
Under review as submission to TMLR

Bridging VMP and CEP:
Theoretical Insights for Connecting Different
Approximate Bayesian Inference Methods

Anonymous authors
Paper under double-blind review

Abstract

Approximate Bayesian inference (ABI) methods have become indispensable tools in mod-
ern machine learning and statistics for approximating intractable posterior distributions.
Despite the related extensive studies and applications across diverse domains, the theoret-
ical connections among these methods have remained relatively unexplored. This paper
takes the first step to uncover the underlying relationships between two widely employed
ABI techniques: the variational message passing (VMP) and the conditional expectation
propagation (CEP) methods. Through rigorous mathematical analysis, we demonstrate a
strong connection between these two approaches under mild conditions, from optimization
as well as graphical model perspectives. This newly unveiled connection not only enhances
our understanding of the performance and convergence properties of VMP and CEP, but
it also facilitates the cross-fertilization of their respective strengths. For instance, we prove
the convergence of CEP and enable an online variant of VMP through this connection.
Furthermore, our findings provide insights into the underlying relationships and distinc-
tive characteristics of other ABI methods, shedding new light on the understanding and
development of more advanced ABI techniques. To validate our theoretical findings, we
derive and analyze various ABI methods within the context of Bayesian tensor decomposi-
tion, a fundamental tool in machine learning research. Specifically, we show that these two
approaches yield the same updates within this context and illustrate how the established
connection can be leveraged to construct a streaming version of the VMP-based Bayesian
tensor decomposition algorithm.

1 Introduction

Approximating difficult-to-compute posterior distributions is one of the most fundamental challenges in
modern machine learning and statistics. To address this challenge, approximate Bayesian inference (ABI)
has made significant progress over the years (Blei et al., 2017; Zhang et al., 2019; Theodoridis, 2025; Cheng
et al., 2022b; Murphy, 2022), showcasing remarkable performance. These methods have found extensive
applications in diverse domains, such as bioinformatics (Daunizeau et al., 2014; Grønbech et al., 2020),
computer vision (Chan & Vasconcelos, 2009; Soh & Cho, 2022; Fan et al., 2022), and speech recognition
(Cohen & Smith, 2010; Xue et al., 2021). Variational inference (VI) (Jordan et al., 1999; Wainwright &
Jordan, 2008) and expectation propagation (EP) (Minka & Picard, 2001), along with their modern variants
(Zhang et al., 2019; Broderick et al., 2013; Li et al., 2015; Wang & Zhe, 2020; Vehtari et al., 2020), are two
prominent classes of ABI methods widely used in practice, as shown in Fig. 1.

The fundamental principle of VI involves formulating a family of distributions and subsequently finding the
member within that family that best approximates the target distribution (Blei et al., 2017; Bishop, 2006;
Theodoridis, 2025). The closeness between distributions is typically measured using the Kullback-Leibler
(KL) divergence. In the context of the mean-field VI, the variables are assumed to be mutually independent
and governed by their respective distributions. By decomposing the model evidence, VI transforms its
objective into optimizing the evidence lower bound (ELBO). When analytical expectations can be derived,
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Figure 1: Connections of different ABI methods. The red arrows indicate the new connections established
in this paper.

VI demonstrates favorable accuracy and speed. It also guarantees convergence to a local optimum (Beal,
2003). The streaming version of VI has also been developed to handle the streaming data case, but the
algorithm design is not straightforward and demands additional effort (Broderick et al., 2013).

When the distributions of variables are restricted to the exponential family (Brown, 1986) and possess
conjugate properties, mean-field VI can be implemented based on the convenient and efficient message-
passing mechanism. The resulting algorithm is known as the variational message passing (VMP) (Winn
et al., 2005). VMP operates by sending messages between nodes in the network and updating posterior
beliefs through local operations performed at each node. By introducing additional variational parameters
or utilizing approximation methods, VMP can be extended to models containing non-conjugate distributions
(Winn et al., 2005; Wang & Blei, 2013). It also guarantees convergence and enables efficient evaluation of
the model evidence (Winn et al., 2005).

EP is a generalized message-passing algorithm employed on factor graphs (Minka, 2013), which unifies and
extends the concepts of assumed density filtering (ADF) (Maybeck, 1982) and loopy belief propagation (Frey
& MacKay, 1997). The ADF can be viewed as a streaming or online version of EP, as shown in Fig. 1. In
EP, we construct an approximation of the posterior by iteratively performing simple local computations
which refine the factor that represents the contribution of the posterior from each data point. Notably,
EP differs from VI in terms of the direction of the KL divergence. In various tasks, such as the clutter
problem and mixture weight estimation, EP has shown superior performance compared to VI (Zhou et al.,
2023). Additionally, the local computations make EP amenable to parallelized and distributed computation,
rendering it well-suited for addressing large-scale problems (Li et al., 2015; Hasenclever et al., 2017; Vehtari
et al., 2020). However, applying EP encounters a critical challenge when dealing with models that have
complex likelihoods, as the moment matching that is involved in the factor update procedure can become
intractable. Additionally, convergence is not guaranteed due to its local optimization nature (Vehtari et al.,
2020).

To address the computation barrier in EP, recent advances have introduced alternative approaches for mo-
ment computation in EP, such as the Monte Carlo simulations (Li et al., 2018) and the Laplace approximation
(Smola et al., 2004). Unfortunately, these approximations often suffer from inefficiency and high computa-
tional costs, thereby diminishing the appeal of EP as a fast approximation method. Conditional expectation
propagation (CEP) (Wang & Zhe, 2020) has recently emerged as a promising alternative, offering an effi-
cient variant of EP. Instead of directly calculating the moments of the complete distribution, CEP first seeks
the tractable and analytical conditional moments and then computes their expectations with respect to the
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approximate posterior of the remaining variables. Like EP, CEP’s local update nature makes it well-suited
for large-scale datasets, but convergence guarantee remains an open question.

Since VMP and CEP are developed from different perspectives (VI and EP, respectively) and have distinct
theoretical roots (different directions of the KL divergence), theoretical connections between them remain
unexplored. To the best of our knowledge, the most related work is the power EP (Minka, 2004), which
unifies the idea of VI and EP by utilizing the α-divergence. By adjusting the value of α, it becomes possible
to obtain an intermediate result between VI and EP. While power EP provides a general perspective that
connects VI and EP, it does not fully uncover the intrinsic connections and differences between these two
methods, nor does it consider the specific cases of CEP and VMP. Another related work is the Bayesian
learning rule (Khan & Rue, 2023), which unifies different ABI methods through the natural gradient descent.
However, it does not consider the EP algorithm and its variants.

This paper aims to unveil the underlying relationships between VMP and CEP. In particular, we demonstrate
a strong connection between these two approaches from optimization as well as graphical model perspectives.
This newly identified connection not only deepens our understanding of the performance and convergence
properties of these two approaches but, also, it enables the cross-pollination of their respective strengths.
Additionally, it provides insights into the underlying relationships and distinct characteristics of other ABI
methods, as shown in Fig. 1.

Notably, the established connection provides a guarantee of the convergence of CEP, leveraging the corre-
sponding property enjoyed by VMP. It turns out that the assimilation of the message factors in CEP leads
to an increment of ELBO and ensures the attainment of convergence. Additionally, the connection can also
provide some insights into the convergence of the standard EP. Furthermore, the parallelized and distributed
nature of CEP facilitates the seamless construction of an online or distributed variant of VMP and VI.
This adaptability enables the effective handling of large-scale datasets, particularly in scenarios involving
continuous data streams or sequential data arrivals.

To corroborate our theoretical analysis, we present an example that showcases the application of VMP and
CEP in the context of Bayesian tensor decomposition, which is a powerful tool in machine learning research
and finds applications in various real-world scenarios (Cheng et al., 2022b;a; Fang et al., 2021b;a). In this
particular context, besides demonstrating the connection between VMP and CEP, we also illustrate how
this connection can be leveraged to develop a streaming version of the VMP-based tensor decomposition
algorithm.

The remainder of this paper is organized as follows. Section 2 gives a brief review of different ABI methods
and provides some useful lemmas. Section 3 contains the main theoretical results and some related extensions.
In Section 4, using Bayesian tensor decomposition as an example, different ABI methods are derived and
analyzed to validate our theoretical findings. Finally, Section 5 concludes with an overall discussion and
suggestions for future research directions.

2 Preliminaries

This section provides a brief review of various ABI methods and presents some useful lemmas. Before
delving into the details of each method, we introduce the general problem. Given a set of observations
D = {x1, · · · , xN } and a probabilistic model described via a set of latent variables θ, the joint distribution
can be expressed as

p(θ, D) = p(θ)p(D|θ),

where p(θ) represents the respective prior distribution and p(D|θ) denotes the data likelihood. The goal is
to compute the posterior distribution, p(θ|D), which can be expressed as

p(θ|D) = p(θ, D)
p(D) = p(θ, D)󰁕

p(θ, D)dθ
,

where p(D) denotes the model evidence. For many models of practical interest, it is infeasible to compute the
posterior distribution directly due to the analytically intractable integration in the denominator. Therefore,
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approximation methods are essential in such cases. In this paper, we primarily focus on VI, EP, and their
variants.

2.1 VI and VMP

2.1.1 VI

VI is a technique that approximates the posterior distribution by utilizing a probability distribution with
density q(θ) from a tractable family of distributions Q. The aim is to find the best variational approximation,
q∗ ∈ Q, by minimizing the KL divergence between q(θ) and the true posterior p(θ|D) (Cover, 1999), i.e.,

q∗ = min
q∈Q

KL(q(θ)󰀂p(θ|D)) = min
q∈Q

󰁝
q(θ) ln q(θ)

p(θ|D)dθ.

This transforms the inference task into an optimization problem, where the flexibility of the family Q controls
the complexity of the optimization process. However, the objective function is not directly computable as it
requires the model evidence. To overcome this challenge, VI employs a clever decomposition (e.g., Bishop,
2006; Theodoridis, 2025)

ln p(D) = L(q) + KL(q(θ)󰀂p(θ|D)),

where

L(q) =
󰁝

q(θ) ln p(θ, D)
q(θ) dθ (1)

is the evidence lower bound (ELBO). Since the model evidence is a constant with respect to θ and the KL
divergence is non-negative, minimizing the latter is equivalent to maximizing L(q).

If there are no restrictions on L(q), the maximum of the ELBO occurs when q(θ) equals p(θ|D), which,
however, is intractable. Consequently, some restrictions on the functional form of q(θ) are required. In the
context of the mean-field VI, the variables are assumed to be mutually independent, and each variable is
governed by its own distribution. A typical member of the mean-field variational family can be expressed as
(e.g., Blei et al., 2017; Theodoridis, 2025)

q(θ) =
M󰁜

m=1
q(θm). (2)

Here the elements of θ are partitioned into M disjoint groups, i.e., θ = {θ1, · · · , θM }. Then, the ELBO L(q)
is optimized by iteratively updating each group in turn. Specifically, the optimal solution for each factor can
be obtained by substituting (2) into (1), which gives

L(q) =
󰁝 󰁜

m

q(θm)
󰀫

ln p(θ, D) −
󰁛

m

ln q(θm)
󰀬

dθ

=
󰁝

q(θm)Eq(θ\m)[ln p(θ, D)]dθm −
󰁝

q(θm) ln q(θm)dθm + const

= −KL (q(θm)󰀂q̃(θm)) + const,

where θ\m represents the set of variables excluding the mth group and

ln q̃(θm) = Eq(θ\m)[ln p(θ, D)] + const.

It can be seen that L(q) is optimized when the KL divergence equals to zero, which results in

ln q∗(θm) = Eq(θ\m)[ln p(θ, D)] + const (3)
= Eq(θ\m)[ln p(θm|θ\m, D)] + const.
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After taking the exponential of both sides and normalizing, we obtain

q∗(θm) =
exp(Eq(θ\m)[ln p(θm|θ\m, D)])

󰁕
exp(Eq(θ\m)[ln p(θm|θ\m, D)])dθm

, ∀m. (4)

Although the set of equations in equation 4 provides consistency conditions for maximizing the lower bound,
they do not represent an explicit solution. This is because the optimum for each variable group θm depends
on the distributions of other groups, θ\m. Therefore, when applying VI, we typically seek a solution by first
initializing all of the factors q(θm) appropriately and then iteratively updating each factor, replacing the
other variable groups with their current estimates. Convergence is guaranteed because the ELBO is convex
with respect to each of the groups (e.g., Bishop, 2006).

2.1.2 VMP

VMP is an implementation of the mean-field VI that operates on the conjugate-exponential model (Winn
et al., 2005). In this model, the distribution of variables/nodes, conditioned on their parents, are drawn from
the exponential family and are conjugate with respect to the distributions over these parent variables.1 As
a result, each complete conditional is also in the exponential family (e.g., Blei et al., 2017), i.e.,

p(θm|θ\m, D) = h(θm) exp
󰀋

ηm(θ\m, D)T φ(θm) − Zm(ηm(θ\m, D))
󰀌

, (5)

where φ(θm) is the vector of sufficient statistics; ηm are the natural parameters; and Zm(·) is the log partition
function. The subscript m indicates that these quantities may vary across different nodes. For simplicity,
here, we consider each group θm to contain a single variable.

In the conjugate-exponential model, the update for node m in the mean-field VI becomes significantly
simplified. By substituting (5) into (4), the update can be expressed as (e.g., Blei et al., 2017)

q∗(θm) ∝ exp(Eq(θ\m)[ln p(θm|θ\m, D)]) (6)

= exp
󰁱

ln h(θm) + Eq(θ\m)[ηm(θ\m, D)]T φ(θm) − Eq(θ\m)[Zm(ηm(θ\m, D))]
󰁲

∝ h(θm) exp
󰁱
Eq(θ\m)[ηm(θ\m, D)]T φ(θm)

󰁲
.

This reveals that the optimal variational distribution for a node has the same functional form as the cor-
responding prior distribution, indicating that we only need to update the parameters of the corresponding
distribution. Furthermore, the updates for each one of the nodes can be implemented locally using the ex-
pected values (messages) from the rest of the other nodes. VMP involves the exchange of messages between
nodes in the network and iteratively updating the posterior distribution until the convergence is reached (Li
et al., 2024). The detailed algorithm for VMP is summarized in Appendix A.

2.2 EP and CEP

2.2.1 EP

EP is a generalized message-passing algorithm that combines and extends the concepts of ADF and loopy
belief propagation. Compared to VI, EP also approximates the posterior by minimizing the KL divergence,
but in the opposite direction. The detailed algorithm is elucidated as follows.

EP assumes that the joint distribution of the probabilistic model can be expressed in a factorized form, given
by

p(θ, D) =
󰁜

i

fi(θ).

1Equivalently, this can be described as a conjugate-exponential model represented as a Bayesian network (e.g., Theodoridis,
2025).
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Particularly, in the case of independently and identically distributed (i.i.d.) observed data, fi(θ) corresponds
to the ith likelihood term p(xi|θ), and f0(θ) represents the respective prior p(θ). Then, the joint distribution
is written as

p(θ, D) = p(θ)
N󰁜

i=1
p(xi|θ) =

N󰁜

i=0
fi(θ). (7)

We are interested in evaluating the posterior distribution

p(θ|D) = p(θ, D)
p(D) = 1

Z

󰁜

i

fi(θ),

where Z = p(D) is the normalization constant, which can be calculated as

Z =
󰁝 󰁜

i

fi(θ)dθ.

EP approximates the posterior by a product of factors2, given by (Minka, 2013)

q(θ) = 1
Z̃

󰁜

i

f̃i(θ),

where f̃i is an approximation of fi that belongs to the exponential family, and Z̃ is the associated normal-
ization constant. Ideally, the determination of the involved factors {f̃i(θ)}N

i=1 involves the minimization of
the KL divergence from p(θ|D) to q(θ), given by

KL(p󰀂q) = KL
󰀣

1
Z

󰁜

i

fi(θ)󰀂 1
Z̃

󰁜

i

f̃i(θ)
󰀤

.

However, this minimization is typically intractable due to the need to compute expectations with respect to
the true distribution.

EP provides an approximation approach by iteratively optimizing individual factors while taking into account
the influence of the remaining ones. It operates by cycling through the factors and refining them one at a
time. To elaborate, EP follows four simple steps in each iteration (Minka, 2013). First, select a factor f̃i for
updating and remove it from the approximation q(θ) to produce the calibrating distribution q\i(θ), defined
as q\i(θ) = q(θ)/f̃i(θ). Note that q\i can also be derived from the product of factors i ∕= j, but in practice,
the division is more convenient. Second, the calibrating distribution is combined with the factor fi(θ) to
obtain the tilted distribution

p̂i(θ) = 1
Zi

fi(θ)q\i(θ), (8)

where Zi is the associated normalization constant. Third, we obtain an approximation q󰂑(θ) of p̂i(θ) by
minimizing the KL divergence between p̂i(θ) and q󰂑(θ). If q󰂑(θ) belongs to the exponential family, as it is
often the case, the minimum can be obtained by moment matching (Maybeck, 1982), i.e.,

Eq󰂑(θ)[φ(θ)] = Ep̂i(θ)[φ(θ)], (9)

where φ(θ) is the sufficient statistics of q󰂑(θ). Note that the natural parameter of q󰂑(θ) is implicitly specified
in the moment matching process. For example, if q󰂑(θ) is a Gaussian distribution N (θ|µ, Σ) then we can
minimize the KL divergence by setting the mean µ equal to the mean of p̂i(θ) and the covariance Σ equal
to the covariance of p̂i(θ). Finally, the factor f̃i is update via f̃i(θ) ∝ q󰂑(θ)/q\i(θ).

The rationale behind this update is to ensure that the approximate factor contributes to the posterior in
a manner similar to the corresponding data likelihood. Due to the local refinement, the factors can be
efficiently calculated in a distributed manner. However, convergence is not guaranteed in general.

2Here, we use the term “factor” to maintain consistency with the terminology used in probabilistic graphical models.
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2.2.2 CEP

While EP is known for its favorable accuracy and speed on diverse tasks, a significant challenge in its
application arises from the computational intractability of the expectations Ep̂i(θ)[φ(θ)] in (9) for models
with complex data likelihood. To overcome this limitation, several methods have been proposed. One such
method is the CEP, which offers efficient and analytical updates.

In CEP, the approximate factor is assumed to be further factorized with respect to the variable groups
{θ1, · · · , θM }, which can be expressed as

f̃i(θ) =
󰁜

m

f̃i(θm), (10)

where {f̃i(θm)}M
m=1 are constrained to be in the exponential family. As a result, the approximate posterior

q(θm) and the calibrating distribution q\i(θ) are both factorized over the variable groups. It is worth noting
that the factorized message factors are also widely used in EP algorithms for large-scale applications.

Given the factorized form in (10), the objective is to update each subfactor f̃i(θm). By utilizing the law of
iterated expectations, the moment Ep̂i(θ)[φ(θm)] required for updating f̃i(θm) can be expressed as (Wang &
Zhe, 2020)

Ep̂i(θ)[φ(θm)] = Ep̂i(θ\m)

󰁫
Ep̂i(θm|θ\m)[φ(θm)]

󰁬
, (11)

where p̂i(θm|θ\m) is the conditional distribution and p̂i(θ\m) is the marginal distribution. The conditional
moment Ep̂i(θm|θ\m)[φ(θm)] often has an analytical form since the rest of the variables except θm are fixed.
More generally, the conditional moment can be represented with a quadrature formula. (Wang & Zhe, 2020)

To compute the moment in (11), EP requires the computation of the expectation of the conditional moment
with respect to the marginal posterior p̂i(θ\m). However, this computation is also intractable for models
with complex likelihoods. To address this challenge, CEP assumes that q(θ\m) and p̂i(θ\m) are close in
high-density regions as their moments are matched (Wang & Zhe, 2020). In the sequel, CEP employs q(θ\m)
as a surrogate for p̂i(θ\m) in the respective computation. The goal now becomes to calculate the expectation
Eq(θ\m)

󰁫
Ep̂i(θm|θ\m)[φ(θm)]

󰁬
.

Note that the conditional moment Ep̂i(θm|θ\m)[φ(θm)] is a function of the sufficient statistics of θ\m, denoted
as Ep̂i(θm|θ\m)[φ(θm)] = h(Φm), where Φm = {φ(θ1), · · · , φ(θm−1),
φ(θm+1), · · · , φ(θM )} is the set of sufficient statistics. If the expectation Eq(θ\m)[h(Φm)] is still intractable,
we can approximate it by utilizing the multivariate delta method (Dorfman, 1938; Ver Hoef, 2012), which
can be expressed by h(Eq(θ\m)[Φm]). The multivariate delta method can be seen as a first-order Taylor
approximation, as detailed in Appendix B. Similar to EP, the messages can be computed in a distributed
manner, but the convergence guarantee remains an open question. The detailed algorithm for CEP is
summarized in Appendix A.

2.3 ADF

ADF is an online Bayesian inference method that can be seen as a special case of EP. It provides an efficient
approach for approximating posterior distributions in a sequential manner. ADF is obtained by initializing all
the approximating factors, except the first one, to unity and then updating each factor once in a single pass.
The ADF algorithm shares similarities with EP but it simplifies certain aspects of the process. Particularly,
in ADF, the removal step, which involves creating a calibrating distribution by removing a factor from the
approximation, is ignored. Instead, the calibrating distribution is replaced by the full approximation, given
by (Li et al., 2015)

q\i(θ) = q(θ).

Consequently, the tilted distribution in ADF can be expressed as:

p̂i(θ) ∝ fi(θ)q(θ).

The subsequent steps in ADF are the same as in EP.

7



Under review as submission to TMLR

2.4 Lemmas

This subsection presents some useful lemmas to offer a deeper understanding of the exponential family and
the KL divergence.

Lemma 1(Minka, 2013): If p(θ) is an arbitrary fixed distribution and q(θ) is in the exponential family, then
minimizing the divergence KL(p󰀂q) with respect to q gives

Eq(θ)[φ(θ)] = Ep(θ)[φ(θ)],

where φ(θ) is the sufficient statistics of q(θ).

Lemma 1, commonly referred to as moment matching or moment projection, reveals that the KL divergence
can be minimized by equating expectations of the sufficient statistics of q(θ) to their expectations with
respect to p(θ). It is noteworthy that if p(θ) belongs to the exponential family and shares the same sufficient
statistics as q(θ) (i.e., they possess the same distributional form), the moment matching procedure guarantees
that their natural parameters become identical. As exponential family distributions are uniquely determined
by their sufficient statistics and natural parameters, moment matching leads to the equality of q(θ) and p(θ).
Consequently, the KL divergence between the two distributions is reduced to zero.

Lemma 2(Bishop, 2006): Assume p(θ) is a fixed distribution and q(θ) factorizes with respect to variable
groups, i.e.,

q(θ) =
󰁜

m

q(θm),

then minimizing the divergence KL(p󰀂q) with respect to q gives

q∗(θm) = p(θm), ∀m. (12)

Lemma 2 shows that the optimal solution of each factor distribution q(θm) is given by the corresponding
marginal distribution of p(θ).

3 Main Results

3.1 Connection between VMP and CEP

To establish the connection between CEP and VMP, we initially present the following lemma.

Lemma 3: Assume p(θ) is a fixed distribution and q(θ) factorizes with respect to variable groups, i.e.,

q(θ) =
󰁜

m

q(θm),

where each factor q(θm) belongs to the exponential family. Then minimizing the divergence KL(p󰀂q) with
respect to q gives

Eq(θ)[φ(θm)] = Ep(θ)[φ(θm)], ∀m, (13)

where φ(θm) is the sufficient statistics of q(θm).

Proof: See Appendix C.

Lemma 3 can be seen as a combination of Lemma 1 and Lemma 2, establishing a connection between the
conditional moment matching and the minimization of KL divergence. In CEP, the optimal factor is given
by

f̃i(θm) ∝ q󰂑(θm)/q\i(θm),
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where the tilted distribution q\i(θm) is defined in equation 8 and the variational distribution q󰂑(θ) is obtained
through moment matching, satisfying

Eq󰂑(θ)[φ(θm)] = Ep̂i(θ)[φ(θm)]. (14)

To establish the connection between CEP and VMP, it is necessary to derive an analytical form for the factor
f̃i(θm). Generally, f̃i(θm) does not possess an analytical form due to the involvement of moment matching in
the computation of q󰂑(θ). However, by comparing (13) and (14), we can show that for conjugate-exponential
models under mild conditions, f̃i(θm) does indeed have an analytical form.

Lemma 4: Consider a conjugate-exponential probabilistic model represented as a Bayesian network. If the
expectations are approximated using the multivariate delta method, the optimal factor in CEP is expressed
as

f̃i(θm) ∝
p̂i(θm|Eq[θ\m])

q\i(θm)
. (15)

Proof: See Appendix C.

Based on the analytical form of f̃i(θm), we can show the connection between the CEP and VMP, and state
the following theorem.

Theorem 1: Consider a conjugate-exponential probabilistic model represented as a Bayesian network.
Suppose the variational distribution follows the mean-field assumption and the observations are i.i.d. Then
the CEP and VMP yield the same update equations under the following conditions:

• The update in CEP is performed on the variable groups.

• The expectations are approximated using the multivariate delta method.

Proof: To prove Theorem 1, we first give the following lemma.

Lemma 5: Consider a conjugate-exponential probabilistic model represented as a Bayesian network. Sup-
pose the variational distribution follows the mean-field assumption and the observations are i.i.d. If the
update in CEP is performed on the variable groups, then a sufficient condition for the equivalence between
the update equations of CEP and VMP is

ln f̃i(θm) = Eq(θ\m)[ln fi(θ)]. (16)

Proof: To prove this lemma, we start by considering the logarithm of the optimal distribution in VMP, given
by:

ln q∗(θm) = Eq(θ\m)[ln p(θ, D)] + const (17)

= Eq(θ\m)[
󰁛

i

ln fi(θ)] + const

=
󰁛

i

Eq(θ\m)[ln fi(θ)] + const.

where p(θ, D) =
󰁔

i fi(θ) follows from (7) under the i.i.d. assumption. Note that we also use fi(θ) to
represent the likelihood and prior, as in CEP. On the other hand, if the update in CEP is performed on the
variable groups, then the optimal distribution for each variable group can be expressed as the product of the
approximate factors:3

q∗(θm) ∝
󰁜

i

f̃i(θm).

3Here, we also use the notation q∗(θm) to denote the optimal variational distribution in CEP.
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Taking the logarithm of both sides gives:

ln q∗(θm) =
󰁛

i

ln f̃i(θm) + constant. (18)

By comparing (17) and (18), it can be seen that the updates of CEP and VMP are the same if (16) holds. 󰃈
Then we show that (16) holds if the expectations are approximated using the multivariate delta method.
Specifically, from Lemma 4, we can take the logarithm of both sides of (15), which yields

ln f̃i(θm) = ln p̂i(θm|Eq[θ\m]) − ln q\i(θm). (19)

For simplicity, we omit the constant term. From (17), it can be seen that the optimal variational distribution
in VMP consists of some independent terms, which can be expressed as

Eq(θ\m)[ln fi(θ)] = Eq(θ\m)[ln fi(θ)] + ln q\i(θm) − ln q\i(θm)

= Eq(θ\m)[ln fi(θ)q\i(θm)] − ln q\i(θm)

= Eq(θ\m)[ln p̂i(θm|θ\m)] − ln q\i(θm).

By utilizing the multivariate delta approximation, the expectation Eq(θ\m)[ln fi(θ)] can be expressed as

ln p̂i(θm|Eq[θ\m]) − ln q\i(θm) = ln f̃i(θm),

which shows that Eq(θ\m)[ln fi(θ)] and ln f̃i(θm) are equivalent under the multivariate delta approximation.
According to Lemma 5, we can conclude that VMP and CEP yield the same update equations under the
specified conditions. 󰃈
In practical applications, these preconditions and conditions are often satisfied, enabling the derivation of
analytical updates, as demonstrated in the example provided in Section 4. Below, we delve deeper into these
conditions and discuss their respective implications.

The preconditions in Theorem 1 establish a foundation for the effective application of both VMP and CEP, as
outlined in the preliminaries. Specifically, the i.i.d. assumption enables the update in VMP to be expressed
as a summation of N terms, each corresponding to a factor in the CEP framework. This highlights that
the VMP update can be interpreted as the merging of messages sent from the data nodes, aligning with
the message-passing nature of VMP, which will be discussed further in the next subsection. Consequently,
it becomes easy to derive a streaming version of VMP, which is described in detail in the next section.
Additionally, the conjugate-exponential condition ensures that the updates of the factors in CEP can be
formulated analytically, avoiding the need for moment matching. When this assumption does not hold, the
direct connection between VMP and CEP may break down, as the factor updates in CEP may no longer
have analytical solutions.

Regarding the specific conditions, the first ensures that the update of q(θm) in CEP is expressed as the
product of a number of factors, enabling efficient parallel or distributed computation and significantly reduc-
ing computational costs. The second condition simplifies expectation computations, making the inference
process more tractable. Notably, the multivariate delta approximation, also known as the reparameterization
trick in standard VMP (Winn et al., 2005), is widely employed in various ABI methods, including CEP.

It is worth noting that the connection between CEP and VMP can be viewed from a more general perspective.
To see this, note that a fundamental assumption in CEP is that the message factor f̃i factorizes with respect
to variable groups, allowing the approximate posterior to be expressed as

q(θ) ∝
󰁜

i

f̃i(θ) =
󰁜

i

󰁜

m

f̃im(θm) =
󰁜

m

q(θm),

10
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which in fact corresponds to the mean-field assumption. From Lemma 2, we know that the optimal solution
of minq(θm) KL(p(θ|D)󰀂q(θ)) is given by q∗(θm) = p(θm|D), which can be further written as

q∗(θm) = p(θm|D)

=
󰁝

p(θm, θ\m|D)dθ\m

=
󰁝

p(θm|θ\m, D)p(θ\m|D)dθ\m

= Ep[p(θm|θ\m, D)].

By applying the approximations in CEP, i.e., using q(θm) as a surrogate of p(θm) in moment computation
and the delta approximation, the optimal variational distribution can be approximated as

q∗(θm) = Ep[p(θm|θ\m, D)] ≈ p(θm|Eq[θ\m], D). (20)

In VMP, again applying the delta approximation, each optimal variational distribution becomes

ln q∗(θm) = Eq(θ\m)[ln p(θ, D)] + constant
= Eq(θ\m)[ln p(θm|θ\m, D)] + constant
≈ ln p(θm|Eq[θ\m], D),

which leads to

q∗(θm) ≈ p(θm|Eq[θ\m], D). (21)

By comparing (20) and (21), it can be seen that the inherent objective of both VMP and CEP is to ap-
proximate the conditional marginal distribution p(θm|Eq[θ\m], D). VMP and CEP start from different KL
formulations. However, in both cases, the theoretical optimal is the same due to the properties of the KL.
This justifies the derived connection.

3.2 Extensions and Implications

The previous section established a strong connection between CEP and VMP. Expanding on this connection,
we present new theoretical results regarding the convergence and scalability of several ABI methods.

3.2.1 Convergence of CEP

As previously mentioned, the convergence of EP is not generally guaranteed. To address this issue, some
approaches apply energy optimization techniques directly to the associated objective function rather than
relying on local updates. For instance, they implement EP based on the convergent double-loop optimization
algorithm (Opper et al., 2005; Hasenclever et al., 2017). However, these approaches require additional designs
and exhibit increased computational complexities.

Since CEP is developed from EP, its convergence properties also remain an open question. Nevertheless, by
leveraging the established connection with VMP, we can demonstrate that CEP is guaranteed to converge
under certain mild conditions. Specifically, we present the following corollary.

Corollary 1: Consider a conjugate-exponential probabilistic model represented as a Bayesian network. Sup-
pose the variational distribution follows the mean-field assumption and the observations are i.i.d. If the
conditions in Theorem 1 hold, then CEP updates are guaranteed to converge to a local minimum of the KL
divergence.

Proof: See Appendix C.

From (17), the optimal variational distribution q∗(θm) in VMP is

ln q∗(θm) =
󰁛

i

Eq(θ\m)[ln fi(θ)] + const.

11
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As shown in Section 2, this update increases the ELBO at each iteration, ensuring the convergence property
of VMP. According to Lemma 5, we have Eq(θ\m)[ln fi(θ)] = ln f̃i(θm). Since f̃i(θm) is the message factor,
the term Eq(θ\m)[ln fi(θ)] can be interpreted as the message sent from the ith data node. Thus, the update
in VMP can be viewed as merging all the messages sent by data nodes. In other words, in CEP, merging
the message factors f̃i(θm) sent by data nodes increases the ELBO, thereby ensuring convergence.

It is important to note that in the standard implementations of CEP, updates are performed on the factors
instead of the variable groups. In other words, f̃i is updated sequentially in each iteration. This factor-
based update mechanism allows for a more fine-grained local optimization, which might be the reason for
its superior performance in various tasks. However, this type of local optimization does not guarantee
convergence in general. If the updates in CEP are performed on the factors rather than on the variable
groups, the convergence guarantee is lost.

To see this, note that if the updates in CEP are performed on the factors, the increase of ELBO is not
guaranteed. Specifically, the ELBO can be expressed as

L =
󰁝 󰁜

m

q(θm)
󰀫

ln p(θ, D) −
󰁛

m

ln q(θm)
󰀬

dθ

=
󰁝

q(θm)Eq(θ\m)[ln p(θ, D)]dθm −
󰁝

q(θm) ln q(θm)dθm

=
󰁝 󰁜

i

f̃i(θm)
󰁛

i

Eq(θ\m)[fi(θ)]dθm +
󰁝 󰁜

i

f̃i(θm)
󰁛

i

ln f̃i(θm)dθm.

The optimal factor in CEP can be written as

ln f̃i(θm) = ln p̂i(θm|Eq[θ\m]) − ln q\i(θm)
= ln q\i(θm)fi(θm|Eq[θ\m]) − ln q\i(θm)
= ln fi(θm|Eq[θ\m]),

which leads to f̃i(θm) = fi(θm|Eq[θ\m]). Due to the multiplication and integration involved in ELBO,
optimizing L with respect to f̃i(θm) does not yield the same results as in CEP. Therefore, each update
does not necessarily increase the ELBO, and CEP may not converge in this scenario. Similarly, this local
optimization of message factors is also the reason why standard EP may not converge.

3.2.2 Connections to Streaming Bayes

The concept of EP is developed from ADF, an online Bayesian algorithm designed for streaming data. As
CEP is a variant of EP, it can be readily adapted into a streaming version. Furthermore, due to the strong
connections between CEP and VMP updates, it is straightforward to construct a streaming version of VMP.
The resulting method shares a close connection with streaming variational Bayes, although it is developed
from a distinct perspective and offers different interpretations.

In Section II, we observe that ADF differs from EP in the factor removing step. In ADF, the removing
step is ignored, and the calibrating distribution is replaced by the full approximation obtained from the
previous iteration. The updated approximating posterior is computed by directly multiplying the previous
approximation with the newly updated message factor associated with the added data.

Mathematically, assuming the current approximation is denoted as q(θ), the new posterior in ADF is

q∗(θ) = min
q̂(θ)

KL(p̂i(θ)󰀂q̂(θ)),

where p̂i(θ) ∝ fi(θ)q(θ). The resulting q∗(θ) is then used as the current approximation in the next iteration.
In a conjugate-exponential model with mutually independent variable groups, the update of the posterior
for each variable has a closed-form solution, given by

q∗(θm) = p̂i(θm) = Ep̂i(θ\m)[p̂i(θm|θ\m)].

12
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Upon the arrival of new data, we can optimize each variable group and multiply their distributions together
to obtain the new approximation q∗(θ).

As mentioned in the previous subsection, the variable update in VMP merges all the messages sent from
the other nodes simultaneously. If the data arrives in a streaming manner, we can sequentially merge the
messages to update the variables. Building upon this insight, we can easily modify the VMP to a streaming
version. Specifically, when a new sample xi arrives, the updated estimate of the posterior in VMP is

ln q∗(θm) = Eq(θ\m)[ln p(θ, D)] + const (22)
= Eq(θ\m)[ln fi(θ)q(θ)] + const
= Eq(θ\m)[ln p̂i(θ)]
= Eq(θ\m)[ln p̂i(θm|θ\m)].

We can exploit the multivariate delta method to approximate the expectation, which leads to q∗(θm) =
p̂i(θm|Eq[θ\m]). Here, the joint distribution can be expressed as p(θ, D) = p̂i(θ) ∝ fi(θ)q(θ). Similar
to ADF, we can optimize each variable group through (22) and then multiply the respective distributions
together to obtain the new approximate estimate.

It is worth noting that the algorithm can be easily extended to scenarios where data arrive in a batch version.
Additionally, standard VI with i.i.d. observations can also be easily modified to a streaming version through
this framework. Moreover, it can be seen that the primary difference between streaming VMP and ADF
is that the expectations are taken with respect to different distributions. Based on the connection between
VMP and CEP, we can present the following corollary.

Corollary 2: Consider a conjugate-exponential probabilistic model represented as a Bayesian network.
Suppose the variational distribution follows the mean-field assumption and the observations are i.i.d. Then,
streaming VMP and ADF yield the same update equations under the following conditions:

• The current approximation q(θ\m) is used as an surrogate of p̂i(θ\m) in the computation of the
expectation in ADF;

• The expectations are approximated using the multivariate delta method.

Proof: See Appendix C.
Since VMP is a special case of VI, it follows that streaming VI also has the same update equations to ADF
under these conditions, provided that the underlying probabilistic model is a conjugate-exponential model.

Note that the streaming version of VMP or CEP performs a one-pass update, discarding the data once
they are updated, which significantly reduces the storage requirements. Additionally, the variable update
in VMP can be implemented in a distributed manner since the messages can also be calculated in parallel.
The resulting algorithm is similar to the distributed VMP (Masegosa et al., 2016).

3.3 Interpretation via Graphical Models

Since both VMP and CEP are closely related to graphical models, we can gain further insights into their
connection from a graphical model perspective. Specifically, we assume that the model takes the form of a
Bayesian network, and the joint distribution can be expressed as4

p(V) =
󰁜

i

p(vi|pai), (23)

where V = {θ, D} contains all the visible and hidden variables; pai denotes the set of variables corresponding
to the parents of node i; and vi denotes the variable or group of variables associated with node i.

4Here we use a similar notation as in the original VMP paper.
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Assume that the variational distribution is fully factorized with respect to the hidden variables, which means
each variable group has only one variable. In VMP, the optimized form for each variable is given by

ln q∗(θj) = Eq(θ\j)[ln p(θ, D)] + const (24)
= 〈ln p(V)〉q(θ\j) + const,

where 〈·〉q(θ\j) denotes the expectation with respect to q(θ\j). Substituting the joint probability distribution
(23) into (24) leads to:

ln q∗(θj) =
󰀭

󰁛

i

ln p(vi|pai)
󰀮

q(θ\j)

+ const.

Here we only need to consider the variables in the Markov blanket of node j since the terms that do not
depend on θj are constant under the expectation. Then we have

ln q∗(θj) = 〈ln p(θj |paj)〉q(θ\j) +
󰁛

k∈chj

〈ln p(vk|pak)〉q(θ\j) + const, (25)

where chj denotes the index set that corresponds to the children of node j. The parent node of vk includes
the node j and the co-parents cpj .

In a conjugate-exponential model, we have

ln p(θj |paj) = ηj(paj)T φj(θj) + Zj(paj) + ln hj(θj), (26)

and

ln p(vk|pak) = ηk(θj , cpj)T φk(vk) + Zk(θj , cpj) + ln hk(vk) (27)
= ηkj(vk, cpj)T φj(θj) + λ(vk, cpj),

where λ is a function that contains the terms irrelevant to ηkj and φj(θj). The second equation holds due
to the conjugacy property. Substituting (26) and (27) into (25) will give

ln q∗(θj) =

󰀵

󰀷󰀍
ηj(paj)

󰀎
q(θ\j) +

󰁛

k∈chj

󰀍
ηkj(vk, cpj)

󰀎
q(θ\j)

󰀶

󰀸
T

φj(θj) + ln hj(θj) + const.

It follows that the optimal variational distribution q∗(θj) is also an exponential family distribution and has
the same form as p(θj |paj), of which the natural parameter is given by

η∗
j =

󰀍
ηj(paj)

󰀎
+

󰁛

k∈chj

󰀍
ηkj(vk, cpj)

󰀎
, (28)

where the expectation are with respect to q(θ\j) and we omit it here for notational simplicity. Equation
(28) can also be interpreted as merging the messages sent by the nearby nodes. In practice, we usually
reparameterise these functions in terms of these expectations to make the computation tractable, which
leads to

η̃∗
j = η̃j({〈φs〉}s∈paj

) +
󰁛

k∈chj

η̃kj(〈φk〉, {〈φt〉}t∈cpk
).

To show the connection between VMP and CEP, consider a conjugate-exponential model with i.i.d. obser-
vations, with a graphical illustration shown in Fig. 2. For this model, the natural parameter of the optimal
variational distribution in VMP is

η̃∗
j = η̃j({〈φs〉}s∈paj

) +
󰁛

xk∈D

η̃kj(xk, {〈φt〉}t ∕=j). (29)
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Figure 2: A graphical illustration of the considered conjugate-exponential model with i.i.d. observation.

In CEP, the optimal variational distribution is also in the exponential family and can be expressed as

ln q∗(θj) = ln p(θj |paj) +
N󰁛

k=1
ln f̃k(θj), (30)

where ln p(θj |paj) is given by (26). We need to determine the form of ln f̃k(θj). From Lemma 5, we have

ln f̃k(θj) = Eq(θ\j)[ln fk(θj , θ\j)]. (31)

From (27), the likelihood is also an exponential family distribution and can be expressed as

ln fk(θj , θ\j) = ln p(xk|θj , θ\j) (32)
= ηkj(vk, cpj)T φj(θj) + λ(vk, cpj).

By substituting (32) into (31) and utilizing the reparameterization trick, the approximate factor can be
expressed as

ln f̃k(θj) = η̃kj(xk, {〈φt〉}t ∕=j)T φj(θj) + λ(xk, {〈φt〉}t ∕=j)). (33)

Substituting it into (30), the resulting distribution shares the same natural parameters as in (29).

Generally, the factors {f̃k} can be interpreted as the messages sent from the data nodes, after replacing
the message sent from the other co-parent nodes with the corresponding moments. Additionally, for a fully
factorized model, the standard EP will reduce to loopy belief propagation. More discussions concerning the
performance and convergence of LBP can be found in Frey & MacKay (1997); Li et al. (2019); Du et al.
(2018a).

3.4 Summary and Practical Suggestions

The previous subsections have unveiled some relationships among various ABI methods, shedding light on
their theoretical properties. This subsection presents a brief summary and connections among our established
theoretical results (see Fig. 3) and provides recommendations on applying these findings to address practical
inference problems.

We begin by illustrating the theoretical connections presented in this study, as depicted in Fig. 3. Lemmas
1 and 2 serve as foundational results leading to Lemma 3, which connects moment matching with the
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Lemma 1 Lemma 2

Lemma 3 Lemma 4

Lemma 5

Theorem 1

Corollary 1 Corollary 2

Lemma 1: moment matching.

Lemma 2: minimizing the KL divergence of a factorized 
variational distribution.

Lemma 3: connection of minimizing KL divergence and moment 
matching.

Lemma 4: closed-from update of message factor in CEP.

Lemma 5: sufficient condition for the same updates between CEP
and VMP.

Theorem 1: CEP and VMP have the same updates under certain
conditions.

Corollary 1: CEP is guaranteed to converge under certain conditions.

Corollary 2: ADF and streaming VI have the same updates under
certain conditions.

Figure 3: A summary of the theoretical results and their connections in this study.

minimization of KL divergence. This connection enables the derivation of a closed-form message factor in
CEP under certain conditions. Based on this closed-form factor and the sufficient condition in Lemma 5, we
establish Theorem 1, the main theorem. Following this, Corollaries 1 and 2 provide additional theoretical
insights and connections among different ABI methods.

Based on these theoretical results, we offer practical suggestions for applying different ABI methods:

• Convergent CEP: For the CEP algorithm, it is guaranteed to converge if the conditions in Theorem
1 are satisfied, as outlined in Corollary 1.

• Streaming/parallel VMP and VI: Since the update of VMP or VI can be interpreted as merging
messages from other nodes, the resulting algorithms are readily adaptable for streaming data or
parallel updates, provided that the conditions in Theorem 1 are satisfied, as shown in (22).

• Streaming ABI from scratch: When developing a streaming ABI algorithm, we can first assess
whether the model is a conjugate-exponential model with independent variable groups. If so, stream-
ing VI provides closed-form updates for each variable. If not, we could consider employing the
moment-matching technique to approximate the posterior distribution with an exponential family
distribution.

While these suggestions represent straightforward applications of our findings, the insights we have developed
can further pave the way for more advanced Bayesian methods, which is an interesting future research
direction.

4 Example

In this section, we demonstrate the strong connections between the updates of VMP and CEP in the context
of a Bayesian tensor decomposition model. Our emphasis is on the canonical polyadic decomposition (CPD),
which is an essential technique in machine learning and has been used in various real-world applications.
Our choice of Bayesian CPD as the illustrative example is motivated by its prominent role in the original
CEP paper (Wang & Zhe, 2020), where the inference algorithm is extensively discussed. We start by
introducing a probabilistic model for the CPD approach. To this end, we apply both VMP and CEP to infer
the associated posterior distribution. Finally, we extend the developed algorithm to a streaming version,
enabling it to handle data arriving sequentially.
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Figure 4: A graphical illustration of the three-dimensional CPD.

4.1 Probabilistic modeling

We denote a K-mode tensor by X ∈ Rd1×···×dK , where dk is the dimension of the k-th mode. The entry value
at location i = (i1, · · · , iK) is denoted as xi. To perform tensor decomposition, we introduce an R-dimensional
embedding vector uk

j to represent each object in mode k. Then, a dk × R matrix can be constructed by
stacking all the embedding vectors in mode k, i.e., Uk = [uk

1 , · · · , uk
dk

]T . Tensor decomposition aims to find
the embedding matrices of all modes U = {U1, · · · , UK} from the observed entries.

Mathematically, the CPD of a given tensor X is written as

X = 󰌻U1, · · · , UK󰌼,

where 󰌻·󰌼 is the Kruskal operator. A graphical illustration of a three-dimensional CPD (K = 3) is shown in
Fig. 4. For each entry xi, we have

xi =
R󰁛

r=1

K󰁜

k=1
uk

ik,r = 1T (u1
i1

◦ · · · ◦ uK
iK

),

where ◦ is the Hadamard product.

Consider a K-mode tensor Y with N observed entries denoted as {yi}i∈S . Here, S represents the index set,
and its cardinality is |S| = N . We assume that the observations are contaminated with i.i.d. Gaussian noise.
Then the likelihood can be expressed as

p(yi|U , τ) = N (yi|1T (u1
i1

◦ · · · ◦ uK
iK

), τ−1),

where τ is the noise precision. We further assign a conjugate Gamma prior over τ , given by

p(τ |a0, b0) = Gam(τ |a0, b0).

For each embedding vector uk
s , we assign a Gaussian prior with mean βk

s and covariance vI, given by

p(U) =
K󰁜

k=1

dk󰁜

s=1
N (uk

s |βk
s , vI),

where {βk
s } and v are pre-defined hyperparameters.
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Consequently, the joint probability distribution is

p({yi}i∈S , U , τ) =Gam(τ |a0, b0)
K󰁜

k=1

dk󰁜

s=1
N (uk

s |βk
s , vI) (34)

·
󰁜

i∈S
N (yi|1T (u1

i1
◦ · · · ◦ uK

iK
), τ−1).

Note that the prior and likelihood are conjugate and belong to the exponential family, thus the probabilistic
model is a conjugate-exponential model. Additionally, the observations are assumed to be i.i.d., therefore
satisfying the conditions in Theorem 1.

4.2 VMP

In VMP, the variables are assumed to be mutually independent, allowing us to factorize the variational
distribution as

q(U , τ) = q(τ)
K󰁜

k=1

dk󰁜

s=1
q(uk

s ).

Since the probabilistic model is conjugate-exponential, the variational distribution for each variable is iden-
tical to its prior distribution. Consequently, the variational distribution is parameterized by

q(U , τ) = Gam(τ |a, b)
K󰁜

k=1

dk󰁜

s=1
N (uk

s |µk
s , Σk

s).

Due to the conjugacy property, we can derive closed-form updates for each variable. Here we present the
key steps and leave the detailed derivation in Appendix D. Specifically, the optimal variational distribution
of uk

s is given by

q∗(uk
s ) = N (uk

s |µk
s

∗
, Σk

s

∗),

with the mean µk
s

∗ and covariance Σk
s

∗ given by

µk
s

∗ = Σk
s

∗

󰀳

󰁃〈τ〉
󰁛

i∈S,ik=s

yi〈z\k
i 〉 + vβk

s

󰀴

󰁄 , (35)

Σk
s

∗ =

󰀳

󰁃〈τ〉
󰁛

i∈S,ik=s

〈z\k
i z\k

i
T

〉 + vI

󰀴

󰁄
−1

,

where 〈·〉 denotes the expectation Eq[·] and

z\k
i = u1

i1
◦ · · · ◦ uk−1

ik−1
◦ uk+1

ik+1
◦ · · · ◦ uK

iK
.

The optimal variational distribution of noise precision τ is given by

q∗(τ) = Gam(τ |a∗, b∗),

with a∗ and b∗ computed as follows

a∗ = a0 + N

2 ,

b∗ = b0 + 1
2

󰁛

i∈S
[y2

i − 2yi〈1T zi〉 + 〈(1T zi)2〉],

where zi = u1
i1

◦ · · · ◦ uK
iK

.
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4.3 CEP

In the context of CEP, the approximation factor f̃i is assumed to be factorized with variables, given by

f̃i(U , τ) = f̃i(τ)
K󰁜

k=1
f̃k

i (uk
ik

),

where the factors have the same form as the prior distribution but with different parameters. Specifically,
f̃i(τ) = Gam(τ |ai, bi) and f̃k

i (uk
ik

) = N (uk
ik

|mk
i , Sk

i ). Consequently, the approximate distribution is given by

q(U , τ) ∝Gam(τ |a0, b0)
K󰁜

k=1

dk󰁜

s=1
N (uk

s |βk
s , vI)

·
󰁜

i∈S
f̃i(τ)

K󰁜

k=1
f̃k

i (uk
ik

).

It can be seen that the approximate distribution is factorized over the variables, i.e.,

q(U , τ) = q(τ)
K󰁜

k=1

dk󰁜

s=1
q(uk

s ),

where

q(τ) ∝ Gam(τ |a0, b0)
󰁜

i∈S
f̃i(τ), (36)

q(uk
s ) ∝ N (uk

s |βk
s , vI)

󰁜

i∈S,ik=s

f̃k
i (uk

ik
).

To update the variational distribution q(uk
s ), we need to determine the optimal factor f̃k

i (uk
ik

). The first
step is to obtain the calibrating distribution

q\i(U , τ) ∝ q(U , τ)
f̃i(τ)

󰁔K
k=1 f̃k

i (uk
ik

)
.

Next, we construct the tilted distribution as

p̂i(U , τ) ∝ q\i(U , τ)N (yi|1T (u1
i1

◦ · · · ◦ uK
iK

), τ−1).

Since only the moments for the precision τ and the embedding vectors that associate with entry i, ui =
{u1

i1
, · · · , uK

ik
}, are needed and the other embeddings vectors will be marginalized out, we can focus on the

marginal titled distribution for {ui, τ},

p̂i(ui, τ) ∝ q\i(τ)
K󰁜

k=1
q\i(uk

ik
)N (yi|1T (u1

i1
◦ · · · ◦ uK

iK
), τ−1),

where

q\i(τ) = Gam(τ |a\i, b\i), q\i(uk
ik

) = N (uk
ik

|mk
ik

, Sk
ik

),
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with

a\i = a0 +
󰁛

j∈S,j ∕=i
aj − N + 1,

b\i = b0 +
󰁛

j∈S,j ∕=i
bj,

Sk
ik

=

󰀳

󰁃
󰁛

j∈S,j ∕=i,jk=ik

(Sk
j )−1 + vI

󰀴

󰁄
−1

,

mk
ik

= Sk
ik

󰀳

󰁃
󰁛

j∈S,j ∕=i,jk=ik

(Sk
j )−1mk

j + vβk
ik

󰀴

󰁄 .

The next step is to compute conditional moments with respect to the conditional tilted distribution given τ

and u\k
i = {u1

i1
, · · · , uK

iK
} fixed, which can be expressed as

p̂i(uk
ik

|u\k
i , τ) ∝ N (uk

ik
|mk

ik
, Sk

ik
)N (yi|1T (u1

i1
◦ · · · ◦ uK

iK
), τ−1).

It can be observed that this is a Gaussian distribution with covariance and mean given by

cov(uk
ik

|u\k
i , τ) =

󰀗
(Sk

ik
)−1 + τ(z\k

i z\k
i

T
)
󰀘−1

,

E(uk
ik

|u\k
i , τ) = cov(uk

ik
|u\k

i , τ)
󰁫
(Sk

ik
)−1mk

ik
+ τyiz\k

i

󰁬
.

According to Lemma 4, the optimal factor is given by f̃k
i (uk

ik
) = N (uk

ik
|mk

i
∗
, Sk

i
∗) with

Sk
i

∗ =
󰀕

〈τ〉〈z\k
i z\k

i
T

〉
󰀖−1

,

mk
i

∗ = Sk
i

∗(yi〈τ〉〈z\k
i 〉).

It is worth noting that the message factors can be calculated in parallel, which can significantly reduce time
consumption. After obtaining all the message factors, we can merge them to obtain the approximation distri-
bution. Based on (36), the optimal variational distribution for q(uk

s ) is given by q∗(uk
s ) = N (uk

s |µk
s

∗
, Σk

s
∗),

where

µk
s

∗ = Σk
s

∗

󰀳

󰁃〈τ〉
󰁛

i∈S,ik=s

yi〈z\k
i 〉 + vβk

s

󰀴

󰁄 , (37)

Σk
s

∗ =

󰀳

󰁃〈τ〉
󰁛

i∈S,ik=s

〈z\k
i z\k

i
T

〉 + vI

󰀴

󰁄
−1

.

Comparing (35) and (37), it can be seen that the optimal variational distributions obtained by VMP and
CEP are the same.

For noise precision τ , the conditional tilted distribution is given by

p̂i(τ |ui) = Gam(τ |â, b̂), (38)

where

â = a\i + 1
2 , (39)

b̂ = b\i + 1
2[yi − 1T zi]2.
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Then the optimal message factor can be calculated as f̃i(τ) = Gam(τ |a∗
i , b∗

i ) with

a∗
i = 1

2 , (40)

b∗
i = 1

2[y2
i − 2yi〈1T zi + 〈(1T zi)2〉].

Merging these factors through (36) will leads to q∗(τ) = Gam(τ |a∗, b∗), where

a∗ = a0 + N

2 ,

b∗ = b0 + 1
2

󰁛

i∈S
[y2

i − 2yi〈1T zi〉 + 〈(1T zi)2〉],

which are the same as in VMP. Consequently, we can conclude that the update of variables in VMP and
CEP are the same. These closed-form updates demonstrate promising accuracy and empirically show a fast
convergence in many real-world applications (Wang & Zhe, 2020).

4.4 Streaming VMP

The connection of VMP and CEP enables the algorithm to be easily adapted to a streaming version. In the
streaming version, we assume that every time we receive one data point and the current approximation is
q(uk

s ) = N (uk
s |µk

s , Σk
s) and q(τ) = Gam(τ |a, b). Then based on (22), the posterior update of the streaming

version is given by q∗(uk
s ) = p̂i(uk

ik
|〈u\k

i 〉, 〈τ〉) = N (uk
s |µk

s
∗
, Σk

s
∗) with

Σk
s

∗ = [(Σk
s)−1 + 〈τ〉(〈z\k

i z\k
i

T
〉)]−1, (41)

µk
s

∗ = Σk
s

∗[(Σk
s)−1µk

s + 〈τ〉yi〈z\k
i 〉],

and q∗(τ) = p̂i(τ |〈ui〉) = Gam(τ |a∗, b∗) with

a∗ = a + 1
2 ,

b∗ = b + 1
2[y2

i − 2yi〈1T zi + 〈(1T zi)2〉].

It is important to note that the natural parameters used here are different from those used in CEP (see (41)
and (37)) since the calibrating distribution is replaced with the full approximation from the previous iteration.
Additionally, the developed algorithm can be readily extended to the scenario where data are arrived in a
batch version. The resulting algorithm is the same as probabilistic streaming tensor decomposition (POST)
(Du et al., 2018b), which is flexible and demonstrates promising performance in this task.

5 Discussions and Future Directions

This paper investigates the theoretical connections among different ABI methods, starting by bridging the
VMP and CEP. Specifically, we have demonstrated a strong link between these two methods under mild
conditions. This newly identified connection not only guarantees the convergence of CEP but also allows
for the seamless construction of a streaming version of the VMP algorithm. The key insight is that the
variable updates in VMP and CEP are intrinsically merging the messages sent by all the data points and
they share a common objective of approximating the conditional marginal distribution. Additionally, this
finding provides insights into the underlying relationships and distinct characteristics of other ABI methods,
including the same expressions between ADF and streaming VI updates.

Generally, VI and EP have different properties and performance since they optimize the opposite directions
of KL divergence. This work, for the first time, demonstrates that their variants are closely related under
certain conditions, which sheds new light on the understanding and development of further advanced ABI
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methods. However, our theoretical analysis is restricted to the conjugate-exponential family of models. It
would be interesting to explore the application of these connections in other model families or non-conjugate
scenarios. We believe that these explorations will open new avenues for future research on efficient and
accurate Bayesian learning algorithms, particularly in the context of streaming and large-scale data.
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A Summary of Algorithms

The procedure of the VMP and CEP methods are summarized in Algorithm 1 and Algorithm 2, respec-
tively.

B The Multivariate Delta Method

In the multivariate delta method, the expectation of a function of a random variable is approximated by the
expectation of the function’s Taylor expansion. Specifically, given a function f(θ) and a distribution q(θ)
with mean m, we can use the first-order Taylor approximation to get,

Eq(θ)(f(θ)) ≈ Eq

󰀅
f(m) + (θ − m)T ∇θf(m)

󰀆
≈ f(m),

where ∇ is the differential operator. In CEP, the outer expectation can be approximated by

Eq(θ\m)[h(Φm)] ≈ Eq

󰀅
h(Eq(Φm)) + (Φm − Eq(Φm))T ∇h(Eq(Φm))

󰀆
≈ h(Eq(Φm)).

C Proofs

C.1 Proof of Lemma 3

To prove Lemma 3, we rewrite the KL divergence as

KL(p󰀂q) =
󰁝

p(θ) ln p(θ)
q(θ)dθ

= H[p(θ)] −
󰁝

p(θ) ln q(θ)dθ,
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Algorithm 1 Variational Message Passing (VMP)
Input: joint probability distribution p(D, θ).

1: Initialise each factor distribution q(θm).
2: while not converge do
3: for each variable group do
4: Calculate moment of the natural parameters Eq(θ\m)[ηm(θ\m, D)] using the messages sent from other

nodes.
5: Update the factor distribution q∗(θm) via (6).
6: end for
7: end while

Output: variational distribution q(θ) =
󰁔

m q∗(θm).

Algorithm 2 Conditional Expectation Propagation (CEP)
Input: joint probability distribution p(D, θ).

1: Initialise each message factor f̃i(θm).
2: while not converge do
3: for each variable group do
4: for each factor f̃i(θm) do
5: Calculate the calibrating distribution, q\i(θm) = q(θm)/f̃i(θm).
6: Derive a new posterior q󰂑(θm) via conditional moment matching (11).
7: Update the message factor f̃i(θm) ∝ q󰂑(θm)/q\i(θm).
8: end for
9: Merge the message: q∗(θm) ∝

󰁔
i f̃i(θm).

10: end for
11: end while
Output: variational distribution q(θ) =

󰁔
m q∗(θm) = 1

Z̃

󰁔
i

󰁔
m f̃i(θm).

where H[·] is the entropy. Since the entropy is a constant, minimizing KL(p󰀂q) is equivalent to maximizing
L(q) =

󰁕
p(θ) ln q(θ)dθ. Exploiting the factorized property, it can be further decomposed as

L(q) =
󰁝

p(θ)
󰁛

m

ln q(θm)dθ

=
󰁛

m

󰁝
p(θ) ln q(θm)dθ

=
󰁛

m

󰁝 󰀕󰁝
p(θ)dθ\m

󰀖
ln q(θm)dθm

=
󰁛

m

󰁝
p(θm) ln q(θm)dθm

=
󰁛

m

Lm(q(θm)),

where we denote
󰁕

p(θm) ln q(θm)dθm as Lm(q(θm)). Since the variable groups are mutually independent,
maximizing L(q) with respect to q(θ) is equivalent to maximizing each Lm with respect to q(θm). For each
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variable group, the optimum is given by

max
q(θm)

Lm(q(θm)) = max
q(θm)

󰁝
p(θm) ln q(θm)dθm

= min
q(θm)

−
󰁝

p(θm) ln q(θm)dθm

= min
q(θm)

H[p(θm)] −
󰁝

p(θm) ln q(θm)dθm

= min
q(θm)

KL(p(θm)󰀂q(θm)),

where the third equation holds because the entropy of the marginal distribution H[p(θm)] is irrelevant to
q(θm). Using Lemma 1, the optimal solution is achieved by the moment matching

Eq(θm)[φ(θm)] = Ep(θm)[φ(θm)].

Additionally, the left-hand side of (13) can be expressed as

Eq(θ)[φ(θm)] =
󰁝

q(θ)φ(θm)dθ

=
󰁝 󰀗󰁝

q(θm, θ\m)dθ\m

󰀘
φ(θm)dθm

=
󰁝

q(θm)φ(θm)dθm

= Eq(θm)[φ(θm)].

Similarly, the right-hand side of (13) can be expressed as Ep(θ)[φ(θm)] = Ep(θm)[φ(θm)]. Thus we have

Eq(θ)[φ(θm)] = Eq(θm)[φ(θm)] = Ep(θm)[φ(θm)] = Ep(θ)[φ(θm)],

which completes the proof. 󰃈

C.2 Proof of Lemma 4

From (14) and Lemma 3, it can be seen that the calculation of q󰂑(θm) in CEP is essentially solving the
following problem

min
q(θm)

KL(p̂i(θ)󰀂q(θ))

s.t. q(θ) =
󰁜

m

q(θm),

where q(θm) belongs to the exponential family. If the p̂i(θm) is also in the exponential family and has the
same form as q󰂑(θm), then the moment matching leads to

q󰂑(θm) = p̂i(θm),

where the marginal posterior can be further written as

p̂i(θm) =
󰁝

p̂i(θm, θ\m)dθ\m

=
󰁝

p̂i(θ\m)p̂i(θm|θ\m)dθ\m

= Ep̂i(θ\m)[p̂i(θm|θ\m)].

In CEP, two approximations are made to derive an analytical form of the update. The first approximation is
to use q(θ\m) as a surrogate for p̂i(θ\m). The second approximation is to use the multivariate delta method
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to approximate the expectation of the conditional distribution. Based on these approximations, the optimal
approximate posterior q󰂑(θm) can be expressed as

q󰂑(θm) = Ep̂i(θ\m)[p̂i(θm|θ\m)]
≈ Eq(θ\m)[p̂i(θm|θ\m)]
≈ p̂i(θm|Eq[θ\m]).

Generally, p̂i(θm) is not in the exponential family, so the moment matching step is used to minimize the KL
divergence. However, in a conjugate-exponential model, each complete conditional, including p̂i(θm|θ\m), is
in the exponential family. Additionally, p̂i(θm|θ\m) shares the same sufficient statistics as q󰂑(θm) due to the
conjugacy property. As a result, p̂i(θm|Eq[θ\m]) is used as a surrogate for q󰂑(θm) in CEP. Thus the update
of f̃i(θm) can be expressed as

f̃i(θm) ∝
p̂i(θm|Eq[θ\m])

q\i(θm)
,

which completes the proof. 󰃈

C.3 Proof of Corollary 1

It has been established in Winn et al. (2005); Minka (2005) that VMP updates are guaranteed to converge
to a local minimum of the KL divergence under the conditions stated in Theorem 1. Since CEP follows the
same update equations as VMP under these conditions, its convergence property directly follows.

C.4 Proof of Corollary 2

In ADF, the optimal variational distribution in each iteration can be expressed as

q∗(θm) = p̂i(θm) = Ep̂i(θ\m)[p̂i(θm|θ\m)].

With the two conditions in Corollary 2, the optimal distribution can be reformulated as

q∗(θm) = Ep̂i(θ\m)[p̂i(θm|θ\m)]
≈ Eq(θ\m)[p̂i(θm|θ\m)]
≈ p̂i(θm|Eq[θ\m]).

Similarly, using the multivariate delta method, the optimal distribution in streaming VMP is given by

ln q∗(θm) = Eq(θ\m)[ln p̂i(θm|θ\m)]
≈ ln p̂i(θm|Eq[θ\m]),

which is the same as in ADF. This completes the proof.

D Derivation of the VMP in Tensor Decomposition

In the Bayesian tensor decomposition problem, the unknown parameter set θ consists of the latent factor
matrices U and hyperparameter τ . The optimal variational distribution for each θm is given by

ln q∗(θm) = Eq(θ\m)[ln p(θ, D)] + const. (42)
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From (34), the logarithm of the joint density function ln p(θ, D) can be expressed as

ln p(θ, D) = ln p({yi}i∈S , U , τ) (43)

= N

2 ln τ −
󰁛

i∈S

τ

2 [yi − 1T (u1
i1

◦ · · · ◦ uK
iK

)]2

−
K󰁛

k=1

dk󰁛

s=1

v

2(uk
s − βk

s )T (uk
s − βk

s )

(a0 − 1) ln τ − b0τ + const.

By substituting (43) into (42), we obtain q∗(uk
s ):

ln q∗(uk
s ) = Eq{−τ

2
󰁛

i∈S,ik=s

[yi − 1T (u1
i1

◦ · · · ◦ uK
iK

)]2 (44)

− v

2(uk
s − βk

s )T (uk
s − βk

s )}

= Eq{−τ

2
󰁛

i∈S,ik=s

󰀗
y2

i − 2yi(uk
s )T z\k

i + (uk
s )T z\k

i z\k
i

T
uk

s

󰀘

− v

2
󰀅
(uk

s )T uk
s − 2(uk

s )T βk
s + (βk

s )T βk
s

󰀆
}

= −1
2(uk

s )T

󰀵

󰀷〈τ〉
󰁛

i∈S,ik=s

〈z\k
i z\k

i
T

〉 + vI

󰀶

󰀸 uk
s

+ (uk
s )T

󰀵

󰀷〈τ〉
󰁛

i∈S,ik=s

yi〈z\k
i 〉 + vβk

s

󰀶

󰀸 .

We can see from (44) that uk
s follows a Gaussian distribution q∗(uk

s ) = N (uk
s |µk

s
∗
, Σk

s
∗), of which the mean

and covariance are given by

µk
s

∗ = Σk
s

∗

󰀳

󰁃〈τ〉
󰁛

i∈S,ik=s

yi〈z\k
i 〉 + vβk

s

󰀴

󰁄 ,

Σk
s

∗ =

󰀳

󰁃〈τ〉
󰁛

i∈S,ik=s

〈z\k
i z\k

i
T

〉 + vI

󰀴

󰁄
−1

.

The expression of q∗(τ) can be found as

ln q∗(τ) = Eq{N

2 ln τ −
󰁛

i∈S

τ

2 [yi − 1T (u1
i1

◦ · · · ◦ uK
iK

)]2

(a0 − 1) ln τ − b0τ},

which is a Gamma distribution q∗(τ) = Gam(τ |a∗, b∗) with a∗ and b∗ given by

a∗ = a0 + N

2 ,

b∗ = b0 + 1
2

󰁛

i∈S
[y2

i − 2yi〈1T zi〉 + 〈(1T zi)2〉].
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