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Figure 1: We present ngAnyFace (RAF) an auto-rigging framework that supports facial meshes of
diverse topologies with multiple disconnected components such as eyeballs. These meshes are drawn
from diverse sources and cover both humanoid and non-humanoid heads. Given only a neutral facial
mesh and explicitly controllable FACS parameters specifying activated action units, RAF accurately
deforms the input mesh into corresponding FACS poses, creating an expressive blendshape rig.

Abstract

In this paper, we present RigAnyFace (RAF), a scalable neural auto-rigging frame-
work for facial meshes of diverse topologies, including those with multiple discon-
nected components. RAF deforms a static neutral facial mesh into industry-standard
FACS poses to form an expressive blendshape rig. Deformations are predicted
by a triangulation-agnostic surface learning network augmented with our tailored
architecture design to condition on FACS parameters and efficiently process dis-
connected components. For training, we curated a dataset of facial meshes, with a
subset meticulously rigged by professional artists to serve as accurate 3D ground
truth for deformation supervision. Due to the high cost of manual rigging, this
subset is limited in size, constraining the generalization ability of models trained
exclusively on it. To address this, we design a 2D supervision strategy for un-
labeled neutral meshes without rigs. This strategy increases data diversity and
allows for scaled training, thereby enhancing the generalization ability of models
trained on this augmented data. Extensive experiments demonstrate that RAF is
able to rig meshes of diverse topologies on not only our artist-crafted assets but
also in-the-wild samples, outperforming previous works in accuracy and generaliz-
ability. Moreover, our method advances beyond prior work by supporting multiple
disconnected components, such as eyeballs, for more detailed expression animation.
Project page: https://wenchao-m.github.io/RigAnyFace.github.io
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1 Introduction

Facial rigging aims to make a static neutral facial mesh animatable by defining a set of controllable
deformations, typically represented either as blendshape rigs driven by activated action units in
FACS-based systems [49, 31, 32, 54, 8, 7, 50] or as skeletal rigs driven by joint positions [64, 27, 48].
This is an essential step for creative Al, bringing digital avatars to life by enabling expressive and
realistic facial movements across a wide range of applications. However, creating a rig for facial
animation is laborious and expensive, often requiring skilled artists tens of hours to complete a single
asset. In this paper, we propose a fully automated and generalizable facial rigging framework that
alleviates the reliance on manual labor while achieving high-quality facial rigging.

Typically, facial auto-rigging methods transfer a complete set of blendshapes from a predefined
template mesh to a neutral target facial mesh, often necessitating dense correspondences [47, 58, 33,

] or a fixed mesh topology between the template and the target [34, 6]. Recent approaches [65, 12]
utilize per-face VQ-VAEs [65] to build transferable latent spaces between faces or triangulation-
agnostic networks [12] to bypass these limitations. However, a template blendshape rig is still required,
which can compromise accuracy when the template and target shapes differ substantially. NFR [50]
is currently the only approach capable of directly rigging facial meshes from explicitly controllable
Facial Action Coding System (FACS) [49] parameters without relying on a template, although it has
so far been demonstrated primarily on humanoid heads. Furthermore, existing approaches, including
NFR, have yet to accommodate meshes with multiple disconnected components, such as eyeballs
or teeth, limiting their ability to animate highly expressive avatars; for example, an “eye lookdown”
pose is difficult to reproduce if the mesh lacks eyeballs.

To address the above challenges, we aim to build a facial auto-rigging framework with the following
advantages: (i) it eliminates the reliance on predefined template blendshapes, removing the constraint
that target facial meshes must rigorously resemble a predefined template; (ii) it is capable of animating
in-the-wild facial meshes with varying topologies and shapes, including humanoid and non-humanoid
samples as shown in Fig 1; and (iii) it supports facial meshes with multiple disconnected components
to enable realistic and expressive 3D face animations.

We present RigAnyFace (RAF), a scalable and generalizable framework for facial auto-rigging. RAF
employs a facial mesh deformation network built on DiffusionNet [55], a triangulation-agnostic
backbone for meshes of different topologies. Guided by explicitly controllable FACS parameters,
this network deforms a neutral facial mesh into a predefined set of FACS poses to form a blendshape
rig. Compared to the original DiffusionNet, we introduce two key modifications: (i) a conditional
diffusion block that extends the original diffusion block to incorporate FACS parameters as addi-
tional conditional inputs, and (ii) a global encoder designed to capture holistic mesh characteristics,
enabling effective handling of multiple disconnected components. For network training, we curated
a comprehensive dataset of facial meshes encompassing a wide variety of shapes with detailed
disconnected components such as eyeballs and teeth. A subset of these meshes was meticulously
rigged by professional artists to provide accurate ground-truth for 3D deformations.

Relying solely on rigged heads for training limits the model’s generalizability in practice, given the
scarcity of rigged samples due to the high cost of manual rigging. This motivates us to employ 2D
supervision, which offers better accessibility and broader scalability compared to 3D supervision. We
developed a 2D supervision strategy for 3D facial mesh deformation models, integrating appearance
guidance from RGB images for prominent facial expressions and motion guidance from optical
flow-like 2D displacement field for subtle micro-expressions. Supported by a generative 2D face
animation model that synthesizes posed images from the renderings of a neutral mesh, along with
an optical flow estimator that predicts the 2D displacement between neutral and posed images as
2D supervisions, we expand the training dataset using unlabeled neutral meshes without rigs. This
enables the network to effectively distill rigging knowledge across diverse facial shapes, resulting in
more accurate and generalizable 3D facial animations even with limited labeled training data.

Experiments show that our method outperforms prior work across assets from diverse sources, in-
cluding our artist-crafted meshes and in-the-wild models from ICT FaceKit [36], Objaverse [ 5], and
CGTrader [9]. In addition, we demonstrate several downstream applications of our auto-rigging sys-
tem in user-controlled animation, retargeting human expressions from videos, and rigging generated
facial meshes from a text-to-3D model.



2 Related Works

Auto-rigging. Auto-rigging facilitates efficient and realistic animation of 3D models by automatically
generating hierarchical control systems. For full-body character auto-rigging [3, 25, 28, 35, 40,

, 68, 23,57, 39,70, 18], most approaches follow a two-step pipeline: skeleton construction and
skinning to generate the Linear Blend Skinning (LBS) rig. In contrast, facial character rigs are
often anatomically-inspired, typically based on the Facial Action Coding System (FACS) [49], a
standardized framework that describes facial movements as combinations of muscle activations and
is primarily implemented using blendshapes [31, 32, 54, &].

Previous facial auto-rigging works [47, 58, 33, 11, 34, 6, 65, 12] are mostly based on a complete
set of blendshapes from a predefined template mesh, transferring the template blendshapes to the
target mesh. For example, Li et al.[34] proposed a CNN-based approach that predicts offsets between
template and target blendshapes represented by 2D geometry images. Chandran et al. [12] use
a transformer with positional encodings to map meshes into a canonical space from user-marked
correspondences, enabling deformation transfer from template to target across different topologies.
Several notable works [ 1, 10, 71, 5, 37, 52, 26] can directly generate animatable 3D faces based on
3D Morphable Models [4]. NFR [50] is able to deform a neutral facial mesh into target expressions by
decoding FACS-aligned latent codes from a mesh auto-encoder, eliminating any template requirement.
Its triangulation-agnostic backbone, trained on several face-animation datasets, generalizes to in-the-
wild meshes with diverse topologies. Compared with NFR and other previous works, our method
enables 2D supervision for scaled training and further improves accuracy and generalizability across
a wider variety of facial meshes while natively supporting multiple disconnected components to allow
finer-grained and more realistic expression animation.

Facial Animation Transfer from 2D. Facial animation transfer aims to retarget facial expressions
from one character to another. Recent methods (e.g., [51, 2, 13, 30, 29, 45]) show impressive results
in transferring expressions to 3D avatars from 2D images or videos. However, these methods focus
on transferring expressions to avatars that already have a rig and are hence not directly comparable to
our work, which focuses on automatically generating rigs for facial meshes.

Significant progress has also been made in transferring facial animation for both single-view and
multi-view images and videos [22, 69, 66, 67, 19,43, 63,38, 16, 17,62, 61]. Given a reference identity
image, these methods can generate and manipulate facial expressions for the given identity using
various control inputs, such as posed images of other identities or landmarks. Recent advancements
in generative models [24, 72] and the availability of large-scale face video datasets [46, 73] have
enabled those methods to achieve remarkable success in 2D facial expression animation. For
instance, MegActor[69] utilizes a diffusion-based generative framework, incorporating a motion
disentanglement module to separate identity and expression features, and a motion retargeting model
to map expressions onto target portraits. In this work, we utilize 2D face animation models to generate
2D supervision for unrigged heads. Our proposed framework is agnostic to the choice of 2D face
animation model, provided they deliver satisfactory animation results. In practice, we base our 2D
supervision generation on MegActor [69], which is open-source and efficient to fine-tune.

3 Preliminary

3.1 DiffusionNet

DiffusionNet [55], proposed by Sharp et al., is a neural network that learns on 3D surfaces by
mimicking the intrinsic heat diffusion process. It diffuses per-vertex features across the surface
based on the Laplace—Beltrami operator, which captures the intrinsic geometry of the manifold. The
resulting heat operator acts as a geometry-aware smoothing filter that blends nearby features over
time. In discrete form, DiffusionNet approximates this process using the cotangent Laplacian L and
mass matrix M, defined as

hi(uo) = (M + tL) ™' Muy, (1)

where h;(ug) represents the diffused features after time ¢, followed by a lightweight MLPs for
non-linearity. Because diffusion depends only on surface intrinsic geometry, the same learned
weights transfer across meshes with different resolutions or triangulation, making the model compact,
discretization-agnostic, and effective for tasks such as classification and regression on geometric data.



| |
| |
| |
| |
| |
| () |
| |
Textured Mosh wireirame
| (side view) (fontview) (side vew) Neutral Generated |
| (i) Neutral Facial Mesh Image Image |
I l !
| |
1 th 1
| Flow Estimation Model ~ <—1|
! Ri !
ight Eye Close Jaw Drop and Left
| Neual Right Eye Close - 3p Y ok Jaw Drop Chom Pt |
| (ii) FACS Blendshape Rig Annotation |
\ Diffusion-based !
2D Animation |
| Model
| |
| Neutral Image Generated 2D !
| (from Unrigged Head) Supervisions |
| Driving Image . !
| Driving |:| (from Rigged Head) [Leinsbisiode) Generated 2D |
Image J i
L _ — — — _ _ _ _ _li)nterpolation Augmentation_ _ _ _ _ _ _ _ _ |‘te—m—————— - - - - - - - - - - e/ — — — _ _ |
(a) Artist-crafted Facial Mesh Dataset (b) 2D Supervision Generation

Figure 2: (a) Illustration of our artist-crafted facial mesh dataset. (i) Neutral head meshes from our
dataset, each consisting of multiple disconnected components. (ii) A subset of neutral head meshes
is meticulously annotated with blendshape rigs by professional artists. (iii) To augment the dataset,
we develop a head interpolation strategy based on standardized UV layouts. (b) 2D Supervision
Generation Pipeline: Given a posed image rendered from a rigged head and a neutral image from an
unrigged head, the 2D animation model generates an image that replicates the expression in the posed
image while preserving the identity of the neutral image. A flow estimation model is then applied to
the neutral and generated posed images to predict the pixel offsets as 2D displacement.

3.2 Linear FACS Blendshape Rig

The linear FACS blendshape rig [31] models an animatable 3D face using a neutral mesh My =
(Vo, F'), where V}, represents the vertex positions and F' the mesh connectivity. It also defines a set
of N blendshapes {M; = (V;, )} ,, each obtained by adding a vertex offset d; to the neutral
mesh: V; = V;; + d;. Each blendshape corresponds to an Action Unit (AU) from the Facial Action
Coding System (FACS) [20], representing specific muscle movements such as “Right Eye Close.”
Complex facial expression animation, involving the activation of multiple action units, is achieved by
assigning a weight w; € [0, 1] to each blendshape and computing the final mesh M = (V| F), where

4 Method

4.1 Data Collection

We collect a diverse set of artist-crafted facial meshes for model training and evaluation. As shown
in Fig. 2 (a)(i), our dataset includes facial meshes with multiple disconnected components, such as
separate eyeballs and features a variety of shapes, including both humanoid and non-humanoid heads.

Each dataset sample contains a neutral base mesh M. For a select subset, artists manually annotated
each mesh with its own complete blendshape rig { M; = (V;, F)}Y, across N FACS training poses,
as described in Sec. 3.2 and illustrated in Fig. 2 (a)(ii). We set N = 96, comprising 48 FACS poses
and 48 corrective poses; further details are provided in the appendix. We also pair each blendshape
with a one-hot-like FACS vector A; as pose representation, where activated action entries are set to 1.
Furthermore, those heads were also annotated with facial landmarks specified as vertex indices. For
unlabeled heads, only a neutral head mesh My = (Vp, F') is included.

Creating head meshes with complex rigs for animation is an expensive process. In order to expand
our dataset sufficiently for training a deep neural network, we developed a data augmentation strategy
based on a standardized UV layout, enabling interpolate between different head geometries through
linear blending to increases the size of our dataset, as illustrated in Fig. 2 (a)(iii).
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Figure 3: Model Architecture. (a) Given a neutral facial mesh, our deformation model predicts the 3D
displacement needed to deform the mesh into different expressions based on the input FACS vector.
During training, 2D supervision is utilized for both rigged and unrigged heads, while 3D supervision
is exclusively applied to rigged heads. (b) We modify the original diffusion block in DiffusionNet to
support the FACS vector as an additional conditional inputs (left). Additionally, we design a global
encoder that processes vertex positions and normals of the neutral facial mesh to capture holistic
information across disconnected components (right).

4.2 Deformation network

4.2.1 Network Architecture

As shown in Fig. 3 (a), our deformation network takes the neutral facial mesh My = (Vp, F') and a
FACS pose vector A; as inputs and predicts the displacement d; required to deform the neutral mesh

into the corresponding posed mesh M; = (Vl, F), where V; = Vo + d,. The posed meshes obtained
for all FACS poses together form a linear FACS blendshape rig.

We build our deformation network upon DiffusionNet [55] to take advantage of its triangulation-
agonistic property. However, DiffusionNet struggles to handle multiple disconnected components
as its diffusion mechanism cannot propagate information between them. Furthermore, it is limited
to processing a single mesh without additional input. In our task, we aim to deform facial meshes
with multiple disconnected components conditioned on an additional input: the FACS vector. To this
end, we introduce two key modifications to the original DiffusionNet: (i) Global Encoder to capture
holistic mesh characteristics across multiple disconnected components. As shown in the right of
Fig. 3 (b), this branch consists of a smaller 2-layer DiffusionNet that processes the input neutral mesh.
Global average pooling is applied to the final layer’s per-vertex features, producing a single vector
encoding G that compresses information about the mesh into a global feature vector. (ii) FACS
Conditioning: We modify the original diffusion block in DiffusionNet to integrate a FACS pose
vector as a conditional input, guiding the network’s generation of facial expressions. This allows the
network to learn the relationship between FACS values and corresponding mesh deformations. As
shown on the left of Fig. 3 (b), the FACS pose vector A; is concatenated with the global feature vector
Gy to create a latent representation. This latent representation is then injected into each conditional
diffusion block of the main network. Within each block, the latent vector is replicated across the
vertex dimension and fused with the block’s output features. This fused information is then processed
by a small MLP to refine the mesh’s latent features.

4.2.2 2D Supervisions for 3D Deformation Model

Relying solely on fully rigged heads limits the training dataset size due to the scarcity of high-quality
3D ground truth, which hampers generalization to unseen facial meshes. In contrast, 2D supervision
is more readily available thanks to advancements in 2D generation models, enabling the inclusion
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Figure 4: Illustration of our 2D displacement supervision (d), which provides denser feedback for the
subtle pose differences between (a) and (b) than the appearance-level supervision (c). Subfigure (c)
visualizes per-pixel color-difference magnitudes between (a) and (b), whereas subfigure (d) shows
the corresponding pixel offsets using the standard optical-flow color map.

of unrigged heads to scale up the training dataset to enhance generalization. Thus, we introduce
2D supervision for the face auto-rigging network in terms of appearance and motion variation.
Specifically, for appearance, we use the front-view image and binary segmentation mask of the posed
head as supervision. We render the RGB image I; and binary mask B; of the predicted mesh M,
onto the 2D image plane using differentiable rendering [41, 53]. The image loss L;,4 and mask loss

Lask are defined as the [1 distances between fi with the ground-truth image I; and between Ei
with the ground truth mask B;, respectively.

Using appearance-level supervisions like image and mask losses, provides a straightforward way to
optimize the 3D deformation network using 2D supervision. These losses offer strong supervisory
signals for poses that result in significant changes in pixel’s color value. However, many target
FACS poses involve subtle expressions, where changes are less visually apparent. For instance, as
shown in Fig. 4, comparing the neutral image in Fig. 4 (a) with the jaw-left pose image in Fig. 4
(b), the differences are barely noticeable to the human eye. Similarly, as illustrated in Fig. 4 (c),
the pixel error map on RGB value between these two images highlights that only a small portion of
pixels contribute meaningful supervisory feedback for these subtle deformations. In other words, the
magnitude of the loss remains minimal—even if the deformation model leaves all vertices fixed in
the neutral expression.

To address this challenge, we introduce another 2D supervision for the 3D deformation model
based on pixel motions. Specifically, we define the 2D displacement d?? as the offset of each
pixel on the image plane between the neutral and posed images, analogous to optical flow. This
2D displacement is computed from the 3D displacement d; in a fully differentiable manner with
differentiable rendering [4 1, 53] (see appendix for implementation). As shown in Fig. 4 (d), the 2D
displacement is more distinguishable for subtle facial expressions because it explicitly represents the
motion of each pixel in 2D, rather than relying on RGB value changes. This is particularly beneficial
in areas with uniform texture, such as cheek, where RGB value changes may be unnoticeable. We
define the 2D displacement loss L 4;s—24 as the [2 distance between the ground truth 2D displacement

d?? and predicted 2D displacement d?<.

4.2.3 2D Supervision Generation

For all rigged heads, we can obtain the above 2D supervisions by rendering from 3D ground truth.
However, for unrigged heads, this is not feasible due to the absence of complete 3D ground truth
deformations. To this end, we leverage recent advancements in 2D generation models to generate 2D
supervision for unrigged heads. These models effectively distill appearance and motion priors from
large-scale 2D image and video datasets, generalizing well across diverse scenarios.

We implement a 2D face animation diffusion model based on Megactor [69]. As illustrated in Fig.2
(b), this model takes a neutral reference image rendered from an unrigged head and a driving posed
image rendered from a rigged head, animating the neutral image to replicate the expression in the
posed image while preserving its identity. The generated images serve as image-based ground truth
for unrigged heads during the training of the 3D deformation model. In practice, we select one rigged
head, render all its FACS poses images, and use them as driving images to generate corresponding
posed images for all unrigged heads. Ground truth masks are obtained using a traditional image
segmentation model[59], as all generated images are with a clean white background.



For the 2D displacement, we use the optical flow estimation model RAFT [60] to predict pixel offsets
between the neutral image and the generated posed image of unrigged heads. These offsets serve as
the ground truth 2D displacement for training the 3D deformation model.

To enhance the performance of the 2D face animation and flow estimation models on stylized faces
in our artist-crafted dataset, we fine-tune their pre-trained weights using the ground truth renderings
from a small set of rigged heads, improving effectiveness.

4.2.4 Network Training and Inference

We train the network in a two-stage, coarse-to-fine manner. In the first stage, the 3D deformation
network is trained on a large-scale dataset comprising both rigged and unrigged heads, using only 2D
supervision. We use a combination of photometric loss and 2D displacement loss, along with a [y
regularization loss, L,..4 on the predicted 3D displacement. This regularization loss helps to improve
model convergence speed and prevent “flying points" for non-line-of-sight vertices. The total training
loss for the first stage is defined as:

Esl = Oélﬁimg + Oé2£mask + a3£dis—2da +Ol4£reg (2)
where « are weighting parameters for different loss terms.

In the second stage, we fine-tune the pretrained model from the first stage using only rigged heads,
incorporating both 2D and 3D supervision to achieve high-precision deformation predictions. Since
the 3D ground truth deformed mesh M; = (V;, F’) for FACS pose i is available for rigged heads, we
incorporate 3D supervision by applying the MSE loss £,,,sc—34 in 3D space between the ground truth
and predicted mesh vertices V; and VZ

For 2D supervision, in addition to the image loss and mask loss, we added two loss terms, landmark
loss L and eye close loss L., as in [21] to provide supervision for specific facial landmarks and

poses. We omit the 2D displacement loss in this stage since the 3D displacement ground truth is
available. The total training loss for the second stage is defined as:

Lgo = alﬁimg + a2Llmask + a3Llmse—3d + alimp + a5 Lec. 3

The proposed model only consists of 5.4M parameters. Training runs on an instance with 8§ NVIDIA
A100 GPUs and takes about 2 days. For inference, it takes on average 8.72s on an Apple M2 Max
CPU and 3.1s on an Nvidia T4 GPU to generate a FACS blendshape rig on the test set.

5 Experiments

In this section, we evaluate RAF on both the artist-crafted and in-the-wild facial meshes and compare
it with the prior art NFR [50] and a representative deformation-transfer method [58].

5.1 Evaluation on Artist-crafted Data

Table 1: Quantitative results on our artist-crafted  Table 2: Quantitative comparison with NFR and
dataset, validating each component of the model. = Deformation Transfer on 12 artist-annotated hu-
Clobalencoder | Ly Cong Eae-ss | Risged Uninged | MAE L MAE Q95 | manoid heads. (* additional inputs needed)

; ; ; 2 ; 2 ié?; 2§ | MAE (mm) | | MAE Q95 (mm) |

Y /A A 7o Deformation Transfer [58]* | 2.93 | 8.41
NFR [50] ‘ 2.77 ‘ 7.21
Ours 1.01 2.94

We evaluate our model both quantitatively and qualitatively on our artist-crafted dataset. The evalua-
tion includes two test sets: one with rigged heads for detailed accuracy analysis, and another with
unrigged heads featuring diverse species and shapes to assess generalization on out-of-distribution
samples, simulating real-world applications.

For rigged heads with 3D ground-truth deformations, we compute the Mean Absolute vertex Error
(MAE) and the 95th-percentile vertex error (MAE Q95) to capture challenging cases; both metrics
are evaluated over the full set of 96 FACS poses. During evaluation, all facial meshes are normalized
to fit within a unit sphere with a radius of 1 meter. Quantitative results are presented in Tab. 1, while
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Figure 5: Visual comparisons. Meshes are colored by per-vertex absolute error. (a) Ablation on
Framework Components. 1st Col.: without the global encoder, disconnected parts intersect; 2nd
Col.: 2D image loss reduces errors; 3rd Col.: additional unrigged heads improve generalization,
addressing challenging cases such as animal eye closure; 4th Col.: 2D-displacement loss further
refines subtle poses such as “Jaw Left.” (b) Comparison with Baseline Methods. Our method
achieves more accurate and expressive animation results while handling multiple disconnected
components. Reference mesh and corresponding points (marked as blue) are provided for Deformation
Transfer.

qualitative results are shown in Fig. 5(a). Together, these results validate the effectiveness of each
component in our model.

We also conduct additional ablations on the global encoder to demonstrate how a single feature vector
from it enables our model to handle multiple disconnected components. We evaluate penetration
between inner components (e.g., teeth) and the outer face surface by reporting the percentage of
penetrating vertices with and without the global feature (Tab. 3). Furthermore, we perturb the
disconnected components by randomly adding offsets or removing varying numbers of components
from each sample. As shown in Fig. 6, the t-SNE visualization of global features from the perturbed
samples forms separate clusters from the original ones. These results demonstrate that the global
feature effectively encodes both the position and presence of disconnected components, avoiding
penetration and achieving accurate deformation.

Table 3: Ablation on the global encoder.

T-SNE Compon

Global Encoder  All Other Components MAE | MAE Q95| Penetration |

x x 2.14 6.64 0.377 N Ho 20
x v 2.16 6.08 0.405 5 969 o . .
v x 2.08 5.84 0.166 - s '
v v 1.92 5.63 0.173

T-SNE Component 1

Figure 6: t-SNE visualization of features from
the global encoder.

To ensure a fair comparison with NFR [50], each input mesh was preprocessed following the same
procedure as in their original implementation, to retain only the largest connected component of the
neutral mesh with auxiliary structures (e.g., eyeballs and the mouth socket) removed and the inner
surfaces of the lips and eyelids trimmed. Since NFR is trained and evaluated only on humanoid faces,
we limit the test cases to 12 humanoid heads. Another method that we compare to is the Deformation
Transfer [58], which requires an exemplar expression mesh and user-annotated point correspondences
as additional input. We choose one rigged head from the training set as the exemplar, deform it
into all FACS poses, and provide artist-annotated landmarks as correspondence points. As reported
in Tab. 2 and Fig. 5(b), our method outperforms both baselines by a wide margin. It also has the
additional advantage of not requiring any additional input and being able to handle meshes with
multiple disconnected components.
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Figure 7: Auto-rigging results on in-the-wild facial meshes compared with NFR [50].

For the unrigged head test set, we provide qualitative results only, as 3D ground truth data is
unavailable. Fig. 8 showcases qualitative examples, where our model delivers highly accurate and
vivid auto-rigging results across facial meshes of various shapes and styles. Additional results for all
FACS poses and more samples can be found in the supplementary materials.

Neutral Jaw Drop Chin Lip Raise  Mouth Funnel Left Eye Close Left Cheek Raise Eye Look Down Eye Look Left

Figure 8: Qualitative results on our

Y

ist-crafted unrigged heads.

5.2 Evaluation on In-the-wild Heads

Our method generalizes effectively to in-the-wild facial meshes with diverse topology and shape
variations. To demonstrate this, we present qualitative results on samples from ICT FaceKit [36],
Objaverse [15, 14], and CGTrader [9], and compare that with the results by NFR [50]. We do not
provide a comparison with Deformation Transfer here, as correspondence point annotations are
not available for these samples. We similarly preprocess the input meshes for the comparison with
NFR. As shown in Fig. 7, our model consistently achieves better accuracy and generalizability. In
particular, although NFR was trained on the ICTFaceKit dataset and ours was not, our results are
comparable to those of NFR. For humanoid assets from Objaverse and CGTrader, neither our method
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Figure 9: Failure cases of our RAF model.

nor NFR was trained on data from these sources, our model demonstrates superior performance.
For the non-humanoid head (last column), NFR leaves it largely undeformed, whereas our model
successfully generalizes to this challenging case.

5.3 Applications

We demonstrate three real-world applications of RAF: (i) user-controlled animation, where the
predicted FACS rig allows users to pose a mesh by editing FACS parameters; (ii) video-to-mesh
retargeting, which transfers expressions of a subject in the video via tracked FACS sequences to an
unrigged mesh; (iii) animating a facial mesh generated from a text-to-3D model, turning it from a
neutral facial mesh into a fully animatable avatar. Demos can be found on our project page.

6 Conclusion

We propose RAF, a framework for auto-rigging facial meshes. Powered by our tailored design for
multiple disconnected components and FACS conditioning and scaled by training on unrigged heads
with 2D supervision, RAF can animate meshes of diverse topologies with even multiple disconnected
components, across both artist-crafted assets and in-the-wild samples.

Limitations and Future Work. Our model faces challenges in two scenarios: (i) When the input
mesh structure deviates significantly from the training data, such as shell-like meshes that lack the
fine-grained geometric details necessary for high-quality facial animation, the model’s performance
may decline (Fig.9 (a)). Expanding the dataset to include a broader range of mesh structures could
enhance generalization in such cases. (ii) When the mesh has poor discretization that causes the
main facial mesh to break into multiple disconnected components (shown in different colors), our
model fails to maintain spatial coherence among these components after deformation (Fig.9 (b)).
Incorporating a diffusion operator defined on a high-quality background triangulation [56] could
enhance robustness in such cases.
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contributions and scope?
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Justification: We outline the scope, key contributions, and experimental results of this work in the
abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

¢ The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in the paper.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
¢ The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA] .
Justification: This paper does not include theoretical results.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We clearly detail the algorithm and implementation.
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¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:

Justification: Upon acceptance, we will release our inference code and model weights so that reported
evaluation results can be reproduced. We are also working to make the full dataset and training code
publicly available, pending internal approval and legal clearance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details
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how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provide enough details for understanding the results in the main paper and appendix.
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¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:
Justification: Not applicable for this task.
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* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
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¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Yes, we include this in the paper and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss societal impact in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We cite the code and datasets used and comply with their licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA] .
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA] .

Justification: This research does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Appendix

A Training and Inference Details

In the first stage of training, the weights for the image loss, mask loss, 2D displacement loss, and regularization
loss are set to 10.0, 1.0, 1.0, and 0.0001, respectively. In the second stage, the weights for the image loss,
mask loss, 3D MSE loss, 2D landmark loss, and 2D eye closure loss are set to 10.0, 1.0, 100.0, 0.5, and 0.5,
respectively. We train our model on an Nvidia A100 instance with 8 GPUs and a total batch size of 8 (i.e.,
effectively 1 sample per GPU if using distributed data parallel). The training proceeds in two stages. For the
first stage, we train the deformation model on both rigged and unrigged head datasets (8,386 samples in total)
using only 2D supervision for 15 epochs. This stage typically takes around 1.5 days to complete. For the second
stage, we then finetune the model from the first stage on the rigged head dataset (2,929 samples), incorporating
both 2D and 3D supervision for 20 epochs. This finetuning phase finishes in approximately 1 day. Throughout
both stages, we use the Adam optimizer, initializing the learning rate at 0.0001. For learning rate scheduling,
we employ CosineAnnealingWarmRestarts, allowing it to decay from 0.0001 to nearly O by the end of training.
Additionally, we use a warm-up phase of 20,000 steps to stabilize early training.

For inference speed, our model runs a single forward pass to predict blendshapes offline, requiring only one run
per input mesh. The outputs are converted into classical FACS blendshape rigs, enabling efficient animation by
simply linear blending. The proposed model consists of 5.4M parameters and it takes on average 8.72s on an
Apple M2 Max CPU and 3.1s on a Nvidia T4 GPU to generate a FACS blendshape rig on the test set (1,750
vertices, 3,362 faces on average).

B Details for 2D Displacement Calculation

In the following code sample, we demonstrate how to compute the 2D displacement of each pixel from mesh
vertex deformations in a fully differentiable manner. This implementation leverages PyTorch3D’s differentiable
rendering functionality.

def render_displacement(vertices, deformed_vertices, faces, renderer, camera, res
=(512,512)):

Parameters

vertices: torch.tensor (V, 3)

deformed_vertices: torch.tensor (V, 3)

faces: torch.tensor (F, 3)

renderer: pytorch3d.renderer.MeshRenderer object
camera: pytorch3d.renderer.cameras.CamerasBase object
res: tuple

Returns

displacement_2D: torch.tensor (res[0], res[1], 2)

verts_2d = camera.transform_points_screen(vertices, image_size=res)

verts_2d_deformed = camera.transform_points_screen(deformed_vertices, image_size
=res)

verts_flow = (verts_2d_deformed - verts_2d)[:, :2] # Vx2

verts_flow = verts_flow / res * 0.5 + 0.5 # 071

flow_tex = torch.nn.functional.pad(verts_flow, pad=[0, 1]) # Vx3

texture = TexturesVertex(verts_features=[flow_tex])

meshes = pytorch3d.structures.Meshes(
verts=[vertices], faces=[faces], textures=texture

)

displacement_2D = renderer (meshes, cameras=camera)

return displacement_2D[...,:2].squeeze()
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Figure 10: Example results of 2D generation pipeline.

C Effectiveness of 2D Generation Pipeline

To validate the effectiveness of our 2D supervision generation pipeline, we exclude several rigged heads during
the fine-tuning of the 2D face animation model and the flow estimation model. In Fig. 10, we present random
sample results showcasing different faces and poses. The ground truth images and 2D displacements are rendered
using the ground truth deformations of the rigged heads. The 2D face animation model generates pose images
based on the neutral image input, while the flow estimation model takes the neutral and generated images as
input to predict the 2D displacement. The 2D displacement is visualized according to the standard optical flow
convention.

D Data Collection Details

FACS Poses For each rigged heads, our artist annotated 48 FACS poses and 48 corrective poses as blendshape
rig. We show those 48 FACS poses in Tab. 4, and Fig 11. In addition to blendshapes for individual FACS poses,
we generate corrective blendshapes by linearly combining certain poses and manually correcting artifacts. These
corrective blendshapes account for the complex deformations resulting from pose interactions.

Semantic Annotation We provide a semantic annotation map for rigged heads, labeling different regions on
the mesh (e.g., ears, mouth, eyes), along with facial landmark annotations specified as vertex indices. These
annotations allow for the application of weighted losses or region-specific training objectives.

Head Interpolation First, we standardized the UV layout across all head meshes, ensuring that corresponding
facial features like eyes and mouths occupy the same region in UV space. This consistent mapping enables the
identification of 3D correspondences between vertices on different meshes. Using these correspondences, we
can smoothly interpolate between different head geometries through linear blending to significantly increases
the size of our dataset.
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# | SHORT | FULL # | SHORT | FULL

1 | neutral neutral 25 | LEC LeftEyeClosed

2 | ¢c_COR | Corrugator 26 | 1_EULR | LeftEyeUpperLidRaiser
3 | c_CR ChinRaiser 27 | 1_IBR LeftInnerBrowRaiser

4 | c_CRUL | ChinRaiserUpperLip | 28 | I_LCD LeftLipCornerDown

5 | c. ELD EyesLookDown 29 | 1L LCP LeftLipCornerPuller

6 | c_ELL EyesLookLeft 30 | LLLD LeftLowerLipDepressor
7 | c_ELR EyesLookRight 31 | ILLS LeftLipStretcher

8 | c_ELU EyesLookUp 32 | LNW LeftNoseWrinkler

9 | c_FN Funneler 33 | _OBR LeftOuterBrowRaiser
10 | c_FP FlatPucker 34 | 1_ULR LeftUpperLipRaiser

11 | ¢_JD JawDrop 35 | r_BL RightBrowLowerer

12 | c_JL JawLeft 36 | r_CHP RightCheekPuff

13 | c_JR JawRight 37 | r_CHR | RightCheekRaiser

14 | ¢c_LLS LowerLipSuck 38 | . DM RightDimpler

15 | c_LP LipPresser 39 | r_EC RightEyeClosed

16 | c_LPT LipsTogether 40 | r_EULR | RightEyeUpperLidRaiser
17 | ¢c. ML MouthLeft 41 | r_IBR RightInnerBrowRaiser
18 | c_.MR MouthRight 42 | r_LCD RightLipCornerDown
19 | c_PK Pucker 43 | r LCP RightLipCornerPuller
20 | c_ULS UpperLipSuck 44 | r_LLD RightLowerLipDepressor
21 | LBL LeftBrowLowerer 45 | r_LS RightLipStretcher

22 | 1. CHP LeftCheekPuff 46 | r NW RightNoseWrinkler

23 | _CHR LeftCheekRaiser 47 | r_OBR | RightOuterBrowRaiser
24 | . DM LeftDimpler 48 | r_ULR RightUpperLipRaiser

Table 4: FACS Short and Full Name Mapping.

E Dataset Split

Our dataset includes 161 rigged heads and 175 unrigged heads. From these, a subset of 24 rigged heads with
3D ground-truth annotations forms the test set to for accurate absolute error evaluation. Additionally, we select
37 diverse unrigged heads as the test set, representing different species and shapes to evaluate the model’s
generalization on out-of-distribution (OOD) faces. For training, we augment the dataset using interpolations,
manually filtering out poor interpolation results. Specifically, we interpolate the remaining 137 unrigged heads
with a factor of 50, generating 5,457 samples, and interpolate the remaining 137 rigged heads with a factor of 25,
producing 2,929 samples.

F Pre-processing for Baseline Method NFR

All NFR baseline results were obtained after applying the official preprocessing pipeline’: we keep only the
largest connected component and remove the inner-lip and eyelid surfaces. These steps are crucial for NFR to
generate reasonable deformations. Figure 12 shows that retaining multiple disconnected components causes
self-penetration, while Fig 13 shows jarring artifacts when the inner-lip surfaces are not trimmed. In contrast,
our method do not need such preprocessing.

*https://github.com/dafei-qin/NFR_pytorch
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Figure 11: A sample of all the FACS and corrective poses used in this work.

Input Neutral Mesh

Ours

Figure 12: Compared to NFR during inference on meshes with multiple disconnected components
from ICT Facekit Dataset. We highlight one of these components: "gums and tongue" in red. While
animating a Jaw Drop pose, this component causes penetration issues for NFR.



w/o Preprocessing

with Preprocessing

Inside Mesh Deformation Result

Figure 13: Illustration of the trimming preprocessing step for NFR. The inner-lip surfaces to be
trimmed are highlighted in red in the top-left figure. Omitting this step results in implausible
deformations produced by NFR.

G Border Impact

Our face-autorigging framework could broaden access to high-quality animation by letting small studios,
educators, and assistive-tech developers create expressive avatars quickly, which benefits entertainment, remote
communication, and certain medical visualization tasks. However, the same ease of use can lower the barrier for
deepfake production, intensifying privacy concerns around emotion tracking and biometric profiling. Careful
dataset curation, explicit usage licenses, and watermarking tools are essential to realize the creative upside while
limiting misuse and inequitable impacts.
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