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Abstract

Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for
large language models. LoRA saves memory by training only low rank perturbations to
selected weight matrices. In this work, we compare the performance of LoRA and full
finetuning on two target domains, programming and mathematics. We consider both the
instruction finetuning (≈100K prompt-response pairs) and continued pretraining (≈20B
unstructured tokens) data regimes. Our results show that, in the standard low-rank settings,
LoRA substantially underperforms full finetuning. Nevertheless, LoRA better maintains the
base model’s performance on tasks outside the target domain. We show that LoRA mitigates
forgetting more than common regularization techniques such as weight decay and dropout;
it also helps maintain more diverse generations. Finally, we show that full finetuning learns
perturbations with a rank that is 10-100× greater than typical LoRA configurations, possibly
explaining some of the reported gaps. We conclude by proposing best practices for finetuning
with LoRA.

1 Introduction

Finetuning large language models (LLMs) with billions of weights requires a non-trivial amount of GPU
memory. Parameter-efficient finetuning methods reduce the memory footprint during training by freezing a
pretrained LLM and only training a small number of additional parameters, often called adapters. Low-Rank
Adaptation (LoRA; Hu et al. (2021)) trains adapters that are low-rank perturbations to selected weight
matrices.

LoRA is widely adopted for finetuning LLMs under hardware constraints, but the jury is still out on whether
it compromises performance compared to full finetuning. The two seminal methods papers on the topic,
introducing LoRA (Hu et al., 2021) and its more recent combination with model quantization (QLoRA;
Dettmers et al. (2024)) reported that LoRA performs better or equivalent to full finetuning. More empirical
work (Ghosh et al., 2024; Zhao et al., 2024b) reaches a similar conclusion; and this sentiment is echoed in an
array of industry blog posts as well (e.g., Raschka (2023); Niederfahrenhorst et al. (2023)). At the same time,
there is evidence that LoRA underperforms full finetuning (Ivison et al., 2023; Zhuo et al., 2024), and the
need to improve upon LoRA has led to the development of enhanced LoRA variants (Hayou et al., 2024;
Meng et al., 2024; Li et al., 2023b; Shi et al., 2024) or alternative low-rank approximation methods (e.g Liu
et al. (2024); Zhao et al. (2024a)). To shed light on this ongoing debate, we ask: under which conditions
does LoRA approximate full finetuning accuracy on challenging target domains, such as code
and math?

By training fewer parameters, LoRA is hypothesized to constrain the finetuned model from diverging
significantly from the base model (Sun et al., 2023; Du et al., 2024). This potential characteristic is
particularly helpful for LLM finetuning, a form of continual learning where specializing in new domains can
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come at the expense of base model capabilities (Wang et al., 2024) (a phenomenon known its extreme form
as “catastrophic forgetting” McCloskey & Cohen (1989); French (1999)). To date, only a few studies have
examined forgetting in modern LLMs (Kleiman et al., 2023; Kalajdzievski, 2024; Vu et al., 2022). To address
this gap, we also ask: when performing continual learning on a new domain, to what extent does
LoRA mitigate forgetting of base model capabilities?

In this study, we compare LoRA and full finetuning for Llama-2 7B models across two challenging target
domains, code and mathematics. Within each domain, we explore two training regimes. The first regime is
continued pretraining, which involves training on billions of unlabeled domain-specific tokens, most commonly
via full finetuning; here we use the StarCoder-Python (Li et al., 2023a) and OpenWebMath (Paster et al., 2023)
datasets (Table 1). The second is instruction finetuning, the common scenario for LoRA involving question-
answer datasets with tens to hundreds of millions of tokens. Here, we use Magicoder-Evol-Instruct-110K
(Wei et al., 2023) and MetaMathQA (Yu et al., 2023).

We evaluate target-domain performance (henceforth, learning) via challenging coding and math benchmarks
(HumanEval; Chen et al. (2021), and GSM8K; Cobbe et al. (2021)). We evaluate source-domain forgetting
performance on language understanding, world knowledge, and common-sense reasoning tasks (Zellers et al.,
2019; Sakaguchi et al., 2019; Clark et al., 2018).

We find that with commonly used low-rank settings, LoRA substantially underperforms full finetuning, while
typically requiring longer training (Sec. 4.1). In continued pretraining, the performance gap between full
finetuning and LoRA is not closed even with high ranks. In instruction finetuning, on the other hand, high
ranks can match full finetuning performance.

Despite LoRA’s limitations, we show that it consistently maintains better source-domain performance
compared to full finetuning (Sec. 4.2). Furthermore, we characterize the tradeoff between learning and
forgetting (Sec. 4.3). We then show that LoRA – even with higher rank – mitigates forgetting more
aggressively than classic regularization techniques that aim to prevent overfitting, such as dropout (Srivastava
et al., 2014; Goodfellow et al., 2013), and weight decay (Goodfellow et al., 2016). Moreover, by analyzing the
generated solutions to HumanEval problems, we demonstrate that while full finetuning tends to produce a
limited set of solutions, LoRA produces a wider range of solutions more akin to those of the base model (Sun
et al., 2023; Du et al., 2024)

Why does LoRA underperform full finetuning? LoRA was originally motivated in part by the hypothesis that
finetuning results in low-rank perturbations to the base model’s weight matrix (Li et al., 2018; Aghajanyan
et al., 2020; Hu et al., 2021). However, the tasks explored by these prior works are relatively easy for modern
LLMs, and certainly easier than the coding and math domains studied here. Thus, we perform a singular value
decomposition to show that full finetuning barely changes the spectrum of the base model’s weight matrices,
and yet the difference between the two (i.e. the perturbation) is high rank. The rank of the perturbation
grows as training progresses, with ranks 10-100× higher than typical LoRA configurations (Figure 6).

We conclude by proposing best practices for training models with LoRA. We find that LoRA is very sensitive
to hyperparameters, including learning rates, choice of target modules, ranks, and scaling factors; setting
these properly is a prerequisite to approach full finetuning performance.

To summarize, we contribute the following results:

• Full finetuning is more accurate and sample-efficient than LoRA in CPT for code and math; in
instruction finetuning, higher ranks can close most of the gaps (Sec.4.1).

• LoRA forgets less of the source domain (Sec. 4.2 and 4.3).

• LoRA forgets less than common regularization techniques; it also helps maintaining the diversity of
generations (Sec. 4.5).

• Full finetuning finds high rank weight perturbations (Sec. 4.6).

• A hyperparameter sensitivity analysis for LoRA, as well as practical recommendations (Sec. 4.7).

Model checkpoints and LoRA adapters can be accessed at https://github.com/danbider/lora-tradeoffs.
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Code Math
CPT StarCoder-Python (up to 20B tokens) OpenWebMath (up to 20B tokens)
IFT Magicoder-Evol-Instruct-110K (72.3M tokens) MetaMathQA (103M tokens)

Table 1: Datasets and token counts for math and code experiments

2 Background

LoRA involves freezing a pretrained weight matrix Wpretrained ∈ Rd×k, and learning only a low-rank pertur-
bation to it, denoted here as ∆, as follows:

Wfinetuned = Wpretrained + ∆
∆ = γrAB, A ∈ Rd×r, B ∈ Rr×k.

Most common implementations initialize A0 ∼ N (0, 1), B0 = 0 and set the scalar γr = α/r with a controllable
hyperparameter α. The user chooses which Wpretrained to adapt (“target modules”), the rank r << d, k,
and the hyperparameter α. By doing so, only d × r + r × k parameters are trained per module instead of
d × k, which reduces the memory and FLOPS required for computing the gradient. As an example, applying
a r = 16 LoRA to a 7B weight matrix with d = k = 4096 trains < 1% of the original parameter count.
Appendix Sec. H lays out the approximate memory savings by LoRA.

LoRA’s introduction and first applications targeted only the Wq and Wv matrices in the self-attention
module (Hu et al., 2021). Since then, it has become best practice to target all transformer modules
(Raschka, 2023; Dettmers et al., 2024), i.e., {W
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l=1 in the self-attention modules, and
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l=1} in the feedforward modules for L layers in, say, a Llama architecture (Hu et al.,
2021; Touvron et al., 2023).

3 Experimental Setup

We train on code and math datasets that have been shown to increase downstream performance. We motivate
the training datasets and evaluation benchmarks below. All training was done using the Databricks MosaicML
composer1, streaming2, and llm-foundry3 repositories, as well as the HuggingFace peft library.

3.1 Datasets for Continued Pretraining (CPT) and Instruction Finetuning (IFT)

Coding CPT - Starcoder-Python (Li et al., 2023a) This dataset consists of permissively licensed
repositories from GitHub, including Git commits, in 80+ programming languages. We chose the Python
subset and sub-sampled it to 20B tokens.

Math CPT - OpenWebMath (Paster et al., 2023) This dataset contains 14.7B tokens derived from
mathematical web pages from Common Crawl, correctly formatted to preserve mathematical content such as
LaTeX equations.4 To match with the StarCoder-Python dataset, we trained on up to 20B tokens, repeating
tokens beyond the first 14.7B. An analysis of this dataset shows that it contains a considerable amount of full
English sentences.5

Coding IFT - Magicoder-Evol-Instruct-110k (Wei et al., 2023) This dataset contains 72.97M tokens
of programming questions and answers. It reproduces the “Evol-Instruct” dataset of WizardCoder (Luo et al.,

1https://github.com/mosaicml/composer
2https://github.com/mosaicml/streaming
3https://github.com/mosaicml/llm-foundry
4https://huggingface.co/datasets/open-web-math/open-web-math
5Out of a random selection of 100K examples, a regex search shows that 75% of the examples contain LaTex. The data is

classified as 99.7% English and “overwhelmingly English” by the langdetect and fasttext tools.
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2023b) by iteratively prompting an LLM (GPT-4) to increase the difficulty of a set of question-answer pairs
from Code Alpaca (Chaudhary, 2023).

Math IFT - MetaMathQA (Yu et al., 2023) This dataset was built by bootstrapping mathematical
word problems from the training sets of GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) by
rewriting the questions with variations using GPT-3.5. This dataset contains 395K question-answer pairs and
roughly 103M tokens.6

We quantify learning and forgetting via benchmarks reported on the Open LLM Leaderboard7 for state of
the art open-source LLMs such as Llama (Touvron et al., 2023).

3.2 Measuring Learning with Coding and Math Benchmarks (target domain evaluation)

Coding - HumanEval (Chen et al., 2021) This benchmark contains 164 problems that involve generating
of a Python program given a docstring and a function signature. A generation is considered correct if it
passes all supplied unit tests. We use the Code Generation LM Evaluation Harness (Ben Allal et al., 2022)
configured to output 50 generations per problem, and calculate “pass@1” with softmax temperature=0.2 and
top_p = 0.95 for 0-shot HumanEval.

Math - GSM8K (Cobbe et al., 2021) This benchmark includes a collection of 8.5K grade-school math word
problems. We evaluate on the test split of GSM8K (1,319 samples) as implemented in the LM Evaluation
Harness (Gao et al., 2023), with default generation parameters (temperature=0, 5 few-shot, pass@1).

3.3 Forgetting Metrics (source domain evaluation)

We use the following benchmarks to asses degradation of base model capabilities. HellaSwag (Zellers et al.,
2019) includes 70K problems, each describing an event with multiple possible continuations. The task is to
pick the most plausible continuation, which requires making inferences about nuanced everyday situations.
WinoGrande (Sakaguchi et al., 2019) also assesses commonsense reasoning. It includes 44K problems with
sentences that require ambiguous pronoun resolution. ARC-Challenge (Clark et al., 2018) consists of
7,787 grade-school level, multiple-choice science questions, and tests complex reasoning and understanding
of scientific concepts. These benchmarks involve multiple-choice questions that use the predicted logits for
calculating accuracy, and do not require specifying further generation hyperparameters. All forgetting metrics
were computed using the MosaicML Gauntlet evaluation harness (Dohmann, 2023).8

4 Results

4.1 Target-domain performance: LoRA at low ranks underperforms full finetuning

We compare LoRA and full finetuning after performing an exhaustive learning rate sweep for each method,
which we found to be crucial (Dettmers et al., 2024). We include learning rate sweep results in Figure S1.

We perform a sample-efficiency analysis – i.e., compute the learning metrics as a function of training samples
seen – for both LoRA and full finetuning. For IFT, we train separate models for 1, 2, 4, 8, and 16 epochs. For
CPT, we vary the number of training tokens (0.25, 0.5, 1, 2, 4, 8, 16, 20 billion), using individual learning rate
cooldown schedules. For each condition, we train one full finetuning model and three LoRA models with
ranks r = 16, 64, 256 noting that most LoRA papers use a “low” rank of 8-64, (e.g., Dettmers et al. (2024);
Zhuo et al. (2024)). The LoRA models target all transformer modules and use α = 2r, as known to be best
practice (Raschka, 2023). For further details on experimental setup and hyperparameters, see Appendix A.

The results appear in Fig. 1. We first note that for both programming and math, IFT improves evaluation
scores much more than CPT, which is expected because the samples in each IFT dataset are more similar to
the evaluation problems (e.g., for code, IFT achieves maximum HumanEval of 0.497 vs. 0.263 for CPT).

6https://huggingface.co/datasets/meta-math/MetaMathQA
7https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
8https://github.com/mosaicml/llm-foundry/tree/main/scripts/eval
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Figure 1: LoRA performance scales by rank and underperforms full finetuning in code and math.
(A) Starcoder-Python, (B) Magicoder-Evol-Instruct-110K, (C ) OpenWebMath, (D) MetaMathQA. In (A)
and (B) y-axis: HumanEval pass@1. In (C ) and (D) y-axis: GSM8K strict match. In all panels, “base model”
indicates Llama-2-7b without instruction finetuning. Note that 16 epochs are ≈1.16B and ≈1.6B tokens, for
Magicoder-Evol-Instruct-110K and MetaMathQA.

For Code CPT (Fig. 1A and Table S1), we identify a substantial gap between full finetuning and
LoRA that grows with more data. The best LoRA model, with rank r = 256, peaks at 20B tokens with
HumanEval=0.224, roughly matching full finetuning with 4B tokens (HumanEval=0.218). Full finetuning
reaches its peak HumanEval of 0.263 at 20B tokens. A clear ordering by rank emerges after the initial 1B
CPT tokens.

For Code IFT (Fig. 1B and Table S5), HumanEval accuracy is clearly ordered by rank from the very first
epoch. The more common r = 16 and r = 64 LoRA configurations have lower accuracy than full finetuning,
with HumanEval scores of 0.358 and 0.417 at epoch 4, respectively). With a high LoRA rank (r = 256),
full finetuning performance can be matched (LoRA=0.498 in epoch 4, full finetuning=0.497 in epoch 8).
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In Appendix Sec. F we perform a more sensitive HumanEval analysis, calculating pass@k as a function of
k = 1, . . . , 256 with a higher temperature of 0.8 for full finetuning and the LoRA models (at epoch 4). This
analysis shows that full finetuning is superior to r = 256 for k < 64, after which the two are equal.

Math CPT (Fig. 1C and S3) results closely echo those of code CPT. Consistent patterns in GSM8K
emerge at 4B tokens. Full finetuning opens a gap in GSM8K which widens with more data. Similarly,
LoRA performance is ordered by rank. The best LoRA (r = 256) peaks at 16B tokens (GSM8K=0.203),
underperforming full finetuning at 4B tokens (GSM8K=0.224) and at its peak at 20B tokens (GSM8K=0.293).

LoRA closes much of the gap with full finetuning in the Math IFT (Fig. 1D and Table S7) dataset, while
remaining less sample efficient. Both methods substantially improve upon the base model; LoRA (r = 256)
peaks at 8 epochs (GSM8K=0.634) while full finetuning achieves GSM8K=0.641 at 2 epochs and peaks at
4 epochs, with GSM8K=0.642.9 Unlike the code IFT dataset, r = 64 suffices to approach full finetuning
and achieve GSM8K=0.624 at epoch 4. We suggest that lower ranks are effective here because English
mathematics problems involve a smaller domain shift from the pretraining data as compared to coding ones.

In summary, in CPT, LoRA underperforms full finetuning across all configurations. In IFT, and especially in
code, high LoRA ranks are required to close the gap with full finetuning.

4.2 LoRA forgets less than full finetuning

Here, we investigate the extent of forgetting (defined in Sec. 3.2) as a function of training data in Fig. 2.

Overall, we observe that (1) IFT induces more forgetting than than CPT, (2) programming induces more
forgetting than math, and (3) forgetting tends to worsen with training duration. Most importantly, LoRA
forgets less than full finetuning, and the extent of forgetting is controlled by rank. In code – both CPT and
IFT – full finetuning forgets substantially more than any LoRA configuration. In code CPT (Table S2), at
20B tokens, full finetuning scores 0.545 versus 0.617 by LoRA r = 256. In code IFT (Table S6), full finetuning
scores 0.414 versus 0.509 by LoRA r = 64. In math – for both CPT and IFT – LoRA with r = 256 forgets
nearly as much as full finetuning. In CPT (Table S4), LoRA scores 0.616 (20B tokens) versus 0.613 of full
finetuning (16B tokens). In IFT (Table S8), LoRA and full finetuing respectively degrade to 0.567 and 0.559
at epoch 16.

We note that the least forgeting occurs for the OpenWebMath dataset, which is dominated by English
sentences (see 3.1 for details).

4.3 The Learning-Forgetting Tradeoff

It is trivial that models that change less when finetuned to a new target domain will forget less of the source
domain. The nontrivial question is: do LoRA and full finetuning differ in how they tradeoff learning and
forgetting? Can LoRA achieve similar target domain performance but with diminished forgetting?

We form learning-forgetting Pareto curves by plotting the forgetting metric versus the learning metric for
each training duration (Fig. 3). As models train on more data, they learn more and forget more, traveling up
and left in this space. As we increase LoRA ranks, we find that the curves shift up and left as well, again,
learning more and forgetting more, doing so more consistently in IFT than CPT.

Each dataset presents a unique tradeoff pattern which makes it difficult to conclude whether LoRA and full
finetuning offer fundamentally different learning-forgetting tradeoffs. We will review each dataset next.

For Code CPT, though the full finetuning curve reaches much higher values of HumanEval, it appears to
forget more for any given HumanEval value, which LoRA can reach if trained on more tokens. This pattern
does not hold for math CPT, where LoRA and full finetuning curves are roughly overlapping until full
finetuning shoots up (in 4B tokens) to achieve much higher GSM8K scores without increased forgetting. In
code IFT, LoRA r = 256 offers comparable HumanEval accuracy while strictly forgetting less. Lower ranks

9We note that the original MetaMath paper reports a maximum accuracy of 0.665 when (fully) finetuning Llama-2-7B on the
MetaMathQA dataset. We attribute this to small differences in hyperparameters; they trained on 3 epochs with a batch size of
128 using the AdamW optimizer, a learning rate of 2e-5, a learning rate warmup of 3%.
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Figure 2: LoRA forgets less than full finetuning. In all panels, the y-axis shows the average of
HellaSwag, ARC-Challenge and Winogrande for Llama-2-7B trained trained on: (A) StarCoder-Python (B)
Magicoder-Evol-Instruct-110k (C) OpenWebMath (D) MetaMathQA.

do not reach high values of HumanEval to compare to full finetuning. In math IFT, LoRA and full finetuning
seem to lie on adjacent learning-forgetting tradeoff curves, with full finetuning offering preferable tradeoffs.

With the caveats mentioned above, it seems that LoRA can offer preferable learning-forgetting tradeoffs for
code, while full finetuning can offer preferable tradeoffs for math. Moreover the choice of LoRA rank can
serve as a knob to navigate the learning-forgetting tradeoffs.

4.4 For the Tülu-v2-mix dataset, LoRA is on par with full finetuning

So far, we analyzed how LoRA and full finetuning specialize in very specific domains. Often, code or math
problems appear as part of larger IFT data mixtures that include multi-turn conversations and a variety of
other NLP tasks, such as summarization, etc (e.g., Wei et al. (2021)). We therefore finetuned LoRA and
full finetuning models on one such popular dataset, the Tülu-v2-mix (Ivison et al., 2023). The results are
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Figure 3: LoRA vs. full finetuning trade-off for Llama-2-7B. Relative to full finetuning, LoRA learns
less (lower values on the y-axis) and forgets less (higher values on the x-axis). Each dot is a separate model,
with marker size corresponding to training duration (from 0.25-20 billion tokens for CPT, and 1-16 epochs
for IFT). Same data as Figures 1, 2.

presented in the Appendix (Sec. C and Table S9). In summary, we find that both LoRA and full finetuning
meaningfully improve upon the base model, and that LoRA, even with lower ranks, can match full finetuning
in chat quality as measured by Multi-Turn Benchmark (MT-bench (Zheng et al., 2024)), GSM8K (Cobbe
et al., 2021), and Massive Multitask Language Understanding (MMLU; Hendrycks et al. (2020)). At longer
training durations (6 epochs), LoRA also forgets less.

4.5 How strongly does LoRA constrain the finetuning process?

In this section, we analyze Llama-2-7B models trained on the Magicoder-Evol-Instruct-110K dataset. We
first compare the learning-forgetting tradeoffs between LoRA and classic regularization techniques, and then
analyze the diversity of the generated text.
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Figure 4: LoRA forgets less than attention dropout and weight decay. Results from Llama-2-7B
finetuned on Magicoder-Evol-Instruct-110K. Left panel: learning as measured by accuracy on HumanEval.
Right panel: forgetting as measured by the average of HellaSwag, ARC-Challenge and WinoGrande scores.
The solid slateblue line shows that LoRA (r=256) learns as much as full finetuning, weight decay, and
attention dropout, while forgetting much less.

LoRA forgets less than attention dropout and weight decay We compare LoRA (r = 16, 256,
training all modules) to weight decay (Goodfellow et al., 2016) with values 5e−5, 1e−4 and attention dropout
(Srivastava et al., 2014) with values 0.05, 0.1. Both regularization techniques appear to learn and forget as
much as full finetuning, except that weight decay starts to generally deteriorate at longer training durations
(epochs 8 and 16). LoRA, with the common r = 16, learns less and forgets less than all other models. LoRA
r = 256, on the other hand, learns as much as the other methods while forgetting less.

LoRA helps maintain diversity of token generations. We scrutinize the generated solution strings
for HumanEval problems. We calculate the unique number of output strings out of 50 generations (for base
model, full finetuning, and LoRA) serving as a coarse proxy for predictive diversity. In Figure 5 we separately
show the results for correct and incorrect answers. As in the reinforcement learning from human feedback
literature (Du et al., 2024; Sun et al., 2023), we find that full finetuning results in fewer unique generations
(“distribution collapse”) compared to the base model, for both pass and fail generations, with LoRA in
between the two. The above works also suggest that LoRA could even substitute a common Kullback-Leibler
divergence term that keeps the probabilities of the generated text similar between the finetuned and base
model. We reiterate that exact string matching between generations is not a sensitive metric of predictive
diversity, as generations can slightly vary in format and remain functionally identical.

4.6 Full finetuning on code and math does not learn low-rank perturbations

In this section, we seek to study whether we should expect low-rank training to be a good approximation
to full finetuning, and if so, what is the necessary rank. Recall that full finetuning can be written as
Wfinetuned = Wpretrained + ∆; here we compute the Singular Value Decomposition of all three terms in the
equation. We focus on continued pretraining for code, where there are drastic differences between LoRA and
full finetuning. We analyze checkpoints obtained at 0.25, 0.5, 1, 2, 4, 8, 16, and 20 billion training tokens.

First, in Figure S8 we present results for the Wq projection at layer 26 of Llama-2-7B (with dimensions
d × d, d = 4096). We show that the spectrum of the finetuned weight matrix is very similar to that of the
base weight matrix, both decaying slowly and requiring keeping ≈ 50% of singular vectors (≈ 2000/4096) to
explain 90% of the variance in the weight matrix. Critically, the difference ∆ also has a similar spectrum to
the finetuned and base weight matrices (up to a multiplicative scaling). These results are in line with the
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Figure 5: LoRA maintains output token diversity relative to full finetuning.

analysis in Zeng & Lee (2024) showing that any transformer model can be well approximated with r = d/2.
Additionally, we suggest that there is nothing extraordinary about the full finetuning spectra; similar spectra
can be achieved by adding low-magnitude Gaussian i.i.d noise to a weight matrix (Fig. S9).

Next, we ask when during training does the perturbation become high rank, and whether it meaningfully
varies between module types and layers. We estimate the rank needed to explain 90% of the variance in the
matrix. The results appear in Figure 6. We find that: (1) The earliest checkpoint at 0.25B CPT tokens
exhibits ∆ matrices with a rank that is 10 − 100× larger than typical LoRA ranks; (2) the rank of ∆ increases
when trained on more data; (3) MLP modules have higher ranks compared to attention modules; (4) first
and last layers seem to be lower rank compared to middle layers.

4.7 Hyperparameter sensitivity analyses for LoRA

Our goal in this work was to optimally configure LoRA so that it has the best chances of matching full
finetuning. This is nontrivial, as LoRA has a large number of hyperparameters to choose from: target
modules, rank, scaling factors, and learning rates. We turn to analyze the importance of each, and provide
some practical recommendations.

First, we found that the choice α = 2r is crucial for high ranks. Most common packages, e.g., HuggingFace’s
PEFT10 scale the LoRA matrices by α/r, effectively scaling down higher ranks (see also Kalajdzievski (2023)).
One might think that high learning rate values may compensate for fixed low α’s, but doing so creates
instabilities and often leads to inferior performance. To show this, we performed a joint hyperparameter
sweep over α and learning rate for the Magicoder dataset training a r = 256 LoRA for 4 epochs (Fig. ??).
We find that α = 512 does much better than 256 or 32 across all learning rates.

Next, to assess the relative contribution of target modules and rank, we trained Llama-2-7b models on 4
epochs of the Magicoder dataset, sweeping over target modules (“Attention”, “MLP”, and “All”, their union),
ranks (r = 16, 64, 256), setting α = 2r. Fig. 7 shows that HumanEval performance increases with rank, and

10https://huggingface.co/docs/peft/en/index
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Figure 6: Dynamics of rank for Llama-2-7B trained on the Starcoder (CPT) data. In each panel,
the x-axis denotes layer number and the y-axis denotes rank needed to explain at least 90% of the variance
(maximal dimensionality is 4096). Colors denote CPT tokens, with lighter colors trained for longer.

Figure 7: Targeting MLP or All modules is superior to training Attention modules alone. All
Llama-2-7B checkpoints were trained on Magicoder for 1, 2 and 4 epochs with rank 16 (left), 64 (center) and
256 (right).

that targeting just “Attention” underperforms both “MLP” and “All”, where in the latter, most gains are
interestingly driven by the “MLP” modules. This is potential evidence that the MLP blocks are the primary
loci for continual learning in LoRA, at least in our datasets.

For IFT, we find that LoRA is more sensitive to learning rates compared to full finetuning, and benefits from
the highest learning rate that enables stable training for the chosen training duration (see Appendix Sec. B
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and Fig. S1). LoRA’s best learning rates should be set one order of magnitude higher than full finetuning’s,
often ranging between 5e−5 and 5e−4 for these combinations of model architecture and dataset.

In Appendix Sec. I, we benchmark throughput and peak GPU memory of different LoRA configurations,
showing that for standard implementations and a fixed batch size, LoRA tends to train slower than full
finetuning.

To conclude, based on our main results and hyperparameter sweeps, we recommend: (a) using LoRA for
instruction finetuning and not continued pretraining; (b) if GPU memory allows, targeting “All” transformer
modules with a rank of 256, since ranks 16 − 64 tend not to suffice for code tasks; (c) using α = 2r, and (d)
sweeping over learning rates between [1e − 5, 5e − 4], picking the highest value that enables stable training.

5 Related Work

Extensions to LoRA LoRA has inspired many variants and extensions. One group of methods improves
training with LoRA by focusing on initialization or scaling (Meng et al., 2024; Hayou et al., 2024; Li
et al., 2023b; Kalajdzievski, 2023; Nikdan et al., 2024), sequential training procedures (Xia et al., 2024),
or architectural modifications (Shi et al., 2024). Other works propose alternative low-rank approximations
altogether (Liu et al., 2024; Zhao et al., 2024a; Jiang et al., 2024a; Kopiczko et al., 2023). In this study we
chose to analyze the classic LoRA setup; while many of these proposed variations of LoRA seem promising,
we leave a rigorous comparison of these techniques to future work.

Benchmarking LoRA vs. Full Finetuning The original LoRA paper Hu et al. (2021) reported that
LoRA matched full finetuning performance for RoBERTa (Liu et al., 2019) on GLUE (Wang et al., 2018), and
GPT-2 on E2E NLG Challenge (Novikova et al., 2017), and GPT-3 on WikiSQL (Zhong et al., 2017), MNLI
(Williams et al., 2017), and SAMSum (Gliwa et al., 2019). Many subsequent studies follow this template
and report encoder model performance on tasks in GLUE such as SST-2 (Socher et al., 2013) and MNLI
(Williams et al., 2017). Models such as RoBERTa are less than 340M parameters, however, and classification
tasks such as MNLI are quite trivial for modern billion-parameter LLMs such as Llama-2-7B. Despite LoRA’s
popularity, only a few studies have rigorously compared LoRA to full finetuning in this setting and with
challenging domains such as code and math. Dettmers et al. (2024) for example found that QLoRA matched
full finetuning MMLU (Hendrycks et al., 2020) performance when finetuning Llama-1 7B, 13B, 33B and
65B on the Alpaca (Taori et al., 2023) and FLAN (Chung et al., 2024) datasets. Ivison et al. (2023) on
the other hand found that QLoRA did not perform as well as full finetuning for Llama-2-7B, 13B and 70B
models trained on the Tülü-v2-mix dataset when evaluated across MMLU, GSM8K, AlpacaEval (which uses
LLM-as-a-judge; (Dubois et al., 2024)) and HumanEval. One recent notable study is Astraios, which found
that LoRA at rank r = 8 performed worse than full finetuning on 8 datasets and across 4 model sizes (up
to 16 billion parameters), on 5 representative code tasks (Zhuo et al., 2024). Our study corroborates these
results and shows that with higher ranks and proper hyperparameter choices, LoRA can perform much better.

The conclusions have also been mixed with regards to the practical details surrounding LoRA target modules
and rank: Raschka (2023) and Dettmers et al. (2024) show that optimized LoRA configurations perform as
well as full finetuning, and that performance is governed by choice of target modules but not rank. However,
in that work, the scalar α was not modified with rank, and we found that increasing it to 2r was necessary to
unlock improvements by rank. In contrast, Liu et al. (2024) shows that LoRA is sensitive to ranks. It is
likely that some of these discrepancies are due to differences in finetuning datasets and evaluations.

Continual learning on code and math. A growing body of work investigates ways of specializing LLMs
to code and math. In code, models such as StarCoder (Li et al., 2023a; Lozhkov et al., 2024), DeepSeek
Coder (Guo et al., 2024), and SantaCoder (Allal et al., 2023) were pretrained from scratch on large-scale
code datasets. Alternatively, some works start with a generic pretrained base model, and combine continued
pretraining on large code datasets followed by IFT on code problems (usually with full finetuning), e.g.,
Codex (Chen et al., 2021), Code-Qwen (Bai et al., 2023), CodeLlama (Roziere et al., 2023). Some perform
only IFT on top of a base model, like MagiCoder Wei et al. (2023), or WizardCoder (Luo et al., 2023b).
OctoCoder (Muennighoff et al., 2023) performs IFT with LoRA.

12



Published in Transactions on Machine Learning Research (08/2024)

Similarly, much recent work aims to improve mathematical capabilities. Models like DeepSeek Math (Shao
et al., 2024) perform continued pretraining on top of a base model, while other methods focus on finetuning
by generating high-quality synthetic math problems, scaling to millions of examples. Luo et al. (2023a)
takes the Evol-Instruct approach to data generation (akin to the Magicoder dataset; Sec. 3.1) which it
then uses to train reward models for instruction quality and solution correctness, which are in turn used
for LLM finetuning. Other work develops Monte Carlo Tree Search methods to automatically supervise
the intermediate reasoning steps while solving math problems (Luo et al., 2024), and Yue et al. (2024)
generates questions and answers from the pretraining web corpus. Toshniwal et al. (2024) uses an LLM to
synthesize Code-Interpreter-style solutions to the GSM8K and MATH benchmarks. The proposed solutions
can be verified against the official solutions. Singh et al. (2023) iterate over this procedure multiple times
(“Self-training”) using an expectation-maximization approach. All reviewed methods meaningfully improve
math capabilities.

Learning-Forgetting tradeoffs Vu et al. (2022) shows that prompt tuning (Lester et al., 2021), another
parameter-efficient finetuning method, can aid in mitigating forgetting for cross-lingual summarization tasks
(using multilingual variants of the T5 model). With large Llama-style LLMs, it has been reported that
code-finetuned LLMs lose some of their capabilities in language understanding and commonsense reasoning
(Li et al., 2023a; Roziere et al., 2023; Wei et al., 2023). A common approach to mitigate forgetting involves
“replaying” source-domain data during continual learning, which can be done by storing the data in a memory
buffer, or generating it on the fly (Lesort et al., 2022; Scialom et al., 2022; Sun et al., 2019).

6 Discussion

Does the difference between LoRA and full finetuning change with model size? Studies in
the past have hinted at a relationship between the effectiveness of finetuning and model size (Aghajanyan
et al., 2020; Hu et al., 2021; Zhuo et al., 2024). While recent studies have successfully applied LoRA to 70B
parameter models (Ivison et al., 2023; Yu et al., 2023; Niederfahrenhorst et al., 2023; Turgutlu, 2024), and
previous work shows that techniques like prompt tuning become more effective for larger models (Vu et al.,
2022), we leave a rigorous study of these intriguing scaling properties to future work.

Limitations of the spectral analysis. The observation that full finetuning tends to find high rank
solutions does not rule out the possibility of low-rank solutions; rather, it shows that they are not typically
found. An alternative interpretation is that the rank needed to reconstruct the weight matrix is higher than
the rank needed for a downstream task. We also only presented SVD analysis for the continued pretraining
setting. It is possible that a similar analysis for the instruction finetuning setting would reveal that the full
finetuning does not tend to be as high rank.

7 Conclusion

This work sheds light on the downstream performance of 7 billion parameter LLMs trained with LoRA and
full finetuning. Unlike most prior work, we use domain-specific datasets in code and math, associated with
sensitive evaluation metrics. We show that LoRA, with commonly used low-rank settings, underperforms full
finetuning across domains. We also show that LoRA keeps the finetuned model’s behavior close to that of the
base model, with diminished source-domain forgetting and more diverse generations at inference time. We
show that LoRA mitigates forgetting more than classical regularization techniques, and also show that full
finetuning finds weight perturbations that are far from being low-rank. We conclude by analyzing LoRA’s
increased sensitivity to hyperparameters and highlighting best practices.
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Appendix

A Experimental Setup

LoRA configuration for all experiments.

All experiments were done with the Databricks MosaicML composer, streaming and llm-foundry libraries
in conjunction with the HuggingFace peft library on 32×H100-80GB GPUs.

We targeted all trainable modules inside each of the L Llama transformer blocks:
{W

(l)
q , W

(l)
k , W

(l)
v , W

(l)
o , W

(l)
gate, W

(l)
up , W

(l)
down}}L

l=1. We used ranks of r = 16, 64, 256 and set α = 2r,
to achieve a constant scaling factor γr = 2 across ranks. We use lora_dropout=0.05.

For both the Code CPT and Math CPT settings, we train the model once for 20B tokens. We then perform
individual cooldowns using intermediate checkpoints as follows: We set a target max training duration (e.g. 8
billion tokens), and define the last 20% of max training duration as the cooldown period. We then retrain
from the latest available checkpoint prior to the cooldown period.

Code CPT Llama-2-7B trained on the StarCoder-Python dataset.

• seq_len: 4096
• optimizer: decoupled_lionw (betas=[0.9, 0.95])
• learning_rate: 1.0e-05 for LoRA and Full Finetuning
• scheduler: inv_sqrt_with_warmup (t_scale=1000ba, t_warmup=1000ba, t_cooldown=5086ba,

alpha_f_decay=1, alpha_f_cooldown=0). We note that this ends up looking very much like a
trapezoidal schedule.

• weight_decay: 1.0e-06
• precision: amp_bf16
• global_train_batch_size: 192
• device_train_microbatch_size: 6
• gradient_clipping: norm (threshold=1)
• num_gpus: 32
• LR Scheduler: Inverse square root with warmup twarmup = 500 batches, tscale = 500 batches,

tcooldown = 5200 batches αfdecay = 1.0 αfcooldown = 0.0

Math CPT. Llama-2-7B trained on the OpenWebMath dataset.

• max_seq_len: 4096
• optimizer: decoupled_lionw (betas=[0.9, 0.95])
• learning_rate: 1.0e-05 for full finetuning, 4.0e-05 for LoRA
• scheduler: inv_sqrt_with_warmup (t_scale=1000ba, t_warmup=1000ba, t_cooldown=5086ba,

alpha_f_decay=1, alpha_f_cooldown=0). We note that this ends up looking very much like a
trapezoidal schedule.

• weight_decay: 0
• precision: amp_bf16
• global_train_batch_size: 192
• device_train_microbatch_size: 6
• gradient_clipping: norm (threshold=1)
• num_gpus: 32

Code IFT: Finetuning Llama-2-7b on the Magicoder-Evol-Instruct-110K dataset

• max_seq_len: 4096
• optimizer: decoupled_lionw (betas=[0.9, 0.95])
• learning_rate: 2e-4 for rank r = 16, 64 and 1e-4 for r = 256 α = 2r = 512 (due to instabilities/loss

spikes at 2e-4)
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• scheduler: cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur)
• weight_decay: 0
• precision: amp_bf16
• global_train_batch_size: 192
• device_train_microbatch_size: 6
• gradient_clipping: norm (threshold=1)
• num_gpus: 32

Math IFT: Finetuning Llama-2-7b on the MetaMathQA dataset

• seq_len: 1024
• optimizer: decoupled_lionw (betas=[0.9, 0.95])
• learning_rate: Full finetuning: 1e-5, LoRA: 1e-4 for r = 16, 64, 5e-5 for r = 256 due to instabilities.
• scheduler: cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur)
• weight_decay: 0
• precision: amp_bf16
• global_train_batch_size: 768
• device_train_microbatch_size: 24
• gradient_clipping: norm (threshold=1)
• num_gpus: 32

A.1 Training the input and output embedding layers.

Vanilla LoRA and other popular methods such as QLoRA (Dettmers et al., 2024) often do not train the
input and output embedding layers. Recent open-source work11, on the other hand, shows that it might be
beneficial to supplement LoRA with full finetuning of these two modules (additional ≈ 200M parameters for
a 7B model). We view this approach as a hybrid of LoRA and full finetuning, and therefore leave its empirical
investigation for future work. Moreover, this hybrid approach involves further hyperparameter optimization:
the input and output layers require tuning their own separate learning rates, which should typically be 2-10X
smaller than the LoRA learning rates (training with a single learning rate results in instabilities).

B Learning rate searches

We perform a learning rate sensitivity analysis for Llama-2-7B, trained for two epochs on the code and math
IFT datasets, and followed by HumanEval and GSM8K evaluation, respectively. Fig. S1 shows that LoRA
improves monotonically with learning rate up to a value at which training diverges, with best learning rates
of 5e−4 for code and 2e−4 for math.

On both datasets, these best LoRA learning rates are underperformed by four alternative full finetuning
learning rates. The best full finetuning learning rates are 5e−5 and 1e−5, respectively, an order of magnitude
smaller than LoRA. For LoRA, we cannot find alternative learning rates that achieve at least 90% of the best
learning rate’s performance. For full finetuning, there are two viable alternative learning rates for code and
three for math.

Note that in these experiments, the LoRA models target all modules but the Wgate, with α = 32 which
should preferably be higher for r = 64.

B.1 Learning rate sensitivity analysis across optimizers

We compared the AdamW and Decoupled LionW optimizers by training for two epochs of Magicoder-Evol-
Instruct-110K using different learning rates. We found that Decoupled LionW performed better on HumanEval
for both LoRA and full finetuning, and across learning rates, as seen in Fig. S2.

11https://unsloth.ai/blog/contpretraining, see also the following blogpost https://www.anyscale.com/blog/
fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2 (Niederfahrenhorst et al., 2023)
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Figure S1: LoRA is more sensitive to learning rates compared to full finetuning. Llama-2-7B
models (A) trained on Magicoder-Evol-Instruct-110k (Wei et al., 2023) and evaluated on HumanEval, (B)
trained on MetaMathQA (Yu et al., 2023) and evaluated on GSM8K. Experiments here are performed with
LionW; see Fig. S2 for a comparion to AdamW.

Figure S2: Comparing LionW to AdamW across learning rates for two epochs of the Magicoder-Evol-
Instruct-110K dataset. Left: HumanEval; Right: Average of “Language Understanding” benchmarks in the
MosaicML evaluation gauntlet. Both methods peak at the learning rate used in the original paper (Wei et al.,
2023).

B.2 The importance of the α parameter for LoRA

We found that the performance of all models was particularly sensitive to the LoRA α hyperparameter.
Figure S3 shows two experiments on two separate datasets (Magicoder-Evol-Instruct-110K and Open Web
Math) for LoRA with rank r = 256. In both cases the best accuracy is achieved when α = 2r.
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(a) Jointly sweeping over LoRA α and learning rate. The
optimal choice is α = 2r (blue).

(b) Continued pretraining with two different choices of
α, where α = 2r is best (blue).

Figure S3: LoRA performance is sensitive to the α hyperparameter. We show that for Code IFT (a)
and math CPT (b) an α that is scaled with rank such that α = 2r leads to the highest accuracy.
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C Finetuning on the Tülu-v2-mix dataset

We finetuned Llama-2-7b models on the Tülu-v2-mix (Ivison et al., 2023), a dataset which contains a variety
of finetuning datasets containing chain of thought reasoning, multi-turn assistant conversations, math and
science problems, code, and more. There are roughly 326k samples in this dataset.

As in all main experiments, we compared full finetuning and LoRA r = 16, 64, 256, targeting all transformer
modules. For each of the four experimental conditions, we trained a model for up to 6 epochs and evaluated
it after 2, 4, and 6 epochs. Different from the main experiments, the checkpoints evaluated are “hot” and are
not cooled down for each training duration.

As in the original paper (Ivison et al., 2023), we assess math capabilities with GSM8K Cobbe et al. (2021),
STEM, humanities, and social science capabilities as the average of 57 subjects of the Massive Multitask
Language Understanding (MMLU; Hendrycks et al. (2020)), and conversational capabilities with Multi-
Turn Benchmark (MT-bench (Zheng et al., 2024)) which includes 80 multi-turn conversations where the
model responses are evaluated automatically by GPT-4. We also compute the same average forgetting score
as in all other datasets in this paper.

Since datasets like Tülu-v2-mix are where LoRA is mostly used, we ask: can LoRA, even with a low rank,
achieve full finetuning-accuracy both in specific domains and in general conversational capabilities?

C.1 Experimental setup

After an initial learning rate sweep, we chose the following hyperparameters:

• max_seq_len: 4096
• optimizer: decoupled_lionw (betas=[0.9, 0.95])
• learning_rate: Full finetuning: 5e-6; LoRA 1e-4
• scheduler: cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur)
• weight_decay: 0
• precision: amp_bf16
• global_train_batch_size: 192
• device_train_microbatch_size: 6
• gradient_clipping: norm (threshold=1)
• num_gpus: 32

C.2 Results

First, we find that on MT-bench (Fig. S5), both LoRA and full finetuning meaningfully improve upon the base
model (2.74), starting from the second epoch and improving only slightly when trained for longer. Crucially,
all LoRA models are within one standard error of the mean of the full finetuning model (computed with 160
datapoints = 80 questions × 2 turns). That is, one can achieve full finetuning conversational capabilities
with r = 16. The caveat is that only 80 questions appear in this benchmark and that the variance, within
model, is high.

In GSM8K (Fig. S6a), again, all models significantly improve upon the base model (0.145). Remarkably,
even in this specific domain, LoRA and full finetuning are overlapping, with the best model being LoRA
r = 256 at epoch 4, which is followed by full finetuning at epoch 2. Here too, as in the other math datasets
in the paper, there is an ordering by LoRA rank.

In MMLU (Fig. S6b), full finetuning and LoRA are overlapping with LoRA r = 64 as the best model (epoch
4), followed by full finetuning at epoch 2. Here there is no ordering by rank.

As for forgetting (Fig. S7), we find an overall mild forgetting compared to the rest of the datasets in the
paper. At two epochs, full finetuning does better than LoRA. The former starts to degrade at epoch 4. At
epoch 6, the findings of the main paper are replicated: full finetuning forgets the most and we find a clear
ordering of forgetting by rank.
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Figure S4: LoRA forgets less even on a more diverse IFT dataset like Tülu-v2-mix. We plot the
average forgetting score, same as in all other datasets, as a function of training duration.

Across all evaluations – learning and forgetting – full finetuning is the best model at epoch 2, and only
degrades afterwards. LoRA, on the other hand, needs 4 epochs to train, mirroring the findings in the main
part of the paper. LoRA r = 16 seems to offer competitive conversational capabilities, and minimal forgetting,
but it underperforms in domain-specific knowledge like math. Future work should seek to understand why
this is the case.

Figure S5: Average MT-bench score with GPT-4 as a judge, calculated over 80 questions with
two turns each. Base model value as reported in the MT-bench paper. We note that the Tülu paper reports
a 6.3 MT-bench value from full finetuning of Llama-2-7b base model, which is only slightly exceeding the
standard error from our average score.
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(a) Accuracy in GSM8K. (b) Average of MMLU benchmarks.

Figure S6: On Tülu-v2-mix, LoRA and full finetuning both improve upon the base model and
perform comparably.

Figure S7: LoRA forgets less even on a more diverse IFT dataset like Tülu-v2-mix. We plot the
average forgetting score, same as in all other datasets, as a function of training duration.
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D Supplementary tables

Table S1: Starcoder-Python Results (HumanEval pass@1)

Num. tokens (billions) 0.25 0.50 1 2 4 8 16 20
Condition
LoRA (r=16) 0.143 0.144 0.141 0.141 0.154 0.159 0.162 0.162
LoRA (r=64) 0.142 0.146 0.141 0.153 0.157 0.176 0.194 0.196
LoRA (r=256) 0.144 0.142 0.143 0.159 0.159 0.208 0.211 0.224
Full Finetuning 0.152 0.153 0.172 0.181 0.218 0.258 0.255 0.263

Table S2: Starcoder-Python Results (Forgetting Average)

Num. tokens (billions) 0.25 0.50 1 2 4 8 16 20
Condition
LoRA (r=16) 0.645 0.642 0.645 0.642 0.644 0.640 0.638 0.635
LoRA (r=64) 0.646 0.644 0.646 0.646 0.639 0.634 0.626 0.626
LoRA (r=256) 0.644 0.645 0.643 0.639 0.636 0.630 0.618 0.617
Full Finetuning 0.625 0.624 0.625 0.616 0.599 0.583 0.551 0.545

Table S3: OpenWebMath Results (GSM8K)

Num. tokens (billions) 0.25 0.50 1 2 4 8 16 20
Condition
LoRA (r=16) 0.162 0.157 0.161 0.155 0.165 0.156 0.152 0.158
LoRA (r=64) 0.163 0.167 0.150 0.166 0.164 0.168 0.179 0.163
LoRA (r=256) 0.162 0.161 0.140 0.170 0.193 0.196 0.203 0.202
Full Finetuning 0.155 0.152 0.165 0.158 0.224 0.238 0.283 0.293
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Table S4: OpenWebMath Results (Forgetting Average)

Num. tokens (billions) 0.25 0.50 1 2 4 8 16 20
Condition
LoRA (r=16) 0.640 0.641 0.646 0.641 0.643 0.641 0.636 0.637
LoRA (r=64) 0.640 0.640 0.638 0.637 0.643 0.634 0.634 0.627
LoRA (r=256) 0.638 0.638 0.637 0.634 0.633 0.620 0.620 0.616
Full Finetuning 0.634 0.634 0.640 0.630 0.629 0.619 0.613 0.618

Table S5: Magicoder-Evol-Instruct-110K Results (HumanEval pass@1)

Epoch 1 2 4 8 16
Condition
LoRA (r=16) 0.197 0.275 0.358 0.338 0.324
LoRA (r=64) 0.249 0.339 0.417 0.392 0.405
LoRA (r=256) 0.299 0.385 0.498 0.437 0.466
Full Finetuning 0.302 0.464 0.470 0.497 0.416

Table S6: Magicoder-Evol-Instruct-110K Results (Forgetting Average)

Epoch 1 2 4 8 16
Condition
LoRA (r=16) 0.653 0.648 0.652 0.646 0.609
LoRA (r=64) 0.652 0.651 0.632 0.580 0.510
LoRA (r=256) 0.655 0.659 0.631 0.552 0.517
Full Finetuning 0.595 0.579 0.512 0.446 0.414

Table S7: MetaMathQA Results (GSM8K)

Epoch 1 2 4 8 16
Condition
LoRA (r=16) 0.447 0.528 0.580 0.578 0.569
LoRA (r=64) 0.527 0.588 0.624 0.624 0.595
LoRA (r=256) 0.557 0.607 0.625 0.634 0.594
Full Finetuning 0.604 0.641 0.642 0.619 0.599

Table S8: MetaMathQA Results (Forgetting Average)

Epoch 1 2 4 8 16
Condition
LoRA (r=16) 0.628 0.617 0.616 0.616 0.596
LoRA (r=64) 0.617 0.609 0.608 0.586 0.568
LoRA (r=256) 0.613 0.607 0.599 0.584 0.567
Full Finetuning 0.598 0.599 0.590 0.572 0.559
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Table S9: Tülu-v2-mix Results

Table S10: Tülu-v2-mix MT-Bench

Epoch 2 4 6
Condition
LoRA (r=16) 5.681 5.997 5.712
LoRA (r=64) 5.597 5.725 5.944
LoRA (r=256) 5.788 5.834 5.894
Full Finetuning 5.825 5.838 5.862

Table S11: Tülu-v2-mix MMLU

Epoch 2 4 6
Condition
LoRA (r=16) 0.491 0.502 0.504
LoRA (r=64) 0.503 0.509 0.504
LoRA (r=256) 0.502 0.496 0.492
Full Finetuning 0.507 0.504 0.502

Table S12: Tülu-v2-mix GSM8K

Epoch 2 4 6
Condition
LoRA (r=16) 0.251 0.275 0.280
LoRA (r=64) 0.285 0.270 0.295
LoRA (r=256) 0.296 0.335 0.301
Full Finetuning 0.324 0.291 0.303

Table S13: Tülu-v2-mix Forgetting Average

epoch 2 4 6
condition
LoRA (r=16) 0.650 0.657 0.657
LoRA (r=64) 0.649 0.655 0.647
LoRA (r=256) 0.653 0.649 0.629
Full Finetuning 0.660 0.652 0.621
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E Supplementary Figures for SVD Analysis

Figure S8: SVD analysis for 4096 × 4096 matrix Wq at layer 26. Left: singular values for base weights,
finetuned weights, and their difference. Right: cumulative explained variance. Notice that for all three
matrices, a rank > 1500 is needed to explain 90% of the variance.
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Figure S9: Analyzing the spectra of the sum of two 1000 × 1000 Gaussian i.i.d matrices. A and B
are 1000 × 1000 random matrices with i.i.d. standard normal Gaussian entries.
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F Solution Generation Diversity on HumanEval

For the best set of Llama-2-7B models trained in MagicCoder we evaluate how their pass@k metric in the
HumanEval benchmark increases as we increase the parameter k which controls the acceptance criterion.
The pass@k metric (Chen et al., 2021) is defined as

pass@k := E

[
1 −

(
n−c

k

)(
n
k

) ]
, (1)

where n is the number of generations, c the number of correct generations and k determines the size of
the sample set of generations considered for acceptance. Assuming we sample from the model outputs, i.e.
sampling temperature T > 0, then increasing k will increase the diversity of generations, and increase the
likelihood of a passing generation being present in a random subset of size k.

Figure S10 reports pass@k for the LoRA models trained in the MagicCoder dataset as well as the base
Llama-2-7B model. For all models, as we increase k, the pass@k consistently and monotonically improves.
Finetuned models scores are substantially higher than the base model. At k = 1, Full finetuning outperforms
the LoRA model whose scores are ordered from largest to smallest rank, as expected. As k increases we
observe all models improving their pass@k scores and the gap between them reducing when k > 16. We note
that full finetuning is superior across all values of k with temperature 0.8. This complements the results in 1
which used a temperature of 0.2 and pass@1, where the improvements upon r = 256 at epoch 4 are less clear.
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Figure S10: HumanEval pass@k for models trained on the Magicoder dataset. For every model, we
sample 256 independent generations with temperature 0.8.
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G Training Datasets

G.1 MetaMathQA (Math IFT)

The MetaMathQA dataset (Yu et al. (2023), https://huggingface.co/datasets/meta-math/MetaMathQA)
contains 395,000 samples that are bootsrapped from the GSM (Cobbe et al., 2021) and Math (Hendrycks
et al., 2021) training sets. These samples are augmented by GPT-3.5 using the following methods:

• Answer Augmentation (155k samples, Yu et al. (2023)): this method proposed by the MetaMathQA
authors generates multiple reasoning paths for a given mathetical question and filters for generated
reasoning paths that contain the correct final answer.

• Rephrasing (130k samples, (Yu et al., 2023)): this method proposed by the MetaMathQA authors
uses GPT-3.5 to rephrase questions. They check for the correctness of rephrased questions by using
few-shot Chain of Thought prompting to compare reasoning chains and proposed answers with
ground truth answers.

Both Self-Verification (Weng et al., 2022) and FOBAR (Jiang et al., 2024b) fall under the category of
“backward reasoning,” where the question starts with a given condition and requires reasoning backwards to
solve for an unknown variable. In order to generate new mathematical questions, a numerical value in the
original question is masked as a variable X, and the question is rephrased accordingly.

• Self-Verification (55k samples, Weng et al. (2022)): the question is rephrased into a declarative
statement followed by a question about the masked variable X.

• FOBAR (55k samples, Jiang et al. (2024b)): this approach is similar to Self-Verification but directly
appends the answer to the question using the template “If we know the answer to the above question
is Âc, what is the value of unknown variable x?”

MetaMathQA samples are organized by 4 columns: type, original_question, query and response.

We include two full examples below:
Example G.1: MetaMathQA
type: GSM_Rephrased

query: Scott wants to prepare and freeze a large portion of ratatouille. He purchases 5 pounds of eggplants and 4 pounds of
zucchini at a rate of $2.00 per pound from the farmers’ market. Additionally, he needs 4 pounds of tomatoes that cost $3.50
per pound, 3 pounds of onions priced at $1.00 per pound, and a pound of basil sold for $2.50 per half pound. If this quantity
yields 4 quarts, what is the cost per quart?

original_question: Scott wants to make and freeze a large batch of ratatouille. At the farmers’ market he buys 5 pounds of
eggplants and 4 pounds of zucchini at $2.00 a pound. He needs 4 pounds of tomatoes that are $3.50 a pound. The onions are
$1.00 a pound and he needs 3 pounds. Then he needs a pound of basil which is sold for $2.50 per half pound. If this yields 4
quarts, how much does each quart cost?

response: The cost of the eggplants is 5 pounds x $2.00 per pound = $10.00. The cost of the zucchini is 4 pounds x $2.00
per pound = $8.00. The cost of the tomatoes is 4 pounds x $3.50 per pound = $14.00. The cost of the onions is 3 pounds x
$1.00 per pound = $3.00. The cost of the basil is 1 pound x ($2.50 per half pound x 2) = $5.00. The total cost for all the
ingredients is $10.00 + $8.00 + $14.00 + $3.00 + $5.00 = $40.00. Since this quantity yields 4 quarts, the cost per quart is
$40.00 / 4 quarts = $10.00 per quart. #### 10 The answer is: 10
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Example G.2: MetaMathQA
type: MATH_SV
query: If a school bus leaves school with X students on board, and one-half of the students get off the bus at each of the
first three stops, The number of students remaining on the bus after the third stop is 6. What is the value of unknown variable X?

original_question: If a school bus leaves school with 48 students on board, and one-half of the students get off the bus at
each of the first three stops, how many students remain on the bus after the third stop?

response: To solve this problem, we need to determine the value of x, which represents the initial number of students on the
bus. Let’s break down the information given: Number of students remaining on the bus after the third stop: 6 Number of
students getting off the bus at each stop: 1/2 Number of stops: 3 We can set up the equation as follows: Number of students
on the bus * (1/2)ˆ 3 = Number of students remaining on the bus after the third stop x * (1/2)ˆ 3 = 6 Let’s simplify and
solve for x: x * (1/8) = 6 To isolate x, we multiply both sides of the equation by 8: x * (1/8) * 8 = 6 * 8 x = 48 The value of
x is 48. The answer is: 48

G.2 Magicoder-Evol-Instruct-110k (Code IFT)

Example G.3: Magicoder-Evol-Instruct-110k
instruction: Please amend the subsequent Python script so that it includes a ’while’ loop rather than the existing ’for’ loop,
which iterates through the items of an integer list. The script currently has a bug where it attempts to print an object that is
outside the bounds of the list. Fix this error and modify the script to use ’while’ instead of ’for’ loop. Ensure your script
correctly handles empty lists.
‘‘‘python
# Establish an integer list
arr = [1, 2, 3, 4]
# Determine the length of the list
n = len(arr)
# Traverse the list and output each individual element
for i in range(n+1): print(arr[i]) ‘‘‘

response:
‘‘‘python # Establish an integer list arr = [1, 2, 3, 4]
# Determine the length of the list
n = len(arr)
# Initialize index at 0 i = 0
# Traverse the list and output each individual element
while i < n: print(arr[i]) i += 1
‘‘‘

In the given code, it tries to access ‘arr[n]‘ which is out of bounds as python list indexing starts from 0 and ends at n-1 for a
list of length n. Also, I used ‘while‘ loop as per your request. By initializing ‘i=0‘ before the loop and ‘i += 1‘ within the
loop, we can iterate over the list. This iteration continues until ‘i‘ is less than ‘n‘, the length of the list. The ‘while‘ loop will
not proceed if the list is empty so it correctly handles empty lists.
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G.3 Starcoder Python (Code CPT)

Example G.4: Starcoder-Python

‘‘‘python
"""
function of invoking Gitee API
"""

import base64
import logging
import requests
from flask import current_app
from requests import exceptions
logger = logging.getLogger(__name__)

ORG_URL = "\href{https://gitee.com/api/v5/orgs}{https://gitee.com/api/v5/orgs}"

REPO_URL = "\href{https://gitee.com/api/v5/repos}{https://gitee.com/api/v5/repos}"

def get_request(url, params):

"""

get request

"""

logger.debug("Get request, connect url: %s", url)

try:

response = requests.get(url,params=params)

return True, response

except exceptions.ConnectionError as err:

logger.error(err)

return False, ’connection error’

except IOError as err:

logger.error(err)

return False, ’IO error’
‘‘‘

more functions truncated...
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G.4 OpenWebMath (Math CPT)

Example G.5: OpenWebMath
url: http://math.stackexchange.com/questions/222974/probability-of-getting -2-aces-2-kings-and-1-queen-in-a-
five-card-poker-hand-pa

text: # Probability of getting 2 Aces, 2 Kings and 1 Queen in a five card poker hand (Part II) So I reworked my formula in
method 1 after getting help with my original question - Probability of getting 2 Aces, 2 Kings and 1 Queen in a five card
poker hand. But I am still getting results that differ...although they are much much closer than before, but I must still be
making a mistake somewhere in method 1. Anyone know what it is? Method 1 $P(2A \cap 2K \cap 1Q) = P(Q|2A \cap
2K)P(2A|2K)P(2K)$ $$= \frac{1}{12}\frac{{4 \choose 2}{46 \choose 1}}{50 \choose 3}\frac{{4 \choose 2}{48 \choose
3}}{52 \choose 5}$$ $$= \frac{(6)(17296)(6)(46)}{(2598960)(19600)(12)}$$ $$= 4.685642 * 10{̂-5}$$ Method 2 $$\frac{{4
\choose 2} {4 \choose 2}{4 \choose 1}}{52 \choose 5} = \frac{3}{54145}$$ $$5.540678 * 10{̂-5}$$ - Please make an effort to
make the question self-contained and provide a link to your earlier question.
– Sasha Oct 28 ’12 at 19:56 I think we would rather ahve you edit your initial question by adding your new progress. This
avoids having loss of answer and keeps track of progress – Jean-Sébastien Oct 28 ’12 at 19:56 But there already answers to
my original question so those answers would not make sense now that I am using a new formula for method 1.
– sonicboom Oct 28 ’12 at 20:03 Conditional probability arguments can be delicate. Given that there are exactly two Kings,
what’s the $46$ doing? That allows the possibility of more Kings.
– André Nicolas Oct 28 ’12 at 20:26 The $46$ is because have already taken two kings from the pack leaving us with 50. And
now we have chosen 2 aces and we have to pick the other 1 card from the 50 remaining cards less the 4 aces?
– sonicboom Oct 28 ’12 at 20:42 show 1 more comment $$\frac{1}{11}\frac{{4 \choose 2}{44 \choose 1}}{48 \choose
3}\frac{{4 \choose 2}{48 \choose 3}}{52 \choose 5}$$ If you wrote this as $$\frac{{4 \choose 2}{48 \choose 3}}{52 \choose
5}\frac{{4 \choose 2}{44 \choose 1}}{48 \choose 3}\frac{{4 \choose 1}{40 \choose 0}}{44 \choose 1}$$ it might be more
obvious why they are the same.

date: 2014-03-07 11:01:44

35



Published in Transactions on Machine Learning Research (08/2024)

There is often some confusion about the memory gains that vanilla LoRA offers both in theory and in practice.
In Appendix H we discuss some of the theoretical benefits of LoRA, and show how it can enable training
both on GPUs with less memory and on fewer total GPUs (in the multi-GPU setting). In Appendix I we
show how LoRA in practice leads to memory savings relative to full finetuning, but can in fact lead to slower
throughput for particular hardware and software settings.

H Theoretical Memory Efficiency Gains with LoRA for Single and Multi-GPU
Settings

Modern systems for training neural networks store and operate on the following objects (following the
conventions in Rajbhandari et al. (2020)). Most memory requirements relate to model states, which include:

• parameter weights
• gradients
• higher order optimization quantities such as optimizer momentum and variance in the Adam optimizer,

and the momentum in the Lion optimizer

The remaining memory requirements come from the residual states:

• activations (which depend on batch size and maximum sample sequence length)
• temporary buffers for intermediate quantities in the forward and backward pass.

which will require more memory when increasing the batch size and maximum sequence lengths.

LoRA offers memory savings with respect to the model states. The next two sections describe these memory
savings in the single GPU and multi-GPU setting with examples loosely inspired by Rajbhandari et al. (2020).

The data stored at single precision includes:

• a “master copy” of the tuned parameter weights
• the gradient
• all optimizer states (both momentum and variance for Adam, and just momentum for Lion)

For simplicity, we do not consider mixed-precision training, which involves storing critical data at single
precision (fp32; 4 bytes per number) while performing some computations at half precision (fp16 or bfloat16;
2 bytes per number).

H.1 Training on a Single GPU

In the single GPU setup, the difference in memory requirements between LoRA and full finetuning is
particularly drastic when using the Adam optimizer (Hu et al., 2021; Rajbhandari et al., 2020).

Storing the master weights in fp32 requires 4 bytes per parameter, while storing the gradient in fp32 requires
4 bytes per tuned parameter. In order to maintain the optimizer state in fp32 for Adam, 8 bytes per tuned
parameter are required; 4 bytes for the momentum term, and 4 bytes for the variance term. Let Ψ be the
number of model parameters. Therefore, in the Adam full finetuning setting of a Ψ = 7B parameter model,
the total memory requirements are at least roughly 4 × Ψ + 4 × Ψ + 8 × Ψ = 112 GB.

The Lion optimizer only uses a momentum term in the gradient calculation, and the variance term in Adam
therefore disappears. In the Lion full finetuning setting of a Ψ = 7B parameter model, the total memory
requirements are therefore roughly 4 × Ψ + 4 × Ψ + 4 × Ψ = 84 GB.

LoRA, on the other hand, does not calculate the gradients or maintain optimizer states (momentum and
variance terms) for most of the parameters. Therefore the amount of memory used for these terms is drastically
reduced.

36



Published in Transactions on Machine Learning Research (08/2024)

7B Training 1 GPU 8 GPUs 16 GPUs 32 GPUs 64 GPUs
Adam 112 GB 14 GB 7 GB 3.5 GB 1.75 GB
Adam + LoRA 15.12 GB 1.89 GB 0.945 GB 0.4725 GB 0.236 GB
Lion 84 GB 10.5 GB 5.25 GB 2.625 GB 1.3125 GB
Lion + LoRA 14.84 GB 1.855 GB 0.9275 GB 0.464 GB 0.232 GB

Table S14: Theoretical memory required to store the model and optimizer state during training
for a 7B parameter model. Note that the numbers exclude memory needed to store activations. FSDP
sharding the parameter and optimizer states across N devices results in less memory usage relative to LoRA.
LoRA on the other hand enables training on GPUs with far less memory and also enables training without
needing as many GPUs to shard across.

A LoRA setting with Adam that only tunes matrices that are 1% of the total parameter count (e.g. Ψ = 7B
base model with 70M additional parameters used by LoRA) requires roughly 4 × Ψ(1 + 0.01) + 4 × Ψ × 0.01 +
8 × Ψ × 0.01 = 29.12 GB of memory. Theoretically this can be reduced further to 2 × Ψ + 16 × Ψ × 0.01 =
15.12 GB if the non-tuned parameter weights are stored in bfloat16. We use this assumption for the subsequent
examples.

Note again that these numbers do not take into consideration sample batch size or sequence length, which
affect the memory requirements of the activations.

H.2 Training on a Multiple with Fully Sharded Data Parallelism

Past approaches for training LLMs across multiple GPUs include model parallelism, where different layers of
the LLM are stored on different GPUs. However this requires high communication overhead and has very
poor throughput (Rajbhandari et al., 2020). Fully Sharded Data Parallelism (FSDP) shards the parameters,
the gradient, and the optimizer states across GPUs. This incredibly efficient and actually is competitive with
the memory savings offered by LoRA in certain settings.

FSDP sharding the parameter and optimizer states across N devices results in less memory usage relative to
LoRA. LoRA on the other hand enables training on GPUs with far less memory and also emanes training
without needing as many GPUs to shard across.

For example, in the Adam full finetuning setting of a Ψ = 7B parameter model on 8 GPUs with FSDP, the
total memory requirement for each GPU is roughly (4 × Ψ + 4 × Ψ + 8 × Ψ)/8 = 14 GB. This reduces further
to 3.5 GB for FSDP with 32 GPUs (see Table S14).

The LoRA with Adam setup on 8 GPUs (where Ψ = 7B base model and there are 70M additional LoRA
parameters) requires roughly (2 × Ψ + 16 × Ψ × 0.01)/8 = 1.89 GB of memory per GPU. With 32 GPUs this
decreases further to 0.4725 GB.

Standard industry level GPUs have on-device memory between 16 GB (e.g. V100s) and 80 GB (e.g. A100s
and H100s). As Table S14 demonstrates, the per-GPU memory requirements for training a 7B parameter
model decrease drastically as the number of GPUs increase. The memory requirements for training a 7B
model with Adam + LoRA on a single GPU are 15.12 GB, but the same per-GPU memory requirement
for training a 7B model with Adam but without LoRA on 8 GPUs is 14 GB. In this 8 GPU scenario, the
efficiency gains from LoRA disappear.

Table S15 applies similar calculations to a 70B parameter model. Finetuning such a large model on 8 GPUs
is only possible using a technique like LoRA; where Adam requires 140 GB per GPU, Adam+LoRA requires
18.9 GB per GPU. The efficiency gains of LoRA relative to FSDP therefore depend on the model size and
GPU availability/cost considerations.

We do the same analysis for a 405B parameter model to highlight how LoRA is beneficial as model size scales
(Table S16).
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70B Training 1 GPU 8 GPUs 16 GPUs 32 GPUs 64 GPUs
Adam 1.12 TB 140 GB 70 GB 35 GB 17.5 GB
Adam + LoRA 151.2 GB 18.9 GB 9.45 GB 4.725 GB 2.36 GB
Lion 840 GB 105 GB 52.5 GB 26.25 GB 13.125 GB
Lion + LoRA 148.4 GB 18.55 GB 9.275 GB 4.64 GB 2.32 GB

Table S15: Theoretical memory required to store the model and optimizer state during training
for a 70B parameter model.

405B Training 1 8 16 32 64 128 256
Adam 6480 810 405 202.5 101.25 50.625 25.3
Adam + LoRA 874.8 109.35 54.65 27.34 13.67 6.83 3.42
Lion 4860 607.5 303.75 151.875 75.94 37.97 18.98
Lion + LoRA 858.6 107.325 53.66 26.83 13.42 6.71 3.35

Table S16: Theoretical memory required to store the model and optimizer state during training
for a 405B parameter model. Units are in gigabytes (GB)

I LoRA Throughput and Memory Measurements

We report training efficiency comparisons between full finetuning and models trained with LoRA for various
of choices of rank. We measured both the throughput (in tokens per second) and peak active memory (in
GB) for training runs representative of the experiments reported in the paper. We performed the runs using
single node of 8×H100-80GB GPUs. We used a per-GPU micro batch size of 1 and targeted all linear layer
weights with LoRA (i.e. both Attention and MLP).

In Figure S11 we observe that there is a significant gap between full finetuning and LoRA runs, related to
the additional overheads of the LoRA computations. In general, LoRA leads to an approximately 15%
reduction in throughput for a given batch size. LoRA with higher ranks is slower than lower ranks across
all batch sizes; this is particularly noticeable for rank r = 512. Similarly, LoRA settings with higher batch
sizes have slightly higher throughput relative to lower batch sizes. Some of the slowdown is intrinsically
related to the overheads of performing LoRA, since in practice it involves more computations of intermediate
activations. However, we note that we did not optimize the LoRA implementation and used the publicly
available HuggingFace peft library, which might be amenable to further optimizations that could reduce the
gap in throughput.

For peak memory, we notice that for small batch sizes, LoRA provides a substantial reduction in
peak memory (∼ 40%). This is expected since the optimizer state is significantly smaller when using
parameter efficient methods. However, as batch size increases, the size of intermediate activations increases
proportionally, dominating the required memory. We limit the per GPU micro batch size to 8 to prevent
out of memory errors, so for batch sizes 64 and above, we perform gradient accumulation. This leads to the
throughput and memory stabilizing for batch size 64 and above, with just around (∼ 15% memory savings)
for larger batch sizes.
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Figure S11: Throughput and Memory Measurements for LoRA vs. full finetuning. (left) Training
throughput measured in tokens per second across all 8 GPUs. (right) Peak active memory used by the
training process in a single GPU (max GPU memory is 80GB).

39


	Introduction
	Background
	Experimental Setup
	Datasets for Continued Pretraining (CPT) and Instruction Finetuning (IFT)
	Measuring Learning with Coding and Math Benchmarks (target domain evaluation)
	Forgetting Metrics (source domain evaluation)

	Results
	Target-domain performance: LoRA at low ranks underperforms full finetuning
	LoRA forgets less than full finetuning
	The Learning-Forgetting Tradeoff
	For the Tülu-v2-mix dataset, LoRA is on par with full finetuning 
	How strongly does LoRA constrain the finetuning process? 
	Full finetuning on code and math does not learn low-rank perturbations
	Hyperparameter sensitivity analyses for LoRA

	Related Work
	Discussion
	Conclusion
	Experimental Setup
	Training the input and output embedding layers.

	Learning rate searches
	Learning rate sensitivity analysis across optimizers
	The importance of the  parameter for LoRA

	Finetuning on the Tülu-v2-mix dataset
	Experimental setup
	Results

	Supplementary tables
	Supplementary Figures for SVD Analysis
	Solution Generation Diversity on HumanEval
	Training Datasets
	MetaMathQA (Math IFT)
	Magicoder-Evol-Instruct-110k (Code IFT)
	Starcoder Python (Code CPT)
	OpenWebMath (Math CPT)

	Theoretical Memory Efficiency Gains with LoRA for Single and Multi-GPU Settings
	Training on a Single GPU
	Training on a Multiple with Fully Sharded Data Parallelism

	LoRA Throughput and Memory Measurements

