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Abstract

Large language models (LLMs) have been trained on vast
data spanning nearly every scientific discipline, yet they
rarely produce meaningful novel discovery. Human poly-
maths such as John von Neumann routinely generated break-
throughs across disparate fields—from game theory to quan-
tum mechanics to the very architecture of the modern
computer—by connecting insights across domains. We argue
this gap reflects a structural limitation of the LLM paradigm
rather than a problem of scale. Drawing on Piaget’s theory
of cognitive development and Gentner’s structure-mapping,
we contend novel discovery depends on two core processes:
constructing nuanced internal schemas of the external world
and flexibly redeploying them via analogical mapping. With-
out embodied data or exploration, LLMs form shallow world
models; and because their architectures optimize for statis-
tical efficiency, they struggle to extend analogies out of dis-
tribution in ways that capture relational structure across do-
mains. Without rethinking training environments and archi-
tectures, LLMs will remain constrained to weak abstraction
rather than the deep reasoning required for scientific innova-
tion.

1 Introduction
Large language models (LLMs) have reached or exceeded
human performance in many specialized domains, from
mathematics and law to protein structure prediction (Abram-
son et al. 2024; Zhong et al. 2024). Yet despite this breadth
of competence, it’s exceedingly rare for an LLM to produce
a verifiable novel scientific discovery—a genuine insight not
previously known to humans that expands the boundaries of
knowledge (Shojaee et al. 2025). This absence is often noted
with surprise: if LLMs can solve Olympiad problems, pass
graduate-level exams, and synthesize knowledge across dis-
ciplines, why have they not combined these abilities to gen-
erate groundbreaking, out-of-distribution (OOD) findings?

We argue that this gap is not surprising at all. Drawing
from cognitive science and developmental psychology, we
propose that human novelty generation depends on two es-
sential ingredients current LLMs lack: (1) the development
of robust internal schemas that accurately model the external
world, and (2) the flexible redeployment of these schemas
to new contexts through analogical reasoning. Piaget’s the-
ory of learning shows how embodied experience forms
schemas that compress the world into abstract, reusable

models (Beilin 1992). Gentner’s Structure-Mapping Theory
explains how these schemas can be redeployed across do-
mains through relational alignment, enabling the deep analo-
gies behind scientific discovery (Gentner 1983).

Grounding our perspective in Piaget’s and Gentner’s
frameworks, we contend that good schemas lead to good
analogies, and good analogies enable novel hypotheses that
generalize OOD (Figure 1). Human history provides vivid
illustrations of this process. For example, the hydraulic
analogy in electricity—conceiving current as fluid flow—
helped early scientists reason about voltage, resistance, and
circuits (Tembrevilla, Milner-Bolotin, and Petrina 2019).
James Clerk Maxwell’s vortex analogy in fluid mechanics
enabled him to formulate the equations of electromagnetism
by mapping fluid vortices onto field lines (Harman 1998).
More recently, the discovery of CRISPR–Cas9 gene edit-
ing (Jinek et al. 2012) emerged from recognizing that bacte-
rial immune systems could be repurposed as programmable
molecular “scissors”. Si, Yang, and Hashimoto (2024) found
that while LLM-generated hypotheses were judged more
novel than human ones, they were significantly less feasi-
ble, reflecting a weak causal model of the world. The cen-
tral challenge lies in moving beyond statistical novelty to
schema-based analogical reasoning, the cognitive founda-
tion of historical scientific discovery.

2 Cognitive Science Frameworks
2.1 Defining Novel Discovery
Although LLMs have shown progress in scientific rea-
soning, concrete cases of genuine discovery remain rare.
DeepMind’s FunSearch combined an LLM with evolu-
tionary search to generate mathematical programs, one of
which produced a valid size-512 Cap Set for n = 8;
yet the result emerged within a constrained search space
through brute-force generation rather than conceptual in-
sight (Romera-Paredes et al. 2024). AlphaEvolve discovered
a slightly more efficient 4 × 4 matrix multiplication algo-
rithm, but this, too, represented optimization within fixed
formal rules (Novikov et al. 2025). Sakana AI’s AI Scien-
tist aimed higher—automating hypothesis generation, ex-
perimentation, and paper writing—but nearly half its ex-
periments failed due to coding errors, and its publications
lacked factual rigor and conceptual novelty(Beel, Kan, and



Figure 1: Humans build rich, causal schemas from embodied experience, enabling relational analogies and correct hypotheses
(e.g., Ohm’s Law). LLMs, trained primarily on text, form flatter associative schemas, leading to surface analogies and brittle,
incorrect hypotheses

Baumgart 2025). Even GPT-5’s recent assistance in a mathe-
matical proof, noted by Aaronson and Witteveen (2025), re-
fined human reasoning without demonstrating independent
abstraction. Collectively, these systems accelerate the pro-
cess of research but not yet the substance of discovery.

Across these cases, LLMs display what might be called
statistical creativity: they can search vast combinatorial
spaces, recombine prior knowledge, and produce occasion-
ally surprising results. However, that does not make them
engines of scientific discovery. Unlike von Neumann, they
do not extend beyond their training distribution or formulate
hypotheses that challenge the limits of their learned repre-
sentations. Their successes are bounded by human-defined
objectives and preexisting frameworks.

Genuine breakthroughs provide a testable insight about
the external world and introduce a principle or relation
that extends human knowledge beyond existing frame-
works (Kuhn 1962). By these criteria, discoveries such as
Newton’s law of gravitation, Maxwell’s equations, or the
CRISPR–Cas9 gene-editing system qualify: they reveal un-
derlying structures of reality that were previously unknown
and enabled entire domains of inquiry. Advances such as
protein folding exemplify optimization within established
frameworks rather than out-of-distribution novelty (Jumper
et al. 2021). It’s rare to find examples of LLMs synthesizing
their massive training dataset into a new conceptual discov-
ery, an imaginative leap like Kekulé’s dream of a snake bit-
ing its tail (Rocke 2010) that revealed benzene’s ring struc-
ture.

2.2 The von Neumann Gap
We use the term von Neumann gap to denote the discrep-
ancy between human polymathic reasoning, exemplified by
von Neumann’s capacity to connect formal and physical do-
mains, and LLMs’ current domain-bounded generalization.
Von Neumann’s intellectual reach spanned disciplines that
rarely intersect: from founding modern game theory and for-

malizing set theory, to shaping the architecture of the digital
computer and contributing to the design of the atomic bomb.
His career embodies the kind of integrative reasoning, link-
ing abstract mathematics, physics, and computation, that re-
mains beyond today’s models.

The name serves as a conceptual benchmark, not an ex-
pectation that models must reach von Neumann’s level of
genius. Still, we would expect that a model exposed to the
full corpus of scientific, mathematical, and psychological
knowledge available online could form at least low-hanging
novel connections across disciplines. Yet, this kind of in-
tegrative reasoning remains absent. Something fundamental
about how modern LLMs learn prevents them from bridging
that gap.

2.3 Piaget’s Theory of Cognitive Development
According to Piaget, the goal of learning is to construct
the most accurate internal model of the world available at
a given time (Beilin 1992). In the sensorimotor stage (0–
2 years), children build embodied schemas through direct
interaction with the environment, discovering object perma-
nence and forming habits grounded in physical action. In
the preoperational stage (2–7 years), schemas become sym-
bolic: words, gestures, and images represent objects and
events. By the concrete operational stage (7–11 years), chil-
dren can run internal “simulations” of their schemas, ap-
plying logical operations and reversible reasoning to con-
crete scenarios. Finally, in the formal operational stage (12+
years), these foundations enable abstract thought, hypothet-
ical reasoning, and systematic problem-solving. As humans
learn, schemas reorganize to become increasingly abstract,
hierarchical, and nuanced, functioning as cognitive priors
for interpreting the world.

2.4 Gentner’s Structure-Mapping Theory
Gentner’s Structure-Mapping Theory provides a cognitive
account of how analogy supports abstraction and discovery



(Gentner 1983). Unlike surface similarity, analogy depends
on aligning relational structures across domains. In this pro-
cess, a familiar “base” domain is mapped onto a less familiar
“target” domain, with correspondences drawn between un-
derlying causal relations. Gentner formalized this through
the systematicity principle, which holds that analogies pre-
serving coherent, interconnected relations are more power-
ful than those based on isolated features. High-quality analo-
gies are therefore indispensable for novel discovery, because
they enable relational structures from well-understood do-
mains to be systematically redeployed in unfamiliar ones.
Gentner’s theory identifies the cognitive mechanism that al-
lows humans to reason out-of-distribution, moving beyond
rote pattern recognition toward flexible, relational inference.

3 Why Current LLMs Fail?
3.1 Internal World Models
Large Language Models do not merely memorize text—they
form implicit internal world models that guide their predic-
tions (Li, Cao, and Cheung 2024). Evidence from mech-
anistic interpretability shows that even small transformers
learn structured representations of game states rather than
just token statistics (Li et al. 2023; Karvonen et al. 2024).
Recent work further demonstrates that LLMs encode linear
spatial world models (Tehenan et al. 2025) and can apply
simple heuristics in physical reasoning tasks such as pul-
leys (Robertson and Wolff 2025). Yet, as Robertson and
Wolff (2025) emphasize, these models lack the facility to
reason over nuanced structural connectivity, failing when
problems demand deeper relational understanding. More
broadly, evaluations reveal that world-model coherence of-
ten breaks down under perturbation (Vafa et al. 2024).

Piaget’s Theory of Cognitive Development makes clear
why LLMs fail to form robust world models. The ability
to build higher-order abstractions in the formal operational
stage depends on foundations laid in earlier stages: spatial
grounding in the sensorimotor and preoperational stages,
and exploratory simulation in the concrete operational stage.
Many of our most powerful scientific analogies—such as
electricity flowing like water or the atom resembling a so-
lar system—are rooted in embodied interaction. Exploration
enables the counterfactual reasoning that underpins robust
schemas—for example, asking what would happen if resis-
tance increased? LLMs, by contrast, encounter only linguis-
tic descriptions of these mappings, not the embodied pat-
terns themselves. While text corpora encode valuable ab-
stractions in mathematics, physics, and scientific reasoning,
they lack the embodied variation necessary to anchor rela-
tional concepts (Bisk et al. 2020). One can read about con-
servation of energy, but until they interact with systems of
push and pull, the concept remains fragile. LLMs lack both
of these developmental foundations: spatial understanding
of the physical world and self-generated exploration to re-
fine internal schemas.

3.2 Limits of Analogical Mapping
The core problem isn’t that LLMs can’t do analogical
mapping—they often succeed at surface-level reasoning

(Musker et al. 2025). Transformer attention excels at captur-
ing token co-occurrences and statistical dependencies (Geva
et al. 2023; Vig and Belinkov 2019), but this strength be-
comes brittle out of distribution. The deeper issue is that
the next-token prediction paradigm is structurally myopic:
trained under teacher forcing, models exploit local token
correlations rather than constructing generalizable rules. As
Bachmann and Nagarajan (2024) show, this leads to failures
even on simple lookahead planning tasks, and Nagarajan
et al. (2025) demonstrate similar breakdowns on algorithmic
problems requiring novel pattern construction. This brittle-
ness is evident in analogy itself: Lewis and Mitchell (2024)
find that while LLMs handle standard analogy problems,
they collapse on counterfactual variants. Puranam, Sen, and
Workiewicz (2025) confirm this gap empirically, showing
that GPT-4 often applies incorrect analogies based on su-
perficial features, while humans generate fewer but causally
grounded mappings.

Humans rely on hierarchical schemas grounded in multi-
ple levels of abstraction. Understanding electricity, for ex-
ample, involves mathematical formalism, intuitive “flow”
metaphors, and mechanical analogies simultaneously. This
layered structure supports analogical reasoning that is
deeply tied to spatial and causal grounding—capacities
LLMs lack. Shani et al. (2025) show that LLMs instead per-
form “aggressive statistical compression,” prioritizing effi-
ciency over preserving the fine-grained distinctions essen-
tial for human-like reasoning. While this yields broad cat-
egorical alignment with human concepts, it erases the typ-
icality gradients and internal semantic structure that enable
flexible analogical mapping across domains. By relying on
statistical similarity from next-token prediction, LLMs fail
to produce the relational, out-of-distribution analogies that
Gentner identifies as essential for novel discovery.

4 Towards Solutions
4.1 Training Environment
Training with spatial data. Current LLMs lack gen-
uine spatial grounding (Schulze Buschoff et al. 2025).
While “multimodal” models incorporate image–text pairs,
the vast majority of their pretraining data remains lin-
guistic(Yin et al. 2024), and structured 3D representa-
tions—point clouds, depth maps, volumetric scenes—are
virtually absent. Recent work like SpatialLM (Mao et al.
2025) and SpatialVLM (Chen et al. 2024) shows that train-
ing on 3D data significantly improves spatial reasoning, but
these remain small-scale experiments. We argue that spatial
data must become a substantial component of pretraining—
comprising 20–30% of training tokens. This includes Li-
DAR scans, multi-view depth captures, and mesh geometries
with explicit spatial relations.

The field lacks spatial data at scale. We have trillions of
text tokens and billions of images, but structured 3D datasets
number in the thousands. Building spatial data infrastructure
must be a community priority. Beyond curating existing 3D
datasets, the field must actively collect embodied spatial in-
teraction data.

First, everyday spatial interaction: people navigating



buildings, walking through city streets, arranging objects,
playing sports, exploring unfamiliar environments. Second,
skilled spatial problem-solving: construction workers rout-
ing pipes through tight structural constraints, mechanics
assembling complex machinery, surgeons operating in 3D
anatomical spaces, or movers optimizing furniture place-
ment. Everyday navigation captures foundational spatial op-
erations, while expert tasks reveal how to deploy these oper-
ations in complex, constrained problems. Even autonomous
vehicles and delivery robots build rich spatial maps with
LiDAR and depth sensors that should be incorporated into
LLM training. We acknowledge the challenge of collecting
spatial data but believe it is crucial for developing LLMs
with higher-order reasoning. The gap is fundamental: human
children accumulate thousands of hours of physical spa-
tial interaction before abstract reasoning emerges. Current
LLMs have a fraction of the embodied experience, yet are
expected to develop a robust scientific model of the world.

Training for exploration. We argue that exploration
should be elevated to a core training phase—a dedicated
stage in LLM development where models systematically in-
teract with environments to build causal priors. Evidence
supports this claim: fine-tuning LLMs on embodied expe-
riences in environments such as VirtualHome yields over
60% improvements in reasoning tasks by grounding models
in object permanence and causal regularities (Xiang et al.
2023). Similarly, embodied agents like STEVE (Zhao et al.
2024) in Minecraft and Voyager (Wang et al. 2023) demon-
strate how autonomous exploration can accumulate transfer-
able skills, while S2ERS (Zhang et al. 2025) reduces spatial
hallucinations in maze-like planning through reinforcement
learning. These results highlight the broader principle: mod-
els must actively probe their environments to uncover invari-
ants such as conservation laws and stability.

However, current exploration remains limited to simpli-
fied virtual environments with basic physics and discrete
state spaces. We propose two pathways forward. First, scal-
ing open-ended environments like Minecraft and MuJoCo
to increase physical realism and diversity of spatial chal-
lenges. Second, leveraging physics simulators for system-
atic intervention: For instance, models could test how beam
thickness affects load-bearing capacity or how fluid vis-
cosity alters flow patterns. We see particular promise in
experiment-based sandboxes, a largely unexplored direction,
where models must manipulate environments to rediscover
scientific laws from first principles. By repeatedly altering
parameters and observing outcomes, models can learn the
causal rules that govern systems, developing robust priors
for analogy and transfer across domains.

The core challenge now lies in developing large, di-
verse, and high-quality environments. Environments may
span simulated physical worlds to structured conceptual do-
mains and should be standardized and scalable so models
can act, observe outcomes, and refine their internal repre-
sentations. Environments provide a path for models to move
beyond the statistical imitation of expert data, enabling self-
learning through interaction.

4.2 Cognitively Aligned Architectures
We contend that progress toward analogical reasoning re-
quires neurosymbolic architectures that combine the explicit
relational structures of symbolic systems, with the statistical
generalization capabilities of neural networks (Bougzime
et al. 2025). Early results support this approach: on Raven’s
Progressive Matrices, ARLC achieves near-perfect perfor-
mance by explicitly modeling relational rules (Hersche et al.
2024), while (Shah et al. 2022) show that integrating sym-
bolic background knowledge with neural embeddings en-
ables analogical inferences beyond surface correlations. At
the same time, scalability remains an open engineering chal-
lenge. Current approaches either collapse into fuzzy embed-
dings or brittle symbolic rules that fail to generalize (Naik
et al. 2024). The next step is to design architectures that
learn structured symbolic schemas at scale while retaining
generalization, enabling cross-domain analogical reasoning.

5 A Case For Evolutionary Pretraining
At first glance, claiming that training on spatial or 3D data
is central to breakthroughs in abstract domains like mathe-
matics or biology seems counterintuitive. Yet this perceived
mismatch dissolves once we ground the argument in cog-
nitive theory. Humans are not born with the capacity for
symbolic reasoning or abstract mathematics. These abilities
emerge only after years of embodied interaction—through
exploration, manipulation, and spatial reasoning about the
physical world. Before any child can understand algebraic
equivalence, they have spent years building intuitive mod-
els of object permanence, motion, and causality. These em-
bodied experiences constitute the scaffolding upon which
higher-order reasoning is built. Current large language mod-
els, by contrast, skip this developmental stage entirely. We
hand them the equivalent of a “math textbook” without first
letting them build an intuitive world model. Consequently,
they fail to generate conceptually novel insights or simulate
out-of-distribution phenomena.

From this perspective, pretraining should be understood
as a developmental process rather than a static data-ingestion
phase. The objective is not to produce a fully intelligent
model at the end of pretraining, but to construct a strong,
nuanced prior that equips the system to learn once it is de-
ployed into the world. Evolution offers a deep parallel. Com-
plex cognition did not appear spontaneously; it required the
biological “priors” established by an ecological niche that
rewarded marginal increases in intelligence (Cisek and Hay-
den 2022). In response to evolutionary pressure, multicellu-
lar eukaryotes developed specialized neurons, nervous sys-
tems, and eventually the complex brains underlying cogni-
tion (Moroz 2009; Pang et al. 2022). Evolution, in this view,
is nature’s slow pre-training process: it encodes structural
constraints that make learning efficient once an organism is
deployed into the world.

Thus, evolutionary pretraining reframes how we think
about building general intelligence. Pretraining should not
aim to memorize or simulate scientific reasoning directly,
but to construct the developmental substrate that makes rea-
soning possible. The goal is to equip models with the abil-



ity to build meaningful causal abstractions when faced with
novel problems in-context. Piaget makes it clear that there is
no higher-order reasoning in humans without years of em-
bodied exploration, both mental and physical. By exposing
models to a pretraining regimen of spatially grounded, and
exploratory environments, we leave LLMs with a deep, intu-
itive understanding of the world. Once deployed, these pri-
ors allow the model to form hypotheses, simulate counter-
factuals, and reorganize its understanding in-context. True
scientific intelligence, in this sense, will not emerge solely
from scaling language models, but from cultivating systems
that evolve the capacity to learn about the world the way
evolution once did.

6 Conclusion
We aim to build intelligence that truly understands the world
and internalizes the complex dynamics of how things move
and change. That understanding is not meaningfully en-
coded in textual or visual data. Even simple embodied expe-
riences, like a child rolling a ball downhill, convey physical
principles such as motion and gravity that remain opaque
to models trained without spatial grounding. Furthermore,
without the ability to intervene, tilting the plane or chang-
ing the mass, these models cannot internalize causal dy-
namics. To reason about the world as humans do, models
must refine their internal representations to represent con-
cepts across multiple layers of abstraction: spatial, mechan-
ical, and causal.

Bridging the von Neumann gap will require more than
scale: it demands training regimes and architectures that em-
bed the principles of human reasoning. Incorporating spa-
tial data and enabling LLMs to explore counterfactuals can
anchor robust internal world models, while neurosymbolic
architectures may provide the scaffolding for deep analog-
ical inference across domains. Imagine thousands of poly-
mathic systems like Von Neumann, each capable of con-
necting insights across disparate fields and generating un-
expected analogies that drive scientific breakthroughs. We
urge the AI community to ground future research in cog-
nitive theory, so that AI moves beyond statistical efficiency
and emerges as an engine of unprecedented discovery.
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