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ABSTRACT

The use of synthetic data has been crucial in achieving recent state-of-the-art
breakthroughs. However, relying solely on a single oracle teacher model for data
generation can lead to issues such as model collapse and bias propagation. These
problems are particularly pronounced in multilingual contexts, where no single
teacher model performs optimally across all languages. In this study, we pro-
pose a solution through multilingual arbitrage, which exploits performance varia-
tions among multiple models for each language. By strategically routing samples
through a diverse set of models, each possessing unique strengths in different
languages, we address these challenges. Our extensive experiments with state-
of-the-art models demonstrate that our arbitrage techniques significantly enhance
performance compared to relying on a single teacher model. Our multilingual
arbitrage techniques result in large gains of up to 80% win-rates over state-of-art
proprietary and widely adopted open weight models such as Gemma 2, Llama 3.1,
Mistral v0.3. These gains, achieved through multilingual arbitrage and averaged
across all languages, were most substantial in the less-resourced languages within
our pool.

1 INTRODUCTION

Throughout our lives, we are guided by many teachers, each contributing distinct insights and ex-
pertise to our personal and professional growth. For specialized skills, such as becoming a doctor or
mastering culinary arts, we seek out experts who provide targeted guidance. In contrast, synthetic
data generation often relies on a single teacher model to impart knowledge to a student model. This
approach can lead to the passive transfer of both the strengths and limitations inherent in the teacher
model, as highlighted in various studies (Shumailov et al., 2023; Magister et al., 2023; Shimabucoro
et al., 2024; Gerstgrasser et al., 2024). Moreover, it assumes that a single model can effectively teach
all relevant skills, which may not always be the case.
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Figure 1: Overview of Multilingual Arbitrage. Instead of relying on a single “oracle” teacher,
multilingual arbitrage re-frames the distillation problem as learning how to optimize sampling for a
desired part of the data distribution from an ensemble of teachers.

The limitations of the single oracle approach become particularly pronounced in multilingual set-
tings, where high-performing large language models (LLMs) are often trained predominantly on a
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few data-rich languages (Singh et al., 2024; Joshi et al., 2020; Fan et al., 2021). This diverse land-
scape of multilingual model development has resulted in a variety of models: large-scale models
that support multiple languages (Xue et al., 2020; Scao et al., 2022; Shliazhko et al., 2022; Li et al.,
2023; Üstün et al., 2024), frontier models with some multilingual capabilities that are not specifically
optimized (Armengol-Estapé et al., 2021; Chowdhery et al., 2022; Zhang et al., 2022; Team et al.,
2024), and models focused on regional language families (Adelani et al., 2021; Mirzakhalov et al.,
2021; Cahyawijaya et al., 2022). As a result, it is often unclear how to determine which model to use
to maximize performance for a given language. Relying on a single model can also further amplify
disparities in treatments between languages, as models may perform well on some language but not
have coverage for others. Performance tends to be critical for the quality of synthetic data, which
can enable further progress in those languages by making data more ubiquitous over time (Alaa
et al., 2022; Gao et al., 2023; Bukharin & Zhao, 2023; Li et al., 2024; Zhang et al., 2024).

In this work, we take a wider view of synthetic data generation. Instead of viewing model
distillation as simply transferring data from a single oracle to a student, we reframe the problem
within this heterogeneous landscape as learning how to optimize sampling for a desired part of the
data distribution from an ensemble of teachers. Multilingual settings serve as an ideal case study for
this approach due to the distinct boundaries between languages compared to tasks. We anticipate
that our arbitrage techniques will enhance performance in scenarios where it is uncommon for a
single model to be state-of-the-art across all tasks.

We introduce the concept of multilingual arbitrage, which leverages performance differences among
models for a given language. For each language, we utilize a pool of models as potential teachers
and evaluate strategic sampling methods by routing to different models. This optimized distribution
is then used to instruction fine-tune a new multilingual model, aiming to surpass the performance of
a single multilingual model across all languages. This approach raises the question: Can strategic
sampling from multiple models outperform individual models?

We conducted exhaustive experiments across 15 languages using 9 state-of-the-art multilingual mod-
els to evaluate our method. Our extensive evaluations included LLM-as-an-evaluator win rates,
discriminative tasks, and textual characteristics. Our key findings and contributions are as follows:

• We introduce the concept of “multilingual arbitrage” which significantly outper-
forms traditional single teacher distillation. Our experiments demonstrate that arbitrage
methods surpass single-teacher models. Specifically, our reward-based routing technique
achieved an average improvement of 56.5% in generative win rates and a 28.1% improve-
ment over the best single-teacher model. Additionally, student models trained using this
technique exhibited an average absolute gain in win rates of 32.02% (a relative gain of
153.5%) over various state-of-the-art models, and 6.9% absolute improvement (15.9% rel-
ative improvement) over the best model highlighting the significant performance advantage
of our approach.

• Not all arbitrage techniques are equal. We evaluate the performance of various arbi-
trage techniques against a lower bound baseline of random routing. Reward-based routing,
fixed routing with predefined set of expert teachers, and learned routing improved abso-
lute performance by 30.6%, 22.9% and 13.4% (relative performance by 119.5%, 76.8%,
and 40.6%) respectively. While reward-based routing, though resource-intensive, was the
most effective, our results show that the more efficient reward-guided learned routing can
achieve impressive performance gains without needing to generate all completions from
each model.

• Arbitrage improves or maintains textual characteristics. We analyze the textual charac-
teristics of student model generations by calculating various statistics scores, examining the
effects of instruction fine-tuning (IFT) with multilingual arbitrage on text verbosity, read-
ability, and lexical diversity. Our findings show that reward-based routing results in a 14.1%
increase in the number of tokens in generated text, while learned routing leads to a 68.4%
increase compared to both single-teacher generations (averaged across all single teachers)
and random routing. Additionally, we observe increases in lexical diversity scores: reward-
based routing improves scores by 6%, and learned routing by 4.2% compared to single
teachers, and by 13.4% and 11.5% compared to random routing, respectively.
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• Arbitrage results in a model checkpoint which outperforms state-of-art models. We
scaled our arbitrage setup and compared it to state-of-the-art models such as Gemma
2 (Team et al., 2024), Llama 3.1 (Dubey et al., 2024), and Mistral v0.31. Specifically,
we observed an average absolute gain in win rates of 32.02% (a relative gain of 153.5%)
compared to various state-of-the-art models, resulting in absolute win rates for our arbitrage
models ranging from 50.1% to 80% against Gemma 2 and Mistral v0.3, respectively.

2 METHODOLOGY

Our primary goal is to train a high-performing multilingual student model S. Given a set of input
prompts P = {pi}Ni=1, we generate a corresponding set of completions C = {ci}Ni=1 using a pool
of potential teacher models T = {Tj}Mj=1. These prompt-completion pairs (pi, ci) will then be used
to fine-tune S. For each prompt pi ∈ P , we aim to identify the specific teacher model Tj ∈ T that
produces the highest quality completion ci.

We consider that each teacher model Tj may not perform uniformly across all regions of interest R
in the data distribution. Therefore, we aim to minimize the empirical error E[Pj(R)], where Pj(R)
represents the performance of teacher model Tj in region R, over the broader distribution D. This
ensures robustness and generalization beyond the i.i.d. training sample Diid. This approach allows
us to select the most suitable teacher model for each prompt, optimizing the training of our student
model S. We note that this amounts to optimization in the data space and allows for on-the-fly
creation of dataset properties to minimize sensitivity to distribution drift.

0% 20% 40% 60% 80% 100%

Full Arbitrage vs 
Llama-3.1-8B-Instruct

Full Arbitrage vs 
Gemma2-9B-IT

Full Arbitrage vs 
Mistral-7B-Instruct-v0.3

Full Arbitrage vs 
Aya-23-8B

Full Arbitrage vs 
Aya-23-35B

68.0

50.1

80.0

61.5

53.4

6.5

6.7

5.4

7.6

7.8

25.5

43.2

14.6

30.9

38.7

Win Tie Loss

Figure 2: Win rates (%) of student trained with arbitrage data: Comparison of reward-based
routing trained students with state-of-the-art models. The largest gain is observed with a 65.4%
win-loss difference against Mistral-7B-instruct-v0.3. Values are aggregated across 23 languages.

2.1 ROUTING METHODS

The crux of the problem of multilingual arbitrage is: how do you route prompts to the most calibrated
teacher model for each prompt? We exhaustively benchmark different routing strategies which we
introduce briefly below:

Fixed Routing. In practice, one might choose a fixed model, such as T2, to process all input prompts
in P . This can be reasonable if T2 demonstrates significantly better overall performance for a ma-
jority of the prompts. In the multilingual case, this setting is one in which we can pre-determine
the best model for each language based on their known strengths, enabling us to use a fixed rout-
ing strategy for each prompt deterministically by choosing the appropriate teacher model according
to the prompt’s language. However, in real-world settings it is not always possible to know what
models are relatively strong at different languages in advance.

Reward-based Routing. Next we consider the more realistic setting which assumes that we cannot
pre-determine a fixed routing strategy. Instead, we rely on a reward model for routing. For each
pi we generate a completion from each of the teacher models in T and then select ci to be the

1https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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completion with the highest score given by some ranking method. In our case, we use a proprietary
reward model (Cohere May 2024) which is competitive with top-scoring state-of-the-art reward
models on the RewardBench Leaderboard (Lambert et al., 2024)2. We intentionally use a separate
reward model for routing from the model that we use for our LLM-as-a-judge evaluation (GPT-4-
Turbo3) given the known biases incurred by using the same model for both (Bansal et al., 2023;
Verga et al., 2024; Shimabucoro et al., 2024).

Learned-Routing. The disadvantage of reward-based routing is that it requires generating a full set
of M completions for each prompt where M = |T |. As a more efficient alternative, we explore
the merits of a learned router which instead trains a router model based on scores produced by the
reward model which is proposed by (Lu et al., 2024). In this method, the router model learns to
predict the reward conditioned only on the prompt pi, thereby determining the most suitable teacher
model Tj without the need to generate multiple completions based upon historical routing trends.
The router R(pi) is defined to select the teacher model Tj that maximizes the expected reward for a
given prompt pi. Formally, for each pi ∈ P , the selected model Tj is given by:

Tj = argmax
T∈T

R(pi, T ).

This approach leverages the complementary strengths of the models in T and ensures that each
prompt is routed to the model most likely to produce the highest quality completion. By integrating
reward model ranking with query routing, reward-guided Learned-Routing enhances the efficiency
of the LLM ensemble, reducing computational overhead while ensuring effective training of the
student model S.

To train our learned-routing model, we collect a training dataset of diverse prompts and then generate
completions from each of the candidate models in the teacher pool. Given a prompt from our training
set, we obtain a scalar reward for each candidate model generation as in the following:

ri = {RM(pi, Tj(pi))}|T |
j=1 , i = 1, . . . , N (1)

where ri ∈ R|T |. We then train our router R on the training data with Kullback-Leibler (KL)
divergence as the loss function:

L(pi, ri) = KL(R(pi), softmax(ri)). (2)

This approach improves the quality of synthetic data while maintaining computational efficiency
during inference, introducing only minimal overhead compared to traditional reward model ranking
methods, which is training the router model. However, this overhead is well compensated during
inference because learned routing only generates samples from the routed model, rather than from
each model in the pool. As a result, the generation cost is reduced to 1/M , where M is the number
of models in the pool.

3 EXPERIMENTAL SETUP

3.1 BASELINES

To evaluate the effectiveness of multilingual arbitrage, we compare our method against several
baseline methods. Below, we provide a brief overview of the experimental details for each baseline:

Single Teachers. This is the most widely adopted framework for incorporating synthetic data into
training. In this paradigm a student model is trained on the generations produced from a single
teacher model. This setup allows us to explore the question: Is multilingual arbitrage more effective
than a single “oracle” teacher?

We choose single teacher models based on their architecture, size, base model type, and language
coverage. Our experiments are divided into two scales. For the basic set, we use widely adopted
models with parameters ranging from 7B to 9B: Aya 23 (Aryabumi et al., 2024), Llama 3 (Dubey
et al., 2024), and Gemma 2 (Team et al., 2024). For larger-scale experiments with expanded language
coverage, we choose top-performing open-weight models: CommandR+, Gemma2 27B (Team et al.,

2https://huggingface.co/spaces/allenai/reward-bench
3https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
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2024), and Mistral Large 2. Detailed information about each model is provided in Appendix A.2.
Although Llama 3 and Gemma 2 do not explicitly claim multilingual support, they are often used
by multilingual users more than models explicitly designed for multiple languages, such as mT0
(Muennighoff et al., 2023) and BLOOMZ (Muennighoff et al., 2023).

Random Routing. Next, we consider a router that randomly assigns each prompt pi ∈ P to teacher
model Tj ∈ T , without considering the language or any other specific characteristics of the prompt.
This allows us to investigate: Is multilingual arbitrage better than a random selection as to what
model is best for a given distribution of interest?

Translation. Lastly, our translation baseline addresses whether strategic sampling outperforms sim-
ply translating the generations of a single English model into multiple languages. We aim to de-
termine: Does generating synthetic data in the target language outperform translating the best
English only data?

We generate completions for our English training prompts using our most capable English teacher
model, Llama 3. We then translate each of the prompts and completions to the seven languages
included in our router experiments.

3.2 ROUTING TEACHER POOLS

Fixed Router Model Pool. In our fixed router experiments, we assume prior knowledge of which
models perform best for specific languages. We train several geo-cluster models on 15 languages,
each specialized in different language groups: Germanic which includes German and Dutch; Slavic
consisting of Czech, Russian, Ukrainian, Polish; Romance covering French, Portuguese, Spanish,
Italian, Romanian); and East-Asian consisting of Turkish in addition to Korean, Japanese, Chinese.
This allows models to exploit geographic and linguistic similarities within a language cluster (Kohli
et al., 2023; Kew et al., 2023; Tejaswi et al., 2024). Each geo-cluster outperforms the single teacher
model before student model training, achieving an average absolute win rate gain of 5.95% (relative
gain of 14.9%) over single teachers. Additional training and win rate evaluation details are provided
in Appendix A.2.1.

Reward-based and Learned Routing. These methods aims to demonstrate the effectiveness of
routing in a varied pool of models with unknown multilingual performance. Hence, we consider a
diverse pool that includes all single teacher models (3.1), geo-cluster models (3.2) and monolingual
models in Chinese (Qwen2-7B-instruct (Yang et al., 2024)) and Turkish (Turkish-Llama-8b-Instruct-
v0.1) which are specifically designed to support individual languages. We include more details
about the monolingual models in Appendix A.2. This variety, ranging from massively multilingual
to geo-cluster and monolingual models, helps us analyze which types of models are most utilized by
different routing techniques.

Learned Routing To train our learned router, we fine-tune the Gemma2-2B(Team et al., 2024)
model, selected for its compact size, strong performance, and multilingual capabilities. To fur-
ther improve training efficiency, we also evaluate a smaller mT5-base (Xue et al., 2020) variant
with 580M parameters. Comparative results for these models are presented in Appendix A.4. Our
learned router models were trained using prompts from Dolly-15k which were translated using
NLLB-3.3B (Team et al., 2022) into the seven languages covered by our routing experiments, and
resulting in 60,419 prompts in total.

3.3 STUDENT MODEL

We chose the Aya 23 8B model (Aryabumi et al., 2024) as our student model due to its state-of-the-
art multilingual capabilities for its size. Our experiments are conducted at two scales: i) Basic Set
where synthetic data is generated in seven languages: Arabic, Chinese, English, French, German,
Turkish, and Ukrainian and ii) Larger Scale where synthetic data is generated in 23 languages,
including the initial seven plus: Dutch, Czech, Greek, Spanish, Persian, French, Hebrew, Hindi,
Indonesian, Italian, Japanese, Korean, Polish, Portuguese, Russian, and Vietnamese. These lan-
guages cover diverse language families to ensure comprehensive evaluation across various linguistic
contexts (see Table 6 in Appendix A.3).

Training Details. For the basic set, student models are trained using 10,000 randomly sampled
prompts from the UltraFeedback Binarized Dataset (UFB) (Tunstall et al., 2023), an English pref-
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erence dataset with 61,135 pairs. These prompts are translated into seven target languages using
the NLLB-3.3B model, resulting in 70,000 prompts. For larger-scale experiments, 10,000 UFB
prompts, 13,000 from Dolly (Conover et al., 2023), and 43,000 from ShareGPT 4 are translated into
23 languages, totaling 1,358,000 prompts. Completions for each prompt are generated by the as-
signed teacher model. Each student model is then instruction fine-tuned on these multilingual data
points - 70,000 for the basic set and 1,358,000 for the larger scale—selected through multilingual
arbitrage.

The training employed a cosine learning rate schedule with a warm-up phase, using a batch size
of 64 and an evaluation batch size of 128. The peak learning rate was set at 2.5 × 10−5, achieved
through 128 warm-up steps starting from a learning rate of 0.0, and then decayed back to 0.0.

3.4 EVALUATIONS

Open-ended Generation Win rates. Beyond traditional NLP tasks, we aim to evaluate the open-
ended generation capabilities of the student models, focusing on their ability to produce unstruc-
tured and long-form responses. For this evaluation, we use GPT-4 as an LLM-judge to measure
pairwise win rates between two model generations. We evaluate on the target language subset of
the Multilingual Dolly-200 Eval dataset (Singh et al., 2024; Üstün et al., 2024). This 200 instance
evaluation dataset is a held-out curated sample from the Dolly-15k dataset (Conover et al., 2023).
These prompts are open-ended and capture general-purpose non-code use cases. Hence, evaluation
using this dataset is a valuable proxy for how multilingual arbitrage impacts more fluid and often
open-ended asks.

Discriminative Tasks. To evaluate our models on completely unseen tasks, we follow Muen-
nighoff et al. (2023) and use XNLI (Conneau et al., 2018), XCOPA (Ponti et al., 2020), and XSto-
ryCloze (Lin et al., 2021) datasets targeting natural language inference, commonsense reasoning and
sentence completion respectively. These unseen tasks are crucial for evaluating the effectiveness of
IFT in improving a model’s reasoning and comprehension capabilities as they test the model’s abil-
ity to discriminate between different possible interpretations or outcomes. For all unseen tasks, we
report zero-shot performance.

4 RESULTS AND DISCUSSION

4.1 MULTILINGUAL ARBITRAGE PERFORMANCE

Comparison against state-of-the-art models. Figure 2 shows the win rates of our reward-based
arbitrage routing strategy compared to several widely adopted models, with parameters ranging from
7B to 9B, as well as the Aya 23 model with 35B parameters. Our student models, trained using data
derived from this strategy, demonstrated a significant performance advantage over all these state-of-
the-art models. We observed an average absolute increase in win rates of 32.02% (relative gain of
153.5%) across all models, with improvements ranging from 6.9% (15.9% relative) for Gemma2 9B
to 65.4% (447% relative) for Mistral-7B-instruct, based on results averaged across 23 languages.

Comparison against random routing. Our random routing baseline serves as a crucial lower bound
that any proposed arbitrage strategy should outperform. This baseline helps us evaluate: Is our
multilingual arbitrage technique better than a random guess? In Figure 3, we compare the win rates
of each of the different routing methods against the random routing baseline. We observe that all
the multilingual arbitrage methods consistently outperformed the random baseline with average win
rate of 51.8% and a notable absolute win rate improvement of 22.3% (78.9% relative) on average.

Comparison against single “oracle” teacher. In Figure 4, we show win rates comparing our ar-
bitrage routing strategies to single teacher models. Student models trained with data from these
strategies significantly outperformed those using single teacher generations. Specifically, fixed rout-
ing achieves an absolute average winrate improvement of 13.3% (34.7% relative), reward-based
routing shows a 19.5% absolute average improvement (56.5% relative), and learned routing has a
9.0% absolute improvement in average (25.6% relative) over all single teachers. Notably, Gemma 2

4https://sharegpt.com/
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Figure 3: Win rates (%) of students trained with different routing strategies: Comparison of
router-trained and random routing trained students. Reward-based routing shows the largest gains
with a 30.6% win-loss difference. Values are percentages aggregated across 7 languages.

was the best-performing single teacher, yet learned routing still achieved an absolute average winrate
improvement of 1.4% (3.2% relative gain) over it.
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Figure 4: Win rate (%) comparison of Fixed Routing, Reward-Based Routing and Learned
Routing against Single Teacher Models. The x-axis shows the single teacher model used for
synthetic data generation. All multilingual arbitrage strategies outperform single teachers, with
reward-based routing achieving the largest gains. Values are aggregated across seven languages:
Arabic, Chinese, English, French, German, Turkish, and Ukrainian.

Win-rate Gains are largest for Reward-Based Routing. We observed the largest improvements
against single teachers with reward-based routing, achieving average gains of 56.5%. However,
reward-based routing is the least efficient arbitrage method because it requires running inference
and generating completions with all models in the pool for each prompt. Although fixed routing
and learned routing show some decrease in win-rates compared to reward-based routing, they are
significantly more efficient during inference, as they only require inference from one model. In
our experiments with a pool of 9 models, reward-based routing requires generating and scoring
9 completions per prompt, while fixed and learned routing need only one generation per prompt.
Although learned routing involves an additional call to the router per prompt, this router model is
much smaller and more efficient than the teacher, making the call negligible compared to generating
from all models in the pool. Notably, learned routing is the most flexible technique, being 9 times
more efficient than reward-based routing in this setup and not needing prior knowledge of each
model’s merits, unlike fixed routing.

Discriminative tasks. Table 8 presents average scores for unseen discriminative tasks, reporting
zero-shot performance. These tasks reveal similar gaps between the benefits of single teachers and
arbitrage techniques. Single teachers provide an average absolute improvement of 0.57 (0.98%
relative improvement) over the base student model (Aya 23), while arbitrage techniques achieve a
larger absolute average improvement of 1.14 (1.95% relative improvement).

Overall, on discriminative tasks, Fixed Routing emerges as the most effective, with the highest ab-
solute average improvement of 1.46 (2.50% relative) across tasks, followed by reward-based routing
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XCOPA XNLI XStoryCloze Average

AYA23 (Base Model) 64.1 42.9 68.23 58.41

SINGLE TEACHERS 65.5 43.96 67.41 58.98 ↑ 0.98

RANDOM ROUTING 65.9 44.01 67.25 59.05 ↑ 1.09

FIXED ROUTING 67.4 43.89 68.33 59.87 ↑ 2.50

REWARD BASED ROUTING 66.2 44.21 68.20 59.53 ↑ 1.91

LEARNED ROUTER 65.8 43.62 68.36 59.25 ↑ 1.43

Table 1: Performance of Student Models on held-out Discriminative Tasks: XCOPA, XNLI, and
XStoryCloze. Results are averaged over seven languages, showing performance changes relative to
the base model AYA23. Single teacher results are averaged across Aya23, Llama 3, and Gemma 2.
The ‘Average’ column includes the percentage increase over the base model.

with a 1.12 (1.91% relative) improvement, indicating their superior ability to enhance cross-lingual
and commonsense reasoning capabilities in the student models. Notably, while fixed routing ranks
first in discriminative tasks, it is second in win rate comparisons. This discrepancy may stem from
a noted tension between model performance on academic benchmarks and open-ended generations.
Recent studies suggest that as performance on open-ended tasks improves, traditional academic task
performance may decline (Iyer et al., 2023; Üstün et al., 2024). This occurs because supervised
fine-tuning of large language models has increasingly been torn between objectives: improving
traditional academic benchmarks and training LLMs to follow instructions, acquire conversational
abilities, and be helpful and harmless (Aakanksha et al., 2024). See Table 8 in Appendix A.6 for
comprehensive results.

4.2 LANGUAGE AND ROUTING ANALYSIS

Difference in per-language gains. Figure 5 shows performance gains for medium- versus high-
resource languages when using reward-based and learned routing strategies compared to single
teacher models such as Aya 23, Llama 3, and Gemma 2.
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  37.0   34.2

  13.7   12.3

High-Resource Mid-resource0
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  47.9

  52.8
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Figure 5: Win rate Changes Across Language Resource Level: Comparison of the Mid-Resource
Languages and High-Resource Languages win rates against Single Teachers (results are the average
of Aya 23, Llama 3 and Gemma 2 single teachers). Mid-resource languages consist of Turkish and
Ukrainian and high-resource languages are English, German, French, Chinese and Arabic.

Medium-resource languages, Turkish and Ukrainian, experience greater benefits, with reward-based
routing achieving an absolute gain of 19.2%(56.1% relative gain) and learned routing achieving a
18.1% (52.2% relative gain) over single teachers. In contrast, high-resource languages (Joshi et al.,
2020), English, German, French, Chinese, and Arabic see an absolute gain of 13.2% (35.7% relative
gain) with reward-based routing and 6% (14.3% relative gain) with learned routing. These findings
suggest that medium-resource languages gain more from routing strategies than from single teacher
models. Detailed per-language gains are provided in Table 7 in Appendix A.5.
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Routed Dataset Distribution Across Models. In Figure 6, we illustrate the distribution of the
training dataset prompts routed to each model (for the reward-based router). We observed a balanced
routing strategy with different models favored for each language, which highlights the benefits of
combining the strengths of a pool of models with varying strengths. For instance, Llama 3, a strong
English model, receives 60% of English prompts but is less frequently used for other languages.
Meanwhile, 30.7% of Chinese prompts are directed to the Chinese monolingual expert, whereas the
Turkish monolingual expert is rarely selected, with only 0.6% of prompts routed to it. Overall, Aya
23 emerges as the leading multilingual model, predominantly chosen for Ukrainian, Turkish, and
Arabic, with 53% of Arabic prompts routed to it. Geo-cluster models, included for all languages
except Arabic (as there is no Geo-cluster model for it), handle an average of 18.7% of the prompts.

0 20 40 60 80 100
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Arabic
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Figure 6: Model Composition per Language: Here we analyze the model routing distribution of
a dataset constructed with Reward-Based Routing. The values represent the percentage of prompts
routed to a given model for the particular language.

Comparison of in-language generation vs translation. In this section, we explore whether gener-
ating synthetic data directly in the target language is more effective than translating the best English-
only data. To investigate this, we first generate English data using Llama 3 (the best English model),
translate it into other 6 languages, and train a student model with this translated data. We then com-
pare this student model’s performance to those trained with Llama 3’s single-teacher generations
and random-routing generations.
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 47.2
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Figure 7: Win rates (%) of students trained with Llama 3 translations and Llama 3 genera-
tions: Comparison of translation, in-language generation by single teacher and router-trained stu-
dents to those trained with random routing. The largest gains are observed for in-language data
generation with a win-loss diff of 18.3%. All values are aggregated over 7 languages.

Figure 7 demonstrates that random routing outperforms the translation baseline, achieving a win rate
of 54.4%, while the Llama 3 single teacher model exceeds the random-routing baseline with 4.4%
(10.3% relative) gain in this experiment. Direct comparison of Llama 3 translation with Llama 3
single teacher students exhibits a significant absolute 18.3 % (48.9% relative) increase in win rates
for the single teacher model. These results indicate that translation is the least effective method for
synthetic data generation, as even random routing performs better. Generating samples within the
original language offers substantial advantages over relying on single model translations, despite the
single model being the top performer in the original language (English) before translation to others.
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4.3 TEXTUAL CHARACTERISTICS

To gain a holistic view of how multilingual arbitrage affects model generation characteristics, we
use the TextDescriptives framework from Hansen et al. (2023) to calculate various textual features.
We report average statistics, including token count, readability, and lexical diversity scores. Detailed
analyses of the textual characteristics of generations are provided in Appendix A.7.

5 RELATED WORK

LLM circularity. The issue of LLM circularity, where models influence others through distilled
data, has gained attention, focusing on model degradation and self-preference (Dohmatob et al.,
2024; Briesch et al., 2023; Shumailov et al., 2023). Recursive training impairs performance by
neglecting long-tail knowledge (Briesch et al., 2023; Bertrand et al., 2024; Shumailov et al., 2024),
leading to a loss of diversity (Guo et al., 2024; Feng et al., 2024). (Shimabucoro et al., 2024) explore
how the transfer of characteristics via passive inheritance occurs when synthetic data generated
by different LLMs is involved. By considering the issues highlighted in these studies, we aim to
optimize synthetic data generation by selecting the most calibrated teacher model from a pool of
LLMs in a multilingual setting.

Instruction Fine-tuning (IFT) and Multilingual Synthetic Data. IFT enhances LLM performance
and generalization (Sanh et al., 2021; Wei et al., 2021; Mishra et al., 2021; Min et al., 2021; Ouyang
et al., 2022), relying on task diversity (Longpre et al., 2023; Wang et al., 2023b; Chung et al., 2022),
complexity (Xu et al., 2023; Luo et al., 2023), and quality (Zhou et al., 2023; Taori et al., 2023).
While validated mainly for English tasks, there is a growing focus on multilingual contexts (Üstün
et al., 2024). Efforts address multilingual instruction dataset scarcity (Singh et al., 2024). Research
on English synthetic data generation is extensive (Gao et al., 2023; Anaby-Tavor et al., 2019), but its
multilingual impact is less understood (Kaddour & Liu, 2023). Recent studies explore multilingual
data with a single teacher model (Aryabumi et al., 2024) and for preference training (Aakanksha
et al., 2024). In this work, we strategically sample from a diverse pool of models, each with unique
strengths across different languages, to generate high-quality synthetic instruction data. Our research
diverges by concentrating on multilingual synthetic instruction data generation from an ecosystem
view rather than a single teacher.

Large Language Model Ensemble. Ensembling LLMs leverages individual strengths, but limited
research exists on these effective strategies. Frameworks combine LLMs using pairwise ranking
and generative fusion (Jiang et al., 2023), sequential inference (Chen et al., 2023), and supervised
learning for output fusion (Wang et al., 2023a). Routers select the best LLM candidate based on
benchmarks (Shnitzer et al., 2023). Relevant work proposes reward model-guided routing for task
strengths (Lu et al., 2024). Our work explores various routing strategies beyond reward-based rout-
ing, in multilingual contexts.

6 CONCLUSION

In this work, we introduce the concept of multilingual arbitrage, which strategically utilizes perfor-
mance variations across different models for a given language to sample from a pool of teacher mod-
els, thereby generating a superior dataset for training effective student models. Our extensive experi-
ments across 23 languages demonstrate the efficacy of our routing strategies, significantly enhancing
student models’ performance across all benchmarks. We observed notable gains in both open-ended
generation tasks and discriminative benchmarks compared to the traditional single-teacher data gen-
eration and training method. Furthermore, additional analysis of textual characteristics and evalua-
tion on unseen discriminative tasks confirm that our instruction fine-tuned students not only retain
their initial capabilities but also improve their multilingual generation skills. Our findings under-
score the value of strategic sampling, particularly in scenarios where a diverse pool of models can
excel at different parts of the data distribution. We expect arbitrage techniques will yield substantial
gains in addressing out-of-distribution challenges and in handling rare or underrepresented parts of
the data distribution.
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A APPENDIX

A.1 OVERVIEW OF ARBITRAGE TECHNIQUES

Fixed Reward-Based Learned

Works with Unknown Teachers ✗ ✔ ✔

All models are considered for each prompt ✗ ✔ ✔

Efficient Routing ✔ ✗ ✔

New models can be added on-the-fly ✗ ✔ ✗

Table 2: A comparison of different arbitrage techniques: We compare the properties of the different pro-
posed routing methods. While the reward-based routing is the most flexible approach, it comes at the cost of
efficiency as compared to the learned router.

A.2 TEACHER MODEL POOL DETAILS

Single Teacher Models. We include additional details about each of the single teacher models we
benchmark below:

• Aya-23-8B (Aryabumi et al., 2024) is an 8B parameter model and a part of the Aya-23 fam-
ily of multilingual instruction-tuned language models that supports 23 languages, and are
based on Cohere’s Command model5 and multilingual instruction-style collection (Singh
et al., 2024).

• Llama-3-8B-instruct (Dubey et al., 2024) is an open-source instruction-tuned version of
the Llama-3-8B pre-trained model. The model is trained on over 15 trillion tokens of
publicly available data, with a focus on optimizing the performance across various real-
world scenarios, including reasoning and code generation.

• Gemma-2-9B-it (Team et al., 2024) is a 9B parameter instruction fine-tuned model on
8T tokens of data from web documents, code, and science articles. In particular, the 9B
model was trained with knowledge distillation (Hinton et al., 2015) instead of next token
prediction.

• Gemma-2-27B-it (Team et al., 2024) is a 27B parameter instruction fine-tuned model on
13T tokens of data from web documents, code, mathematics.

• Command-r-plus-08-2024 6 is a 104B parameter multilingual model optimized for 10
languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Ko-
rean, Arabic, and Simplified Chinese.

• Mistral Large 27 is a 123B parameter instruction fine-tuned model, supports dozens of
languages including French, German, Spanish, Italian, Portuguese, Arabic, Hindi, Russian,
Chinese, Japanese, and Korean.

Monolingual Teacher Models. These models are specifically tailored for individual languages,
specifically Chinese and Turkish:

• Qwen2-7B-instruct (Yang et al., 2024) is an open-source 7B parameter model pretrained
on 7T tokens of data from code, mathematics, and multilingual data. Qwen2-7B-instruct is
a multilingual model supporting approximately 30 languages, and showing strong perfor-
mance on Chinese.

5https://cohere.com/command
6https://huggingface.co/CohereForAI/c4ai-command-r-plus
7https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
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• Turkish-Llama-8b-Instruct-v0.18 is a fully fine-tuned version of the Llama-3-8B-instruct
model with a 30GB Turkish dataset. It currently tops the Turkish leaderboard on Hugging-
Face9 for text generation tasks.

A.2.1 GEO-CLUSTER TRAINING DETAILS

Language Cluster Languages
GERMANIC German, Dutch
SLAVIC Czech, Russian, Ukrainian, Polish
ROMANCE French, Portuguese, Spanish, Italian, Romanian
EAST-ASIAN Korean, Japanese, Chinese, Turkish

Table 3: Language composition of Geo-clusters: To evaluate fixed routing, we control apriori for
the strength of a model on each language in our pool by training Geo-cluster models which are
specialized on different groups of languages.

To train highly performant Geo-clusters, we train an 8B parameter Cohere command model on a
data mix of the 15 languages covered by the Geo-Clusters as shown in Table 3.

Number of Samples Per Dataset
Language Cluster Original ShareGPT ShareGPT CommandR+ Original Dolly15k Dolly15k CommandR+

GERMANIC 155,480 157,699 40,466 42,447
SLAVIC 259,217 263,488 67,721 71,121
ROMANCE 309,708 314,513 80,295 84,345
EAST ASIAN 230,848 235,369 58,864 61,743

Table 4: Number of Training Samples Per Language Cluster

For this data mix, we used both ShareGPT dataset and the Dolly-15k dataset as described by
(Aryabumi et al., 2024). First these two datasets’ prompts and completions were translated into
these 15 languages, and translations were done using the NLLB-3.3B model (Costa-jussà et al.,
2022). In addition, we also included what we call the ShareGPT CommandR+ dataset and the
Dolly-15k CommandR+ dataset. For these variants, we use the translated prompts generated com-
pletions for the translated prompts using Command R+10. Our datasets cover 15 languages shown
in Table 3. Table 4 shows the training data distribution in terms of number of samples used for each
Geo-Cluster model training.
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Figure 8: Geo-cluster win-rates against Aya 23 Single Teacher Model after training. All values are
percentages, and aggregated over number of languages in each language cluster. Geo-cluster are
powerful teacher models relative to the capabilities of the base Aya model.

8https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1
9https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard_v0.2

10https://huggingface.co/CohereForAI/c4ai-command-r-plus
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Before using the geo-clusters as teacher models, we validate performance of our trained Geo-cluster
models. We compute average win rates in each language cluster using the held-out multilingual
Dolly-200 evaluation dataset (Üstün et al., 2024).

Language Model Pool

ARABIC Base Pool
CHINESE Base Pool, East Asian + Turkish Cluster, Qwen2-7B
ENGLISH Base Pool, Germanic Cluster
FRENCH Base Pool, Romance Cluster
GERMAN Base Pool, Germanic Cluster
TURKISH Base Pool, East Asian + Turkish Cluster, Turkish-Llama-8b
UKRAINIAN Base Pool, Slavic Cluster

Table 5: Teacher model pool available for each language. The Base Pool consists of those outlined
in Section 3.1: Aya 23, Llama 3, Gemma 2.

A.3 LANGUAGE FAMILIES

As we present in Section 3.3, we generate synthetic data in seven diverse languages: Arabic, Chi-
nese, English, French, German, Turkish, Ukrainian, Dutch, Czech, Greek, Spanish, Persian, French,
Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Polish, Portuguese, Russian, Vietnamese.
These languages, representing different language families, are selected to ensure a comprehensive
evaluation across various linguistic contexts, detailed in Table 6.

ISO Code Language Script Family Subgrouping Resources
ara Arabic Arabic Afro-Asiatic Semitic High
zho Chinese Han Sino-Tibetan Sinitic High
eng English Latin Indo-European Germanic High
fra French Latin Indo-European Italic High
deu German Latin Indo-European Germanic High
tur Turkish Latin Turkic Common Turkic Mid
ukr Ukrainian Cyrillic Indo-European Balto-Slavic Mid
nld Dutch Latin Indo-European Germanic High
ces Czech Latin Indo-European Balto-Slavic High
ell Greek Greek Indo-European Graeco-Phrygian Mid
spa Spanish Latin Indo-European Italic High
pes Persian Arabic Indo-European Iranian High
fra French Latin Indo-European Italic High
heb Hebrew Hebrew Afro-Asiatic Semitic Mid
hin Hindi Devanagari Indo-European Indo-Aryan High
ind Indonesian Latin Austronesian Malayo-Polynesian Mid
ita Italian Latin Indo-European Italic High
jpn Japanese Japanese Japonic Japanesic High
kor Korean Hangul Koreanic Korean Mid
pol Polish Latin Indo-European Balto-Slavic High
por Portuguese Latin Indo-European Italic High
rus Russian Cyrillic Indo-European Balto-Slavic High
vie Vietnamese Latin Austroasiatic Vietic High

Table 6: Lineage for Cluster Languages. 23 languages covered by our main experiments, each lan-
guage’s corresponding script, family, subgrouping, and if it is classified as higher or mid-resourced
according to (Joshi et al., 2020).
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A.4 ROUTER MODEL DETAILS

Training Details. We chose Gemma2-2B11 as our router model for its compact size, performance,
and multilingual capabilities. We fine-tuned Gemma2-2B model using the AdamW (Loshchilov &
Hutter, 2019) optimizer with an initial learning rate of 5 × 10−5. We used a linear learning rate
scheduler with a 200 warmup steps. We set weight decay to 0 and fine-tuned for 2 epochs.

To further improve training efficiency, we also evaluate a smaller mT5-base12 variant with 580M
parameters. We finetuned the mT5-base using the Adafactor optimizer with 1×10−3 as the learning
rate. We fine-tuned for 5 epochs with a train batch size of 32.

Comparison of mT5 and Gemma 2 as Router Model. We chose Gemma2-2B as the final candi-
date for our learned router model. The student model trained on the dataset routed by Gemma2-2B
demonstrated significant improvements, particularly against the strong Gemma2-9B single teacher
model. Gemma2-2B was used as the learned router in all our experiments.

Gemma-2     mT5

Figure 9: Win-rate % comparison of Learned Routing (mT5) and Learned Routing (Gemma2)
against Random Routing (left) and multiple Single Teacher Models (right).

Figure 9 shows Gemma2-2B and mT5-base router performances compared to random routing and
single teachers. Despite its smaller size, mT5-base also achieved remarkable results, outperforming
all baseline approaches with a notable 65.2% gain over random routing and an average gain of 27.7%
over single teacher models.

A.5 DIFFERENCE IN PER-LANGUAGE GAINS.

In Figure 10, we compare both reward-based routing and learned routing strategies against random
routing for medium-resource and high-resource languages.
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Figure 10: Win-rate Changes Across Language Resource Level. We compare the win rates of
Mid-Resource Languages and High-Resource Languages against random-routing. Mid-resource
languages consist of Turkish and Ukrainian and high-resource languages are English, German,
French, Chinese and Arabic.

11https://huggingface.co/google/gemma-2-2b
12https://huggingface.co/google/mt5-base
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High-resource languages (Joshi et al., 2020), English, German, French, Chinese, and Arabic see a
127.6% gain with reward-based routing and a 42.4% gain with learned routing. Medium-resource
languages that includes Turkish and Ukrainian, experience greater benefits, with reward-based rout-
ing achieving a 134.7% gain and learned routing achieving a 57.1% gain over random routing. These
findings suggest that medium-resource languages gain more from strategic sampling than from ran-
dom routing. Detailed per-language gains are provided in Table 7.

% gain (Single Teachers) % gain (Random Routing)
Language Reward-based Learned Reward-based Learned
Arabic 75.7 43.4 115.1 43.5
Chinese 114.5 2.9 101.8 -4.6
English 55.2 0.4 116.0 115.7
French 22.5 -4.4 79.3 39.1
German 31.7 28.8 76.7 88.7
Turkish 52.2 59.6 228.9 94.5
Ukrainian 59.9 43.7 172.9 87.2

Table 7: Win-rate gains across languages. This table presents the percentage gain of reward-based
routing and learned routing compared to single teachers and random routing across seven languages.
The highest gain in each column is highlighted in bold, while the second highest gain is indicated
in blue.

The results indicate that reward-based routing leads to larger gains across all languages compared
to learned routing, whether against single teachers or random routing. Mid-resource languages,
Turkish and Ukrainian, consistently show high gains in all scenarios, followed by Arabic. However,
no distinct pattern emerges for high-resource languages. Notably, reward-based routing results in
significant gains for Chinese against both random routing and single teachers. Additionally, both
reward-based and learned routing achieve substantial gains for English when compared to random
routing.
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A.6 DISCRIMINATIVE TASKS.

XCOPA XNLI XStoryCloze Average
BASE MODEL

AYA23 (Base) 64.1 42.9 68.23 58.41

SINGLE TEACHER

AYA23 65.5 ↑ 2.18 43.86 ↑ 2.23 68.05 ↓ 0.27 59.13 ↑ 1.23

LLAMA-3 65.1 ↑ 1.56 44.04 ↑ 2.65 66.46 ↓ 2.60 58.53 ↑ 0.20

GEMMA-2 66.1 ↑ 3.12 43.98 ↑ 2.51 67.74 ↓ 0.72 59.3 ↑ 1.52

TRANSLATION 64.6 ↑ 0.78 43.46 ↑ 1.30 66.77 ↓ 2.14 58.27 ↓ 0.24

MULTILINGUAL ARBITRAGE

RANDOM ROUTING 65.9 ↑ 2.80 44.01 ↑ 2.58 67.25 ↓ 1.44 59.05 ↑ 1.09

FIXED ROUTING 67.4 ↑ 5.14 43.89 ↑ 2.30 68.33 ↑ 0.14 59.87 ↑ 2.50

REWARD BASED ROUTING 66.2 ↑ 3.27 44.21 ↑ 3.05 68.20 ↓ 0.05 59.53 ↑ 1.91

LEARNED ROUTER 65.8 ↑ 2.65 43.62 ↑ 1.67 68.36 ↑ 0.19 59.25 ↑ 1.43

Table 8: Performance of Student Models on held-out Discriminative Tasks: XCOPA, XNLI, and
XStoryCloze. The results are averaged over seven languages, highlighting the improvements or
declines in performance compared to the base model AYA23.

A.7 TEXTUAL CHARACTERISTICS

To obtain a more holistic view of how multilingual arbitrage impacts model generation character-
istics, we utilize the TextDescriptives framework from Hansen et al. (2023) to calculate various
textual features. We report average statistics, including the number of tokens along with readability
and lexical diversity scores. Metrics like length are straightforward to compute and serve as posi-
tively correlated proxies for quality (Singh et al., 2024). These metrics are calculated from model
generations over 100 instances from the Dolly200 Eval set (Singh et al., 2024). We standardize
comparisons across models by allowing for a maximum output length of 600 tokens.

Student Models # Tokens Gunning-Fog Rix MLTD

AYA23 (Base) 76.74 15.83 4.7 43.98

SINGLE TEACHER STUDENTS

AYA23 151.83 17.67 5.92 46.51
LLAMA-3 141.71 17.33 5.87 49.5

GEMMA-2 140.59 15.67 ↓ 4.28 ↓ 52.48

TRANSLATION 197.05 16.62 5.22 53.01

MULTILINGUAL ARBITRAGE

RANDOM ROUTING 144.16 17.16 5.81 45.81
FIXED ROUTING 160.75 17.71 5.94 50.79
REWARD BASED ROUTING 164.4 17.01 5.69 51.95
LEARNED ROUTING 242.56 19.11 7.74 51.08

Table 9: Evaluation of textual characteristics across student models in 4 languages: ENGLISH,
GERMAN, FRENCH AND UKRANIAN. The number of tokens, Gunning-Fog Index, Rix Index, and
Measure of Textual Lexical Diversity (MLTD) for each model highlights the differences in verbosity,
readability and lexical diversity. Except for Gemma 2, all students show increase for all metrics.
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In addition to basic statistics like length, we also compute:

1. Gunning Fog Index (Gunning, 1968) is a readability test that estimates the years of formal
education required to understand a piece of text on the first reading. Gunning-Fog uses
sentence length and prevalence of complex words to estimate the complexity of the text
and assign a grade level between 0 and 20. A score of 17-18 indicates college graduate-
level text.

2. Rix (Anderson, 1983) calculates readability based on the number of words with more than
six characters divided by the number of sentences in the text. A score of 5 corresponds
to a grade level of around 10, while a score of 7 or higher indicates the need for a higher
educational level to comprehend.

3. Measure of Textual Lexical Diversity (MTLD) score (Shen, 2022) helps tracking
changes in vocabulary by reflecting the average number of words in a sequence that main-
tains a certain type-token ratio (TTR), a measure of vocabulary variety (McCarthy & Jarvis,
2010). An MLTD score of 50 can be considered as moderate lexical diversity.

All the results are presented in Table 9 and Figure 11.

Figure 11: Evaluation of Textual Characteristics: We analyze characteristics of student models in
four languages: ENGLISH, GERMAN, FRENCH AND UKRANIAN. The number of tokens, Gunning-
Fog, Rix Index, and MLTD for each model highlights the differences in verbosity, readability and
lexical diversity.

Average number of tokens per generation. The most significant change is observed in the average
number of tokens per generation. The base model generates an average of 76 tokens per gener-
ation, whereas routing approaches produce substantially longer outputs, ranging from 160 tokens
with Fixed Routing to 242 tokens with Learned Routing. In contrast, both random routing and sin-
gle teacher models (averaged across Aya 23, Llama 3, and Gemma 2) generate around 144 tokens
on average. These findings demonstrate that arbitrage methods result in longer text generations
compared to both random routing and single teacher models.

Textual properties. The readability metrics show smaller absolute changes compared to the average
number of tokens. For the Gunning-Fog index, changes range from a decrease of 0.16 for Gemma
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2 to an increase of 3.28 for Learned Routing, relative to the base student model. Similarly, the
Rix index varies from a decrease of 0.42 for Gemma 2 to an increase of 3.04 for Learned Routing.
Both metrics reveal that arbitrage methods result in higher scores. The Gunning-Fog index shows
an absolute difference of 1.05 between arbitrage methods and single teacher models, whereas the
difference is 0.78 for random routing. For the Rix index, the absolute difference is 1.11 between
arbitrage methods and single teachers, compared to 0.65 for random routing.

These indices serve as proxies for evaluating text complexity. There is a clear trend indicating that
multilingual arbitrage strategies, especially the learned routing approach, lead to higher readability
metrics. In contrast, single teacher models, especially Gemma 2, generally result in lower values.

Regarding the MLTD score, we observe significant changes, with Reward-based routing showing an
increase of up to 7.97 and Learned routing showing an increase of 7.1 relative to the base student
model, which are considered substantial improvements (Treffers-Daller et al., 2016). Arbitrage
methods result in higher MLTD scores compared to both random routing and single teacher results.
The average absolute difference is 1.77 between arbitrage methods (averaged over all 3 methods)
and single teacher models (averaged over Aya 23, Llama 3 and Gemma 2), while the difference is
5.46 for random routing.

Overall, multilingual arbitrage strategies significantly increase the number of tokens in generations,
readability metrics and improve lexical diversity compared to single teacher models. This suggests
that multilingual arbitrage enhances data quality and diversity, which in turn leads to improvements
in student model performance and explains the significant increase in win rates.

Routed Dataset Composition Characteristics. Here, we analyze how prompt characteristics affect
the reward-based router decision, using the same subset of the UltraFeedback Binarized Dataset
(UFB) as depicted in Figure 6. The average MLTD score and number of tokens of the prompts
routed to a particular model is shown in Figure 12.
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(b) Average number of tokens per model.

Figure 12: Characteristics of Prompts Routed to Given Models: We analyze the MTLD (a) and
number of tokens (b) for the set of prompts routed to each of the teacher models as selected by
Reward-Based Routing. Each line represents a different language and each column is a particular
teacher model.

Figure 12a shows that the average MLTD scores for English prompts routed to different models
range from 46.28 to 64.07. Aya 23 receives English prompts with the highest MLTD score of 64.07,
while Llama 3 has an average MLTD score of 56.41, and Gemma 2 has the lowest score of 46.28.
In contrast, for non-English prompts, Aya 23 has an average MLTD score of 67.42, Llama 3 scores
79.66, and Gemma 2 achieves the highest MLTD score of 85.24.

Figure 12b shows that the longest English prompts are routed to Aya 23, with an average of 121.5 to-
kens, while Gemma 2 receives the shortest English prompts, averaging 69.4 tokens. English prompts
routed to Geo-clusters and Llama 3 have average token counts of 87.1 and 92.7, respectively. For
non-English prompts, the pattern differs. Geo-clusters receive the shortest prompts, averaging 78.8
tokens. Aya 23 receives prompts with an average of 90.7 tokens, Gemma 2 with 94.1 tokens, and
Llama 3 receives the longest non-English prompts, averaging 112.0 tokens.
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We can conclude, for English prompts, those that are more lexically diverse and longer tend to be
routed to Aya 23. In contrast, for non-English prompts, Gemma 2 and Llama 3 are preferred for
handling more lexically diverse and longer prompts.

A.8 FULL BUDGET COMPARISON

To show the effectiveness of reward-based routing, we also compare it against a variant, we refer to
as Full Budget. In this variant, we include the completions generated by all M teacher models in the
pool for each prompt. This results in a dataset with M times more data points than the other variants
presented in the paper. The results demonstrate that strategic sampling outperforms even the version
where all generations from all models are used.

Language Reward-Based Routing All Completions Tie

ENGLISH 54.0 31.5 14.5
GERMAN 47.5 33.5 19.0
FRENCH 50.0 34.0 16.0
ARABIC 46.5 34.5 19.0
CHINESE 51.0 39.0 10.0
TURKISH 54.5 27.5 18.0

UKRAINIAN 45.0 34.0 21.0

Table 10: Win rates (%) Comparison of Reward-based routing trained student with all completions
trained student model. The Reward-based routing variant consistently outperforms the latter with
the highest gain in Turkish.

A.9 LANGUAGE-SPECIFIC WIN RATES

We present the language-specific win rates (%) for 23 languages, comparing the Reward-Based
Routing model against the best-performing state-of-the-art model in our experiments, Gemma2-9B-
IT. In 19 of these languages, the model trained with the reward-based routing approach achieves
higher win rates than Gemma2-9B-IT.

Language Code Reward-Based Routing Gemma2-9B-IT Tie

ar 57.5 36.0 6.5
cs 50.5 42.5 7.0
de 50.0 46.0 4.0
el 57.0 37.5 5.5
en 37.0 57.0 6.0
es 41.0 52.5 6.5
fa 57.0 35.5 7.5
fr 35.0 55.5 9.5
he 65.0 29.0 6.0
hi 50.0 44.0 6.0
id 53.0 42.0 5.0
it 49.5 42.0 8.5
ja 44.0 45.5 10.5
ko 53.0 34.5 12.5
nl 49.0 46.0 5.0
pl 49.0 45.0 6.0
pt 46.5 45.5 8.0
ro 58.0 37.5 4.5
ru 50.5 44.5 5.0
tr 47.5 45.0 7.5
uk 48.5 44.5 7.0
vi 53.5 42.5 4.0
zh 50.5 44.5 5.0

Table 11: Language-Specific Win Rates (%) of Reward-Based Routing Compared to Gemma2-
9B-IT Across 23 Languages.
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A.10 STUDENT MODEL GENERATIONS

Examples of model generations in English from different student models can be found in Table 12.

Prompt: Cats have relatively few taste buds compared to humans (470 or so versus more than 9,000 on the human
tongue). Domestic and wild cats share a taste receptor gene mutation that keeps their sweet taste buds from
binding to sugary molecules, leaving them with no ability to taste sweetness. Their taste buds instead respond to
acids, amino acids like protein, and bitter tastes. Cats also have a distinct temperature preference for their food,
preferring food with a temperature around 38 °C (100 °F) which is similar to that of a fresh kill and routinely
rejecting food presented cold or refrigerated (which would signal to the cat that the “prey” item is long dead and
therefore possibly toxic or decomposing). Why are cats so picky about what they eat?

Student Model Generation

Single Llama 3

Cats are known for being picky eaters, and their unique taste preferences are due to a combi-
nation of factors. The main reason is that cats have a specific temperature preference for their
food, which is around 38°C (100°F). This temperature is similar to the temperature of a fresh
kill, which is around 37°C (98°F) to 40°C (104°F). Cats are also born with a natural instinct
to hunt and kill prey, and they are trained to associate certain temperatures with food that is
fresh and safe to eat. In addition, cats have a limited number of taste buds compared to hu-
mans, which is around 470 taste buds on the tongue. This is because cats have a unique taste
receptor gene mutation that prevents their sweet taste buds from binding to sugary molecules.
Instead, their taste buds respond to acids, amino acids, and bitter tastes. This means that cats
are not as sensitive to sweet tastes as humans are, and they are more likely to be attracted to
foods that have a strong flavor or aroma. Another factor that contributes to cats’ picky eating
habits is their ability to detect and avoid potential toxins. Cats have a natural instinct to avoid
food that is toxic or decomposed, and they are trained to associate certain temperatures and
textures with potential toxins. This is why cats often reject food that is presented cold or
refrigerated, as it may indicate that the food is no longer fresh or safe to eat. Overall, cats’
picky eating habits are a result of their unique biological and behavioral characteristics, in-
cluding their temperature preference, limited number of taste buds, and ability to detect and
avoid potential toxins.

Random Routing They have a distinct temperature preference for their food.

Reward-Based Routing

According to the text, cats are picky about what they eat because they have a distinct temper-
ature preference for their food. They prefer food with a temperature around 38 °C (100 °F),
which is similar to that of a fresh kill and routinely reject food presented cold or refrigerated.
This is because cats have a genetic mutation that prevents their sweet taste buds from binding
to sugary molecules, leaving them with no ability to taste sweetness. Their taste buds instead
respond to acids, amino acids like protein, and bitter tastes.

Learned Routing

Cats are picky eaters due to several factors related to their biological and evolutionary traits:
Taste Sensitivity: Cats have fewer taste buds than humans and cannot taste sweetness due
to a genetic mutation. Their taste buds are more responsive to acids, amino acids, and bitter
tastes, aligning with their carnivorous diet. Temperature Preference: Cats prefer food at
around 38°C (100°F), similar to a fresh kill, and often reject cold or refrigerated food, which
they may perceive as old and potentially unsafe. These factors ensure that cats consume
food that meets their nutritional needs and is safe, reflecting their evolutionary adaptations as
obligate carnivores.

Table 12: Comparison of student model responses trained using different methods: Single Llama
3 (best English teacher), random routing, reward-based routing, and learned routing. The Single
Llama 3 student’s answer is too long and includes a lot of irrelevant details, while random routing
generates responses that are too brief and insufficient.
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Examples of model generations in Turkish from different student models can be found in Table 13.

Prompt: Kedilerin, insanlara kıyasla nispeten az sayıda tat alma tomurcuğu vardır (insan dilindeki 9.000’den fazla
ile karşılaştırıldığında yaklaşık 470). Evcil ve yabani kediler tat alıcı gen mutasyonunu paylaşıyor. Bu da tatlı tat
alma tomurcuklarının şekerli moleküllere bağlanmasını engelliyor ve tatlı tadı alma yeteneklerini kaybediyor. Onun
yerine tat alma tomurcukları asitlere, protein gibi amino asitlere ve acı tatlara tepki verir. Kediler ayrıca yiyecekleri
için belirgin bir sıcaklık tercihine sahiptir, taze bir öldürme ile benzer olan yaklaşık 38 °C (100 °F) sıcaklığındaki
yiyecekleri tercih eder ve rutin olarak soğuk veya buzdolabında sunulan yiyecekleri reddeder (ki bu, “av” öğesinin
uzun zamandır ölü olduğunu ve bu nedenle muhtemelen toksik veya çürümeye başladığını kedilere işaret eder). Neden
kediler yemek konusunda bu kadar seçicidir?

Student Model Generation

Single Aya 23 Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir avın sıcaklığını
tercih ederler.

Random Routing

Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir öldürme ile benzer
olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih ederler. Bu, kedilerin yiyecek-
leri için belirli bir sıcaklık aralığına sahip oldukları ve bu sıcaklıkta yiyecekleri tercih ettikleri
anlamına gelir. Kediler ayrıca soğuk veya buzdolabında sunulan yiyecekleri reddederler, bu
da yiyecekleri için belirli bir sıcaklık aralığına sahip oldukları ve bu sıcaklıkta yiyecekleri
tercih ettikleri anlamına gelir. Bu, kedilerin yiyecekleri için belirli bir sıcaklık aralığına sahip
oldukları ve bu sıcaklıkta yiyecekleri tercih ettikleri anlamına gelir.

Reward-Based Routing

Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir öldürme ile benzer
olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih ederler. Bu, kedilerin yiye-
cekleri için bir sıcaklık tercihine sahip oldukları ve bu sıcaklıkta yiyecekleri tercih ettikleri
anlamına gelir. Kediler ayrıca soğuk veya buzdolabında sunulan yiyecekleri reddederler, bu
da yiyeceklerin “av” öğesinin uzun zamandır ölü olduğunu ve bu nedenle muhtemelen toksik
veya çürümeye başladığını kedilere işaret ettiği anlamına gelir. Bu nedenle, kediler yiyecek
konusunda bu kadar seçici olabilirler.

Learned Routing
Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir öldürme ile benzer
olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih ederler. Bu, yiyeceklerin taze
ve toksik olmamasını garanti eder.

Table 13: Comparison of student model responses trained using different methods: Single Aya 23
(best Turkish teacher), random routing, reward-based routing, and learned routing. The Aya 23
student’s answer is too short and inadequate, while random-routing generates responses that are
repetitive.
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