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Abstract
In a wide range of multimodal tasks, contrastive learning has become a particularly
appealing approach since it can successfully learn representations from abundant
unlabeled data with only pairing information (e.g., image-caption or video-audio
pairs). Underpinning these approaches is the assumption of multi-view redundancy
- that shared information between modalities is necessary and sufficient for down-
stream tasks. However, in many real-world settings, task-relevant information is
also contained in modality-unique regions: information that is only present in one
modality but still relevant to the task. How can we learn self-supervised multimodal
representations to capture both shared and unique information relevant to down-
stream tasks? This paper proposes FACTORCL, a new multimodal representation
learning method to go beyond multi-view redundancy. FACTORCL is built from
three new contributions: (1) factorizing task-relevant information into shared and
unique representations, (2) capturing task-relevant information via maximizing MI
lower bounds and removing task-irrelevant information via minimizing MI upper
bounds, and (3) multimodal data augmentations to approximate task relevance with-
out labels. On large-scale real-world datasets, FACTORCL captures both shared
and unique information and achieves state-of-the-art results on six benchmarks.

1 Introduction
Learning representations from different modalities is a central paradigm in machine learning [48].
Today, a popular learning method is to first pre-train general representations on unlabeled multimodal
data before fine-tuning on task-specific labels [10, 40, 47, 48, 50]. These current multimodal pre-
training approaches have largely been inherited from prior work in multi-view learning [13, 58]
that exploit a critical assumption of multi-view redundancy: the property that shared information
between modalities is almost exactly what is relevant for downstream tasks [70, 73, 76]. When this
assumption holds, approaches based on contrastive pre-training to capture shared information [13, 41,
61, 72], followed by fine-tuning to keep task-relevant shared information [76], have seen successful
applications in learning from images and captions [61], video and audio [3], speech and transcribed
text [58], and instructions and actions [21]. However, our paper studies two fundamental limitations
in the application of contrastive learning (CL) to broader real-world multimodal settings (see Figure 1
for a visual depiction and experimental results showing the performance drop of CL):

1. Low shared information relevant to tasks: There exists a wide range of multimodal tasks
involving small amounts of shared information, such as between cartoon images and figurative
captions (i.e., not literal but metaphoric or idiomatic descriptions of the images [52, 88]). In these
situations, standard multimodal CL will only receive a small percentage of information from the
learned representations and struggle to learn the desired task-relevant information.

2. High unique information relevant to tasks: Many real-world modalities can provide unique
information not present in other modalities. Examples include healthcare with medical sensors or
robotics with force sensors [45, 49]. Standard CL will discard task-relevant unique information,
leading to poor downstream performance.
∗First three authors contributed equally.
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Figure 1: Left: We define S = I(X1;X2;Y ) as task-relevant shared information and U1 = I(X1;Y ∣X2),
U2 = I(X2;Y ∣X1) as task-relevant unique information. Right: On controllable datasets with varying ratios
of S, U1, and U2, standard CL captures S but struggles when there is more U1 and U2. Our FACTORCL
approach maintains best performance, whereas SimCLR [13] and SupCon [41] see performance drops as unique
information increases, and Cross+Self [33, 36, 44, 89] recovers in fully unique settings but suffers at other ratios.

In light of these limitations, how can we design suitable multimodal learning objectives that work
beyond multi-view redundancy? In this paper, starting from the first principles in information
theory, we provide formal definitions of shared and unique information via conditional mutual
information and propose an approach, FACTORIZED CONTRASTIVE LEARNING (FACTORCL for
short), to learn these multimodal representations beyond multi-view redundancy using three key
ideas. The first idea is to explicitly factorize shared and unique representations. The second idea is to
capture task-relevant information via maximizing lower bounds on MI and remove task-irrelevant
information via minimizing upper bounds on MI, resulting in representations with sufficient and
necessary information content. Finally, a notion of task relevance without explicit labels in the self-
supervised setting is achieved by leveraging multimodal augmentations. Experimentally, we evaluate
the effectiveness of FACTORCL on a suite of synthetic datasets and large-scale real-world multimodal
benchmarks involving images and figurative language [88], prediction of human sentiment [91],
emotions [93], humor [27], and sarcasm [12], as well as patient disease and mortality prediction from
health indicators and sensor readings [38], achieving new state-of-the-art performance on six datasets.
Overall, we summarize our key technical contributions here:

1. A new analysis of contrastive learning performance showing that standard multimodal CL fails to
capture task-relevant unique information under low shared or high unique information cases.

2. A new contrastive learning algorithm called FACTORCL:
(a) FACTORCL factorizes task-relevant information into shared and unique information, expand-

ing contrastive learning to better handle low shared or high unique information.
(b) FACTORCL optimizes shared and unique information separately, by removing task-irrelevant

information via MI upper bounds and capturing task-relevant information via lower bounds,
yielding optimal task-relevant representations.

(c) FACTORCL leverages multimodal augmentations to approximate task-relevant information,
enabling self-supervised learning from our proposed FACTORCL.

2 Analysis of Multi-view Contrastive Learning
We begin by formalizing definitions of four types of information: shared, unique, task-relevant, and
task-irrelevant information in multimodal data. To formalize the learning setting, we assume there
exist two modalities expressed as random variables X1 and X2 with outcomes x1 and x2, and a task
with the random variable Y and outcome y. We denote X−i as the other modality where appropriate.

Shared and unique information: We formalize shared and unique information by decomposing the
total multimodal information I(X1,X2;Y ) into three conditional mutual information (MI) terms:

I(X1,X2;Y ) = I(X1;X2;Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S = shared

+ I(X1;Y ∣X2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U1 = uniqueness in X1

+ I(X2;Y ∣X1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U2 = uniqueness in X2

, (1)

where I(X1,X2;Y ) = ∫ p(x1, x2, y) log
p(x1,x2,y)

p(x1,x2)p(y)
dx1dx2dy is the total MI between the

joint random variable X1,X2 and the task Y , S = I(X1;X2;Y ) = I(X1;X2) −

I(X1;X2∣Y ) = ∫ p(x1, x2) log
p(x1,x2)

p(x1)p(x2)
dx1dx2 − I(X1;X2∣Y ) is the task-relevant shared in-

2



formation, I(X1;X2∣Y ) = ∫ p(x1, x2, y) log
p(x1,x2∣y)

p(x1∣y)p(x2∣y)
dx1dx2dy is the task-irrelevant shared

information, and U1 = I(X1;Y ∣X2), U2 = I(X2;Y ∣X1) denote unique task-relevant information.

Limitations of CL: Current approaches for CL maximize mutual information I(X1;X2) (and
subsequently task-relevant shared information I(X1;X2;Y ) during supervised fine-tuning), without
modeling unique information. These methods generally learn a pair of representations [73, 76],

Z1 = argmax
Z1∶=fθ(X1)

I(Z1;X2), Z2 = argmax
Z2∶=fθ(X2)

I(X1;Z2). (2)

For example, Z1 could encode images X1 and Z2 encodes text X2 via maximizing a lower bound on
I(X1;X2) using the NCE objective [58]. The NCE objective falls into a broader class of contrastive
learning methods [13, 15, 28, 41, 61] that model the ratio between joint densities p(x1, x2) and
product of marginal densities p(x1)p(x2) using positive and negative samples [57, 59, 60, 79, 84] or
probabilistic classifiers [55, 77]. It has been shown that contrastive learning works well under the
assumption of multi-view redundancy [4, 31, 70, 71, 76]:
Definition 1. (Multi-view redundancy) ∃ϵ > 0 such that I(X1;Y ∣X2) ≤ ϵ and I(X2;Y ∣X1) ≤ ϵ.

In other words, the task-relevant information in data is mostly shared across both views and the
unique information is at most a small ϵ. From a representation perspective, Tian et al. [72] further
introduces the assumption that the optimal representation is minimal and sufficient, where all learned
task-relevant information is shared information: I(Z1;Y ∣X2) = I(Z2;Y ∣X1) = 0. While the multi-
view redundancy is certainly true for particular types of multimodal distributions, it crucially ignores
settings that display multi-view non-redundancy and unique information can be important, such as
when health indicators, medical sensors, and robotic visual or force sensors each provide unique
information not present in other modalities [45, 49].
Definition 2. (Multi-view non-redundancy) ∃ϵ > 0 such that I(X1;Y ∣X2) > ϵ or I(X2;Y ∣X1) > ϵ.

Under multi-view non-redundancy, we show that standard CL only receives a weak training signal
since it can only maximize a lower bound on shared information I(X1;X2), and struggles to learn
task-relevant unique information. We formalize this intuition with the following statement:
Theorem 1. (Suboptimality of standard CL) When there is multi-view non-redundancy as in Definition
2, given optimal representations {Z1, Z2} that satisfy Eq.(2 and I(Z1;Y ∣X2) = I(Z2;Y ∣X1) =
0 [72], we have that

I(Z1, Z2;Y ) = I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) = I(X1;X2) − I(X1;X2∣Y ) < I(X1,X2;Y ).
(3)

Correspondingly, the Bayes error rate Pe(Z1, Z2) ∶= 1 − Ep(z1,z2) [maxy∈Y P (Ŷ = y ∣ z1, z2)] of
contrastive representations {Z1, Z2} for a downstream task Y is given by:

Pe ≤ 1 − exp [I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) −H(Y )] (4)
= 1 − exp [I(X1;X2;Y ) −H(Y )] (5)

We include proofs and a detailed discussion of the assumptions in Appendix B. Based on
Eq.(3), I(Z1, Z2;Y ) decreases with higher task-relevant unique information I(X1;Y ∣X2) and
I(X2;Y ∣X1); we call this the difference I(X1,X2;Y ) − I(Z1, Z2;Y ) the uniqueness gap. The
uniqueness gap measures the loss in task-relevant information between the input and encoded rep-
resentation: as task-relevant unique information grows, the uniqueness gap increases. In addition,
I(Z1, Z2;Y ) also drops with lower I(X1;X2) (i.e., two modalities sharing little information to
begin with), or with higher I(X1;X2∣Y ) (i.e., when the shared information is mostly task-irrelevant).
Similarly, in Eq.(5), the Bayes error rate of using {Z1, Z2} for prediction is directly related to the
task-relevant information in {Z1, Z2}: error on the downstream task increases with higher unique
information and lower shared information.

3 FACTORIZED CONTRASTIVE LEARNING

We now present a suite of new CL objectives that alleviate the challenges above and work at all ranges
of shared and unique information. At a high level, we aim to learn a set of factorized representations
ZS1 , ZS2 , ZU1 , ZU2 representing task-relevant information in X1 shared with X2, in X2 shared with
X1, unique to X1, and unique to X2 respectively. As common in practice [61, 72], we define
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Figure 2: FACTORCL: We propose a self-supervised CL method to learn factorized representations ZS1 , ZS2 ,
ZU1 , and ZU2 to capture task-relevant information shared in both X1 and X2, unique to X1, and unique to X2.
By starting with information-theoretic first principles of shared and unique information, we design contrastive
estimators to both capture task-relevant and remove task-irrelevant information, where a notion of task-relevance
without explicit labels is afforded by a new definition of multimodal augmentations X ′1,X

′

2. Lower bounds are
in green and upper bounds are in red.

neural networks fθ with trainable parameters θ to extract representations from inputs X1 and X2.
Learning these parameters requires optimizing differentiable and scalable training objectives to
capture task-relevant shared and unique information (see overview in Figure 2):

ZS1 = argmax
Z1=fθ(X1)

I(Z1;X2;Y ), ZS2 = argmax
Z2=fθ(X2)

I(Z2;X1;Y ), (6)

ZU1 = argmax
Z1=fθ(X1)

I(Z1;Y ∣X2), ZU2 = argmax
Z2=fθ(X2)

I(Z2;Y ∣X1). (7)

where I(Z1;X2;Y ) = I(Z1;X2) − I(Z1;X2∣Y ) is the shared information and I(Z2;X1;Y ) =
I(Z2;X2) − I(Z2;X1∣Y ) is the unique information. One important characteristic of our framework
is that when unique information is zero: I(X1;Y ∣X2) = 0 and I(X2;Y ∣X1) = 0, or all shared
information is task-relevant: I(X1;X2;Y ) = I(X1;X2), our framework recovers standard CL as in
Eq.(2). However, as we have previously indicated and will show empirically, these assumptions can
easily be violated, and our framework enlarges Eq.(2) to cases where unique information is present.

The learned Zs can then be used as input to a linear classifier and fine-tuned to predict the label for
multimodal classification or retrieval tasks. However, the shared and unique MI terms above are
often intractable in practice. In the next section, we will build up our method step by step, eventually
showing that each term in Eqs.(6- 7) can be approximated as follows:

S = I(X1;X2;Y ) ≥ INCE(X1;X2) − INCE-CLUB(X1;X2∣X
′
1,X

′
2) (8)

Ui = I(Xi;Y ∣X−i) ≥ INCE(Xi;X
′
i) − INCE-CLUB(X1;X2) + INCE(X1;X2∣X

′
1,X

′
2) (9)

where INCE and INCE-CLUB are scalable contrastive estimators (Section 3.1) and X ′1,X
′
2 are suitable

data augmentations (Section 3.2) on each modality. Overall, these equations can be interpreted as
both positive and negative signals to learn representations for S and U . For shared information
S, the estimator maximizes task-relevant shared information via INCE(X1;X2) while removing
task-irrelevant shared information via a novel upper bound −INCE-CLUB(X1;X2∣X

′
1,X

′
2). For unique

information Ui, we capture task-relevant uniqueness via +INCE(Xi;X
′
i) while non-unique informa-

tion is removed via −(INCE-CLUB(X1;X2) − INCE(X1;X2∣X
′
1,X

′
2)). In the following sections, we

derive this final objective step-by-step: (1) approximating the MI objectives in S and U with CL
estimators, (2) relaxing the dependence on labels Y with self-supervised data augmentations, finally
(3) discussing overall training and implementation details of end-to-end self-supervised learning.

3.1 Supervised FACTORCL with shared and unique information

To capture shared and unique information via an objective function, we will need to maximize lower
bounds for all terms with a positive sign in Eq.(8) and (9) (I (X1;X2) , I (Xi;Y ) , I (X1;X2∣Y ))
and minimize upper bounds for all terms with a negative sign (I (X1;X2) , I (X1;X2∣Y )). Our first
theorem derives general lower and upper bounds for MI terms as variants of contrastive estimation:
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Figure 3: Estimated INCE lower bound [58] and our proposed upper bound INCE-CLUB on sample distributions
with changing mutual information: our upper bound is tighter, more accurate, and more stable than ICLUB upper
bound [16], and also comes for ‘free’ via jointly estimating both lower and upper bounds simultaneously. We
find that as dimension increases, the ICLUB estimator collapses to zero and no longer tracks true MI.

Theorem 2. (Contrastive estimators for I(X1;X2)) Defining the NCE and NCE-CLUB estimators,

INCE(X1;X2) = Ex1,x
+

2∼p(x1,x2)

x−2∼p(x2)

[log
exp f(x1, x

+
2)

∑k exp f(x1, x−2)
] (10)

INCE-CLUB(X1;X2) = Ex1,x
+

2∼p(x1,x2) [f
∗
(x1, x

+
2)] −Ex1∼p(x1)

x−2∼p(x2)

[f∗(x1, x
−
2)] (11)

where f∗(x1, x2) is the optimal critic from INCE plugged into the ICLUB objective [16]. We call the
proposed plug-in objective Eq.(11) INCE-CLUB, and obtain lower and upper bounds on I(X1;X2):

INCE(X1;X2) ≤ I(X1;X2) ≤ INCE-CLUB(X1;X2). (12)

Proof. The lower bound INCE(X1;X2) ≤ I(X1;X2) follows from Oord et al. [58]: optimizing the
objective leads to an optimal critic [60] f∗ = log p(x1∣x2) + c(x1), with a deterministic function
c(⋅). Plugging optimal critic f∗ into INCE-CLUB(X1;X2) cancels out the c(x1) term and yields
INCE-CLUB(X1;X2) and I(X1;X2) ≤ INCE-CLUB. We include a detailed proof in Appendix C.1.

INCE-CLUB(X1;X2) gives a desired upper bound of I(X1;X2) “for free” while avoiding separately
optimizing lower bound and upper bounds. In Figure 3, we show these two bounds in practice across
two Gaussian distributions X1 and X2 with varying amounts of MI I(X1;X2). We use the second
formulation of ICLUB [16], which assumes p(x1∣x2) to be unknown. Our upper bound is empirically
tighter (see Figure 3) and comes for “free” via jointly maximizing the lower bound INCE. These
lower and upper bounds can be seen as new contrastive objectives over positive and negative (x1, x2)

pairs, enabling a close integration with existing pre-training paradigms. Finally, we can similarly
obtain bounds for the conditional MI INCE(X1;X2∣Y ) ≤ I(X1;X2∣Y ) ≤ INCE-CLUB(X1;X2∣Y ):

INCE(X1;X2∣Y ) = Ep(y)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2∼p(x1,x2 ∣y)

x−2∼p(x2 ∣y)

[log exp f(x1, x
+

2 , y)
∑k exp f(x1, x−2 , y)

]
⎤⎥⎥⎥⎥⎦

(13)

INCE-CLUB(X1;X2∣Y ) = Ep(y)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2
∼p(x1,x2 ∣y)

[f∗(x1, x
+

2 , y)] − Ex1∼p(x1 ∣y)

x−2∼p(x2 ∣y)

[f∗(x1, x
−

2 , y)]
⎤⎥⎥⎥⎥⎦

(14)

These two bounds result in conditional CL objectives [51, 74, 78] - they differ critically from standard
CL methods since they capture task-irrelevant shared information that remains between X1 and
X2 after observing Y . This task-irrelevant shared information is removed by minimizing its upper
bound. Note that f(x1, x2, y) here denotes a different function from f(x1, x2) in Eq.(10), as the
general forms are different (taking in x1, x2 versus x1, x2, y). f(x1, x2, y) can be implemented in
different ways, e.g., g([x1, y])

Th(x2) where g(), h() are trainable encoders and [x1, y] denotes
concatenation [69].

3.2 Self-supervised FACTORCL via multimodal augmentations

The derivations above bring about supervised CL objectives with access to Y [41]. For unsupervised
CL [58, 72], we derive similar objectives without access to Y by leveraging semantic augmentations
on each modality. Denote X ′ as some augmentation of X (e.g., rotating, shifting, or cropping). Under
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the optimal augmentation assumption from Tian et al. [72] (restated below), replacing Y with X ′ in
our formulations enables learning of task-relevant information without access to labels:

Definition 3. (Optimal unimodal augmentation) [72] X ′1 is an optimal unimodal augmentation for
X1 when I(X;X ′) = I(X;Y ), which implies that the only information shared between X and X ′ is
task-relevant with no irrelevant noise.

This assumption is satisfied when all information shared between X and X ′ is task-relevant, which
implies that the augmentation keeps task-relevant information constant while changing task-irrelevant
information. In the case of image classification, task-relevant information is the object in the
picture, while task-irrelevant information is the background. By performing two separate unimodal
augmentations giving X ′1 and X ′2, we can substitute contrastive estimators in Eqs.(13) and (14), by
replacing I(Xi;Y ) terms with I(Xi;X

′
i) and replacing I(X1;X2∣Y ) terms with I(X1;X2∣X

′
1,X

′
2):

INCE(X1;X2∣X ′1,X ′2) = Ep(x′
1
,x′

2
)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2∼p(x1,x2 ∣x
′

1,x
′

2)

x−2∼p(x2 ∣x
′

1,x
′

2)

[log exp f(x1, x
+

2 , x
′

1, x
′

2)
∑k exp f(x1, x−2 , x

′

1, x
′

2)
]
⎤⎥⎥⎥⎥⎦

(15)

INCE-CLUB(X1;X2∣X ′1,X ′2) = Ep(x′
1
,x′

2
)[Ex1,x

+

2
∼p(x1,x2 ∣x

′

1
,x′

2
)
[f∗(x1, x

+

2 , x
′

1, x
′

2)]

− Ex1∼p(x1 ∣x
′

1,x
′

2)

x−2∼p(x2 ∣x
′

1,x
′

2)

[f∗(x1, x
−

2 , x
′

1, x
′

2)]] (16)

The objectives can be seen as conditional contrastive learning on augmentations (X ′1,X
′
2). Here

again f(x1, x2, x
′
1, x

′
2) is different from the critics in Eqs.(13 because of the different general forms.

We implement f() here as g([x1, x
′
1])

Th([x2, x
′
2]) where g(), h() are trainable encoders specific

for each modality and [x1, x
′
1] denotes concatenation. This concatenation is justified by the CMI

estimators in Sordoni et al. [69], who show that concatenating the conditioning variable with the
input in the critic f(x1, x2, x

′
1, x

′
2) yields a Conditional InfoNCE estimator (Eq.(15)) that is a lower

bound for CMI. However, the exact Conditional InfoNCE estimator learns a different conditional
distribution p(x1, x2∣x

′
1, x

′
2) for each augmented pair x′1, x

′
2, which can be prohibitively expensive.

We could approximate this by creating multiple augmentations of a single paired x1, x2. Our code
uses one augmented pair x′1, x

′
2 for each x1, x2 but could be extended to multiple pairs, and we find

this simple approach yields consistent CMI lower and upper bounds that are empirically comparable
to existing CMI estimators [55, 69]. We include full comparisons and implementation details in
Appendix D.1, and in Appendix C.2 we discuss an alternative interpretation based on viewing CL as
kernel learning which permits using conditional kernel estimation for our objectives.

Although we find this method to work well in practice, a more careful analysis reveals that 2 separate
unimodal augmentations X ′1 and X ′2 each satisfying I(Xi;X

′
i) = I(Xi;Y ) do not together satisfy

I(X1;X2∣Y ) = I(X1;X2∣X
′
1,X

′
2) needed for the substitution in Eqs.(15) and (16) to hold with

equality. To satisfy this property exactly, we define optimal multimodal augmentations:

Definition 4. (Optimal multimodal augmentation) X ′1 and X ′2 are optimal multimodal augmentation
for X1 and X2 when I(X1,X2;X

′
1,X

′
2) = I(X1,X2;Y ), which implies that the only information

shared between X1,X2 and X ′1,X
′
2 is task-relevant with no irrelevant noise.

We satisfy I(X1,X2;X
′
1,X

′
2) = I(X1,X2;Y ) using two steps:

Unimodal aug: X ′1 s.t. I(X1;X
′
1) = I(X1;Y ), (17)

Unique aug: X ′2 s.t. I(X2;X
′
2∣X1) = I(X2;Y ∣X1). (18)

We call the second step unique augmentation: after observing X1, we create augmented X ′2 from
X2 to keep task-relevant information not already in X1. To empirically satisfy optimal multimodal
augmentations, we avoid augmentations in one modality that will remove or strongly destroy infor-
mation shared with the other modality. For example, in image captioning, we should avoid image
augmentations such as cropping that destroy information from the caption (e.g., cropping object parts
referred to by the caption), and instead, only augment images via flipping or color jittering which
retains all caption information. Figure 4 shows an example of unique augmentation that satisfies these
conditions. In our experiments, we will show that our augmentations consistently perform better than
standard augmentations (Table 3), suggesting that approximately satisfying Eqs.(17) and (18) can be
empirically sufficient, which is simple and straightforward to implement on real-world datasets.

3.3 Overall method and implementation
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Algorithm 1 Standard multimodal CL.
Require: Multimodal dataset {X1,X2}.

Initialize networks f(⋅).
while not converged do

for sampled batch {x1,x2} do
Estimate INCE(X1;X2) from Eq. 10
L = −INCE(X1;X2)

Update f(⋅) to minimize L
end for

end while
return f(⋅)

Algorithm 2 FACTORCL.
Require: Multimodal dataset {X1,X2}.

Initialize networks f(⋅).
while not converged do

for sampled batch {x1,x2} do
x′1 ← Augment(x1)

x′2 ← Unique-Augment(x2∣x1)

Plug x′1 and x′2 into Eq. 15 and 16
Estimate S,U1,U2 from Eq. 8 and 9
L = −(S +U1 +U2)

Update f(⋅) to minimize L
end for

end while
return f(⋅)

Figure 4: Standard vs. unique augmentations for
the figurative language [88] dataset. After aug-
menting text modality X1 independently (same for
both augmentation types), we illustrate their differ-
ences for image augmentation: unique augmenta-
tion on images should avoid removing information
referred to by X1 (the text). The text mentions that
the car is fast so unique augmentation for images
should not remove the highway pixels of the image
which can suggest the car is fast.

The final algorithm sketch is in Algorithm 2, which
we compare against standard CL in Algorithm 1. It
can be shown that FACTORCL learns all the task-
relevant information from both modalities:
Theorem 3. (Optimality of FACTORCL)
If ZS1 , ZS2 , ZU1 , ZU2 perfectly maximize
Eqs.(6-7) and the estimations in Eqs.(8)
and (9) are tight, we obtain I(X1,X2;Y ) =
I(ZS1 ;ZS2 ;Y ) + I(ZU1 ;Y ∣ZS2) + I(ZU2 ;Y ∣ZS1),
suggesting that FACTORCL learns both shared and
unique task-relevant information.

We include the full proof in Appendix C.3. In prac-
tice, while we do not expect perfect estimation of MI
quantities and maximization with respect to MI ob-
jectives, we include implementation details regarding
architectures and contrastive objectives that improve
empirical performance in Appendix D.1.

Complexity: Compared to heuristic combinations of
cross-modal and single-modality CL [33, 36, 44, 64,
81, 85, 89], our approach does not significantly in-
crease complexity: (1) upper bounds on MI can be es-
timated “for free” by directly plugging in the optimal
critic from INCE, (2) removal of task-irrelevant infor-
mation via I(X1;X2∣X

′
1,X

′
2) shares encoders with

INCE, and (3) separate unimodal augmentations per-
form empirically well. We describe some extensions
of other self-supervised methods in Appendix C.4.

4 Experiments
We run comprehensive experiments on a suite of synthetic and large-scale real-world datasets with
varying requirements of shared and unique task-relevant information, comparing our FACTORCL
method to key baselines:

1. SimCLR [13]: the straightforward method of cross-modal (X1,X2) contrastive learning.
2. Cross+Self [33, 36, 44, 64, 85, 89]: captures a range of methods combining cross-modal (X1,X2)

CL with additional unimodal (Xi,X
′
i) CL objectives. This category also includes other ways of

preserving unique information, such as through (variational) autoencoder reconstructions [81].
3. Cross+Self+Fact [86, 89]: A factorized extension of Cross+Self, which is approximately done in

prior work that adds separate (typically pre-trained) unimodal encoders for each modality.
4. SupCon [41], which learns I(X1;X2∣Y ) using CL conditioned on Y from labeled data.

We also carefully ablate each component of our method and investigate factors, including training
data size and choice of augmentations. The intermediate ablations that emerge include:

1. FACTORCL-SUP: The supervised CL version which uses labels Y in Eqs.(13) and (14).
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Table 1: We probe whether contrastive representations learned by classic CL methods and FACTORCL contain
shared ws or unique w1,w2 information. FACTORCL captures the most unique information.

Model SimCLR Cross+self SupCon FACTORCL
Representations Z1 Z2 Z1 Z2 Z1 Z2 ZU1 ZU2 ZS1 ZS2

I(Z;w1) 4.45 0.16 4.39 0.14 5.17 0.19 7.83 0.03 6.25 0.04
I(Z;w2) 0.17 3.92 0.13 4.26 0.23 5.17 0.06 7.17 0.05 5.79
I(Z;ws) 12.61 12.06 11.30 11.47 7.48 7.17 9.47 9.89 10.13 9.40

2. FACTORCL-SSL: The fully self-supervised version of our approach replacing Y with multimodal
augmentations X ′1 and X ′2 to approximate the task.

3. OurCL-SUP: FACTORCL-SUP but removing the factorization so only two features Z1 is optimized
for both I(X1;X2;Y ) and I(X1;Y ∣X2), Z2 optimized for both I(X1;X2;Y ) and I(X2;Y ∣X1).

4. OurCL-SSL: FACTORCL-SSL but also removing the factorization in the self-supervised setting.

The formulation of each ablation and implementation can be found in Appendix D.1.

4.1 Controlled experiments on synthetic datasets

Synthetic data generation: We begin by generating data with controllable ratios of task-relevant
shared and unique information. Starting with a set of latent vectors w1,w2,ws ∼ N(0d,Σ

2
d), d = 50

representing information unique to X1,X2 and common to both respectively, the concatenated vector
[w1,ws] is transformed into high-dimensional x1 using a fixed transformation T1 and likewise
[w2,ws] to x2 via T2. The label y is generated as a function (with nonlinearity and noise) of varying
ratios of ws, w1, and w2 to represent shared and unique task-relevant information.

Results: In Figure 1, we show our main result on synthetic data comparing FACTORCL with existing
CL baselines. FACTORCL consistently maintains the best performance, whereas SimCLR [13] and
SupCon [41] see performance drops as unique information increases. Cross+Self [33, 36, 44, 89]
recovers in fully unique settings (x-axis= 1.0) but suffers at other ratios.

Representation probing information: We run a probing experiment to compute how well different
contrastive representations capture shared and unique information. In Table 1, for the Zi’s learned by
each method, we approximately compute I(Zi;w1), I(Zi;w2), and I(Zi;ws) with respect to ground
truth generative variables ws, w1, and w2. As expected, existing methods such as SimCLR capture
smaller amounts of unique information (roughly 4 bits in I(Zi;w1) and I(Zi;w2)), focusing instead
on learning I(Zi;ws) (12 bits). Cross+self captures slightly larger I(Zi;w2) = 4.26, and SupCon
with labeled data captures up to 5 bits of unique information. Our FACTORCL approach captures
7 bits of unique information and maintains 10 bits of shared information, with total information
captured higher than the other approaches. Furthermore, {ZS1 , ZS2} capture more information about
ws, ZU1 about w1, and ZU2 about w2, indicating that factorization in our approach is successful.

4.2 Self-supervised multimodal learning with low redundancy and high uniqueness

Multimodal fusion datasets: We use a large collection of real-world datasets provided in Multi-
Bench [45], where we expect varying ratios of shared and unique information important for the task,
to compare FACTORCL with other CL baselines:

1. MIMIC [38]: mortality and disease prediction from 36,212 medical records (tabular patient data
and medical time-series sensors from ICU).

2. MOSEI [93]: multimodal sentiment and emotion benchmark with 23,000 monologue videos.
3. MOSI [91]: multimodal sentiment analysis from 2,199 YouTube videos.
4. UR-FUNNY [27]: a dataset of humor detection from more than 16,000 TED talk videos.
5. MUSTARD [12]: a corpus of 690 videos for research in sarcasm detection from TV shows.
6. IRFL [88]: 6,697 matching images and figurative captions (rather than literal captions).

Together, these datasets cover seven different modalities from the healthcare, affective computing,
and multimedia research areas and total more than 84,000 data points. For MIMIC with tabular and
medical sensor inputs, we train self-supervised CL models on top of raw modality inputs. For IRFL
with image and caption inputs, we start with a pretrained CLIP model [61] and perform continued
pre-training to update CLIP weights with our FACTORCL objectives, before linear classifier testing.
For the remaining four video datasets, we train self-supervised CL models starting from standard
pre-extracted text, video, and audio features [45]. Please refer to Appendix D.2 for experimental
details. We release our code and models at https://github.com/pliang279/FactorCL.
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Table 2: Results on MultiBench [45] datasets with varying shared and unique information: FACTORCL achieves
strong results vs self-supervised (top 5 rows) and supervised (bottom 3 rows) baselines that do not have unique
representations, factorization, upper-bounds to remove irrelevant information, and multimodal augmentations.

Model (X1;X2) (Xi;X
′

i) (X1;X2∣Y ) (X′′2 ) Fact MIMIC MOSEI MOSI UR-FUNNY MUSTARD
SimCLR [13] ✓ ✗ ✗ ✗ ✗ 66.67% 71.03% 46.21% 50.09% 53.48%
Cross+Self [81] ✓ ✓ ✗ ✗ ✗ 65.20% 71.04% 46.92% 56.52% 53.91%
Cross+Self+Fact [89] ✓ ✓ ✗ ✗ ✓ 65.49% 71.07% 52.37% 59.91% 53.91%
OurCL-SSL ✓ ✓ ✓ ✓ ✗ 65.22% 71.16% 48.98% 58.79% 53.98%
FACTORCL-SSL ✓ ✓ ✓ ✓ ✓ 67.34% 74.88% 52.91% 60.50% 55.80%
SupCon [41] ✗ ✗ ✓ ✗ ✗ 67.37% 72.71% 47.23% 50.98% 52.75%
OurCL-SUP ✓ ✓ ✓ ✗ ✗ 68.16% 71.15% 65.32% 58.32% 65.05%
FACTORCL-SUP ✓ ✓ ✓ ✗ ✓ 76.79% 77.34% 70.69% 63.52% 69.86%

Multimodal fusion results: From Table 2, FACTORCL significantly outperforms the baselines that
do not capture both shared and unique information in both supervised and self-supervised settings,
particularly on MUSTARD (where unique information expresses sarcasm, such as sardonic facial
expressions or ironic tone of voice), and on MIMIC (with unique health indicators and sensor
readings). In Table 3, we also show that FACTORCL substantially improves the state-of-the-art in
classifying images and figurative captions which are not literally descriptive of the image on IRFL,
outperforming zero-shot and fine-tuned CLIP [61] as well as continued pre-training baselines on top
of CLIP.

Modeling ablations: In Table 2, we also carefully ablate each component in our method and indicate
either existing baselines or newly-run ablation models.

1. Factorized representations: In comparing FACTORCL-SSL with OurCL-SSL, and also FAC-
TORCL-SUP with OurCL-SUP, we find that factorization is critical: without it, performance drops
on average 6.1%, with performance drop as high as 8.6% for MIMIC.

2. Information removal via upper bound: By comparing FACTORCL with SimCLR, Cross+Self,
and Cross+Self+Fact, and SupCon that only seek to capture task-relevant information via con-
trastive lower bounds on MI, we find that separately modeling the task-relevant information
(to be captured) and task-irrelevant information (to be removed) is helpful. Without removing
task-irrelevant information via the upper-bound objective, performance drops on average 13.6%,
with performance drops as high as 23.5% for the MOSI dataset. We also found that training
was more difficult without this objective, which is expected due to overwhelming superfluous
information from the dataset [93].

3. Multimodal augmentations: Finally, we investigate the differences between separate uni-
modal augmentations (FACTORCL-IndAug in Table 3) versus a joint multimodal augmentation
(FACTORCL-SSL) on the IRFL dataset. We choose this dataset since its images and captions are
the easiest to visualize (see Figure 4 for augmentations from both strategies). In the self-supervised
setting, we find that multimodal augmentations achieve 95% performance, higher than the 92%
for separate unimodal augmentations, and both outperform baselines SimCLR and Cross+Self.

Table 3: Continued pre-training on CLIP
with our FACTORCL objectives on clas-
sifying images and figurative language.

Task IRFL
Zero-shot CLIP [61] 89.15%
SimCLR [13] 91.57%
Cross+Self [81, 89] 95.18%
FACTORCL-IndAug 92.77%
FACTORCL-SSL 95.18%
Fine-tuned CLIP [61] 96.39%
SupCon [41] 89.16%
FACTORCL-SUP 98.80%

Ablations on S,U1 and U2: In Table 4, we also test FAC-
TORCL when training linear classifiers on top of only shared
{ZS1 , ZS2} and unique ZU1 , ZU2 separately. We call these
models FACTORCL-S, FACTORCL-U1, and FACTORCL-U2.
Immediately, we observe that performance drops as compared
to the full FACTORCL model, indicating that both shared and
unique information are critical in real-world multimodal tasks.
As expected, the best-performing submodel is the one that
captures the region with the largest amount of task-relevant
information: MOSEI and MOSI are known to include a lot
of redundancy and unique information since language is very
important for detecting sentiment [93], so FACTORCL-S and
FACTORCL-U2 perform best. For sarcasm detection on MUS-
TARD, video information is most important with FACTORCL-
U1 performing best (59.4%), and ablation models are also the furthest away from full multimodal
performance (69.9%). This is aligned with intuition where sarcasm is expressed through tone of voice
and visual gestures (high U1), as well as from contradictions between language and video (higher
multimodal performance).
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Table 4: We ablate using only shared representations {ZS1 , ZS2}, unique representation ZU1 , and ZU2 separately
for prediction. Both shared and unique information are critical in real-world multimodal tasks.

Model MIMIC MOSEI MOSI UR-FUNNY MUSTARD
FACTORCL-S 63.77% 77.17% 70.12% 63.42% 57.25%
FACTORCL-U1 55.90% 77.06% 70.11% 62.00% 59.42%
FACTORCL-U2 69.08% 71.01% 52.33% 54.35% 53.62%
FACTORCL-SUP 76.79% 77.34% 70.69% 63.52% 69.86%

Additional results: In Appendix D.3, we also verify FACTORCL in settings with abundant shared
information, where we expect to recover the same performance as standard CL [13, 58, 72].

5 Related Work
Contrastive learning is a successful self-supervised learning paradigm for computer vision [11, 13,
14, 25, 28, 58], natural language [24, 54, 56], speech [5, 58, 63], and multimodal tasks [1, 37, 61]. Its
foundational underpinnings are inspired by work in multiview information theory [23, 41, 70, 72, 76]
studying the shared information between two views and whether they are necessary or sufficient in
predicting the label. Recently, Wang et al. [81] and Kahana and Hoshen [39] discuss the limitations
of assuming multiview redundancy and propose autoencoder reconstruction or unimodal contrastive
learning to retain unique information, which resembles the Cross+self baselines in our experiments.
We refer the reader to Shwartz-Ziv and LeCun [67] for a comprehensive review on multiview and
contrastive learning. Our work also relates to conditional contrastive learning [17, 51, 78, 87], where
positive or negative pairs are supposed to sample from conditional distributions.

Multimodal contrastive learning aims to align related data from different modalities, typically
provided as positive pairs. This could be done via optimizing a contrastive objective for inter-
modality pairs [1, 2, 37, 61], or both intra- and inter-modality data pairs [33, 36, 42, 44, 89]. Our
work also relates to factorized representation learning, which primarily studies how to capture
modality-specific information primarily in each modality and multimodal information redundant in
both modalities [32, 75]. Prior work has used disentangled latent variable models [8, 30, 32, 75],
mixture-of-experts [66], or product-of-experts [83] layer to explain factors in multimodal data.

Information theory [18, 65] has been used to study several phenomena in multimodal learning,
including co-learning [62, 92] and multi-view learning [34, 76]. Due to its theoretical importance,
several lower and upper bounds have been proposed for practical estimation [58–60, 84]. We build
on the CLUB upper bound [16] to create a more accurate and stable bound. Our characterizations
of shared and unique information are also related to partial information decomposition [82], co-
information [7, 80], interaction information [53], and cross-domain disentanglement [35] research.

6 Conclusion
This paper studied how standard CL methods suffer when task-relevant information lies in regions
unique to each modality, which is extremely common in real-world applications such as sensor
placement, medical testing, and multimodal interaction. In response, we proposed FACTORCL,
a new method expanding CL techniques through the use of factorized representations, removing
task-irrelevant information via upper bounds on MI, and multimodal data augmentations suitable for
approximating the unobserved task. Based on FACTORCL’s strong performance, there are several
exciting directions in extending these ideas for masked and non-contrastive pre-training; we further
discuss broader impacts and limitations of this line of work in Appendix A.
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Appendix
A Broader Impact
Multimodal data and self-supervised models are ubiquitous in a range of real-world applications.
This paper is our attempt at broadening the applicability of self-supervised contrastive methods to a
wider range of multimodal tasks beyond those that exhibit multi-view redundancy. We believe that
special care must be taken to ensure that these models are safely deployed for real-world benefit:

Time and space complexity: Modern multimodal models are large and take up a significant amount
of carbon footprint during training and testing. As compared to heuristic combinations of cross-modal
and single-modality CL [33, 36, 44, 64, 81, 85, 89], we believe that FACTORCL does not significantly
increase complexity: (1) upper bounds on MI can be estimated “for free” by directly plugging in
the optimal critic from INCE, and (2) removal of task-irrelevant information via I(X1;X2∣X

′
1,X

′
2)

shares encoders with INCE, and (3) separate unimodal augmentations perform well enough in practice.
We also release our code and models so that they can be evaluated quickly on new tasks, which can
amortize complexity costs.

Privacy and security: There may be privacy risks associated with making predictions from multi-
modal data of recorded human behaviors and medical data (i.e., the datasets used in our experiments
for analysis of sentiment, emotions, personality, sarcasm, and humor, as well as disease prediction
from medical data). We have followed best practices in maintaining the privacy and safety of these
datasets: (1) the creators of these video datasets have taken the appropriate steps to only access
public data that participants or content creators have consented for public release (creative commons
license and following fair use guidelines of YouTube) [12, 27, 93], (2) MIMIC has been rigorously
de-identified in accordance with Health Insurance Portability and Accountability Act (HIPAA) such
that all possible personal information has been removed from the dataset [38], (3) all video data
was also anonymized and stripped of all personal (e.g., personally identifiable information) and
protected attributes (e.g., race, gender), (4) all models trained on affect recognition datasets use only
pre-extracted non-invertible features that rely on general visual or audio features such as the presence
of a smile or magnitude of voice which cannot be used to identify the speaker [91, 93], and (5) we
studied the videos collected in these affective computing datasets and found no offensive words used
or personal attacks recorded in the video. Finally, we only use these datasets for research purposes
and emphasize that any multimodal models trained to perform prediction should only be used for
scientific study and should not in any way be used for real-world harm.

Social biases: We acknowledge risks of social bias due to imbalanced datasets, resulting in potential
biases surrounding gender, race, and ethnicity, among others [9, 46]. We note that our FACTORCL
approach has a close link with conditional CL [51], which can also be adapted to condition on
sensitive attributes and therefore reduce bias. Studying these research questions is an important
direction for future work.

Future work: We discuss more limitations and potential future work in this direction. Firstly,
optimizing our objectives using better MI lower and upper bounds such as in Guo et al. [26] and
Sordoni et al. [69], could improve the performance for inputs of higher dimension and complex
modality. Next, the current data augmentation method requires one to pick augmentations to approxi-
mately satisfy Definition 4; future work could extend InfoMin [72] to automatically generate data
augmentations to satisfy Definition 4, or leverage future progress in multimodal generative models
for data augmentation. Lastly, future work could quantify whether shared or unique information is
more important for different tasks and reweight the terms in the FACTORCL objective to suit the
tasks.

B Analysis of Multi-view Contrastive Learning
Multi-view shared information describes the extent and dimensions in which information can be
shared across different views. The presence of shared information is often in contrast to unique
information that exists solely in a single modality, and can be formalized via information theory:

Definition 5. (Shared information) Given X1 and X2, I(X1;X2) = ∫ p(x1, x2) log
p(x1,x2)

p(x1)p(x2)

measures the degree of information-theoretic shared information between X1 and X2.

Definition 6. (Task-relevant shared information) Given X1, X2, and a target Y , I(X1;X2;Y ) =

I(X1;X2) − I(X1;X2∣Y ) = ∫ p(x1, x2) log
p(x1,x2)

p(x1)p(x2)
− ∫ p(x1, x2∣y) log

p(x1,x2∣y)
p(x1∣y)p(x2∣y)

measures
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the amount of task-relevant shared information between X1 and X2 for predicting Y . I(X1;X2∣Y )
represents the task-irrelevant shared information.

Learning shared information via contrastive learning: Current approaches for multi-view con-
trastive learning model shared information I(X1;X2) (and subsequently task-relevant shared infor-
mation I(X1;X2;Y ) during downstream task fine-tuning), without modeling unique information.

Z1 = argmax
Z1∶=fθ(X1)

I(Z1;X2), Z2 = argmax
Z2∶=fθ(X2)

I(X1;Z2). (19)

Optimizing for I(X1;X2) is performed via a surrogate loss during self-supervised pre-training
(where we do not have access to the label Y ) by maximizing the InfoNCE objective:

INFONCE = sup
f

Ex1,x
+

2∼p(x1,x2)

x−2∼p(x2)

[log
exp f(x1, x

+
2)

∑k exp f(x1, x−2)
] , (20)

Oord et al. [58] show that I(X1;X2) ≥ log k − LNCE(X1;X2) where LNCE(X1;X2) is negative
of INFONCE and is the loss to minimize (rather than maximize) in training. NCE falls into a
broader class of contrastive learning methods [13, 15, 28, 41, 61] that model the ratio between
joint densities p(x1, x2) and product of marginal densities p(x1)p(x2) using positive and negative
samples [57, 59, 60, 79, 84] or probabilistic classifiers [55, 77], all of which can also be used to
capture shared information.

Tian et al. [71] argues that the optimal view of contrastive learning is also minimal: the minimal
representations only extract relevant information of the contrastive task (maximizing the shared part)
and throw away other information. Therefore, from this minimal assumption, we have I(Z1;Y ∣X2) =

0 and I(Z2;Y ∣X1) = 0 as minimal Z1 and Z2 only captures task-relevant information from the shared
part. By conditioning on X1 or X2, the shared part is removed, and Z1 and Y (or Z2 and Y ) do not
share information.

Lastly, we restate the multi-view non-redundancy from Definition 2:
Definition 7. (Multi-view non-redundancy) ∃ϵ > 0 such that I(X1;Y ∣X2) > ϵ or I(X2;Y ∣X1) > ϵ.

We would like to compare and clarify the differences between the multiview redundancy assumption
in Eq.(1) and the multi-view nonredundancy in Def. 7. The multiview redundancy assumption in
Eq.(1) states that the task-relevant information from the unique part is minimal (≤ ϵ). The multiview
non-redundancy states the opposite: the task-relevant information from the unique part is nonzero
and nonminimal, as it is not bounded by ϵ. Next we briefly clarify the relationship between these
two assumptions and the InfoMin assumption: I(Z1;Y ∣X2) = I(Z2;Y ∣X1) = 0. InfoMin is about
representation Z while the redundancy assumptions are only about data X . InfoMin states that the
optimal (sufficient and minimal) representation learns task-relevant information only from the shared
part, as we discussed in the paragraph above. We empirically checked the two assumptions: Tables 1
and 4 in the main text show that the multiview non-redundancy assumption holds empirically, and
Table 11 shows that the InfoMin assumption holds empirically.

We now show the limitations of CL methods, first restating the Theorem here:
Theorem 4. (Suboptimality of standard CL) When there is multi-view non-redundancy as in Definition
7, given optimal representations {Z1, Z2} that satisfy Eq.(19 and I(Z1;Y ∣X2) = I(Z2;Y ∣X1) =
0 [72], we have that
I(Z1, Z2;Y ) = I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) = I(X1;X2) − I(X1;X2∣Y ) < I(X1,X2;Y ).

(21)

Proof. Since Z1 and Z2 maximize I(X1;X2) we have that I(Z1;X2) = I(X1;Z2) = I(X1;X2) so
I(Z1;X2;Y ) = I(X1;Z2;Y ) = I(X1;X2;Y ) and I(Z1;X2∣Y ) = I(X1;Z2∣Y ) = I(X1;X2∣Y ).

We now show the relationship between I(X1,X2;Y ), which is the total information X1,X2 con-
tributes towards predicting Y in classic supervised learning, with I(Z1, Z2;Y ), which is the infor-
mation that our learned self-supervised representations can contribute towards Y during supervised
fine-tuning. We first derive the relationship between I(Z1;Y ) and I(X1;Y ):

I(Z1;Y ) = I(Z1;X2;Y ) + I(Z1;Y ∣X2) (22)
= I(X1;X2;Y ) + I(Z1;Y ∣X2) (23)
= I(X1;Y ) − I(X1;Y ∣X2) + I(Z1;Y ∣X2) (24)
= I(X1;Y ) − I(X1;Y ∣X2) (25)
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Given X1, we further derive a relationship between I(Z2;Y ∣Z1) and I(X2;Y ∣X1):

I(Z2;Y ∣Z1) = I(Z2;X1;Y ∣Z1) + I(Z2;Y ∣Z1,X1) (26)
= I(X1;X2;Y ∣Z1) + I(Z2;Y ∣Z1,X1) (27)
= I(X1;X2;Y ∣Z1) + I(Z2;Y ∣X1) (28)
= I(X2;Y ∣Z1) − I(X2;Y ∣X1, Z1) + I(Z2;Y ∣X1) (29)
= I(X2;Y ∣Z1) − I(X2;Y ∣X1) + I(Z2;Y ∣X1) (30)
= I(X2;Y ) − I(Z1;X2;Y ) − I(X2;Y ∣X1) + I(Z2;Y ∣X1) (31)
= I(X2;Y ) − I(X1;X2;Y ) − I(X2;Y ∣X1) + I(Z2;Y ∣X1) (32)
= I(X2;Y ∣X1) − I(X2;Y ∣X1) + I(Z2;Y ∣X1) = 0 (33)

In Eqs.(28) and (30), we use the fact that conditioning on Z1 and X1 jointly reduces to conditioning
on X1 since Z1 is deterministically obtained from X1, and in Eq.(32) we use the definition of learning
Zs to maximize I(X1;X2) so I(Z1;X2;Y ) = I(X1;Z2;Y ). Finally, adding both terms up,

I(Z1, Z2;Y ) = I(Z1;Y ) + I(Z2;Y ∣Z1) (34)
= I(X1;Y ) − I(X1;Y ∣X2) (35)
= I(X1;X2;Y ) (36)
= I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) (37)
= I(X1;X2) − I(X1;X2∣Y ) (38)

gives the desired result.

Bayes error rate. The Bayes error rate Pe(Z1, Z2) ∶= 1 − EPZ1,Z2
[maxy∈Y P (Ŷ = y ∣ z1, z2)] of

contrastive representations {Z1, Z2} is given by:

Pe ≤ 1 − exp [I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1) −H(Y )] (39)
= 1 − exp [I(X1;X2;Y ) −H(Y )] (40)

Proof. We use the inequality between Pe and H(Y ∣Z) [22, 76, 81]:

− ln(1 − Pe) ≤H(Y ∣Z), or equivalently, Pe ≤ 1 − exp[−H(Y ∣Z)] (41)

If we regard Z as the joint of Z1 and Z2, then we have

Pe ≤ 1 − exp[−H(Y ∣Z1, Z2)] (42)

We further expand H(Y ∣Z1, Z2) by definition of mutual information, I(X;Y ) =H(X) −H(X ∣Y ),
Theorem 4, and the I(X1;X2;Y ) = I(X1;X2) − I(X1;X2∣Y ):

H(Y ∣Z1, Z2) =H(Y ) − I(Z1, Z2;Y ) (43)
=H(Y ) − I(X1,X2;Y ) + I(X1;Y ∣X2) + I(X2;Y ∣X1) (44)
=H(Y ) − I(X1;X2) + I(X1;X2∣Y ) (45)
=H(Y ) − I(X1;X2;Y ) (46)

Plugging in Eq.(42), we have

Pe ≤ 1 − exp[−H(Y ∣Z1, Z2)] (47)
= 1 − exp[−(H(Y ) − I(X1,X2;Y ) + I(X1;Y ∣X2) + I(X2;Y ∣X1))] (48)
= 1 − exp[−H(Y ) + I(X1,X2;Y ) − I(X1;Y ∣X2) − I(X2;Y ∣X1)] (49)

and

Pe ≤ 1 − exp[−H(Y ∣Z1, Z2)] (50)
= 1 − exp[−(H(Y ) − I(X1;X2;Y ))] (51)
= 1 − exp[−H(Y ) + I(X1;X2;Y )] (52)

resulting in the Bayes error rate as desired.
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C FACTORIZED CONTRASTIVE LEARNING

C.1 Contrastive estimators

Theorem 5. (Contrastive estimators for I(X1;X2)) Defining the NCE estimator and NCE-CLUB
estimator as follows,

INCE(X1;X2) = Ex1,x
+

2∼p(x1,x2)

x−2∼p(x2)

[log
exp f(x1, x

+
2)

∑k exp f(x1, x−2)
] (53)

INCE-CLUB(X1;X2) = Ex1,x
+

2∼p(x1,x2) [f
∗
(x1, x

+
2)] −Ex1∼p(x1)

x−2∼p(x2)

[f∗(x1, x
−
2)] (54)

where f∗(x1, x2) is the optimal critic from INCE plugged into the ICLUB objective [16]. We call the
proposed plug-in objective Eq.(11) INCE-CLUB, and obtain lower and upper bounds on I(X1;X2):

INCE(X1;X2) ≤ I(X1;X2) ≤ INCE-CLUB(X1;X2). (55)

Proof. The lower bound INCE(X1;X2) ≤ I(X1;X2) follows from Oord et al. [58]: optimizing the
objective leads to an optimal critic f∗ = log p(x2∣x1) + c(x2) [60] or without loss of generality
f∗ = log p(x1∣x2) + c(x1), where c(⋅) is an arbitrary deterministic function. Plugging the optimal
critic into the INCE(X1;X2) gives the result: INCE(X1;X2) + logN ≤ I(X1;X2) [58, 60].

Next, the original ICLUB(X1;X2) [16] is defined as:
ICLUB(X1;X2) ∶= Ep(x1,x2) [log p(x2∣x1)] −Ep(x1)p(x2) [log p(x2∣x1)] . (56)

As mutual information is symmetric w.r.t x1 and x2: I(X1;X2) = I(X2;X1) , without loss of
generality, we have:
ICLUB(X1;X2) = ICLUB(X2;X1) = Ep(x1,x2) [log p(x1∣x2)] −Ep(x1)p(x2) [log p(x1∣x2)] (57)

The formulation above assumes p(x1∣x2) is known, which is satisfied when we use the optimal critic
f∗ = log p(x1∣x2) + c(x1) from INCE(X1;X2). Plugging the optimal critic f∗ into ICLUB(X1;X2),
we obtain a desired upper bound INCE-CLUB(X1;X2) of I(X1;X2):
INCE-CLUB(X1;X2) = Ep(x1,x2) [log p(x1∣x2) + c(x1)] −Ep(x1)p(x2) [log p(x1∣x2) + c(x1)] (58)

= Ep(x1,x2) [log p(x1∣x2)] +Ep(x1,x2) [c(x1)] −Ep(x1)p(x2) [log p(x1∣x2)] −Ep(x1)p(x2) [c(x1)]

(59)
= Ep(x1,x2) [log p(x1∣x2)] −Ep(x1)p(x2) [log p(x1∣x2)] (60)

≥ I(X1;X2). (61)
Eq.(59) is from the linearity of expectation, Eq.(60) is from the fact that c(x1) is not a function of x2

and therefore Ep(x1,x2) [c(x1)] = Ep(x1)p(x2) [c(x1)] = Ep(x1) [c(x1)], and Eq.(61) is directly from
the original ICLUB(X1;X2) paper [16].

C.2 Unimodal and multimodal augmentations

We first restate the definitions of optimal single-view and multi-view augmentation:
Definition 8. (Optimal unimodal augmentation) X ′1 is an optimal unimodal augmentation for X1

when I(X;X ′) = I(X;Y ), which implies that the only information shared between X and X ′ is
task-relevant with no irrelevant noise.
Definition 9. (Optimal multimodal augmentation) X ′1 and X ′2 are optimal multimodal augmentation
for X1 and X2 when I(X1,X2;X

′
1,X

′
2) = I(X1,X2;Y ), which implies that the only information

shared between X1,X2 and X ′1,X
′
2 is task-relevant with no irrelevant noise.

When are these assumptions satisfied? I(X;X ′) = I(X;Y ) holds when all information shared be-
tween X and X ′ is task-relevant, which implies that the augmentation keeps task-relevant information
constant while changing task-irrelevant information. In the case of image classification, task-relevant
information is the object in the picture, while task-irrelevant information is the background. To satisfy
I(X1,X2;X

′
1,X

′
2) = I(X1,X2;Y ), by the chain rule of MI, we augment in two steps:

Unimodal aug: X ′1 s.t. I(X1;X
′
1) = I(X1;Y ), (62)

Unique aug: X ′2 s.t. I(X2;X
′
2∣X1) = I(X2;Y ∣X1). (63)
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Table 5: More examples of optimal single-view and multi-view augmentations.

Standard Aug Unique Aug
Dataset X1 X2 X′1 X′2 X′′2
Cartoon Caption Image Word Masking Crop + Flip + Resize Flip + Resize
MIMIC Signals Tables Time Warping CutMix [90] on All Features CutMix on Nonclinical Features
MOSEI Transcripts Video+Audio Word Masking Noise Injection on Any Frames Noise Injection on Silent Frames
UR-FUNNY Transcripts Video+Audio Word Masking Noise Injection on Any Frames Noise Injection on Silent Frames
MUsTARD Transcripts Video+Audio Word Masking Noise Injection on Any Frames Noise Injection on Silent Frames

the second step is the unique augmentation: after observing X1, we create augmented X ′2 from X2

to keep the task-relevant information but meanwhile do not affect any information from X1. In Table
5, we include some more examples of how unique augmentations could be designed across different
datasets.

Final objectives: If Definitions 8 and 9 are both satisfied, we can substitute contrastive estimators in
the following equations:

INCE(X1;X2∣Y ) = Ep(y)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2∼p(x1,x2 ∣y)

x−2∼p(x2 ∣y)

[log exp f(x1, x
+

2 , y)
∑k exp f(x1, x−2 , y)

]
⎤⎥⎥⎥⎥⎦

(64)

INCE-CLUB(X1;X2∣Y ) = Ep(y)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2
∼p(x1,x2 ∣y)

[f∗(x1, x
+

2 , y)] − Ex1∼p(x1 ∣y)

x−2∼p(x2 ∣y)

[f∗(x1, x
−

2 , y)]
⎤⎥⎥⎥⎥⎦

(65)

by replacing I(Xi;Y ) terms with I(Xi;X
′
i) and replacing I(X1;X2∣Y ) terms with

I(X1;X2∣X
′
1,X

′
2):

INCE(X1;X2∣X ′1,X ′2) = Ep(x′
1
,x′

2
)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2∼p(x1,x2 ∣x
′

1,x
′

2)

x−2∼p(x2 ∣x
′

1,x
′

2)

[log exp f(x1, x
+

2 , x
′

1, x
′

2)
∑k exp f(x1, x−2 , x

′

1, x
′

2)
]
⎤⎥⎥⎥⎥⎦

(66)

INCE-CLUB(X1;X2∣X ′1,X ′2) = Ep(x′
1
,x′

2
)[Ex1,x

+

2
∼p(x1,x2 ∣x

′

1
,x′

2
)
[f∗(x1, x

+

2 , x
′

1, x
′

2)]

− Ex1∼p(x1 ∣x
′

1,x
′

2)

x−2∼p(x2 ∣x
′

1,x
′

2)

[f∗(x1, x
−

2 , x
′

1, x
′

2)]] (67)

C.2.1 Implementing conditional CL via kernel

We restate our objectives below:

INCE(X1;X2∣X ′1,X ′2) = Ep(x′
1
,x′

2
)

⎡⎢⎢⎢⎢⎣
Ex1,x

+

2∼p(x1,x2 ∣x
′

1,x
′

2)

x−2∼p(x2 ∣x
′

1,x
′

2)

[log exp f(x1, x
+

2 , x
′

1, x
′

2)
∑k exp f(x1, x−2 , x

′

1, x
′

2)
]
⎤⎥⎥⎥⎥⎦

(68)

INCE-CLUB(X1;X2∣X ′1,X ′2) = Ep(x′
1
,x′

2
)[Ex1,x

+

2
∼p(x1,x2 ∣x

′

1
,x′

2
)
[f∗(x1, x

+

2 , x
′

1, x
′

2)]

− Ex1∼p(x1 ∣x
′

1,x
′

2)

x−2∼p(x2 ∣x
′

1,x
′

2)

[f∗(x1, x
−

2 , x
′

1, x
′

2)]] (69)

However, sampling from p(⋅∣x′1, x
′
2) is hard. Since X ′1,X

′
2 are continuous variables, directly sam-

pling from the conditional distributions p(⋅∣x′1, x
′
2) may be difficult; training a generative model

pθ(x1, x2∣x
′
1, x

′
2) from augmented data x′1, x

′
2 to original data x1, x2 can be expensive and nontrivial

in a multimodal setup. In this work, we implement the conditioning in p(x1, x2∣x
′
1, x

′
2) through con-

catenation and the details are in Appendix D.1. Here we discuss an alternative solution to this problem
introduced by Tsai et al. [78]. It leverages kernel methods for conditional sampling in contrastive
learning by assigning weights to each sampled data given the kernel similarity between conditioned
variables, avoiding directly sampling from the conditional distributions or training generative models.
In our formulation, given multimodal input (x1, x2) with their augmentation (x′1, x

′
2), we can sim-

ply use the technique from [78] to estimate INCE(X1;X2∣X
′
1,X

′
2) and INCE-CLUB(X1;X2∣X

′
1,X

′
2),

where the kernel measures the similarity between different pairs (x′1, x
′
2) of the conditional variable
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X1,X2. Specifically,

INCE(X1;X2∣X
′
1,X

′
2) = Ep(x1,x2,x′1,x

′

2)

⎡
⎢
⎢
⎢
⎢
⎣

log
exp f(x1, x

+
2)

exp f(x1, x2) + n ∗ [KX1⊥⊥X2∣X′1,X
′

2
]
ii

⎤
⎥
⎥
⎥
⎥
⎦

(70)

INCE-CLUB(X1;X2∣X
′
1,X

′
2) = Ep(x1,x2,x′1,x

′

2)
[f∗(x1, x2) − log [KX1⊥⊥X2∣X′1,X

′

2
]
ii
] (71)

where KX1⊥⊥X2∣X′1,X
′

2
= KX1X2(KX′1X

′

2
+ λI)−1KX′1X

′

2
and [KX1⊥⊥X2∣X′1,X

′

2
]
ii

is the ith row and
ith column of KX1⊥⊥X2∣X′1,X

′

2
. KX1X2 is a kernel similarity matrix between X1 and X2, and KX′1X

′

2

is a separate kernel similarity matrix between X ′1 and X ′2. f∗ is the optimal solution of Eq.(70).
By leveraging the similarity KX′1X

′

2
between conditional variables X ′1 and X ′2, KX1⊥⊥X2∣X′1,X

′

2

transforms the similarity scores between X1 and X2 under unconditional distributions into similarity
scores under conditional distributions. Note that the expectations in Eqs.(70) and (71) are taken
over the joint distribution p(x1, x2, x

′
1, x

′
2), which comes naturally after augmenting both modalities

X1 and X2. This method could effectively alleviate the problem of sampling from conditional
distributions in our formulation. We refer the reader to Tsai et al. [78] for more details.

C.3 Final estimators in FACTORCL

Theorem 6. (Contrastive estimators for shared and unique information). Under assumptions on
single-view augmentations I(X1;Y ) = I(X1,X

′
1) (Definition 8) and optimal multi-view augmen-

tation X ′2 such that I(X1,X2;X
′
1,X

′
2) = I(X1,X2;Y ) (Definition 9), we can define contrastive

objectives for task-relevant shared and unique information with:

S = I(X1;X2;Y ) ≥ INCE(X1;X2) − INCE-CLUB(X1;X2∣X
′
1,X

′
2) (72)

Ui = I(Xi;Y ∣X−i) ≥ INCE(Xi;X
′
i) − INCE-CLUB(X1;X2) + INCE(X1;X2∣X

′
1,X

′
2) (73)

Proof. The objectives follow from the fact that INCE(X1;X2) and INCE(X1;X2∣X
′
1,X

′
2)

are lower bounds of I(X1;X2) and I(X1;X2∣Y ) respectively, and INCE-CLUB(X1;X2) and
INCE-CLUB(X1;X2∣X

′
1,X

′
2) are upper bounds of I(X1;X2) and I(X1;X2∣Y ) respectively:

S = I(X1;X2;Y ) = I(X1;X2) − I(X1;X2∣Y ) (74)

≥ INCE(X1;X2) − INCE-CLUB(X1;X2∣X
′
1,X

′
2) (75)

Ui = I(Xi;Y ∣X−i) = I(Xi;Y ) − (I(X1;X2) − I(X1;X2∣Y )) (76)

≥ INCE(Xi;X
′
i) − (INCE-CLUB(X1;X2) − INCE(X1;X2∣X

′
1,X

′
2)) (77)

and symmetrically for U2.

Now we show that FACTORCL learns both shared and unique task-relevant information. First, we
restate the definition of the factorized representations:

ZS1 = argmax
Z1=fθ(X1)

I(Z1;X2;Y ), ZS2 = argmax
Z2=fθ(X2)

I(Z2;X1;Y ), (78)

ZU1 = argmax
Z1=fθ(X1)

I(Z1;Y ∣X2), ZU2 = argmax
Z2=fθ(X2)

I(Z2;Y ∣X1). (79)

where I(Z1;X2;Y ) = I(Z1;X2) − I(Z1;X2∣Y ) is the shared information and I(Z2;X1;Y ) =
I(Z2;X2) − I(Z2;X1∣Y ) is the unique information.

Theorem 7. (Optimality of FACTORCL) If ZS1 , ZS2 , ZU1 , ZU2 perfectly maximize Eqs.(78-79)
and the estimations in Eqs.(13-67) are tight, we obtain I(X1,X2;Y ) = I(ZS1 ;ZS2 ;Y ) +
I(ZU1 ;Y ∣ZS2) + I(ZU2 ;Y ∣ZS1), suggesting that FACTORCL learns both shared and unique task-
relevant information.

Proof. Because I(X1,X2;Y ) = I(X1;X2;Y ) + I(X1;Y ∣X2) + I(X2;Y ∣X1), it is sufficient to
show that I(X1;X2;Y ) = I(ZS1 ;ZS2 ;Y ), I(X1;Y ∣X2) = I(ZU1 ;Y ∣ZS2) and I(X2;Y ∣X1) =

I(ZU2 ;Y ∣ZS1).
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First we show I(X1;X2;Y ) = I(ZS1 ;ZS2 ;Y ). Crucially, by definition of how ZS1 and ZS2 are
optimized to maximize I(X1;X2;Y ), we have that:

I(X1;X2;Y ) = I(ZS1 ;X2;Y ) = I(ZS2 ;X1;Y ). (80)

We can then obtain

I(X1;X2;Y ) = I(X1;ZS2 ;Y ) (81)
= I(X1;ZS2 ;Y ∣ZS1) + I(ZS1 ;ZS2 ;X1;Y ) (82)
= I(ZS2 ;Y ∣ZS1) − I(ZS2 ;Y ∣ZS1 ,X1) + I(ZS1 ;ZS2 ;X1;Y ) (83)
= I(ZS2 ;Y ∣ZS1) − I(ZS2 ;Y ∣X1) + I(ZS1 ;ZS2 ;X1;Y ) (84)
= I(ZS2 ;Y ∣ZS1) − I(ZS2 ;Y ∣X1) + I(ZS1 ;ZS2 ;Y ) (85)
= I(ZS2 ;Y ∣ZS1) + I(ZS1 ;ZS2 ;Y ) (86)
= I(ZS1 ;ZS2 ;Y ) (87)

where Eq.(84) is because ZS1 are deterministically obtained from S1 and Eq.(85) is because ZS1

maximizes the shared information. Finally, we go to Eq.(87) I(ZS2 ;Y ∣ZS1) = 0 as shown in
Eqs.(26-33) using the fact that ZS1 is learned to maximize I(X1;X2;Y ) and I(ZS1 ;X2;Y ) =
I(X1;ZS2 ;Y ).

Next, we show I(X1;Y ∣X2) = I(ZU1 ;Y ∣ZS2):

I(ZU1 ;Y ∣ZS2) = I(ZU1 ;Y ∣ZS2 , ZU2) + I(ZU1 ;Y ;ZU2 ∣ZS2), (88)

which is by the chain rule of conditional mutual information. Then we show I(ZU1 ;Y ;ZU2 ∣ZS2) = 0:

I(ZU1 ;Y ;ZU2 ∣ZS2) = I(ZU1 ;ZU2 ∣ZS2) − I(ZU1 ;ZU2 ∣Y ;ZS2) = 0 − 0 = 0 (89)

This is because Eq.(79) leads to I(ZU1 ;Y ∣X2) = I(X1;Y ∣X2) and I(ZU2 ;Y ∣X1) = I(X2;Y ∣X1).
If the estimations in Eqs.(13-67) are tight, by conditioning and by the previously stated
I(ZU1 ;Y ∣X2) = I(X1;Y ∣X2), ZU1 tightly captures information from only X1 and not in X2.
The same applies to ZU2 . We have I(ZU1 ;X2) = I(ZU2 ;X1) = I(ZU1 ;ZU2) = I(ZU1 ;ZU2 ∣T ) = 0
with T being an arbitrary random variable because no shared information exists between ZU1 and
ZU2 . Then we obtain:

I(ZU1 ;Y ∣ZS2 , ZU2) = I(ZU1 ;Y ∣ZS2 , ZU2 ,X2) + I(ZU1 ;Y ;X2∣ZS2 , ZU2) (90)
= I(ZU1 ;Y ∣X2) (91)

We use the fact that conditioning on ZS2 , ZU2 and X2 jointly reduces to conditioning on X2 since
ZS2 and ZU2 are deterministically obtained from X2. Lastly, since Eqs.(78-79) are satisfied, ZU1 =

argmaxZ1=fθ(X1)
I(Z1;Y ∣X2) therefore I(ZU1 ;Y ∣X2) = I(X1;Y ∣X2). We have:

I(ZU1 ;Y ∣ZS2) = I(ZU1 ;Y ∣X2) = I(X1;Y ∣X2). (92)

The proof for I(X2;Y ∣X1) = I(ZU2 ;Y ∣ZS1) is similar. We now have shown that I(X1;X2;Y ) =
I(ZS1 ;ZS2 ;Y ), I(X1;Y ∣X2) = I(ZU1 ;Y ∣ZS2) and I(X2;Y ∣X1) = I(ZU2 ;Y ∣ZS1), adding up all
LHS and RHS we have the theorem.

C.4 Extensions to masking and non-contrastive learning

We now show how similar ideas can be extended to other popular self-supervised learning objectives,
such as non-contrastive learning [6, 94] and masked pre-training [20, 29]. Importantly, this paper pro-
vides a new principle for multimodel self-supervised learning: (1) learning task-relevant information
and (2) removing task-irrelevant information from both shared and unique parts across modalities.
Our paper focuses on realizing this principle via multi-view information theory and contrastive
learning. Below we provide two potential alternatives to realize this principle on non-contrastive and
masking methods, respectively:

Non-contrastive learning: Methods such as Barlow Twins [94] and VICReg [6] use invariance and
covariance regularizations to maximally preserve shared information in the embeddings across two
modalities. However, the embeddings learned may contain only contain task-relevant information
from the shared part and not unique parts. To use the principle in this paper to capture more task-
relevant information from unique parts, one should perform VIC-regularization on X1 features, on
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X2 features, and on X1,X2 cross-modal features. When performing VICReg on unimodal features,
one should condition on the other modality when performing augmentation. Specifically, similar to
the idea of multimodal augmentation in this paper, the augmentation of the second modality should
not interfere with the shared part (i.e., do not augment regions referred to by the first modality),
making the invariance and covariance regularization of the second modality focus on the augmented
modality-unique features. This makes the model learn unique modality features that are not captured
by the joint embedding from standard independent augmentations.

Masking: Conceptually, masking [20, 29] can be interpreted as leveraging unmasked regions in the
same modality to predict masked regions or leveraging the other modality to predict the masked
region. However, the learned representation may not be all task-relevant. To use the principle in this
paper to exclude task-irrelevant information and capture more task-relevant information from unique
parts, we can perform conditional masking, where masking is conditioned on augmented views
(similar to the multimodal augmentation in the paper, where the conditioned views are approximating
the labels). As a result, only unique regions in the second modality can be masked out, making the
model capture more unique information from the second modality by masked prediction. Here we
have only provided high-level intuitions of extensions to these methods, and future work should
explore these ideas in more detail.

D Experimental Details

D.1 Implementation details

Objective Formulation and Architecture

In Algorithm 2 in the main text, we see the sketch for doing contrastive learning with our proposed
objectives. To implement all algorithms used in our ablation experiments, we start with two encoders
e1(⋅) and e2(⋅), which takes samples x1 and x2 from the modalities X1 and X2, and outputs
corresponding representations z1 and z2. We also have a critic function fθ(⋅, ⋅) parametrized by θ
which takes z1 and z2 as inputs and returns a scalar. A popular way to perform contrastive learning
aims to maximize INCE(X1;X2), where

INCE(X1;X2) = Ex1,x
+

2∼p(x1,x2)

x−2∼p(x2)

[log
exp fθ(e1(x1), e2(x

+
2))

∑k exp fθ(e1(x1), e2(x−2))
] . (93)

In our algorithms, we follow the derivations in Eqs.(8-9) to maximize each INCE objective and
minimize each INCE-CLUB objective. Therefore, for each objective, we add two additional MLP heads
on top of the two encoders and create a separate critic which takes in the outputs of the MLP heads
instead of the encoders. In all the experiments, we adopt the concat critic design [58, 60, 68], where
fθ(x, y) = hθ([x, y]) with hθ being an MLP.

FACTORCL-SUP: In the supervised version of CL which uses label Y , the objective we aim to
maximize is formulated as

LFACTORCL−SUP = INCE(X1;X2) − INCE-CLUB(X1;X2∣Y ) (94)
+ INCE(X1;Y ) + INCE(X2;Y ) (95)
− INCE-CLUB(X1;X2) + INCE(X1;X2∣Y ). (96)

Each INCE and INCE-CLUB term in this objective is calculated using its own critic as discussed above.
The conditional terms involving the label Y are implicitly modeled by directly concatenating Y
to the outputs of both heads before feeding into the critic. To obtain the learned representations
ZS1 , we concatenate the outputs of the heads on top of the encoder e1 that correspond to the terms
INCE(X1;X2) and INCE-CLUB(X1;X2∣Y ). To obtain ZU1 , we concatenate e1’s head outputs from
the terms INCE(X1;Y ), INCE-CLUB(X1;X2), and INCE(X1;X2∣Y ). ZS2 and ZU2 are obtained in a
similar fashion, except we use the outputs from e2’s heads instead of e1.

FACTORCL-SSL: In the self-supervised version of CL which uses augmentations X ′1 and X ′2 of the
input modalities, the objective we aim to maximize is formulated as

LFACTORCL−SSL = INCE(X1;X2) − INCE-CLUB(X1;X2∣X
′
1,X

′
2) (97)

+ INCE(X1;X
′
1) + INCE(X2;X

′
2) (98)

− INCE-CLUB(X1;X2) + INCE(X1;X2∣X
′
1,X

′
2). (99)
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Figure 5: An illustration of conditioning by concatenation in the implementation of FACTORCL. Conditioning
is done by concatenating Z1, the encoded representation of X1, and Z′1, the encoded representation of X ′1. A
similar operation is performed for X2 and X ′2. The concatenated vectors are then fed to MI estimators, such as
INCE and INCE-CLUB (the figure illustrates INCE).

Here the conditional terms are conditioned on the augmentations X ′1 and X ′2, and we can similarly
model it by concatenating the head outputs of X ′1 to X1 and the head outputs of X ′2 to X2 before
feeding into the critic. We use Figure 5 to illustrate this. The way to obtain the learned representations
is the same as described in FACTORCL-SUP.

Estimation of CMI: To estimate the conditional mutual information (CMI) I(X1;X2∣X
′
1,X

′
2), we

can estimate the lower or upper bounds of true CMI [51, 55, 69]. However, direct sampling from the
conditional distribution p(x1, x2∣x

′
1, x

′
2) can be expensive because we should consider a different

conditional distribution p(x1, x2∣x
′
1, x

′
2) for each data pair x′1, x

′
2. Sordoni et al. [69] address this by

concatenating the conditioning variable with the input in the critic: ϕ(x1, x2, c), and showing that
Conditional InfoNCE (Eq.(15) is a lower bound and estimator of CMI. This estimator can be made
more exact by further importance sampling [69]. However, adding importance sampling [69] or using
more accurate estimators [26] comes with a trade-off in complexity. Since we focus on capturing
unique information to learn a scalable multimodal representation instead of accurately estimating the
CMI, we leveraged a simpler version of the estimator from Sordoni et al. [69]: generating multiple
augmented pairs from x1, x2, and concatenating the input x1, x2 and each augmented pair x′1, x

′
2 to

define samples from the conditional distribution p(x1, x2∣x
′
1, x

′
2). We argue that since augmentations

do not significantly change the semantics of images, p(x1, x2∣x
′
1, x

′
2) could be approximated by

p(x′′1 , x
′′
2 ∣x
′
1, x

′
2) where x′′1 , x

′′
2 are other augmented pairs in addition to x′1, x

′
2. In this submission,

we use one pair of augmented samples for consistency, but our code easily supports increasing the
number of augmented pairs that can improve the accuracy of CMI estimation.

Regardless, our existing one-pair implementation can already show that our estimators are empirically
comparable to CMI estimators with guarantees such as Mukherjee et al. [55] (Table 9), and our
estimators empirically satisfy that the lower bound is smaller than the true CMI, and the true CMI
smaller than the upper bound, i.e., Conditional InfoNCE ≤ true CMI ≤ Conditional InfoNCE-CLUB
(also in Table 9). We refer the reader to Sordoni et al. [69] for tighter bounds for CMI.

OurCL-SUP: For this ablation, we remove the factorization and only learn Z1 for X1 and Z2 for X2.
The objective we use is the same as that of FACTORCL-SUP. The only difference is that we now take
e1(x1) and e2(x2) as the learned representations for inputs x1 and x2.

OurCL-SSL: This is a similar ablation for FACTORCL-SSL where we remove the factorization.
The objective is the same as that of FACTORCL-SSL and we use e1(x1) and e2(x2) as the learned
representations for inputs x1 and x2.

Training Strategy: In regular contrastive learning using INCE as the only objective, we can simply
perform gradient descent to minimize INCE, updating all parameters in the encoders, MLP heads,
and critics. However, training any of the four methods above also involves the minimization of
the INCE-CLUB objectives, which require the optimal critic f∗ from INCE, as stated in Eq.(11).
Therefore, within each iteration during our training, we need to first obtain the optimal critics for the
INCE-CLUB terms using the INCE objective. We outline the training strategy using a sampling method
in Algorithm 3. In this algorithm, LFACTORCL can be either LFACTORCL−SUP or LFACTORCL−SSL, and
LNCE is the summation of INCE objectives for the INCE-CLUB terms. In particular, we have

LNCE = {
INCE(X1;X2∣Y ) + INCE(X1;X2), if L = LFACTORCL−SUP ;
INCE(X1;X2∣X

′
1,X

′
2) + INCE(X1;X2), if L = LFACTORCL−SSL .

(100)
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Algorithm 3 CL training with sampling
Require: Multimodal dataset {X1,X2}.

θ, ϕ ← Initialize network parameters.
while not converged do
{x1,x2} ← Sampled batch from {X1,X2}
θ ← Update parameters by maximizing LFACTORCL
for i = 1 to k do
{x′1,x

′
2} ← Sampled batch from {X1,X2}

ϕ ← Update parameters by maximizing LNCE
end for

end while
return θ, ϕ

We define ϕ to be the parameters of critics for the INCE-CLUB terms, and θ corresponds to all the rest
parameters in the network (parameters of encoders, heads, and critics for INCE terms). In the outer
loop, we update θ using the main learning objective L. In the inner loop, we update ϕ using the LNCE
objective, which learns the optimal critics f∗ needed to compute the INCE-CLUB terms. Ideally in
the inner loop we would update ϕ until convergence so we get a good approximation to the optimal
critic. In practice we found sampling just one batch by setting k = 1 in Algorithm 3 works pretty
well. Using only one iteration does not have a big impact on the convergence and still produces
promising results. More importantly, it significantly reduces the time required for training, and allows
our algorithms to have comparable running time to existing contrastive learning methods.

D.2 Datasets

Gaussian datasets for MI estimation: As shown in Figure 3 in the main text, we first demonstrate
the quality of our proposed upper bounds INCE-CLUB(X1;X2) on a toy Gaussian dataset. We obtain
the samples {(xi, yi)} from 4 multivariate Gaussian distribution with dimensions {20, 50, 100, 200}.
In each dataset, we set the ground truth MI values to be {2, 4, 6, 8, 10}, and so we can compute the
correlation ρ needed for achieving these MI values using the ground truth MI formula for Multivariate
Gaussian: I(X,Y ) = −d

2
log(1 − ρ2). At each true MI value we sample 4000 times using a batch

size of 64.

Synthetic dataset with controlled generation: We generate data with controllable ratios of task-
relevant shared and unique information to analyze the behavior of each contrasive learning objective
in Figure 1 in the main text. Starting with a set of latent vectors w1,w2,ws ∼ N(0d,Σ

2
d), d = 50

representing information unique to X1,X2 and common to both respectively, the concatenated vector
[w1,ws] is transformed into high-dimensional x1 using a fixed full-rank transformation T1 and
likewise [w2,ws] to x2 via T2. The label y is generated as a function (with nonlinearity and noise)
of varying ratios of ws, w1, and w2 to represent shared and unique task-relevant information. For
experiments, we used 1-layer MLPs with 512 hidden size as encoders, and the embedding dimensions
are 128 for both modalities. The heads on top of encoders are also 1-layer MLPs with the same
hidden and output dimension as the input, and all critics are 1-layer MLPs with 512 hidden size.

Multimodal fusion datasets: We use a collection of 5 real-world datasets provided in Multi-
Bench [45] and the IRFL dataset to test our method in the context of varying ratios of shared and
unique information that is important for the task. In all the datasets below, the heads added on top
of the encoders are 1-Layer MLPs with ReLU activations that map the encoder outputs to the same
dimensions. All critics are also MLPs with 1 hidden layer of size 512 and ReLU activation.

1. MIMIC-III [38] (Medical Information Mart for Intensive Care III) is a large-scale dataset for
healthcare which contains records of over 40,000 ICU patients in both forms of times-series data
measured by hours and static data (age, gender, ethnicity) in the tabular numerical form. We use
the preprocessed data provided in MultiBench [45], where the time-series data is measured every 1
hour in a 24-hour period and consists of vectors of size 12, and the tabular data consists of vectors
of size 5. The task we use in the experiment is a binary classification on whether the patient fits
any ICD-9 code in group 7 (460-519).
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Table 6: Results on MultiBench [45] datasets with varying shared and unique information: FACTORCL achieves
strong results vs self-supervised (top 5 rows) and supervised (bottom 3 rows) baselines that do not have unique
representations, factorization, upper-bounds to remove irrelevant information, and multimodal augmentations.

Model MIMIC MOSEI MOSI UR-FUNNY MUSTARD
SimCLR [13] 66.7 ± 0.0% 71.9 ± 0.3% 47.8 ± 1.8% 50.1 ± 1.9 % 53.5 ± 2.9%
Cross+Self [81] 65.2 ± 0.0% 71.1 ± 0.2% 48.6 ± 1.2% 56.5 ± 0.7% 53.9 ± 4.5%
Cross+Self+Fact [89] 65.5 ± 0.0% 71.9 ± 0.2% 49.0 ± 1.1% 59.9 ± 0.9% 53.9 ± 4.0%
OurCL-SSL 65.2 ± 0.0% 71.2 ± 0.2% 49.0 ± 0.8% 58.8 ± 1.3% 54.0 ± 2.5%
FACTORCL-SSL 67.3 ± 0.0% 74.5 ± 0.1% 51.2 ± 1.6% 60.5 ± 0.8% 55.8 ± 0.9%
SupCon [41] 67.4 ± 0.0% 71.0 ± 0.1% 47.2 ± 1.2% 50.1 ± 2.0% 52.7 ± 2.2%
OurCL-SUP 68.2 ± 0.0% 71.1 ± 0.2% 65.3 ± 0.8% 58.3 ± 1.1% 65.1 ± 1.8%
FACTORCL-SUP 76.8 ± 0.0% 77.8 ± 0.3% 69.1 ± 0.6% 63.5 ± 0.8% 69.9 ± 1.9%

Table 7: Continued pre-training on CLIP with our FACTORCL objectives on classifying images and figurative
language. Our approach shows strong results as compared to standard fine-tuning and continued pre-training.

Task IRFL
Zero-shot CLIP [61] 89.2 ± 0.0%
SimCLR [13] 91.6 ± 0.0%
Cross+Self [81, 89] 91.1 ± 1.2%
FACTORCL-IndAug 91.6 ± 1.3%
FACTORCL-SSL 93.8 ± 1.4%
Fine-tuned CLIP [61] 96.4 ± 0.0%
SupCon [41] 87.7 ± 4.7%
FACTORCL-SUP 98.3 ± 1.2%

In the experiments, we use a 2-layer MLP with 10 hidden layer size for the tabular data modality,
and map it to a vector of size 10. The time-series modality is encoded using a GRU with hidden
size 30 and followed by a linear layer which projects the output to embeddings of size 15. We
train the model for 100 epochs using the Adam optimizer with a 1e-4 learning rate.

2. CMU-MOSEI [93] is the largest sentence-level multimodal sentiment and emotion benchmark
with 23,000 monologue videos. It contains more than 65 hours of annotated video from more
than 1,000 speakers and 250 topics. Each video is labeled with a sentiment intensity ranging from
-3 to 3. In our experiments, we cast the intensity values to a binary classification on whether the
sentiment is positive or negative. MultiBench [45] provides access to the extracted features of the
vision, text, and audio modalities, and in our experiments, we use the vision and text features for
doing contrastive learning.

In our experiments, we encode both the vision and text modalities using Transformer encoders
with 5 heads and 5 layers, and map them to 40-dimensional embeddings. We train the model for
100 epochs using the Adam optimizer with a 1e-4 learning rate.

3. CMU-MOSI [91] is a similar dataset for multimodal sentiment analysis created from 2,199
YouTube videos clips. The data focuses on videos that reflect the real-world distribution of
speakers expressing their opinions in the form of monologues. The sentiment intensities are
labeled continuously from -3 to 3. Again we cast the label into a binary classification on whether
the sentiment is positive or negative, and we used the extracted vision and text features for
contrastive learning.

In our experiments we encode both the vision and text modalities using Transformer encoders
with 5 heads and 5 layers, and map them to 40-dimensional embeddings. We train the model for
100 epochs using the Adam optimizer with a 1e-4 learning rate.

4. UR-FUNNY [27] is the first large-scale dataset for humor detection in human speech. The
dataset consists of samples from more than 16,000 TED talk videos with speakers from diverse
backgrounds sharing their ideas. The laughter markup is used to filter out 8,257 humorous
punchlines from the transcripts. The context is extracted from the prior sentences to the punchline.
Using a similar approach, 8,257 negative samples are chosen at random intervals where the last
sentence is not immediately followed by a laughter marker. The task is to classify whether there is
humor or not using the vision and text modalities.
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Table 8: Additional experiments on CIFAR10 [43] and MNIST [19] datasets using our FACTORCL objectives
on image classification.

Task CIFAR10 MNIST
SimCLR [13] 87.0% 98.84%
SupCon [41] 92.7% 99.38%
FACTORCL-SUP 91.3% 99.21%

Table 9: We verify our conditional lower and upper bound estimators on a synthetic dataset with fixed dimension
of representation dz and varying number of samples n.

Number of samples (×103), dz = 20 5 10 20 50
CCMI (MI-Diff + Classifier) 2.03 2.06 2.15 2.20
Conditional InfoNCE 2.19 2.20 2.20 2.20
Conditional InfoNCE-CLUB 3.45 3.53 2.98 2.86
True CMI 2.32 2.32 2.32 2.32

In our experiments, we encode both the vision and text modalities using Transformer encoders
with 5 heads and 5 layers, and map them to 40-dimensional embeddings. We train the model for
100 epochs using the Adam optimizer with a 1e-4 learning rate.

5. MUSTARD [12] is a corpus of 690 videos for research in sarcasm detection from popular TV
shows including Friends, The Golden Girls, The Big Bang Theory, and Sarcasmaholics Anony-
mous. It contains audiovisual utterances together with the textual context. We use the preprocessed
features of the vision and text modalities for doing contrastive learning and performing sarcasm
detection.

In our experiments, we encode both the vision and text modalities using Transformer encoders
with 5 heads and 5 layers, and map them to 40-dimensional embeddings. We train the model for
100 epochs using the Adam optimizer with a 1e-4 learning rate.

6. IRFL [88] is a dataset for understanding multimodal figurative languages. It contains 6,697
matching images and figurative captions (rather than literal captions) of three types of figurative
languages: idiom, simile, and metaphor. The original data for the matching task is provided in the
form of 1 caption, 3 distractor images, and 1 matching image. We convert it into a fusion task by
only collecting the matching image and text pairs and assigning labels using the type of figurative
language it belongs to.

For this dataset, we do not train from scratch. Instead, we performed continued pretraining using
our proposed objectives on pretrained CLIP [61] models. We used the CLIP-VIT-B/32 model
and its pretrained image and text encoders. We performed training for 10 epochs using the Adam
optimizer with a 1e-6 learning rate.

D.3 Additional analysis and results

Fusion experiments: In Table 6 and 7 we present more detailed results on the Multibench [45]
and IRFL [88] datasets computed from 5 independent runs. FACTORCL significantly outperforms
the baselines that do not capture both shared and unique information in both supervised and self-
supervised settings, particularly on MUSTARD (where unique information expresses sarcasm, such
as sardonic facial expressions or ironic tone of voice), and on MIMIC (with unique health indicators
and sensor readings). There are also big improvements on the two sentiment analysis datasets MOSEI
and MOSI, with 6.8% and 21.9% increases respectively when compared to SupCon [41].

In Table 7, we also see that FACTORCL substantially improves the state-of-the-art in classifying
images and figurative captions which are not literally descriptive of the image on IRFL, outperforming
zero-shot and fine-tuned CLIP [61] as well as continued pre-training baselines on top of CLIP. While
the supervised version gives the best results overall, the self-supervised version with our proposed
unique augmentations also performs better than independent augmentations, indicating that in the
case without label information, we should always try to find and use unique augmentations when
possible. In our experiments, we use word masking for text augmentations. For independent image
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Table 10: We verify our conditional lower and upper bound estimators on a synthetic dataset with varying
dimensions of representation dz and fixed number of samples n.

Dimension dz , n = 2 × 104 1 10 20 50 100
CCMI (MI-Diff + Classifier) 2.30 2.18 2.15 1.98 1.67
Conditional InfoNCE 2.18 2.20 2.20 2.26 2.30
Conditional InfoNCE-CLUB 3.70 2.95 2.98 2.79 2.86
True CMI 2.32 2.32 2.32 2.32 2.32

Table 11: We probe whether the InfoMin assumption from Tian et al., I(Z1;Y ∣X2) = 0 and I(Z2;Y ∣X1) = 0,
is reasonable for Theorem 1. Compared to the shared information I(X1;X2), I(Z1;Y ∣X2) is much smaller
and closer to zero, indicating that the InfoMin assumption is reasonable, and Theorem 1 holds in practice.

I(X1, Y ;X2) I(X1;X2) I(Z1;Y ∣X2) I(X2, Y ;X1) I(X2;X1) I(Z2;Y ∣X1)
12.69 12.29 0.40 11.31 10.92 0.38

augmentations, we use cropping, flipping, and color jittering. The unique augmentation simply
removes the cropping operation, as illustrated in Figure 4 in the main text.

Additional experiments on high shared information and low unique information: In Table 8 we
include additional results using our method on the CIFAR10 [43] and MNIST [19] datasets. Our
method outperforms the self-supervised contrastive learning on both datasets as expected, and roughly
maintains the same performance as supervised contrastive learning. Therefore, in cases with abundant
shared information (two modalities with high shared information or two different views generated
from augmentations), our method recovers the performance of existing methods that do not capture
unique information.

Experiments on CMI estimator verification: In Table 9 and Table 10, we include experiment results
which verify that computing the conditional MI lower and upper bounds via concatenation indeed
yields reliable estimates. In particular, we aim to verify that the the Conditional InfoNCE objective
gives a lower bound of the CMI, and the Conditional InfoNCE-CLUB objective gives an upper bound
of the CMI. We follow the experiment setups in [55], presenting the true CMI and results of our
estimators on synthetic data with fixing dimension of representation Z and varying samples n, and
fixing samples n and varying dz . The specific implementations used for conditional InfoNCE and
conditional InfoNCE-CLUB can be found in Equation 13 and Equation 14, respectively. The results
indicate that our Conditional InfoNCE gives estimations smaller than the true CMI, and Conditional
InfoNCE-CLUB gives estimations greater than the true CMI. The performances are comparable to
estimators in [55], suggesting that our method yields valid and competitive lower and upper bounds
for CMI.

Empirical verification on InfoMin assumption: To verify the InfoMin assumption [72]
(I(Z1;Y ∣X2) = I(Z2;Y ∣X1) = 0), we use the same synthetic dataset as in Table 1 and measure
I(Z1;Y ∣X2). The results are shown in Table 11: we get I(X1;X2) = 12.29 and I(Z1;Y ∣X2) = 0.4.
I(Z1;Y ∣X2) is much smaller and closer to zero than I(Z1;Y ∣X2), indicating that the InfoMin
assumption holds in practice.

Compute resources: All experiments in this paper are run on a single NVIDIA A100 GPU. It takes
about 10 to 12 GPU hours to train the model on the CIFAR10 [43] for 300 epochs, and all the other
experiments can be finished within 1 GPU hour using our specified hyperparameters.

28


	Introduction
	Analysis of Multi-view Contrastive Learning
	Factorized Contrastive Learning
	Supervised FactorCL with shared and unique information
	Self-supervised FactorCL via multimodal augmentations
	Overall method and implementation

	Experiments
	Controlled experiments on synthetic datasets
	Self-supervised multimodal learning with low redundancy and high uniqueness

	Related Work
	Conclusion
	Broader Impact
	Analysis of Multi-view Contrastive Learning
	Factorized Contrastive Learning
	Contrastive estimators
	Unimodal and multimodal augmentations
	Implementing conditional CL via kernel

	Final estimators in FactorCL
	Extensions to masking and non-contrastive learning

	Experimental Details
	Implementation details
	Datasets
	Additional analysis and results


