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TIMESEG: AN INFORMATION-THEORETIC SEGMENT-
WISE EXPLAINER FOR TIME-SERIES PREDICTIONS

ABSTRACT

Explaining predictions of black-box time-series models remains a challenging
problem due to the dynamically evolving patterns within individual sequences
and their complex temporal dependencies. Unfortunately, existing explanation
methods largely focus on point-wise explanations, which fail to capture broader
temporal context, while methods that attempt to highlight interpretable temporal
patterns (e.g., achieved by incorporating a regularizer or fixed-length patches) of-
ten lack principled definitions of meaningful segments. This limitation frequently
leads to fragmented and confusing explanations for end users. As such, the notion
of segment-wise explanations has remained underexplored, with little consensus
on what constitutes an interpretable segment or how such segments should be
identified. To bridge this gap, we define segment-wise explanation for black-box
time-series models as the task of selecting contiguous subsequences that maxi-
mize their joint mutual information with the target prediction. Building on this
formulation, we propose TimeSeg, a novel information-theoretic framework that
employs reinforcement learning to sequentially identify predictive temporal seg-
ments at a per-instance level. By doing so, TimeSeg produces segment-wise ex-
planations that capture holistic temporal patterns rather than fragmented points,
providing class-predictive patterns in a human-interpretable manner. Extensive
experiments on both synthetic and real-world datasets demonstrate that TimeSeg
produces more coherent and human-understandable explanations, while achiev-
ing performance that matches or surpasses existing methods on downstream tasks
using the identified segments. Codes are available here.

1 INTRODUCTION

Explaining time-series models is particularly challenging due to their contiguous, interconnected
structure and complex temporal dynamics. These challenges hinder the adoption of time-series
models in high-stakes domains, such as healthcare, finance, and manufacturing, where decisions
must remain interpretable while operating under strict black-box constraints that prohibit access to
model internals (Lipton, 2018; Doshi-Velez & Kim, 2017). In light of this, effective explanations for
time series must meet two key criteria simultaneously: (i) accurately identifying specific regions of
the time series that drive model predictions and (ii) presenting these regions as human-interpretable
temporal segments (Küsters et al., 2020; Queen et al., 2023).

Early efforts to explain time-series models adapted general-purpose explanation techniques (Sun-
dararajan et al., 2017; Lundberg & Lee, 2017; Ribeiro et al., 2016), which treat each time point
independently. These point-wise methods fail to capture the temporal dependencies critical for inter-
preting time-series predictions (Ismail et al., 2020; Leung et al.). To address this, subsequent works
have introduced temporal contiguous constraints to encourage contiguous patterns in point-wise ex-
planations (Crabbé & Van Der Schaar, 2021; Liu et al., 2024) or employed patch-wise explanations
that explicitly model temporal segments using fixed-length patches (Sivill & Flach, 2022). How-
ever, these approaches face trade-offs: point-wise methods excel at precise localization but struggle
to produce contiguous temporal patterns, while patch-wise methods enhance interpretability through
segment-wise explanations at the cost of reduced localization accuracy due to fixed patch sizes.

To bridge this gap, we propose TimeSeg, a post-hoc segment-wise explainer for time series that
operates under strict black-box assumptions and dynamically selects a set of contiguous, variable-
length segments within an individual sequence. TimeSeg formulates segment selection as a sequen-
tial decision problem, maximizing the variational lower bound of the joint mutual information (MI)
between the model’s prediction and the selected segments, while incorporating a sparsity penalty to
encourage compact, non-overlapping segments that enhance human interpretability. As illustrated
in Figure 1, our approach departs from existing approaches that fall short in different ways: point-
wise methods (e.g., WinIT (Leung et al.), TimeX++ (Liu et al., 2024)) produce saliency regions
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LIMESegmentWinIT TimeX++ TimeSeg (Ours) Ground Truth 

Figure 1: A Comparison of Generated Explanations for the MIT-ECG Dataset. TimeSeg produces com-
pact, variable-length segment-wise explanations that align well with ground truth, while prior point-wise or
patch-wise explanations are fragmented and misaligned.

that are fragmented by temporal gaps, making them difficult to interpret as coherent temporal pat-
terns, whereas patch-wise methods (e.g., LIMESegment (Sivill & Flach, 2022)) enforce contiguous
saliency regions but lack precise and variable-length localization. In contrast, TimeSeg identifies
compact segments whose boundaries closely align with the ground-truth explanatory region, pro-
viding segment-wise explanations that are both temporally coherent and precisely localized.

Our key contributions are summarized as follows:

• We formally define segment-wise explanation for time series as an information-theoretic opti-
mization problem that seeks to maximize the MI between the selected segments and the black-
box model’s predictions while keeping the explanation structurally simple (i.e., concise and
non-redundant). To make this problem tractable, we reformulate the joint MI maximization into
a sequential process by decomposing it into conditional MI (CMI) terms via the chain rule.

• We cast the sequential decision process of maximizing the CMI terms as a reinforcement learn-
ing (RL) problem. In this framework, the explainer acts as an agent that interacts with the
black-box model, learning a policy for segment selection that maximizes the expected cumula-
tive reward based on the CMI terms.

• We address a strict black-box setting – a more practical scenario where access is restricted to
only the model’s inputs and outputs – and demonstrate that our method achieves performance
comparable or superior to state-of-the-art explainers that require internal access (e.g., gradients
or embeddings) across a variety of synthetic and real-world datasets.

2 RELATED WORK

Initial efforts in explaining time-series models largely focused on adapting general-purpose explana-
tion methods – such as gradient-based methods (Sundararajan et al., 2017; Shrikumar et al., 2017),
perturbation-based methods (Lundberg & Lee, 2017), and surrogate models (Ribeiro et al., 2016)
– to time-series data. However, these methods often treat features at individual time points as in-
dependent, failing to capture the temporal dependencies that are crucial for interpreting time-series
predictions (Ismail et al., 2020; Leung et al.).

Point-wise Explanation. To address these limitations, point-wise attribution methods explicitly
model temporal relationships when assigning importance to individual time points. Specifically,
Dynamask (Crabbé & Van Der Schaar, 2021) proposes a memoryless optimization approach for
learning dynamic saliency masks. It models the selection of each time point as an independent
Bernoulli random variable to relax the combinatorial search problem, and incorporates regulariza-
tion to encourage the resulting mask to promote temporal smoothness and sparsity. Building on this
idea, ExtrMask (Enguehard, 2023) jointly learns both the mask and the perturbation process to better
capture temporal dependencies in model predictions. Similarly, FIT (Tonekaboni et al., 2020) esti-
mates point-wise importance by measuring shifts in the predictive distribution via KL-divergence,
while WinIT (Leung et al.) aggregates these shifts over predefined windows to capture local tempo-
ral patterns. More recently, TimeX (Queen et al., 2023) and TimeX++ (Liu et al., 2024) employ an
amortized surrogate explainer to produce point-wise explanations, leveraging a model-behavior con-
sistency objective and straight-through estimators (STE) (Jang et al., 2017) to enable backpropaga-
tion through discrete sampling of independent Bernoulli masks. Despite these advances, point-wise
methods remain fundamentally constrained by their design: even with regularization to encourage
contiguity, they often yield fragmented explanations that highlight isolated time points rather than
the coherent temporal segments essential for better intuitive interpretability.
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Segment-wise Explanation. Some methods have attempted to generate segment-wise explanations.
LIMESegment (Sivill & Flach, 2022) adapts LIME (Ribeiro et al., 2016) to a temporal setting by par-
titioning time series into fixed-size, non-adaptive patches. More recently, SpectralX (Chung et al.,
2024) provides frequency-aware explanations by applying perturbations in the frequency domain
before converting back to the time domain. However, a fundamental limitation of these approaches
is their inability to identify variable-length segments that adapt to the unique temporal dynamics of
each time series sample, often leading to misaligned or fragmented explanations (see Figure 1).

In contrast, we introduce a novel framework for selecting important temporal segments rather than
independent time points. While the success of continuous relaxation in point-wise methods might
suggest a natural extension to segments, this adaptation is far from straightforward. Point-wise meth-
ods remain tractable because they model each time point as an independent binary variable, but this
assumption breaks down for segments, where consecutive time points must be considered jointly.
Defining a tractable probability distribution over all possible segments is inherently challenging, as
consecutive time points exhibit strong dependencies, and the selection of multiple segments intro-
duces complex combinatorial interdependencies. To overcome these obstacles, we formally define
what constitutes a meaningful time-series segment and propose an RL–based framework that se-
quentially selects segments on a per-instance basis.

3 PROBLEM FORMULATION

In this section, we begin by formally defining segment-wise explanations for a black-box time-series
classifier, followed by a discussion of the key challenges in deriving such explanations.

Notation. We consider a pre-trained, black-box time-series classifier, gθ : RT→ RC , which takes a
univariate time series x = (x1, . . . , xT ) ∈ RT and outputs predictions for the target label y ∈ [C]
with C classes. Here, gθ is a strict black-box such that we can evaluate the model output gθ(x)
for any given instance x, but we do not have any knowledge of the internal model states, such
as parameters (θ), hidden representations, and gradients. Throughout the paper, we use uppercase
letters for random variables and lowercase letters for their realizations. For instance, a time series
x and its label y are realizations of the random variables X= (X1, . . . , XT ) and Y , respectively.
While our primary focus is on explaining black-box predictions, our method can be readily applied
for data-centric analysis using the ground-truth label as the explanation target, thereby uncovering
the inherent temporal patterns most predictive of the true label.

Time-series Segments. Unlike point-wise explanations that assign importance scores to individual
time points (i.e., xt), our objective is to find segment-wise explanations. More specifically, we aim
to identify a set of contiguous subsequences xt1:t2

def
= (xt1 , . . . , xt2) with 1≤ t1 ≤ t2 ≤ T , that are

collectively most predictive of the target. To formally denote this, we introduce a segment-index
variable s= (ts, te), where ts, te ∈ [T ] with ts ≤ te denote the start and end time points, respec-
tively. The random variable for the corresponding segment is then defined as Xs = Xts:te , with its
realization denoted by xs = xts:te . Since explanations often rely on multiple informative regions
within a time series, we further extend this notation to an arbitrary number of non-overlapping K
segments. Specifically, let s1:K=(s1, . . . , sK) be an ordered collection of segment-index variables.
Then, the corresponding collection of segments can be represented as Xs1:K =(Xs1 , . . . ,XsK ). We
note that the number of segments can vary depending on the input time series.

Segment-wise Explainer. For a given instance X, a segment-wise explanation of the black-box
model is defined as the subset of segment-index variables that jointly capture the most predictive
information about the target black-box outcome gθ(X). To achieve this, we introduce a segment-
wise explainer, E , which maps an input time series to a set of segment-index variables representing
candidate combinations ofK non-overlapping segments. An optimal segment-wise explainer is then
obtained by solving the following optimization problem:
Definition 3.1 (Optimal Segment-wise Explainer). Given X, the optimal segment-wise explainer
for gθ(X), is defined as the solution to:

E∗ = argmax
E

I
(
gθ(X);Xs1:K

)
− λJ

(
s1:K

)
subject to s1:K ∼ E(X), (1)

where I
(
gθ(X);Xs1:K

)
denotes the mutual information (MI) that measures the predictive power of

the selected segments Xs1:K with respect to gθ(X), and J(·) regularizes the segmentation complex-
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Figure 2: Overview of TimeSeg. Given an input time series x, our policy πϕ sequentially samples variable-
length segments. At each step k, TimeSeg masks x to obtain xs1:k and computes the reward Rk as the cross-
entropy gap. The procedure terminates when the marginal gain falls below a threshold (or Kmax is reached).

ity (e.g., each segment length). The coefficient λ ∈ R+ controls the trade-off between informativity
and simplicity of the generated explanations.

The resulting optimal indices s∗1:K = E∗(x) provide an intuitive explanation by highlighting a sparse
set of the most salient temporal patterns in x that the black-box model relies on for predicting gθ(x).

3.1 CHALLENGES OF OBTAINING SEGMENT-WISE EXPLANATIONS IN TIME SERIES

Solving Eq. (1) would provide an ideal explanation, consisting of a minimal set of segments that
is maximally informative about the target outcome. However, directly optimizing this objective is
intractable due to two fundamental challenges: First, accurately estimating the joint mutual infor-
mation between arbitrary collections of time-series segments and the target outcome is infeasible.
Second, identifying the optimal segment-wise explainer requires solving a combinatorial problem
over all possible discrete mappings, making an exhaustive search computationally prohibitive.1

To jointly address these challenges, we first adopt an amortized approach in which segment-index
variables are treated as random variables sampled from a distribution parameterized by the explainer
for each input time series. This stochastic formulation bypasses the need for direct combinatorial op-
timization over discrete mappings. We then reformulate the objective by decomposing the joint MI in
Eq. (1) into conditional MI (CMI) via the chain rule, and estimate each CMI term as a cross-entropy
difference using a variational approximation based on the stochastic explainer. This transformation
converts the all-at-once selection of segments into a “sequential decision process”. The resulting
formulation is not only computationally feasible – replacing exponential search with a tractable pro-
cedure – but also enables modeling segments as coherent explanatory units that generalize across
different time-series instances. The details of our method are presented in the following section.

4 METHOD: TIMESEG

In this section, we propose a novel information-theoretic segment-wise explainer, which we refer to
as TimeSeg. We present the key components of our method in the following order: (Sec. 4.1) re-
formulating the intractable joint MI optimization as a sequential decision process and casting it
within a reinforcement learning (RL) framework, (Sec. 4.2) designing a two-step sampling process
that factorizes segment selection into conditional distributions to ensure valid segment generation,
(Sec. 4.3) handling the policy gradient optimization with PPO and adaptively determining the opti-
mal number of segments for each instance, and (Sec. 4.4) describing how TimeSeg produces segment
explanations end-to-end, from pre-trained black-box predictions to final segment selection.

4.1 REFORMULATING SEGMENT SELECTION AS A SEQUENTIAL PROCESS

To address the computational intractability of finding all segments simultaneously, we reformulate
the joint MI in Eq. (1) as a sequential decision process that identifies important segments iteratively.

1Since selecting K segments yields
(
T+1
2K

)
segment candidate sets, summing over all feasible K gives∑⌊(T+1)/2⌋

K=1

(
T+1
2K

)
=2T −1, which grows exponentially with T (i.e., O(2T ); see details in Appendix A.3.
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Using the chain rule, we decompose the joint MI into a sum of CMI terms as follows:

I
(
gθ(X);Xs1:K

)
=

K∑
k=1

I
(
gθ(X);Xsk | Xs1:k−1

)
, (2)

where the CMI term, I
(
gθ(X);Xsk | Xs1:k−1

)
, measures the information gain about the model’s

prediction gθ(X) from observing the k-th segment Xsk , conditioned on the set of previously identi-
fied segments Xs1:k−1

.

Since the CMI terms in Eq. (2) are intractable to compute directly, we instead maximize a vari-
ational approximation derived from the information bottleneck principle (Alemi et al., 2016); see
Appendix A.1 for details. The k-th conditional mutual information term is given by:

Iθ,ϕ
(
Y ;Xsk | Xs1:k−1

)
= ExEs1:k∼πϕ(·|x)Epθ(y|x)

[
log pθ

(
y | xs1:k

)
− log pθ

(
y | xs1:k−1

)]
. (3)

Here, pθ(y | xs1:k) denotes the predictive distribution for class y obtained by the black-box model
when its input is restricted to the segments indexed by s1:k, i.e., gθ(xs1:k). The explainer, E , is im-
plemented as a stochastic policy (parameterized by ϕ), πϕ, which sequentially generates segment in-
dices s1:K . At each step k, the policy outputs a distribution over the next segment index, conditioned
on input x and previously selected indices s1:k−1, from which sk is sampled: sk ∼ πϕ(· | x, s1:k−1).

The objective in Eq. (3) can be optimized within a reinforcement learning (RL) framework. We view
the explainer as an agent that sequentially interacts with the black-box model. Formally, the state
at step k consists of the input x and the history of previously chosen segment indices s1:k−1. The
agent’s action is to select the next segment-index variable sk ∼ πϕ(· | x, s1:k−1). The reward for
this action is the CMI, which we compute as the cross-entropy gap between the black-box model’s
outputs with and without augmenting the new segment. This reward is formulated as follows:

rθ(xsk ,xs1:k−1
) def
= Epθ(y|x)

[
log pθ

(
y | xs1:k

)
− log pθ

(
y | xs1:k−1

)]
. (4)

To discourage a trivial solution where the policy simply selects all available segments, we intro-
duce a sparsity-inducing cost, c(sk), into the reward function in Eq. (4). The overall objective is
thus to maximize the expected cumulative reward. This aligns our problem with a standard policy
optimization framework (Sutton et al., 1998), and we reformulate the final objective as:

L(ϕ) = ExEs1:K∼πϕ(·|x)

[
K∑
k=1

rθ
(
xsk ,xs1:k−1

)
− λc

(
sk
)]
, (5)

where λ is the trade-off coefficient introduced in Eq. (1).

4.2 STOCHASTIC POLICY FOR SEGMENT-INDEX VARIABLE SELECTION

A key challenge for the policy πϕ is to generate a valid segment-index variable sk = (tsk, t
e
k) that

satisfies the ordering constraint tsk ≤ tek. To enforce this structurally, we avoid modeling the joint
distribution over all valid “start-end” index pairs and instead factor the policy into a product of two
conditional distributions: a start-policy πϕs and an end-policy πϕe . This decomposition is given as

πϕ(s | x, s1:k−1)
def
= πϕs(ts | x, s1:k−1)πϕe(te | ts,x, s1:k−1). (6)

In this two-step sampling process, our start-policy first samples a where-to-start index given the
input x and previously selected segment indices s1:k−1, i.e., ts ∼ πϕs(· | x, s1:k−1). Then, further
conditioning on this choice, our end-policy selects an where-to-end index from the valid range, i.e.,
tek ∼ πϕe(· | tsk,x, s1:k−1). This factorization guarantees by construction that all generated segments
are valid and non-empty. In practice, the initial segment s1:0 = s0, where k = 1, is initialized as an
empty set to provide an initial starting point.

This factorization decomposes the policy πϕ into two categorical distributions: πϕs and πϕe , both
defined over absolute time indices. Optimizing this policy requires computing the gradients of the
expected reward with respect to ϕs and ϕe. While individual categorical distributions typically allow
continuous relaxations through techniques like Gumbel-Softmax reparameterization – as applied in
point-wise explanations (Crabbé & Van Der Schaar, 2021) – the conditional constraint tsk ≤ tek
prevents straightforward application of such reparameterization tricks, motivating the need for a
policy gradient method described in the following section.

5
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4.3 LEARNING SEGMENT SELECTION VIA POLICY GRADIENT

The primary optimization challenge is that the objective in Eq. (5) is not differentiable with respect
to the policy parameters ϕ, since segment indices are sampled discretely as sk ∼ πϕ(· | x, s1:k−1).
While the REINFORCE method (Williams, 1992) gives an unbiased gradient estimate, its direct use
is known to suffer from high variance, which often leads to unstable training (Sutton & Barto, 2018).

To improve stability, we adopt an actor–critic framework (Schulman et al., 2015). Specifically, we
introduce a value network (critic), parameterized by ψ, that serves as a learnable baseline. This
enables us to compute an advantage, Ak, which measures the relative benefit of selecting a new
segment compared to the baseline, thereby reducing gradient variance. We define the advantage
using the one-step temporal difference error: Ak=Rk + γVψ(x, s1:k)−Vψ(x, s1:k−1) where Rk=
rθ(xsk ,xs1:k−1

)−λc(sk) is the immediate reward of selecting the k-th segment and γ ∈ [0, 1]
is a discount factor. The value network Vψ is trained with a mean squared error loss to match a
bootstrapped value target. Concretely, we minimize

Lvalue(ψ) = ExEs1:K∼πOLD
ϕ

[(
Vψ(x, s1:k−1) − (Rk + γ Vψ(x, s1:k))

)2]
,

such that Vψ approximates the expected return and the resulting advantage Ak provides a low-
variance baseline for the policy-gradient update. Furthermore, to regulate the magnitude of policy
updates, we optimize the policy πϕ (actor) using the clipped surrogate objective of proximal policy
optimization (PPO) (Schulman et al., 2017). Then, the final objective can be given as follows:

LPPO(ϕ) = ExEs1:K∼πOLD
ϕ

[
K∑
k=1

min
(
ρk ·Ak, CLIP(ρk, 1− ϵ, 1 + ϵ)Ak

)]
, (7)

where ρk=
πϕ(sk|x,s1:k−1)
πOLD
ϕ (sk|x,s1:k−1)

is the sampling ratio.

The policy and value networks are trained jointly, providing a robust and stable optimization proce-
dure. Additional details are provided in Appendix A.2.

Determining the Number of Selected Segments. Since the optimal number of segments can vary
across time series, we employ an instance-specific termination criterion to decide when to stop the
selection process. At each step k, we compute the CMI reward in Eq. (4), which is the marginal
information gain (i.e., the difference in cross-entropy), from adding the newly proposed segment.
We normalize it with the current cross-entropy and terminate the selection procedure when this
relative reward falls below a predefined threshold τ :

rθ(xsk ,xs1:k−1
)/Epθ(y|x)

[
− log pθ(y | xs1:k−1

)
]
≤ τ. (8)

This allows TimeSeg to adaptively determine the number of selected segments K and produce
instance-specific explanations. In our experiments, we set τ = 0.3 and Kmax = 5.

4.4 SEGMENT REPRESENTATION VIA GATING VECTORS

At each selection step, the policy network πϕ and value network Vψ are provided with the entire
sequence x together with the previously selected segment indices s1:k−1. This full-context access
allows these networks to assess the global structure of the time series and strategically search for the
next informative segment. In contrast, the black-box time-series classifier gθ only observes a set of
segments xs1:k , matching the limited view that will ultimately be provided as the explanation.

To encode this asymmetric access, we introduce binary gate vectors, m1, . . . ,mK , where each
mk = (mk,1, . . . ,mk,T ) ∈ {0, 1}T indicates whether a time point t is covered by the k-th selected
segments: mk,t = 1 if t ∈ {tsk, . . . , tek} andmk,t = 0 otherwise. For the first k selections, we define
the combined gate vector m1:k = m1 ∨m2 ∨ · · · ∨mk, where ∨ is an element-wise OR operator,
which indicates whether each time point t is covered by any of the first k selected segments.

For the policy and value networks, we concatenate m1:k−1 to x along the feature axis, forming an
augmented input [x;m1:k−1]. This design provides full temporal context while explicitly marking
which segments have already been selected. Meanwhile, to ensure that the black-box model makes
predictions only based on the selected segments, we apply the gate vector to the original sequence as

6
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Table 1: Performance comparison on four datasets with ground-truth; bold indicates best, underlined indicates
second-best, and the asterisk (*) denotes methods that violate the strict black-box setup.

Method
SeqComb-UV LowVarDetect-UV

F1 ↑ IoU ↑ Cont. ↓ F1 ↑ IoU ↑ Cont. ↓
IG∗ 0.539±0.059 0.379±0.057 0.166±0.022 0.582±0.089 0.421±0.089 0.170±0.065
Dynamask 0.157±0.016 0.088±0.010 0.215±0.036 0.177±0.046 0.115±0.038 0.181±0.074
WinIT 0.208±0.033 0.123±0.021 0.178±0.031 0.383±0.022 0.242±0.017 0.117±0.024
LIMESegment 0.430±0.009 0.289±0.008 0.009±0.001 0.467±0.063 0.314±0.058 0.012±0.001
TimeX++∗ 0.636±0.157 0.489±0.159 0.098±0.015 0.432±0.082 0.291±0.057 0.231±0.025

TimeSeg 0.645±0.018 0.495±0.018 0.017±0.000 0.499±0.023 0.356±0.015 0.020±0.004

Method
FreqShapes-V MIT-ECG

F1 ↑ IoU ↑ Cont. ↓ F1 ↑ IoU ↑ Cont. ↓
IG∗ 0.687±0.003 0.534±0.004 0.101±0.003 0.589±0.006 0.435±0.007 0.056±0.007
Dynamask 0.103±0.007 0.060±0.004 0.144±0.001 0.353±0.023 0.221±0.018 0.072±0.016
WinIT 0.454±0.005 0.307±0.005 0.114±0.001 0.241±0.062 0.147±0.042 0.133±0.014
LIMESegment 0.440±0.004 0.287±0.003 0.030±0.001 0.491±0.068 0.359±0.063 0.006±0.001
TimeX++∗ 0.799±0.001 0.666±0.002 0.120±0.001 0.593±0.146 0.460±0.142 0.016±0.002

TimeSeg 0.722±0.014 0.576±0.018 0.085±0.001 0.739±0.016 0.621±0.021 0.006±0.000

xs1:k = m1:k ⊙ x+ (1−m1:k)⊙ x̄, where ⊙ is element-wise multiplication and x̄ is the empirical
mean of the training set, used to neutralize unselected time points.

Sparsity-inducing Regularization. Using the gate vectors, we can formulate the sparsity regular-
ization introduced in Eq. (1), which encourages the selection of compact and non-redundant seg-
ments. Specifically, at the k-th selection step, the sparsity cost, c(sk) = 1

T ∥mk∥1, is given by the
length of the chosen segments, which is then integrated into the immediate reward as a penalty term:
Rk=rθ(xsk ,xs1:k−1

)−λc(sk).
Segment Selection. At training time, we sample the start and end indices from the policy’s output
distribution to enable exploration and facilitate optimization. In contrast, at inference time, we use
only the policy network and select segments deterministically via argmax. This produces stable and
deterministic explanations. The process repeats until the termination criterion is satisfied.

5 EXPERIMENTS

Datasets. We evaluate TimeSeg on both synthetic and real-world time series datasets across three
categories: (i) synthetic datasets with ground-truth explanatory segments, (ii) real-world datasets
with segment-level annotations as ground-truth explanations, and (iii) real-world datasets without
ground truth explanations. For the synthetic datasets, we adapt datasets from TimeX (Queen et al.,
2023): SeqComb-UV (used as originally released), FreqShapes-V (a variant with duplicate class-
defining segments removed to ensure single explanatory patterns per sequence), and LowVarDetect-
UV (univariate adaptation of the multivariate LowVar dataset). For annotated real-world data, we use
the MIT-ECG (Moody & Mark, 2001) arrhythmia detection dataset. For unannotated evaluation,
we include the Epilepsy EEG seizure detection (Andrzejak et al., 2002), Wafer (Olszewski, 2001)
and GunPoint (Ratanamahatana & Keogh, 2005). Additional details are provided in Appendix C.

Benchmark Methods. We compare TimeSeg against a set of state-of-the-art time series explainers,
including gradient-based methods such as Integrated Gradients (IG) (Sundararajan et al., 2017),
point-wise attribution methods including Dynamask (Crabbé & Van Der Schaar, 2021), WinIT (Le-
ung et al.), and TimeX++ (Liu et al., 2024), as well as the patch-wise method LIMESegment (Sivill
& Flach, 2022). While IG requires direct access to model gradients and TimeX++ depends on inter-
nal embeddings and architectural knowledge, TimeSeg operates in a strict black-box setting using
only model inputs and outputs (requiring neither gradients nor internal representations). These meth-
ods are therefore evaluated under their optimal conditions, ensuring a rigorous and fair comparison.

Evaluation. We evaluate the quality of explanations along three complementary dimensions, with
all results reported as mean ± standard deviation over 5-fold cross-validation:

• Overlap with Ground Truth: For datasets with ground-truth segments (i.e., synthetic bench-
marks and MIT-ECG), we measure the overlap between the selected temporal regions and the
ground truth. We report the F1-score and Jaccard index (IoU) to quantify this overlap.
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Table 2: Occlusion analysis on four datasets under two substitution strategies (Mean / Zero). For each baseline
and dataset, we report AUROC drop ratio when retaining only selected segments (Suff. ↓) and when removing
them (Comp. ↑), along with a Contiguity score (Cont. ↓).

Method MIT-ECG Epilepsy
Mean Zero Cont.↓ Mean Zero Cont.↓Suff.↓ Comp.↑ Suff.↓ Comp.↑ Suff.↓ Comp.↑ Suff.↓ Comp.↑

Random 55.21±3.45 0.01±0.01 53.63±2.20 0.02±0.01 0.07±0.01 3.12±1.37 0.04±0.07 4.17±1.82 0.04±0.05 0.22±0.02

WinIT 23.51±9.01 0.49±0.30 23.51±9.01 0.49±0.30 0.09±0.01 1.99±0.31 0.09±0.08 2.63±0.42 0.11±0.08 0.20±0.02

Dynamask 45.31±7.47 2.51±1.56 46.05±6.64 2.61±1.51 0.02±0.00 3.06±1.29 0.60±0.79 4.24±0.93 0.62±0.85 0.14±0.01

TimeX++∗ 40.31±7.52 5.31±3.54 42.52±6.05 5.79±3.67 0.01±0.00 6.79±9.46 0.07±0.11 13.09±20.79 0.09±0.10 0.07±0.02

TimeSeg 0.70±0.23 5.54±1.96 1.94±0.40 4.92±1.38 0.01±0.00 1.94±0.60 0.93±0.85 7.49±2.82 0.73±0.42 0.01±0.00

Method
Wafer GunPoint

Mean Zero Cont.↓ Mean Zero Cont.↓Suff.↓ Comp.↑ Suff.↓ Comp.↑ Suff.↓ Comp.↑ Suff.↓ Comp.↑
Random 34.23±4.53 0.01±0.00 34.23±4.53 0.01±0.00 0.18±0.02 32.42±4.47 1.42±0.19 32.42±4.47 1.42±0.19 0.31±0.03

WinIT 49.12±12.52 1.95±0.43 49.12±12.52 1.95±0.43 0.05±0.00 32.39±10.48 1.88±1.07 32.39±10.48 1.88±1.07 0.14±0.03

Dynamask 31.13±3.59 1.59±1.10 31.13±3.59 1.59±1.10 0.05±0.00 35.02±1.14 9.15±4.81 35.02±1.14 9.15±4.81 0.10±0.01

TimeX++∗ 52.39±8.13 0.22±0.20 52.39±8.13 0.22±0.20 0.03±0.02 45.41±8.95 7.10±6.45 45.41±8.95 7.10±6.45 0.01±0.00

TimeSeg 0.19±0.07 2.42±1.09 0.19±0.07 2.42±1.09 0.01±0.01 1.44±1.27 46.41±10.44 1.43±1.28 46.41±10.44 0.02±0.00

• Explanation Fidelity: To assess whether explanations correctly identify temporal regions used
by the black-box model, we use two complementary metrics: (i) Sufficiency (↓) measures the
drop in AUROC when using only the selected segments while masking the remainder, and
(ii) Comprehensiveness (↑) measures AUROC drop when removing the selected segments from
the original sequence. Masked regions are replaced with zero or the empirical mean.

• Segment Quality: We assess the quality of segment-based explanations using (i) Sparsity (↓),
the fraction of selected regions relative to total sequence length (lower values indicate more
concise explanations) and (ii) Contiguity (↓), which counts transitions between masked and un-
masked regions, normalized by sequence length. Lower values indicate fewer segment bound-
aries, leading to less complex and more concise explanations.

Implementation Details. The target black-box model, gθ, is implemented as a Temporal Convolu-
tional Network (TCN) (Lea et al., 2017). For our method, both the policy, πϕ, and the value network,
Vψ , are implemented as 3-layer 1D CNNs. We provide the full details in Appendix C.

5.1 QUANTITATIVE ANALYSIS

Evaluation with Ground-Truth Annotations. We evaluate TimeSeg on datasets with segment-
level ground truth annotations, including three synthetic datasets (SeqComb-UV, LowVarDetect-UV,
FreqShapes-V) and one real-world dataset (MIT-ECG). Here, all evaluated methods are configured
to achieve an equal level of sparsity within each dataset (i.e., SeqComb-UV: 0.14, FreqShape-V:
0.10, LowVarDetect-UV: 0.18, and MIT-ECG: 0.14). As shown in Table 1, TimeSeg consistently
achieves the best or second-best performance across all metrics. In particular, TimeSeg substantially
outperforms other methods on the MIT-ECG dataset, achieving F1 and IOU scores of 0.739 and
0.621 (compared to the second-best benchmark, TimeX++, which achieves 0.593 and 0.460, respec-
tively). This improvement is especially remarkable since TimeSeg operates in a strict black-box set-
ting, relying solely on model inputs and outputs, whereas TimeX++ and IG utilize internal gradients
and embeddings of the target black-box model. Regarding segment quality, TimeSeg significantly
outperforms point-wise methods and achieves contiguity on par with LIMESegment. However, un-
like LIMESegment, which struggles with pinpointing important temporal regions (evidenced by low
F1 and IOU), TimeSeg produces segments that closely align with ground-truth annotations.

Evaluation without Ground-Truth Annotations. Since real-world datasets lack segment-level an-
notations, we measure the performance drop (i.e., AUROC) of the target black-box model using
Sufficiency and Comprehensiveness. Here, all evaluated methods are configured to achieve an equal
level of sparsity within each dataset (i.e., MIT-ECG: 0.14, Epilepsy: 0.10, Wafer: 0.09, and Gun-
Point: 0.19). As shown in Table 2, TimeSeg achieves the best performance across nearly all datasets
and metrics, with particularly strong gains on the Wafer and GunPoint datasets. More specifically,
TimeSeg shows ≤ 2% drop when the target black-box model only utilizes the selected segments
for prediction, whereas the second-best method suffers a drop of ≥ 31%. Moreover, these results
are obtained with highly coherent segment-wise explanations, achieving contiguity scores as low as
1− 2%, indicating the selected segments are both concise and well-connected.
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Figure 3: Qualitative Analysis on the SeqComb and GunPoint Datasets.

5.2 ABLATION STUDY: THE EFFECT OF λ

We investigate the impact of the sparsity-inducing coefficient λ on explanation quality and predictive
performance. Results with varying λ on the MIT-ECG dataset are presented in Table 3. Here,
increasing λ produces more compact segments with a slight drop in predictive performance, while
decreasing λ yields larger segments that better preserve prediction performance at the cost of reduced
conciseness. As such, the sparsity-inducing coefficient behaves as designed, providing intuitive
control over the sparsity structure of the generated explanations.

5.3 QUALITATIVE ANALYSIS Table 3: Ablation study on λ for the MIT-ECG dataset.
We report F1, IoU, Sufficiency, and average Sparsity.

λ F1 ↑ IoU ↑ Suff. ↓ Sparsity ↓

0.1 0.702±0.042 0.577±0.054 0.558±0.023 0.218±0.023
0.3 0.739±0.016 0.621±0.021 0.704±0.232 0.144±0.018
0.5 0.727±0.020 0.608±0.027 0.757±0.014 0.123±0.137
0.7 0.721±0.053 0.609±0.053 2.442±3.113 0.110±0.012
0.9 0.690±0.035 0.592±0.039 4.728±2.340 0.098±0.007

Figure 3 presents a qualitative analysis of
segments identified on the synthetic Seq-
Comb dataset and the real-world GunPoint
dataset. The classification task in the Se-
qComb dataset poses a unique challenge,
requiring the explainer to accurately re-
cover two distinct segments critical to the
class label. Our analysis reveals notable differences among methods: (i) TimeX++ correctly pin-
points relevant regions but generates fragmented explanations, lacking coherence. (ii) LIMESeg-
ment produces contiguous segments; however, its reliance on fixed-size patches often results in mis-
aligned explanations. In contrast, TimeSeg consistently identifies complete, well-aligned segments
that closely match the ground-truth annotations.

For the GunPoint dataset, which lacks ground-truth annotations, we compare the selected temporal
regions by measuring the cross-entropy gain of the black-box classifier when using the selected seg-
ments as an input. The dashed line in Figure 3 indicates the cross-entropy achieved with the full time
series, serving as an upper bound. Although TimeSeg and TimeX++ select segments of comparable
total length, TimeSeg achieves a cross-entropy gain near this upper bound, while TimeX++ exhibits
substantially lower gains. LIMESegment selects segments that are roughly 25% longer than those
of TimeSeg but still shows a lower cross-entropy gain, underscoring our method’s superior segment
localization. Additional examples in Appendix D consistently demonstrate similar trends.

6 CONCLUSION

In this paper, we introduced TimeSeg, an information-theoretic framework for segment-wise expla-
nations of time-series black-box models. Our work first defines what a meaningful segment is in
time series, and formulates the segment selection problem as a sequential decision process, enabling
the identification of concise and informative temporal segments under a strict black-box setting.
Through extensive experiments on synthetic and real-world datasets, we demonstrated that TimeSeg
produces more interpretable explanations than existing point-wise and patch-wise approaches, while
maintaining competitive or superior explanation fidelity.

Future Work. Future work may explore incorporating more sophisticated policy optimization tech-
niques, distributional RL objectives, or model-based exploration strategies to further improve sta-
bility and efficiency. In addition, the reward design can be extended beyond purely information-
theoretic criteria to reflect human preferences for explanations or based on domain knowledge —
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priors that encourage clinically meaningful segments. This opens the door to human-in-the-loop
training (i.e., preference learning), multi-objective formulations that trade off fidelity and readability,
and application-specific constraints that tailor explanations to domain conventions. We believe that
bridging explainable AI for time series with both the broader toolbox of RL methods and human-
centric reward shaping offers a promising direction for developing more general and useful expla-
nation models.
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Jonathan Crabbé and Mihaela Van Der Schaar. Explaining time series predictions with dynamic
masks. In International Conference on Machine Learning, pp. 2166–2177. PMLR, 2021.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Joseph Enguehard. Learning perturbations to explain time series predictions. In International Con-
ference on Machine Learning, pp. 9329–9342. PMLR, 2023.

Aya Abdelsalam Ismail, Mohamed Gunady, Hector Corrada Bravo, and Soheil Feizi. Benchmarking
deep learning interpretability in time series predictions. Advances in neural information process-
ing systems, 33:6441–6452, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.
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A MATHEMATICAL DERIVATIONS

A.1 DERIVATIONS FOR MUTUAL INFORMATION

We derive the objective used in Eq. (1), starting from the joint mutual information between the
target Y and the selected segment set Xs1:K and then obtaining a tractable variational lower bound
for each conditional term. In our setting the target is the black-box prediction gθ(X), but for brevity
we write it as Y in this appendix.

Chain Rule for Mutual Information. For random variables Y and a ordered tuple of segment
variables Xs1:K =(Xs1 , . . . ,XsK ), the chain rule gives

I(Y ;Xs1:K ) = I(Y ;Xs1 , . . . ,XsK ) (9)
= I(Y ;Xs1) + I(Y ;Xs2 , · · ·XsK | Xs1) (10)
= · · ·
= I(Y ;Xs1) + I(Y ;Xs2 | Xs1) (11)

+ · · ·+ I
(
Y ;Xsk | Xs1 , · · ·Xsk−1

)
=

K∑
k=1

I
(
Y ;Xsk | Xs1:k−1

)
. (12)

with s1:0 = ∅ and I(Y ;Xs1 | Xs1:0) = I(Y ;Xs1). This is the chain-rule decomposition used
in Eq. (2) of the main text when Y is replaced by the black-box prediction gθ(X).

Variational Lower Bound for Conditional Mutual Information. By definition, the conditional
mutual information is

I
(
Y ;Xsk | Xs1:k−1

)
= Exs1:k

,y

[
log

p(y,xsk | xs1:k−1
)

p(y | xs1:k−1
) · p(xsk | xs1:k−1

)

]
(13)

where KL(·∥·) denotes the Kullback–Leibler divergence and the conditionals p(y | xs1:k) and p(y |
xs1:k−1

) are induced by the black-box predictor gθ (we drop the subscript θ for brevity). However,
because the black-box setting precludes direct access to the densities p(xsk | xs1:k−1

) and p(y,xsk |
xs1:k−1

). we rewrite the objective as below.

I
(
Y ;Xsk | Xs1:k−1

)
= Exs1:k

,y

[
log p(y | xsk ,xs1:k−1

)− log p(y | xs1:k−1
)
]

(14)

Lastly, we approximate the marginal Xs1:k over X by sampling segment indices from the policy πϕ
and treating the segment as the induced subsequence of x, s1:k∼πϕ(· | x).

Iθ,ϕ
(
Y ;Xsk | Xs1:k−1

)
= Ex Es1:k∼πϕ(·|x) Ey|x

[
log p(y | xs1:k)− log p

(
y | xs1:k−1

) ]
, (15)

which we maximize with respect to ϕ (e.g., via policy-gradient methods), while p(· | ·) remains
fixed and is provided by the black-box predictor gθ.

A.2 REINFORCEMENT LEARNING OPTIMIZATION DETAILS

Policy Gradient with Discrete Segment Sampling. Our training objective in Eq. (5) can be rewrit-
ten more simplicity as

L(ϕ) = ExEs1:K∼πϕ(·|x)

[
K∑
k=1

Rk

]
, (16)

where Rk = rθ
(
xsk ,xs1:k−1

)
− λc

(
sk, s1:k−1

)
denotes the conditional mutual information reward,

and c(·) the sparsity cost. The policy πϕ generates a trajectory of segment indices s1:K , and the
objective is to maximize the expected cumulative reward under this distribution.

12
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Since the actions sk are discrete start–end indices, gradients cannot propagate directly through the
sampling step. Instead, we apply the policy gradient methods to obtain the gradient respect to ϕ:

∇ϕL(ϕ) = ∇ϕExEs1:K∼πϕ

[ K∑
k=1

Rk

]
(17)

= Ex

[∫ ( K∑
k=1

Rk

)
· ∇ϕπϕ(s1:K | x) ds1:K

]
(18)

= Ex

[∫ ( K∑
k=1

Rk

)
· ∇ϕπϕ(s1:K | x) ·

πϕ(s1:K | x)
πϕ(s1:K | x)

ds1:K

]
(19)

= Ex

[∫ ( K∑
k=1

Rk

)
· ∇ϕ log πϕ(s1:K | x) · πϕ(s1:K | x) ds1:K

]
(20)

= ExEs1:K∼πϕ

[
∇ϕ log πϕ(s1:K | x) ·

K∑
k=1

Rk

]
(21)

= ExEs1:K∼πϕ

[
K∑
k=1

(Rk · ∇ϕ log πϕ(sk | x, s1:k−1))

]
(22)

(23)

This derivation shows that policy optimization reduces to weighting the log-likelihood gradient of
the chosen segment sk by the observed reward Rk. Although unbiased, this estimator typically
suffers from high variance, motivating the use of variance reduction techniques such as actor–critic
methods and proximal policy optimization (PPO).

Advantage in the Actor–Critic Framework. To reduce variance, we employ an actor–critic frame-
work (Schulman et al., 2015). The policy πϕ plays the role of the actor, while we introduce a value
network Vψ(x, s1:k), parameterized by ψ, as the critic. The critic estimates the expected cumulative
return given the current sequence of selected segments, e.g.,

Vψ(x, s1:k−1) ≈ Eπϕ

[
K∑
t=k

γ t−k Rt

∣∣∣∣∣ x, s1:k−1

]
,

This allows us to compute the advantage function:

Ak = Rk + γVψ(x, s1:k)− Vψ(x, s1:k−1), (24)

where γ ∈ [0, 1] is a discount factor. The advantage measures how much better the observed re-
turn is compared to the critic’s baseline estimate. Replacing raw rewards Rk with advantages Ak
significantly reduces gradient variance without introducing bias.

The value network is trained jointly with the policy using a temporal difference (TD) loss:

Lvalue(ψ) = Ex,s1:k∼πϕ

[(
Vψ(x, s1:k−1)− (Rk + γVψ(x, s1:k))

)2]
. (25)

Stabilization via Proximal Policy Optimization. Although advantage estimates stabilize the gra-
dient, policy updates can still be unstable if the new policy πϕ diverges too far from the old one πold

ϕ .
To address this, we adopt the PPO objective (Schulman et al., 2017), which clips large changes in
the policy update:

LPPO(ϕ) = ExEs1:K∼πOLD
ϕ

[
K∑
k=1

min
(
ρkAk, clip(ρk, 1− ϵ, 1 + ϵ)Ak

)]
, (26)

where ρk =
πϕ(sk|x,s1:k−1)
πOLD
ϕ (sk|x,s1:k−1)

is the importance ratio, and ϵ controls the trust region. This formulation
prevents large updates by clipping the policy ratio.
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Concretely, at each iteration, we collect 1,024 rollout steps with the frozen old policy πOLD
ϕ (step-

level, not episode-level). Each step stores the transition tuple (x, s1:k−1, sk, Rk, log π
OLD
ϕ (sk |

x, s1:k−1), Vψ(x, s1:k−1), done) in a FIFO buffer of capacity 20,000 steps; once full, the oldest
steps are discarded. we sample a mini-batch from the shuffled buffer and run PPO for 4 epochs. One
epoch is completed when 1,024 sampled steps are used once for updates. After the update phase,
we set πOLD

ϕ ← πϕ and repeat: collect the next 1,024 steps, push them into the buffer, and perform
4 epoch updates over those steps. This step-level sampling/updating schedule makes the rollout size
and the optimization loop explicit.

In our implementation, we use ϵ = 0.2 for trust region, γ = 0.99 for the discount factor, and
β = 0.01 for entropy regularization coefficient which is applied to encourage exploration of diverse
segmentations. All hyperparameters are used within recommended in prior PPO researches.

A.3 COMBINATORIAL COMPLEXITY OF SEGMENT CANDIDATES

We prove that the number of candidate segment sets grows exponentially with the sequence length
T . Throughout, we consider non-overlapping, non-empty discrete segments on indices {1, . . . , T}.
A single segment is specified by a start–end pair (ts, te) with 1 ≤ ts ≤ te ≤ T , and a set of K
segments s1:K = (s1, . . . , sK) is required to be pairwise disjoint.

Counting K Disjoint Segments. Fix T ∈ N and K ∈ {1, . . . , ⌊(T + 1)/2⌋}. Think of the time
steps {1, . . . , T} as being separated by T+1 boundaries at positions {0, 1, . . . , T}. Here, 0 denotes
the position immediately to the left of the first time step, and T denotes the position immediately
to the right of the last time step. Picking a non-overlapping segment is the same as picking two
boundaries and filling in everything between them; picking K disjoint segments is the same idea
repeated K times, so in total, pick 2K distinct boundaries and pair them up in order: (b1, b2),
(b3, b4), . . . , (b2K−1, b2K). Each pair (b2i−1, b2i) forms a non-empty interval (since b2i−1 < b2i),
and the ordering prevents overlaps. Hence, choosing K disjoint segments is equivalent to choosing
2K distinct boundaries out of T+1 possibilities, which gives

(
T+1
2K

)
.

Total Number of Candidate Segment Sets. Summing over all feasible K, the total number of
non-empty segment sets is

⌊(T+1)/2⌋∑
K=1

(
T + 1

2K

)
= 2T − 1 = O(2T ).

Here K denotes the number of disjoint segments selected. Each segment must contain at least one
time step, so allocating K segments requires at least 2K distinct boundaries (start and end). Since
there are only T+1 available boundaries, the maximum feasible number of segments is ⌊(T +1)/2⌋.
Remarks. (i) This counting assumes segments are non-overlapping and non-empty; if overlaps
or empty segments were allowed, the number of feasible segment sets would be larger. (ii) The
exponential growth 2T − 1 shows how quickly the search space expands as T grows, underscoring
the combinatorial intractability of directly solving the joint optimization in Eq. (1). This motivates
our decomposition into sequential CMI terms and policy-based optimization in the main paper.
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B PSEUDO CODE

Algorithm 1 COLLECT (Step-level rollout with CMI reward and adaptive termination)

Input: Frozen old policy πOLD
ϕ , value Vψ , classifier gθ, mask function MASK(·, ·), sparsity weights

λ, termination (τ,Kmax), rollout length Nroll
Output: Replay buffer B of step-level transitions

1: B ← ∅
2: while |B| < Nroll do
3: Sample minibatch x from training data
4: k ← 0, s1:k ← ∅, done← False
5: m1:k ← 0 ▷ zero vector mask (no segment yet)
6: while not done and k < Kmax do
7: tsk+1 ∼ πOLD

ϕs (· | x, s1:k), tek+1 ∼ πOLD
ϕe (· | tsk+1,x, s1:k) ▷ propose next segment

8: sk+1 = (tsk+1, t
e
k+1) ▷ propose next segment

9: mk+1 ← SEGMENTOMASK(sk+1); m1:k+1 ←m1:k ∨mk

10: xs1:k ← MASKING(x,m1:k); xs1:k+1
← MASKING(x,m1:k+1)

11: pθ(y | xs1:k)← softmax(gθ(xs1:k)); pθ(y | xs1:k+1
)← softmax(gθ(xs1:k+1

))

12: rθ(sk+1, s1:k)← Epθ(y|x)
[
log pθ(y | xs1:k)− log pθ(y | xs1:k+1

)
]

13: c(sk+1)← ∥mk+1∥1/T ; Rk ← rθ(sk+1, s1:k)− λ c(sk+1)

14: doneτ ← 1− Epθ(y|x)

[
log pθ(y|xs1:k+1

)
]

Epθ(y|x)

[
log pθ(y|xs1:k

)
] ≥ τ ; done← doneτ or (k + 1 ≥ Kmax)

15: log πOLD ← log πOLD
ϕs (tsk+1 | x, s1:k) + log πOLD

ϕe (tek+1 | tek+1,x, s1:k)

16: v1:k ← Vψ(x, s1:k) ; v1:k+1 ← Vψ(x, s1:k+1)
17: Push

(
x, s1:k, sk+1, Rk, log π

OLD, (v1:k, v1:k+1),done
)

into B
18: m1:k ←m1:k+1; k ← k + 1
19: end while
20: end while
21: return B

Algorithm 2 PPO UPDATE (Clipped surrogate with step-level transitions)

Input: Buffer B, current policy πϕ, value Vψ , epochs Eppo, minibatch size M , clip ϵ, discount γ,
entropy coef β

Output: Updated (ϕ, ψ) and synced πOLD
ϕ

1: PPO epochs
2: for e = 1 to Eppo do
3: for all minibatchM of size M sampled from B do
4: Unpack

(
x, s1:k, sk+1, Rk, log π

OLD, (v1:k, v1:k+1),done
)
∈M

5: log π ← log πϕ(sk | x, s1:k); ρ← exp(log πnew − log πold)
6: Ak ← Rk + γv1:k+ − v1:k; Ak ← sg[Ak]
7: Lclip ← E

[
min

(
ρAk, clip(ρ, 1− ϵ, 1 + ϵ)Ak

)]
8: Lvalue ← E

[(
v1:k − sg[Rk + γ v1:k+1 ]

)2]
9: H ← E

[
Entropy

(
πϕ(· | x, s1:k)

)]
▷ H means entropy of segment distribution

10: Ltotal ← −
(
Lclip + βH

)
+ Lvalue ▷ maximize policy, minimize value loss

11: Update (ϕ, ψ) by descending∇Ltotal
12: end for
13: end for
14: return (ϕ, ψ, πOLD

ϕ )

Remarks. During inference, segments are deterministically sampled from the policy via mode
values.
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C EXPERIMENT DETAILS

This appendix provides full details of datasets, preprocessing, model architectures, evaluation met-
rics, and ablations.

C.1 DATASETS AND PREPROCESSING

C.1.1 SYNTHETIC DATASETS

To evaluate the ability of TimeSeg to recover ground-truth explanatory regions, we construct syn-
thetic datasets where the causal subsequences are known by design. Following prior work (Queen
et al., 2023; Liu et al., 2024), we embed class-defining patterns into a noisy background such that
predictions rely only on the inserted segments. Each dataset is initialized with a non-autoregressive
moving average (NARMA) noise base, into which task-specific motifs are inserted. This setup en-
sures that classification cannot be solved by shortcuts, and that faithful explanations must identify
the correct subsequences. A summary of dataset statistics is provided in Table 4.

SeqComb-UV. Each univariate sequence of length 200 is constructed by inserting two non-
overlapping subsequences chosen from an increasing trend (I) and a decreasing trend (D). Trends
are generated using sinusoidal patterns with random wavelength and additive Gaussian noise. There
are four classes: (i) null (no pattern), (ii) I,I, (iii) D,D, and (iv) I,D. Ground-truth explanations are
the positions of the inserted I/D subsequences.

FreqShapes-V. We adapt the frequency-based synthetic dataset from (Queen et al., 2023). Each
sequence has length 50, and the class label is determined by the periodicity of a spike pattern. We
use two spike shapes (upward and downward) and two frequencies (periods of 10 and 19 time steps),
forming four classes in total. The ground-truth explanatory regions are the positions of the inserted
spikes. Unlike the original version, we remove duplicate motif occurrences so that each sequence
contains a single definitive explanatory segment. See Figure 4 for a visual comparison between the
original FreqShapes and our modified FreqShapes-V.

Figure 4: Illustration of the difference between FreqShape and FreqShapes-V.

LowVarDetect-UV. Each univariate sequence of length 200 is generated by inserting a low-variance
region into the NARMA background. The predictive signal comes from both the variance level and
the mean of the Gaussian noise in this subsequence. For binary classification, the low-variance
subsequence is generated with either negative or positive mean, determining the label. This dataset
differs from the anomaly-style tasks above, as the explanatory subsequence does not correspond to
large amplitude changes but rather to more subtle statistical properties (variance reduction). Ground-
truth explanations are the positions of the low-variance subsequences.
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Table 4: Synthetic Dataset Description.

Dataset #Samples Length Dim Classes

SeqComb-UV 6,100 200 1 4
FreqShapes-V 6,100 50 1 5
LowVarDetect-UV 6,100 200 1 2

C.1.2 REAL-WORLD DATASETS

We further evaluate TimeSeg on a suite of widely used real-world time-series classification bench-
marks. Unlike the synthetic datasets, real-world tasks pose additional challenges due to noise, inter-
subject variability, and the absence of segment-wise ground truth in most cases. Below we describe
each dataset and, when available, the annotation used as segment-wise ground-truth explanatory
regions.

MIT-ECG. We use the arrhythmia detection dataset from the MIT-BIH Arrhythmia
Database (Moody & Mark, 2001), which provides electrocardiogram (ECG) recordings sampled at
360 Hz. Following common practice, we segment the recordings into short windows centered on in-
dividual beats. We focus on three representative classes: Normal (N), Left Bundle Branch Block (L),
and Right Bundle Branch Block (R). Because both L and R diagnoses are known to rely on the
morphology of the QRS complex, we use the cardiologist-annotated QRS intervals as segment-wise
ground-truth explanatory regions. This dataset allows quantitative evaluation of explanation over-
lap against clinically annotated ground truth. For comparability, we follow the exact preprocessing
protocol of TimeX (Queen et al., 2023).

Epilepsy. The Epileptic Seizure Recognition dataset (Andrzejak et al., 2002) contains EEG record-
ings from 500 subjects. Each subject’s brain activity was recorded for 23.6 seconds, which was then
partitioned into non-overlapping 1-second windows, resulting in 11,500 single-channel sequences of
length 178 sampled at 178 Hz. The dataset provides five labels: (i) eyes open, (ii) eyes closed, (iii)
EEG from a healthy brain region, (iv) EEG from a tumor region, and (v) seizure. For binary seizure
detection, we merge the first four classes into the negative class and retain seizure as the positive
class. No segment-wise ground-truth annotations are available; thus evaluation is based on explana-
tion fidelity metrics (sufficiency/comprehensiveness). We also adopt the identical preprocessing as
TimeX (Queen et al., 2023).

Wafer. The Wafer dataset (Dau et al., 2019) is derived from semiconductor manufacturing pro-
cesses, where sensor signals are used to detect faults in wafer production. It contains univariate
time-series of varying lengths that are standardized to a common length for evaluation. The classi-
fication task is to distinguish between normal and abnormal wafers. Since no segment-wise ground
truth is provided, we rely on fidelity and structural quality metrics to assess explanations.

GunPoint. The GunPoint dataset (Dau et al., 2019) consists of motion capture time-series that
record hand movements. Subjects perform two distinct gestures: drawing a gun from a holster
versus pointing with a finger. Each sequence is univariate with length 150. Prior analyses of this
dataset suggest that informative patterns often coincide with short transitional movements (e.g.,
raising or lowering) rather than the static middle portion, though this can vary across instances.
Accordingly, GunPoint provides a convenient testbed to qualitatively assess whether an explainer
highlights plausible transition segments as segment-wise explanatory regions.

Table 5: Real-World Dataset Description.

Dataset #Samples Length Dim Classes

MIT-ECG 90,337 360 1 2
Epilepsy 11,500 178 1 2
Wafer 7,164 152 1 2
GunPoint 400 150 1 2
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C.2 EVALUATION METRICS

To assess the quality of segment-wise explanations, we employ three complementary categories of
metrics: Overlap with Ground Truth, Explanation Fidelity, and Segment Quality. These metrics
enable both quantitative comparisons on datasets with annotated explanatory regions and qualitative
assessment on datasets without annotations.

Overlap with Ground Truth. For datasets with segment-wise ground-truth annotations (e.g., syn-
thetic datasets and MIT-ECG), we measure the degree of overlap between the predicted explanation
mask m1:K and the ground-truth mask m⋆. Specifically, we report the F1-score and the Jaccard
index (IoU):

F1 =
2 · |m1:K ∩m⋆|
|m1:K |+ |m⋆|

, IoU =
|m1:K ∩m⋆|
|m1:K ∪m⋆|

.

Explanation Fidelity. To quantify how well the identified segments capture the predictive signal
used by the black-box model, we follow the insertion/removal evaluation framework:

SUFF↓ = AUROCbase −AUROCinsert

AUROCbase
, COMP↑ = AUROCbase −AUROCremove

AUROCbase
.

Here AUROCbase denotes the AUROC on the original time-series, AUROCinsert the AUROC when
only the selected segments are retained, and AUROCremove the AUROC when the selected segments
are removed. Masked regions are replaced with either zeros or the dataset mean. Lower SUFFI-
CIENCY and higher COMPREHENSIVENESS indicate more faithful explanations.

Segment Quality. Beyond fidelity, we evaluate the structural properties of the produced explana-
tions:

• Sparsity (↓): the fraction of time points selected, Sparsity = 1
T ∥m1:K∥1. Lower values indicate

more concise explanations.
• Contiguity (↓): the normalized number of transitions between selected and unselected points,

Contiguity =
1

T − 1

T−1∑
t=1

I[m1:K,t ̸= m1:K,t+1],

where smaller values indicate fewer boundaries, meaning more coherent segment-wise patterns.

C.3 IMPLEMENTATION DETAILS

We provide implementation details of the black-box predictor, the proposed segment-wise explainer,
and the reinforcement learning optimization, as well as hardware and reproducibility information.
For completeness and reproducibility, we summarize all key hyperparameters used in our experi-
ments in Table 7.

Black-box Predictor. For all datasets, the target black-box model gθ is implemented as a Temporal
Convolutional Network (TCN) (Lea et al., 2017). The network consists of 6 convolutional blocks
with kernel size 3 and exponentially increasing dilations, each followed by residual connections,
ReLU activation, and dropout of p = 0.1. Global average pooling and a fully-connected classifier
map to the label space. We train gθ using cross-entropy loss with Adam optimizer (learning rate
10−3, weight decay 10−4, batch size 128). Early stopping is applied based on validation F1 with
patience of 25 epochs.

Explainer Networks (Policy and Value). At each decision step k, both the policy πϕ and the value
network Vψ take as input the full sequence x together with the current explanation mask m1:k−1,
concatenated along the feature axis to form [x;m1:k−1] ∈ RT×(C+1). This design provides the
global temporal context while explicitly encoding which regions have already been selected.

The policy is factorized into a start-policy πϕs and an end-policy πϕe , and each uses its own en-
coder backbone. To inject explicit dependency between the start and end distributions, the pooled
embedding produced by πϕs is added to the pooled embedding of πϕe before the final linear layer
of πϕe . In this way, the choice of an end index is conditioned on both the input sequence and the
representation of the chosen start index.
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Table 6: AUROC performance of the black-box predictor gθ on each dataset.

Dataset #Classes AUROC
SeqComb-UV 4 0.99±0.00

FreqShapes-V 5 1.00±0.00

LowVarDetect-UV 2 0.99±0.00

MIT-ECG 2 0.99±0.00

Epilepsy 2 0.99±0.00

Wafer 2 0.99±0.00

GunPoint 2 0.99±0.00

Concretely, after sampling a start index ts ∼ πϕs(· | x, s1:k−1), we enforce the ordering constraint
te ≥ ts by masking the end-policy’s categorical distribution before the final softmax. the end point
probability πϕe(te | ts, ·) = 0 for all te < ts and is renormalized over {ts, . . . , T}, which guarantees
te ≥ ts by construction. In practice, the mask is implemented by adding −∞ (or a large negative
constant) to the logits at indices t < ts before the softmax. This start-conditioned masking is applied
at every decision step k.

The value network Vψ also consumes [x;m1:k−1] as input, with its own encoder backbone that may
differ from both πϕs and πϕe . It outputs a scalar state-value estimate, serving as the critic in the
actor–critic framework.

Table 7: Hyperparameters used for TimeSeg.

Nbuffer 4,096
Nrollout 1,024
Batch size 256
Total epochs 600
PPO epochs 4
Optimizer AdamW
Policy LR 1× 10−4

Value LR 1× 10−4

Weight decay (value) 1× 10−4

Cosine LR scheduler True
Warmup epochs 100
Warmup start LR 3.3× 10−5

Policy final LR 5× 10−5

Value final LR 2× 10−5

CNN layers (policy/value) 3
CNN kernel size 3
Hidden dimension 128
MLP layers 2
γ (discount factor) 0.99
PPO clip ratio ϵ 0.2
PPO entropy coefficient 0.01
Value loss coefficient 1.0
λ (length penalty) 0.3, 0.5
τ (termination threshold) 0.3
Kmax 5
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D ADDITIONAL RESULTS

D.1 SYNTHETIC PREDICTION PERFORMANCE

We report the prediction performance of the black-box classifier gθ on the synthetic benchmarks.

Table 8: Fidelity on synthetic datasets (single row with three dataset blocks; continuity removed).

Method SeqComb-UV FreqShapes-V LowVarDetect-UV
Avg. Zero Avg. Zero Avg. Zero

Suff. Comp. Suff. Comp. Suff. Comp. Suff. Comp. Suff. Comp. Suff. Comp.

Random 18.43±1.19 0.08±0.04 47.41±3.20 0.20±0.11 8.59±2.05 0.00±0.00 30.31±5.99 0.00±0.00 28.61±2.90 0.53±0.08 45.17±1.68 1.39±0.18

WinIT 5.14±2.47 4.47±0.57 32.18±2.55 5.66±0.93 0.40±0.50 0.57±0.689 0.55±0.65 0.99±1.07 3.24±1.19 13.84±3.55 0.98±0.24 17.21±3.9

Dynamask 17.60±2.80 0.48±0.19 45.14±3.66 1.35±0.67 8.03±1.58 0.01±0.01 27.43±5.05 0.01±0.02 16.80±5.33 12.93±5.91 26.51±6.36 15.01±6.03

TimeX++ 7.25±4.45 23.99±9.15 14.35±7.39 24.43±9.65 0.22±0.32 14.98 ±17.42 0.32±0.28 23.54 ±16.08 7.01±3.21 30.86±11.69 6.67±5.14 36.43±11.21

TimeSeg (Ours) 0.22±0.15 30.80±1.60 28.71±1.92 26.77±1.56 0.00±0.00 1.47±0.58 1.21±1.71 2.91±0.98 0.04±0.040 24.76±2.64 0.47±0.47 20.74±2.77

D.2 ABLATION ON SEGMENT DISTRIBUTIONS (MIT-ECG)

We study how the choice of the segment-index distribution affects performance on MIT-ECG.
Recall that our policy factorizes the segment into sk = (tsk, t

e
k) and enforces te ≥ ts via start-

conditioned masking (see Appendix C.3). Here, we replace the default distribution with several
variants while keeping all other components identical to the main setting.

Variants of the Policy Network.

• Cat–Cat (default): start πϕs and end πϕe are categorical over absolute indices with start-
conditioned masking.

• Cat–Dur (Negative Binomial): start categorical; end is parameterized as duration d = te− ts+1
via a Negative Binomial (NB); we map (ts, d) 7→ te and mask invalid durations.

• Cat–Cat (+CauchySmooth): Cat–Cat with Cauchy smoothing on the end categorical distributon
probabiliies πϕe .

Cauchy Smoothing. Under the assumption that two nearby time points should be more similar than
those far away by modeling durations, we smooth the probabilities by assigning higher weights to
nearby indices using the Cauchy kernel

ccauchy(τ, τ
′) = σ2

(
1 +

(τ − τ ′)2

ℓ2

)−1

,

which can be seen as a mixture of infinitely many RBF kernels with different length scales. As
ℓ→∞, ccauchy(τ, τ

′)→σ2, recovering uniform weights.

Table 9: Performance comparison on MIT-ECG at an equal masking ratio (sparsity = 0.34) using the Cat–
Cat (+ CauchySmooth) segment distribution. We report mean ± std over five folds; bold is best, underlined is
second-best.

Method Overlap Fidelity Continuity
F1 IoU Suff. Comp.

Dynamask 0.29±0.01 0.17±0.01 35.97 ±6.98 5.19±2.99 0.12 ±0.02
TimeX++ 0.48±0.12 0.33 ±0.10 21.43±3.32 19.05±7.25 0.02±0.00
TimeSeg (Ours) 0.46±0.03 0.32±0.03 0.05±0.03 7.69±4.46 0.01±0.00

Remarks. Although modeling duration with a Negative Binomial distribution is conceptually at-
tractive, it proved fragile in practice, as small changes in parameterization (r, p) led to large shifts in
the implied length prior. Consequently, we could not obtain stable gains across experiments. Cauchy
smoothing increases the entropy of the end-policy logits, which reduces run-to-run variance but does
not necessarily yield the best overlap/fidelity trade-off.
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D.3 QUALITATIVE EXAMPLES

To complement the quantitative results, we provide qualitative comparisons of explanations gener-
ated by LIMESegment, TimeX++, and TimeSeg on two representative datasets: SeqComb-UV (syn-
thetic) and MIT-ECG (real-world).

Figure 5: Qualitative examples on SeqComb-UV. Each row shows a test instance with explanations from
LIMESEGMENT, TIMEX++, and TimeSeg, followed by the ground-truth segment (green).

Figure 6: Qualitative examples on MIT-ECG. Columns show explanations from LIMESegment, TimeX++,
and TimeSeg, with the cardiologist-annotated QRS interval as ground truth (green). LIMESegment remains
contiguous but can be misaligned, TimeX++ highlights scattered points without clear segment structure, and
TimeSeg retrieves coherent segments closely matching the QRS complex boundaries.
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D.4 SENSITIVITY ANALYSIS ON τ AND Kmax

We analyze the effect of two key hyperparameters controlling the structure of the selected segments:
(i) the termination threshold τ , which governs how early the policy stops selecting new segments,
and (ii) the maximum number of segments Kmax, which acts as a hard upper bound.

Importantly, Kmax is not a target; once set resonably large, the number of segment rarely reach it.
The effective number of segments is instead primarily determined by τ (termination) and jointly
by λ (length penalty). We therefore report a sensitivity analysis over τ and Kmax on SeqCombSin-
gle, measuring how sparsity, overlap quality (F1/IoU), contiguity, and the selected segment structure
change under different values.

Effect of τ . Smaller values of τ make it easier for the policy to keep adding segments, so it tends
to select more segments per instance. Under the sparsity penalty, this pressure is absorbed by short-
ening individual segments, leading to many short segments and slightly higher overall sparsity. As
τ increases, the policy stops earlier, selects fewer segments, and instead allocates longer duration
to each segment to match the sparsity budget. In our experiments on SeqCombSingle, F1/IoU re-
mains stable over a wide range of τ (e.g., 0.1–0.5), while non-positive τ values (i.e., 0 and −0.1)
effectively provide a margin that allows the policy to add new segments even when the immediate
information gain is small, resulting in more frequent segment selections.

Effect of Kmax. When Kmax is very small (e.g., Kmax = 1), the explainer is forced into a single
long segment. Once Kmax ≥ 3, the policy does not saturate the bound and the metrics become
stable. This confirms that Kmax only needs to be “large enough”. Table 10 and Table 11 contains
the full quantitative results.

Table 10: Sensitivity to termination threshold τ .

τ Sparsity F1 IoU Contiguity # Segments Segment Length

-0.1 0.170±0.037 0.523±0.031 0.377±0.030 0.025±0.002 4.747±0.038 10.219±2.280
0 0.193±0.029 0.627±0.026 0.468±0.029 0.022±0.001 3.785±0.059 16.998±2.186
0.1 0.143±0.021 0.667±0.024 0.524±0.022 0.019±0.001 1.865±0.057 16.607±2.509
0.3 0.141±0.016 0.645±0.018 0.497±0.018 0.017±0.000 1.631±0.060 17.615±2.869
0.5 0.137±0.030 0.618±0.012 0.468±0.009 0.015±0.000 1.521±0.040 16.364±2.265
0.7 0.138±0.031 0.612±0.018 0.459±0.020 0.014±0.000 1.419±0.021 18.070±2.873
0.9 0.136±0.020 0.599±0.013 0.443±0.014 0.013±0.000 1.300±0.031 19.487±2.370

Table 11: Sensitivity to maximum number of segments Kmax.

Kmax Sparsity F1 IoU Contiguity # Segments Segment Length

1 0.188±0.017 0.499±0.013 0.343±0.012 0.010±0.000 1.000±0.000 37.549±3.473
2 0.170±0.022 0.643±0.024 0.494±0.028 0.016±0.001 1.619±0.056 21.751±3.416
3 0.154±0.017 0.652±0.011 0.504±0.010 0.016±0.001 1.647±0.060 18.102±2.412
5 0.141±0.016 0.645±0.018 0.497±0.018 0.017±0.000 1.631±0.060 17.615±2.869
7 0.140±0.025 0.642±0.015 0.492±0.017 0.016±0.001 1.647±0.061 17.610±3.789

D.5 MULTIVARIATE TIME-SERIES EXTENSION

Why we have focused on a Univariate Setup. In the main text we deliberately focused on univari-
ate time series in order to highlight our primary contribution: moving from point-wise to segment-
wise explanations under strict black-box constraints, and making the resulting combinatorial search
over variable-length segments tractable. In this appendix section, we describe how the same for-
mulation can be naturally extended to the multivariate setting by adding a simple channel-selection
component to the action space, without modifying the underlying reward or black-box model.
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Simple multivariate extension. To extend TimeSeg to multivariate inputs, we augment the action
space with a channel-selection policy. Each segment becomes a joint draw

s = (c, ts, te), c ∈ [d],

and the policy factorizes as

πϕ(s | ·) = πϕ(c, t
s, te | ·) = πϕc(c | ·)πϕs(ts | c, ·)πϕe(te | c, ts, ·).

Here, c denotes the chosen channel index, and πϕc is a categorical distribution whose logits are
produced by the policy network. All other components – the reward, sparsity penalty, termination,
and black-box predictor – remain unchanged; only the action space is expanded.

Additional experiments. We evaluate the multivariate version of TimeSeg on SeqComb-MV, a
multivariate extension of SeqCombSingle in which channels are constructed with minimal cross-
channel interaction. TimeSeg achieves comparable F1/IoU to the univariate setting while preserv-
ing markedly better contiguity (Table 12), indicating that the framework transfers with minimal
modification.

Table 12: Multivariate results on SeqComb-MV (sparsity: 0.063).

Method F1 IoU Contiguity

TimeX++ 0.471±0.038 0.334±0.030 0.064±0.009
Ours (TimeSeg) 0.502±0.034 0.353±0.032 0.003±0.000

D.6 BLACK-BOX ARCHITECTURES: GENERALIZATION

Beyond TCN, we assess whether TimeSeg transfers to qualitatively different black-box architec-
tures. To this end, we additionally evaluate RNN and Transformer classifiers on three representa-
tive datasets: SeqCombSingle (synthetic), MIT-ECG (real, with ground-truth QRS annotations),
and GunPoint (real, without segment annotations), with results reported in Tables 13 to 18.

Across all architectures and datasets, TimeSeg exhibits the same qualitative behavior: (1) compact
and coherent segments, (2) stable overlap when ground truth is available, (3) consistently strong
sufficiency/comprehensiveness fidelity, (4) minimal dependence on the specific backbone. This sup-
ports that TimeSeg operates effectively under a strict black-box setting without relying on gradient
access or model structure, as summarized in Figure 7.
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Figure 7: Backbone generalization. For each dataset (SeqCombSingle, MIT-ECG, GunPoint), we compare
LIMESegment, TimeX++, and TimeSeg across three backbones (TCN, RNN, Transformer). Left/middle: F1
overlap with ground-truth explanatory regions (higher is better). Right: sufficiency on GunPoint (lower is bet-
ter). TimeSeg matches or exceeds the best performance across backbones while keeping the standard deviation
consistently small, indicating that its selected segments capture most of the predictive signal regardless of the
underlying architecture.

RNN results. On SeqCombSingle and MIT-ECG, TimeSeg matches or exceeds TimeX++ on IoU/F1
while producing far more contiguous explanations. On GunPoint, TimeSeg achieves the lowest
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Table 13: RNN backbone: SeqCombSingle (sparsity: 0.24).

Method F1 IoU Contiguity

IG 0.515±0.028 0.352±0.026 0.113±0.014
LIMESegment 0.432±0.013 0.290±0.011 0.011±0.000
TimeX++ 0.601±0.079 0.434±0.069 0.141±0.004

Ours 0.595±0.011 0.437±0.012 0.012±0.000

Table 14: RNN backbone: MIT-ECG (sparsity: 0.12).

Method F1 IoU Contiguity

IG 0.628±0.016 0.477±0.018 0.035±0.001
LIMESegment 0.608±0.015 0.476±0.015 0.006±0.000
TimeX++ 0.582±0.123 0.463±0.106 0.013±0.002

Ours 0.746±0.022 0.628±0.026 0.006±0.000

sufficiency (best) among all methods except LIMESegment, while still capturing coherent segments
rather than scattered points.

Table 15: RNN backbone: GunPoint (sparsity: 0.06).

Method Suff. (Avg.) Comp. (Avg.) Suff. (Zero) Comp. (Zero) Contiguity

Random 55.029±2.799 3.572±3.708 55.043±2.817 3.572±3.708 0.114±0.061
IG 34.784±9.174 18.223±10.334 34.784±9.174 18.223±10.334 0.027±0.007
LIMESegment 3.049±1.533 65.196±9.383 3.049±1.533 65.196±9.383 0.009±0.001
TimeX++ 36.322±1.555 1.465±2.112 36.318±1.556 1.465±2.112 0.008±0.001

Ours 1.557±0.903 26.688±17.553 1.557±0.903 26.688±17.553 0.012±0.001

Transformer results. We repeat the same experiment using a Transformer encoder as the black-box.
TimeSeg again achieves the best or second-best overlap on SeqCombSingle and MIT-ECG while
maintaining very low contiguity, and exhibits strong sufficiency and comprehensiveness behavior
on GunPoint.

Table 16: Transformer backbone: SeqCombSingle (sparsity: 0.25).

Method F1 IoU Contiguity

IG 0.471±0.028 0.314±0.025 0.172±0.010
LIMESegment 0.338±0.013 0.215±0.010 0.011±0.000
TimeX++ 0.535±0.133 0.371±0.090 0.093±0.009

Ours 0.573±0.014 0.416±0.014 0.012±0.000

Table 17: Transformer backbone: MIT-ECG (sparsity: 0.13).

Method F1 IoU Contiguity

IG 0.462±0.019 0.313±0.017 0.102±0.016
LIMESegment 0.461±0.041 0.343±0.044 0.007±0.001
TimeX++ 0.572±0.132 0.463±0.098 0.013±0.003

Ours 0.611±0.040 0.484±0.037 0.006±0.000
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Table 18: Transformer backbone: GunPoint (sparsity: 0.14).

Method Suff. (Avg.) Comp. (Avg.) Suff. (Zero) Comp. (Zero) Contiguity

Random 48.152±11.295 8.601±3.745 48.152±11.295 8.601±3.745 0.242±0.049
IG 13.547±4.598 33.455±14.972 13.547±4.598 33.455±14.972 0.146±0.036
LIMESegment 22.703±15.732 68.148±14.702 22.703±15.732 68.148±14.702 0.014±0.003
TimeX++ 44.995±8.446 3.745±2.406 44.999±8.447 3.745±2.406 0.007±0.001

Ours -0.563±2.452 40.953±7.352 -0.561±2.451 40.953±7.352 0.014±0.001

Summary. These results demonstrate that TimeSeg is architecture-agnostic, producing coherent,
compact, and high-fidelity segment-wise explanations across convolutional, recurrent, and Trans-
former encoder backbones.

D.7 COMPUTATIONAL COST

Interactions. Standard RL typically rolls out episodes for ∼ 103–104 steps, incurring a large num-
ber of agent–environment interactions. In contrast, we cast RL as a segment selection problem: for
each input we take at most Kmax decisions, and we explicitly cap the number of sampled steps per
epoch (e.g., Nrollout = 1024). Collected trajectories are stored in a replay buffer and reused until
eviction. As a result, our interaction budget is far below that of standard RL, and comparable to
STE-based masking methods that also query the black box once per generated mask.

Computational cost. We report training wall-clock time per batch (batch size 256), averaged over
1,000 batches, and inference wall-clock time per 1,000 samples for each method (Table 19). For
TimeSeg, the reported training time explicitly includes both the segment-selection rollout (policy
interaction with the black-box) and the ensuing PPO update steps. LIMESegment is training-free,
so only inference time is reported. All measurements were obtained on a same hardware setup
with an Intel(R) Xeon(R) CPU and an NVIDIA RTX A6000 GPU, and all methods use identical
preprocessing.

Table 19: Wall-clock cost on SeqCombSingle. Rollout and training times are per batch (bs = 256), averaged
over 1,000 batches; inference times are per 1,000 samples.

Method Rollout Time (s) Training Time (s) Inference Time (s)

LIMESegment – – 6.166±1.620
TimeX++ – 0.250±0.025 0.003±0.000

Ours 0.267±0.059 0.040±0.075 0.023±0.036

Efficiency, stability, convergence. To make training behavior transparent, we report both training
and validation reward curves, and we further decompose the validation reward into its cross-entropy
and length (sparsity) components. This reveals how the sparsity regularizer shapes the learning
dynamics and how quickly the policy stabilizes (Figure 8).

D.8 SEGMENT CLUSTERING ANALYSIS

To provide population-level evidence for this structural view, we perform a simple clustering analy-
sis on the extracted segments, and visualize the results in Figure 9. Concretely, we:

1. collect all segments selected by TimeSeg on the test split of a given MIT-ECG dataset.

2. compute pairwise DTW distances between segments and obtain a 2D embedding via a distance-
based method.

3. cluster the embedded segments with k-medoids using the DTW space.

4. visualize both the embedded points and the segments at the cluster centroid.
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Figure 8: Training dynamics on SeqCombSingle. (a) policy/value losses; (b) training reward and average
length; (c) validation total reward and its decomposition into cross-entropy and length terms; (d) validation
AUROC and average explanation length. Curves show mean ± std over five folds.

This yields groups of explanatory segments that correspond to recurring temporal segments (e.g.,
QRS-like shapes in MIT-ECG). Such segment-level structure is difficult to recover from purely
point-wise saliency but becomes straightforward once explanations are expressed as contiguous seg-
ments as in our TimeSeg.

Figure 9: Segment clustering on MIT-ECG. Each point is an extracted segment embedded in a DTW-based
space; colors denote clusters (via k-medoids), and crosses mark the cluster medoids. The corresponding medoid
segments form representative QRS-like segments, illustrating that TimeSeg ’s contiguous segments aggregate
into clinically meaningful patterns at the population level.

E THE USE OF LLMS IN THIS WORK

LLMs were used solely for minor sentence editing to improve readability and flow, with no involve-
ment in idea generation, experimental design, analysis, or substantive content creation.
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