeo-17, DiFuMo-64, DiFuMo-128, and Schaefer-100), which, while widely used, provide coarser
representations of the brain from which we build upon. In the Appendix, we provide performance
on BOLD5000 and CNeuroMod across atlases, effect sizes between atlases, and concept grounding
consistency across atlases. These results demonstrate robust and modular concept grounding across
different levels of spatial granularity, suggesting that our results are not tied to specific parcellation
choices. However, we believe that scaling NEURONA to incorporate whole-brain voxel-level data is
a promising next step.

6 CONCLUSION

We propose NEURONA, a neuro-symbolic framework for concept grounding and decoding in neural
activity. By leveraging symbolic reasoning and compositional execution with fMRI grounding,
NEURONA enables precise and generalizable decoding. Experiments on BOLD5000-QA and
CNeuroMod-QA demonstrate that NEURONA outperforms baseline decoding methods and general-
izes to novel compositions, with explicit grounding guidance significantly improving performance.
Our findings show that incorporating predicate-argument structure improves decoding, and highlight
neuro-symbolic modeling as a promising approach for interpreting and structuring fMRI decoding
models.
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Reproducibility statement. We refer readers to Section 3 for details on the grounding process and
Appendix D for train settings, and note that our work builds off the public codebase of LEFT. We will
release code upon acceptance. We also describe our dataset processing steps in detail in Appendix C.
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Supplementary for:
Neuro-Symbolic Decoding of Neural Activity

The appendix is organized into five main sections. Appendix A includes additional experiment
results: performance across atlases, effect sizes between atlases, concept grounding consistency
across atlases, evaluation over all subjects, statistical tests across hypotheses, cross-dataset transfer
experiments, network ablations, detailed concept accuracy, predicate argument binding, fine-grained
generalization analyses, additional null models, and fMRI retrieval results. Appendix B provides
additional visualizations and analyses of NEURONA’s concept grounding performance. Appendix D
describes the training procedure of NEURONA, the implementation of baseline methods, and the
setup of our hypothesis ablation experiments. Appendix C presents more examples illustrating our
fMRI-QA datasets and detail the data generation process. Appendix E details our ethics statement.
Here, we also note that we use large language models to make minor improvements to writing.

A ADDITIONAL RESULTS

A.1 PERFORMANCE ACROSS ATLASES

We report performance from NEURONA across atlases to show robustness of decoding. We map
parcellated fMRI signals (1024 regions for BOLD5000, 1000 for CNeuroMod) to multiple atlases,
including Yeo-7, Yeo-17 (Yeo et al., 2011), DiFuMo-64, DiFuMo-128 (Dadi et al., 2020), and
Schaefer-100 (Schaefer et al., 2018), then train NEURONA on these neural entities. Results in Table 6
and Table 7 show that NEURONA consistently learns across these atlases, and still significantly
outperforms prior works in decoding accuracy. Yeo-17 yields the highest accuracy among all tested
atlases, followed by DiFuMo-128 and Schaefer-100.

Table 6: NEURONA’s performance with coarse and fine-grained atlases on BOLD5000.
BOLD5000 Overall Action Position T/F

Yeo-7 0.6864 0.5517 0.4730 0.7270
Yeo-17 0.7041 0.6207 0.5079 0.7407
DiFuMo-64 0.6992 0.5517 0.5524 0.7282
DiFuMo-128 0.7026 0.5862 0.5460 0.7327

Table 7: NEURONA’s performance with coarse and fine-grained atlases on CNeuroMod.
CNeuroMod Overall Action Position T/F

Yeo-7 0.6969 0.6459 0.5577 0.7180
Yeo-17 0.7046 0.6514 0.5746 0.7250
Schaefer-100 0.7043 0.6549 0.5614 0.7258

A.2 EFFECT SIZES BETWEEN ATLASES

To additionally evaluate the robustness of NEURONA to different brain parcellations, we compute
Cohen’s d effect sizes between QA predictions from different atlases. For each atlas pair, we compute
paired effect sizes using QA predictions across the test set. As seen in Table 8 and Table 9, effect
sizes are consistently small, showing that NEURONA is robust to the choice of atlas and performs
reliably across a range of parcellations.
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Table 8: Effect sizes between atlases in BOLD5000.
BOLD5000 Yeo-7 Yeo-17 Difumo-64 Difumo-128

Yeo-7 - -0.017 -0.133 -0.012
Yeo-17 0.017 - -0.116 0.006
Difumo-64 0.133 0.116 - 0.121
Difumo-128 0.012 -0.006 -0.121 -

Table 9: Effect sizes between atlases in CNeuroMod.
CNeuroMod Yeo-7 Yeo-17 Schaefer-100

Yeo-7 - 0.094 0.089
Yeo-17 -0.094 - -0.006
Schaefer-100 -0.089 0.006 -

A.3 CONCEPT GROUNDING CONSISTENCY ACROSS ATLASES

In Table 10 and Table 11, we report additional consistency scores averaged over all concepts in
BOLD5000 and CNeuroMod, under multiple atlas configurations: Yeo-7, Yeo-17, DiFuMo64,
DiFuMo128, and Schaefer100. NEURONA achieves consistently high grounding consistency across
all atlases, significantly above the null baseline. Unary concepts show higher consistency than
relational ones, as expected due to their simpler structure. Across the atlases, all show consistent
results, with DiFuMo-64 best for BOLD5000 and Yeo-17 best for CNeuroMod. NEURONA’s
concept grounding is reproducible way across different stimuli and parcellations.

Table 10: Concept grounding consistency in BOLD5000.
BOLD5000 Overall Unary Concept Relational Concept

Yeo-7 Null 0.5738 – –
Yeo-7 NEURONA 0.8207 0.8283 0.7343

Yeo-17 Null 0.5357 – –
Yeo-17 NEURONA 0.8220 0.8351 0.6646

DiFuMo-64 Null 0.5075 – –
DiFuMo-64 NEURONA 0.8462 0.8644 0.6064

DiFuMo-128 Null 0.5039 – –
DiFuMo-128 NEURONA 0.8224 0.8380 0.6241

A.4 EVALUATION OVER ALL SUBJECTS

We include evaluation over all subjects on both BOLD5000 (4 subjects) and CNeuroMod (3 subjects).
For each dataset, we train an individual model for each subject and report the mean ± standard
deviation across subjects. We evaluate the in-distribution neural decoding performance in Table 12
and our generalization split in Table 13. We see that NEURONA continues to significantly outperform
all prior works.

In addition, we evaluate cross-subject consistency in concept groundings. To evaluate whether
concepts are grounded similarly across individuals, we aggregate grounding scores for each concept
across all subjects and queries (for concept c appearing N times per subject, we obtain N × S
samples where S is the number of subjects). We then compute a cross-subject consistency metric
that measures the similarity of the spatial grounding patterns for each concept across individuals. We
evaluate NEURONA against a random assignment null model and a multinomial null model that
preserves each concept’s distribution across regions. Our results in Table 14 show that NEURONA’s
cross-subject grounding consistency scores, averaged across all concepts, are significantly higher
than both null models (p < 0.001), demonstrating that NEURONA’s concept groundings converge to
more similar sets of regions across participants.
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Table 11: Concept grounding consistency in CNeuroMod.
CNeuroMod Overall Unary Concept Relational Concept

Yeo-7 Null 0.5740 – –
Yeo-7 NEURONA 0.8437 0.8564 0.7563

Yeo-17 Null 0.5358 – –
Yeo-17 NEURONA 0.8700 0.8967 0.6812

Schaefer-100 Null 0.5029 – –
Schaefer-100 NEURONA 0.8346 0.8695 0.5838

Table 12: Results across subjects for BOLD5000 and CNeuroMod.
BOLD5000 Overall Action Position T/F

Linear 0.4702 ± 0.0073 0.0677 ± 0.0815 0.1817 ± 0.0289 0.5280 ± 0.0068
UMBRAE 0.4948 ± 0.0098 0.2488 ± 0.0572 0.2092 ± 0.0401 0.5401 ± 0.0097
SDRecon 0.4751 ± 0.0064 0.2887 ± 0.0499 0.2005 ± 0.0047 0.5266 ± 0.0075
BrainCap 0.4842 ± 0.0052 0.2412 ± 0.0470 0.2005 ± 0.0047 0.5383 ± 0.0061
NEURONA 0.7102 ± 0.0053 0.5965 ± 0.0322 0.5378 ± 0.0135 0.7425 ± 0.0057
CNeuroMod Overall Action Position T/F

Linear 0.4579 ± 0.0142 0.2078 ± 0.0400 0.1680 ± 0.0338 0.5184 ± 0.0153
UMBRAE 0.4588 ± 0.0425 0.1588 ± 0.0102 0.1705 ± 0.0220 0.5225 ± 0.0248
SDRecon 0.4368 ± 0.0012 0.1428 ± 0.0010 0.1554 ± 0.0010 0.5012 ± 0.0024
BrainCap 0.4422 ± 0.0026 0.1245 ± 0.0099 0.1497 ± 0.0074 0.5110 ± 0.0024
NEURONA 0.7189 ± 0.0009 0.6422 ± 0.0072 0.5931 ± 0.0084 0.7417 ± 0.0005

A.5 STATISTICAL TESTS ACROSS HYPOTHESES

We conduct additional statistical analyses for our hypotheses ablations to more rigorously evaluate
the effects of the five hypotheses across subjects. Specifically, we use the Wilcoxon signed-rank test
to assess statistical significance and Cohen’s d to estimate effect size. For each subject, we collect
accuracies across all metrics, and perform comparisons between hypotheses using these values. The
BOLD5000 and CNeuroMod results are summarized in Figure 4 and Figure 5. Across both datasets,
NEURONA’s full argument-guided multi-region hypothesis (H5) consistently shows statistically
significant improvements over alternative hypotheses.

Figure 4: Statistical tests evaluating the effects of the five hypotheses across subjects in BOLD5000.

A.6 CROSS-DATASET TRANSFER EXPERIMENTS

Here, we include cross-dataset generalization experiments by training our model on BOLD5000-QA
and evaluating it on the CNeuroMod-QA test set. Since BOLD5000 spans a broader concept space,
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Table 13: Generalization results across subjects for BOLD5000 and CNeuroMod.
BOLD5000 Overall Action Position T/F

Linear 0.4595 ± 0.0093 0.0308 ± 0.0312 0.1291 ± 0.0545 0.5250 ± 0.0059
UMBRAE 0.4886 ± 0.0068 0.1214 ± 0.0217 0.0914 ± 0.0212 0.5392 ± 0.0080
SDRecon 0.4752 ± 0.0064 0.2973 ± 0.0361 0.2005 ± 0.0047 0.5266 ± 0.0075
BrainCap 0.4838 ± 0.0055 0.2412 ± 0.0470 0.1996 ± 0.0040 0.5380 ± 0.0064
NEURONA 0.6812 ± 0.0055 0.4952 ± 0.0682 0.4696 ± 0.0190 0.7217 ± 0.0057
CNeuroMod Overall Action Position T/F

Linear 0.4206 ± 0.0129 0.0462 ± 0.0654 0.1045 ± 0.0667 0.4986 ± 0.0052
UMBRAE 0.4487 ± 0.0040 0.1107 ± 0.0156 0.1386 ± 0.0047 0.5247 ± 0.0035
SDRecon 0.4365 ± 0.0014 0.1407 ± 0.0008 0.1560 ± 0.0012 0.5012 ± 0.0019
BrainCap 0.4382 ± 0.0012 0.1217 ± 0.0070 0.1455 ± 0.0060 0.5069 ± 0.0003
NEURONA 0.6676 ± 0.0119 0.2916 ± 0.0878 0.5377 ± 0.0215 0.7260 ± 0.0072

Table 14: Cross-subject consistency of concept grounding.
BOLD5000 CNeuroMod

Null (random) 0.5276 ± 0.0629 0.5267 ± 0.0683
NULL (multinomial) 0.6045 ± 0.1685 0.6481 ± 0.1644
NEURONA 0.7000 ± 0.2514 0.7027 ± 0.2165

we selected overlapping queries across datasets. In the CNeuroMod test set, this includes 1, 169
queries for the action task, 2, 600 for the position task, and 23, 038 for the T/F task (out of full test
set sizes of 2, 912, 2, 661, and 24, 486, respectively).

In Table 15, we compare NEURONA to UMBRAE (Xia et al., 2024), the top performing baseline
model. NEURONA significantly outperforms UMBRAE across all queries, demonstrating stronger
cross-dataset robustness and generalization. Notably, while overall performance of NEURONA drops,
largely due to a performance gap on T/F queries, accuracy on action and position tasks remains high,
indicating some degree of cross-dataset transfer. This drop is expected, as our model is trained as a
subject-specific model and there is substantial variance across subjects. Additionally, the two datasets
differ in preprocessing pipelines: BOLD5000 uses the DiFuMo-1024 parcellation, while CNeuroMod
uses the Schaefer-1000 atlas. This difference requires us to apply padding to align the feature
dimensions when evaluating on CNeuroMod. Furthermore, some concepts in CNeuroMod, such as
telephone, occur infrequently in BOLD5000, which limits NEURONA’s ability to generalize to
them. Nonetheless, we find that NEURONA maintains strong performance on queries such as action
decoding, suggesting meaningful transfer of motor-related neural representations across datasets.

Table 15: Cross-dataset generalization results, where models are trained on BOLD5000 and tested on
CNeuroMod.

Overall Action Position T/F

UMBRAE 0.4494 0.0106 0.0485 0.5036
Ours 0.5535 0.7237 0.5246 0.5481

A.7 NETWORK ABLATIONS

To evaluate how each functional network contributes to decoding performance, we perform a network-
level ablation in which NEURONA was trained using only a constrained subset of Yeo-7 networks at a
time, isolating the contribution of each network. In Table 16, we see that the top performing networks
are the Default Mode, Control, Dorsal Attention, and Visual networks, all of which have been closely
linked to visual processing and high-level perceptual representations in prior works Menon (2023);
Kucyi et al. (2020); Miyawaki et al. (2008).
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Figure 5: Statistical tests evaluating the effects of the five hypotheses across subjects in CNeuroMod.

Table 16: Network ablations to evaluate the contributions of each network to decoding performance.
Selected network Overall Action Position T/F

VisCent VisPeri 0.6750 ± 0.0067 0.3577 ± 0.0459 0.3765 ± 0.0159 0.7330 ± 0.0072
SomMotA/B 0.6724 ± 0.0069 0.3480 ± 0.0317 0.3620 ± 0.0131 0.7326 ± 0.0079
DorsAttnA/B 0.6753 ± 0.0073 0.3281 ± 0.0786 0.3850 ± 0.0282 0.7324 ± 0.0076
SalVentAttnA/B 0.6709 ± 0.0069 0.2910 ± 0.0655 0.3839 ± 0.0267 0.7281 ± 0.0060
LimbicA/B 0.6669 ± 0.0101 0.3379 ± 0.0918 0.3512 ± 0.0603 0.7282 ± 0.0044
ContA/B/C 0.6785 ± 0.0038 0.3380 ± 0.0808 0.4129 ± 0.0173 0.7310 ± 0.0035
DefaultA/B/C TempPar 0.6804 ± 0.0080 0.3248 ± 0.0752 0.4357 ± 0.0324 0.7297 ± 0.0066
All 0.7102 ± 0.0053 0.5965 ± 0.0322 0.5378 ± 0.0135 0.7425 ± 0.0057

A.8 DETAILED CONCEPT ACCURACY

In Table 17 and Table 18, we report QA accuracy for unary and relational concepts separately across
BOLD5000 and CNeuroMod, to analyze whether query structure affects performance. We see that
that performance is generally stable across concept types, and across multiple atlases.

In Figure 6 and Figure 7, we illustrate confusion matrices for both BOLD5000 and CNeuroMod. We
see that, as expected, while many concepts are reliably decoded (e.g., visually distinctive actions),
some still cause confusion (e.g., spatial relations that are semantically similar).

Table 17: Accuracy breakdown between unary and relational concepts in BOLD5000.
BOLD5000 Overall Unary Relation

Yeo-7 0.727 0.717 0.751
Yeo-17 0.740 0.732 0.760
DiFuMo-64 0.728 0.727 0.728
DiFuMo-128 0.732 0.733 0.730

A.9 PREDICATE ARGUMENT BINDING

We investigate whether unguided predicate representations contain decodable information about their
arguments, by computing pairwise correlations between concept groundings across brain regions. For
each relational query (e.g., hold(person, baseball)), we extract grounding score vectors
across functional networks for the subject, object, unguided predicate, and guided predicate. We then
compute the correlation matrix between these grounding patterns across all relational queries in both
BOLD5000 (4 subjects) and CNeuroMod (3 subjects).

In Table 19, we report the mean correlations, and see minimal correlation between unguided predicate
groundings and their subject (−0.0940) or object (0.0048) arguments in BOLD5000, with similarly
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Figure 6: Accuracy confusion matrix across concepts in BOLD5000.

Figure 7: Accuracy confusion matrix across concepts in CNeuroMod.

low correlations in CNeuroMod (0.0230 for subject, 0.0019 for object). This suggests that when no
structural guidance is provided, predicate representations do not bind to specific arguments.

In contrast, guided predicate representations showed substantially higher correlations with both
subjects (0.2020 in BOLD5000, 0.1095 in CNeuroMod) and objects (0.2975 in BOLD5000, 0.2552
in CNeuroMod). This significant increase in correlation indicates that NEURONA’s explicit guidance
notably helps decode relations from predicate-argument interactions.

A.10 FINE-GRAINED GENERALIZATION ANALYSES

Our generalization experiments on both BOLD5000 (subject-CSI1) and CNeuroMod (subject-01)
include argument swapping, predicate transfer, and role systematicity. In Table 20, we report fine-
grained systematicity tests across each of these settings. We see that NEURONA shows strong
performance on each category, with relatively small drops from all to unseen combinations.
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Table 18: Accuracy breakdown between unary and relational concepts in CNeuroMod.
CNeuroMod Overall Unary Relation

Yeo-7 0.718 0.696 0.754
Yeo-17 0.725 0.707 0.754
Schaefer-100 0.725 0.708 0.754

Table 19: Results of predicate argument binding.
BOLD5000 CNeuroMod

Unguided-predicate / subject -0.0940 0.0230
Unguided-predicate / object 0.0048 0.0019
Unguided-predicate / guided-predicate 0.0336 0.1488
Guided-predicate / subject 0.2020 0.1095
Guided-predicate / object 0.2975 0.2552

Table 20: Fine-grained generalization analyses in BOLD5000 and CNeuroMod.
Bold5000 Argument swapping Predicate transfer Role systematicity Other All (T/F)

Unseen 0.7451 0.75 0.7391 0.7096 0.7184
All 0.7562 0.6667 0.8030 0.7393 0.7407

CNeuroMod Argument swapping Predicate transfer Role systematicity Other All (T/F)

Unseen 0.7526 0.7333 0.7390 0.6842 0.6991
All 0.7011 0.5088 0.7020 0.7307 0.7250

A.11 ADDITIONAL NULL MODEL

For our consistency metric, we include a stronger null model that uses a multinomial distribution to
randomly assign concept groundings across brain networks, preserving the exact total sample count
for each concept while distributing samples uniformly across all networks. This ensures that the
null model retains the same data structure as the observed data (i.e., same total grounding counts
per concept) while randomizing only the network assignments. We run this null model 10 times and
report the mean and standard deviation in Table 21. NEURONA similarly significantly outperforms
the null model in grounding consistency.

Table 21: Consistency metric comparison with a multinomial null model.
BOLD5000 CNeuroMod

Null (multinomial) 0.6267 ± 0.0067 0.6424±0.0057
NEURONA 0.8475±0.0186 0.8592±0.0084

A.12 FMRI RETRIEVAL RESULTS

Here, we detail results from an fMRI retrieval task, where we adapt NEURONA to retrieve the
corresponding fMRI given a symbolic query. We use positive queries to ensure that the concept
and fMRI are well aligned. Each concept is represented as a one-hot vector over the full concept
vocabulary, from which a concept embedding is obtained using a small MLP. We then follow the
structure of the symbolic expression by applying an aggregation operation to combine the specified
concepts in the query. A parallel MLP encodes the fMRI input into an fMRI embedding, and we
train the embedding spaces jointly using a CLIP-based contrastive loss. In this setting, we achieve a
test top-1 retrieval accuracy of 0.1325 and a top-5 accuracy of 0.3012, substantially outperforming a
random-choice baseline (top-1: 0.0120, top-5: 0.0602).
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B CONCEPT GROUNDING VISUALIZATIONS

In Figure 8, we present concept grounding examples from the BOLD5000 (Chang et al., 2019) and
CNeuroMod (Gifford et al., 2024; Boyle et al., 2023) datasets.
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Figure 8: We show examples of learned concept grounding by NEURONA on BOLD5000-QA and
CNeuroMod-QA, across subject, object, and predicate concepts.
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C DATASETS

C.1 LICENSE FOR EXISTING DATASETS

We train NEURONA on the BOLD5000 (Chang et al., 2019) and CNeuroMod (Gifford et al., 2024;
Boyle et al., 2023) datasets, which are both licensed under the Creative Commons 0 License. More
information can be found on their websites: BOLD5000 and CNeuroMod.

C.2 FMRI-QA DATASETS

BOLD5000. We utilize the BOLD5000 dataset, which has been preprocessed and aligned with image
stimuli following WAVE (Wang et al., 2024). The fMRI data has a shape of [5, 1024], representing 5
TRs and 1024 brain regions. We use preprocessed, image-aligned fMRI data provided here. Each TR
(repetition time) is 2 seconds, resulting in a chunk duration of 10 seconds (5× 2s). We account for a
hemodynamic lag of 2 TRs. All four subject pairs are included, following the same train-test split as
in previous studies.

CNeuroMod. We use the CNeuroMod dataset preprocessed by the Algonauts Challenge (Gifford
et al., 2024; Boyle et al., 2023). The fMRI data has a TR of 1.49 seconds and a shape of [5, 1000],
representing 5 TRs and 1000 brain regions based on the Schaefer-1000 atlas (Schaefer et al., 2018).
This yields a chunk duration of 7.45 seconds (5 × 1.49s), with a hemodynamic lag of 3 TRs. For
each chunk, we select the most motion-informative video frame by computing motion energy as the
absolute difference between consecutive frames. The chunks are extracted from Friends episodes,
with seasons 1–5 used for training and the unseen season 6 reserved for testing. We use 1, 000
fMRI-video chunks per season, resulting in 5, 000 training samples and 1, 000 testing samples.

We provide additional examples from our datasets in Figure 9.
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BOLD5000-QA

CNeuroMod-QA

Q: Is there a dog?
A: Yes

Q: Are there skis on the snow?
A: Yes

Q: Is there a bus on the road?
A: No

Q: What is the action between the 
person and the wine glass?
A: Hold

Q: What is the action between the 
sheep and the grass?
A: Eat

Q: Is there a moon?
A: No

Q: Is there a woman siting on the sofa?
A: No

Q: Is there a bear?
A: Yes

Q: Is there a bed?
A: Yes

Q: Is there a man in green?
A: Yes

Q: Is there a man sitting on the 
desk?
A: No

Q: What is the position between the 
door and the man?
A: Beside

Q: Is there a man looking at the 
painting?
A: No

Q: What is the position between the 
paper and the desk?
A: On

Q: What is the action between the 
man and the chair?
A: Sit

Q: Is there a woman?
A: Yes

Q: Is there a person riding the 
motorcycle?
A: No

Q: Is there a helmet?
A: Yes

Q: What is the action between the man 
and the woman?
A: Talk

Q: Is there a red shirt?
A: Yes

Figure 9: Examples of queries in BOLD5000-QA and CNeuroMod-QA.
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D EXPERIMENT DETAILS

D.1 TRAIN SETTINGS

We train and evaluate NEURONA on the specified training and test sets for both BOLD5000 (Chang
et al., 2019) and CNeuroMod (Gifford et al., 2024; Boyle et al., 2023) datasets. Training is conducted
for 100 epochs using the Adam optimizer (Diederik, 2014), with learning rate 0.001 and batch size
32.

D.2 COMPUTE RESOURCES

Since NEURONA consists of a lightweight convolutional neural network for fMRI feature extraction
followed by a linear classifier for concept grounding and execution, its computational requirements
are minimal. All experiments are conducted on a single NVIDIA A100 GPU, with training completing
in approximately 30 minutes. Data loading is parallelized using 16 CPU workers, and the system
uses 64 GB of RAM.

D.3 BASELINE IMPLEMENTATIONS

We describe the implementation details of the baseline models compared in our study below. In all
methods, we treat the fMRI input as a sequence of length 5, with each time step as a token.

Linear We tokenize the input query using the BERT tokenizer (Devlin et al., 2019) and pad all
sequences to a fixed length. The tokens are then encoded using a linear layer. We concatenate the
fMRI token sequence and the query token sequence, and apply a final linear classification layer to
predict the output (either a binary T/F answer or a vocabulary token).

SDRecon We implement SDRecon (Takagi & Nishimoto, 2023) following the official repository*.
A ridge regression model aligns fMRI features with image embeddings, which are then passed to a
VQA-GIT language model (Wang et al., 2022) to generate answers. We set the ridge regularization
parameter to λ = 20. A custom parser (described below) is used to map the generated language
response to a valid prediction.

BrainCap BrainCap similarly uses a linear encoder to align fMRI features with visual embed-
dings (Ferrante et al., 2023). The aligned embeddings are passed to a BLIP language model (Li et al.,
2022) to generate answers. We apply the same parser as in SDRecon to extract final predictions from
the language output. We follow the implementation of the official repository†.

UMBRAE UMBRAE leverages a transformer-based encoder to map fMRI features to image
embeddings (Xia et al., 2024). These embeddings are then passed to LLaVA (Liu et al., 2023) for
language-based prediction, followed by response parsing. We follow the implementation of the
official repository‡.

We implement a rule-based parser to convert language model outputs into structured predictions.
The parser first cleans the text by removing punctuation, digits, and formatting inconsistencies. It
identifies binary answers (“yes” or “no”) when the query requires. For other queries, it extracts
the first valid word from a predefined vocabulary. If no valid word is found, it defaults to the most
common answers of “on” for spatial queries or “hold” otherwise. For all image-grounded baselines,
the ground-truth image embeddings are derived from the visual encoder of a vision-language model
for BOLD5000. We use the embedding of the first selected video frame as the ground truth for
CNeuroMod.

*https://github.com/yu-takagi/StableDiffusionReconstruction
†https://github.com/enomodnara/BrainCaptioning
‡https://github.com/weihaox/UMBRAE
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D.4 ABLATION DETAILS

In this section, we provide the full definitions of the entities and grounding hypotheses introduced in
the main paper.

D.4.1 ENTITY PROCESSING

To enable concept grounding to neural activity f ∈ RN×T , we first map the fine-grained networks
N = 1024 to P functional networks defined by the given atlas. This results in P network-specific
fMRI signals {f1, . . . , fP }, where each fp ∈ Rmp×T represents the aggregated signal from mp

fine-grained regions assigned to network p. Since the number of regions mp vary across networks, we
apply a linear stitcher to project each fp ∈ Rmp×T to a fixed-dimensional representation ep ∈ Rd×T ,
where d = 256, using network-specific linear projections Wp ∈ Rmp×d, such that ep = W⊤

p fp. This
produces a unified set E of P embeddings {e1, . . . , eP }, which are then processed by a small 1-D
convolutional encoder to form parcellation embeddings. From these base embeddings, we propose
hypotheses of candidate entities from which concepts can be grounded.

D.4.2 GENERAL GROUNDING FORMULATION

We define single-region (unary) grounding for a concept c as Gunary(c) and multi-region (binary)
grounding as Gbinary(c). We further define a fused grounding score combining unary and binary
components:

G(c) = Gunary(c) +
1

P

P∑
i=1

Gbinary(ci). (4)

D.4.3 HYPOTHESES DEFINITIONS

Let cp, cs, and co be the concepts for predicate (e.g., holding), subject (e.g., person), and object
(e.g., baseball-bat), respectively.

H1: Single-region grounding. Concepts are grounded to a single brain region:

GH1(cp) = Gunary(cp),

GH1(cs) = Gunary(cs),

GH1(co) = Gunary(co).

(5)

H2: Multi-region co-activation. Concepts are grounded through co-activation across region pairs:

GH2(cp) = Gbinary(cp),

GH2(cs) = Gunary(cs),

GH2(co) = Gunary(co).

(6)

H3: Predicate conditioned on subject. Predicate representations are guided by the activation of
the subject region:

GH3(cp) = Gbinary(cp) +Gunary(cs),

GH3(cs) = Gunary(cs),

GH3(co) = Gunary(co).

(7)

H4: Predicate conditioned on object. Predicate representations are guided by the activation of the
object region:

GH4(cp) = Gbinary(cp) +Gunary(co),

GH4(cs) = Gunary(cs),

GH4(co) = Gunary(co).

(8)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H5: Full argument-guided grounding. Our proposed method combines multi-region grounding
with subject and object guidance. The grounding scores are defined as:

GH5(cp) = G(cp) +G(cs) +G(co),

GH5(cs) = G(cs),

GH5(co) = G(co).

(9)

These formulations enable systematic evaluation of how structural priors affect downstream neural
decoding accuracy.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E ETHICS STATEMENT

This work uses only publicly released fMRI datasets, and focuses on decoding concepts from visual
stimuli rather than personal traits or identity, which reduces the risk of individual fingerprinting.
However, we acknowledge the inherent risks in building architectures that enable neural decoding
from participants. We emphasize that our method is intended solely for scientific analysis, and should
not be used for identification or inference of sensitive personal attributes from neural activity.
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