

000 001 002 003 004 005 TIMESEG: AN INFORMATION-THEORETIC SEGMENT- WISE EXPLAINER FOR TIME-SERIES PREDICTIONS

006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 ABSTRACT

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Explaining predictions of black-box time-series models remains a challenging problem due to the dynamically evolving patterns within individual sequences and their complex temporal dependencies. Unfortunately, existing explanation methods largely focus on point-wise explanations, which fail to capture broader temporal context, while methods that attempt to highlight interpretable temporal patterns (e.g., achieved by incorporating a regularizer or fixed-length patches) often lack principled definitions of meaningful segments. This limitation frequently leads to fragmented and confusing explanations for end users. As such, the notion of segment-wise explanations has remained underexplored, with little consensus on what constitutes an *interpretable* segment or how such segments should be identified. To bridge this gap, we define segment-wise explanation for black-box time-series models as the task of selecting contiguous subsequences that maximize their joint mutual information with the target prediction. Building on this formulation, we propose TimeSeg, a novel information-theoretic framework that employs reinforcement learning to sequentially identify predictive temporal segments at a per-instance level. By doing so, TimeSeg produces segment-wise explanations that capture holistic temporal patterns rather than fragmented points, providing class-predictive patterns in a human-interpretable manner. Extensive experiments on both synthetic and real-world datasets demonstrate that TimeSeg produces more coherent and human-understandable explanations, while achieving performance that matches or surpasses existing methods on downstream tasks using the identified segments. Codes are available [here](#).

1 INTRODUCTION

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Explaining time-series models is particularly challenging due to their contiguous, interconnected structure and complex temporal dynamics. These challenges hinder the adoption of time-series models in high-stakes domains, such as healthcare, finance, and manufacturing, where decisions must remain interpretable while operating under strict black-box constraints that prohibit access to model internals (Lipton, 2018; Doshi-Velez & Kim, 2017). In light of this, effective explanations for time series must meet two key criteria simultaneously: (i) accurately identifying specific regions of the time series that drive model predictions and (ii) presenting these regions as human-interpretable temporal segments (Küsters et al., 2020; Queen et al., 2023).

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Early efforts to explain time-series models adapted general-purpose explanation techniques (Sundararajan et al., 2017; Lundberg & Lee, 2017; Ribeiro et al., 2016), which treat each time point independently. These point-wise methods fail to capture the temporal dependencies critical for interpreting time-series predictions (Ismail et al., 2020; Leung et al.). To address this, subsequent works have introduced temporal contiguous constraints to encourage contiguous patterns in point-wise explanations (Crabbé & Van Der Schaar, 2021; Liu et al., 2024) or employed patch-wise explanations that explicitly model temporal segments using fixed-length patches (Sivill & Flach, 2022). However, these approaches face trade-offs: point-wise methods excel at precise localization but struggle to produce contiguous temporal patterns, while patch-wise methods enhance interpretability through segment-wise explanations at the cost of reduced localization accuracy due to fixed patch sizes.

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
To bridge this gap, we propose TimeSeg, a post-hoc segment-wise explainer for time series that operates under strict black-box assumptions and *dynamically selects a set of contiguous, variable-length segments within an individual sequence*. TimeSeg formulates segment selection as a sequential decision problem, maximizing the variational lower bound of the joint mutual information (MI) between the model’s prediction and the selected segments, while incorporating a sparsity penalty to encourage compact, non-overlapping segments that enhance human interpretability. As illustrated in Figure 1, our approach departs from existing approaches that fall short in different ways: *point-wise* methods (e.g., WinIT (Leung et al.), TimeX++ (Liu et al., 2024)) produce saliency regions

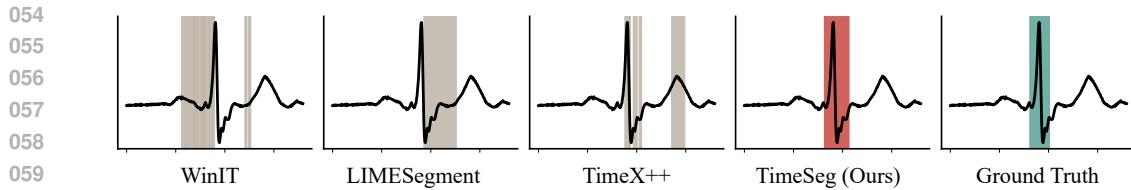


Figure 1: A Comparison of Generated Explanations for the MIT-ECG Dataset. TimeSeg produces compact, variable-length *segment-wise explanations* that align well with ground truth, while prior point-wise or patch-wise explanations are fragmented and misaligned.

that are fragmented by temporal gaps, making them difficult to interpret as coherent temporal patterns, whereas *patch-wise* methods (*e.g.*, LIMESegment (Sivill & Flach, 2022)) enforce contiguous saliency regions but lack precise and variable-length localization. In contrast, TimeSeg identifies compact segments whose boundaries closely align with the ground-truth explanatory region, providing segment-wise explanations that are both temporally coherent and precisely localized.

Our key contributions are summarized as follows:

- We formally define *segment-wise explanation* for time series as an information-theoretic optimization problem that seeks to maximize the MI between the selected segments and the black-box model’s predictions while keeping the explanation structurally simple (*i.e.*, concise and non-redundant). To make this problem tractable, we reformulate the joint MI maximization into a sequential process by decomposing it into conditional MI (CMI) terms via the chain rule.
- We cast the sequential decision process of maximizing the CMI terms as a reinforcement learning (RL) problem. In this framework, the explainer acts as an agent that interacts with the black-box model, learning a policy for segment selection that maximizes the expected cumulative reward based on the CMI terms.
- We address a *strict* black-box setting – a more practical scenario where access is restricted to only the model’s inputs and outputs – and demonstrate that our method achieves performance comparable or superior to state-of-the-art explainers that require internal access (*e.g.*, gradients or embeddings) across a variety of synthetic and real-world datasets.

2 RELATED WORK

Initial efforts in explaining time-series models largely focused on adapting general-purpose explanation methods – such as gradient-based methods (Sundararajan et al., 2017; Shrikumar et al., 2017), perturbation-based methods (Lundberg & Lee, 2017), and surrogate models (Ribeiro et al., 2016) – to time-series data. However, these methods often treat features at individual time points as independent, failing to capture the temporal dependencies that are crucial for interpreting time-series predictions (Ismail et al., 2020; Leung et al.).

Point-wise Explanation. To address these limitations, point-wise attribution methods explicitly model temporal relationships when assigning importance to individual time points. Specifically, Dynamask (Crabbé & Van Der Schaar, 2021) proposes a *memoryless* optimization approach for learning dynamic saliency masks. It models the selection of each time point as an independent Bernoulli random variable to relax the combinatorial search problem, and incorporates regularization to encourage the resulting mask to promote temporal smoothness and sparsity. Building on this idea, ExtrMask (Enguehard, 2023) jointly learns both the mask and the perturbation process to better capture temporal dependencies in model predictions. Similarly, FIT (Tonekaboni et al., 2020) estimates point-wise importance by measuring shifts in the predictive distribution via KL-divergence, while WinIT (Leung et al.) aggregates these shifts over predefined windows to capture local temporal patterns. More recently, TimeX (Queen et al., 2023) and TimeX++ (Liu et al., 2024) employ an *amortized* surrogate explainer to produce point-wise explanations, leveraging a model-behavior consistency objective and straight-through estimators (STE) (Jang et al., 2017) to enable backpropagation through discrete sampling of independent Bernoulli masks. Despite these advances, point-wise methods remain fundamentally constrained by their design: even with regularization to encourage contiguity, they often yield fragmented explanations that highlight isolated time points rather than the coherent temporal segments essential for better intuitive interpretability.

108 **Segment-wise Explanation.** Some methods have attempted to generate segment-wise explanations.
 109 LIMESegment (Sivill & Flach, 2022) adapts LIME (Ribeiro et al., 2016) to a temporal setting by
 110 partitioning time series into fixed-size, non-adaptive patches. More recently, SpectralX (Chung et al.,
 111 2024) provides frequency-aware explanations by applying perturbations in the frequency domain
 112 before converting back to the time domain. However, a fundamental limitation of these approaches
 113 is their inability to identify variable-length segments that adapt to the unique temporal dynamics of
 114 each time series sample, often leading to misaligned or fragmented explanations (see Figure 1).

115 In contrast, we introduce a novel framework for selecting *important temporal segments* rather than
 116 independent time points. While the success of continuous relaxation in point-wise methods might
 117 suggest a natural extension to segments, this adaptation is far from straightforward. Point-wise meth-
 118 ods remain tractable because they model each time point as an independent binary variable, but this
 119 assumption breaks down for segments, where consecutive time points must be considered jointly.
 120 Defining a tractable probability distribution over all possible segments is inherently challenging, as
 121 consecutive time points exhibit strong dependencies, and the selection of multiple segments intro-
 122 duces complex combinatorial interdependencies. To overcome these obstacles, we formally define
 123 what constitutes a meaningful time-series segment and propose an RL-based framework that se-
 124 quentially selects segments on a per-instance basis.

125 3 PROBLEM FORMULATION

126 In this section, we begin by formally defining segment-wise explanations for a *black-box* time-series
 127 classifier, followed by a discussion of the key challenges in deriving such explanations.

128 **Notation.** We consider a pre-trained, *black-box* time-series classifier, $g_\theta : \mathbb{R}^T \rightarrow \mathbb{R}^C$, which takes a
 129 univariate time series $\mathbf{x} = (x_1, \dots, x_T) \in \mathbb{R}^T$ and outputs predictions for the target label $y \in [C]$
 130 with C classes. Here, g_θ is a *strict* black-box such that we can evaluate the model output $g_\theta(\mathbf{x})$
 131 for any given instance \mathbf{x} , but we do not have any knowledge of the internal model states, such
 132 as parameters (θ), hidden representations, and gradients. Throughout the paper, we use uppercase
 133 letters for random variables and lowercase letters for their realizations. For instance, a time series
 134 \mathbf{x} and its label y are realizations of the random variables $\mathbf{X} = (X_1, \dots, X_T)$ and Y , respectively.
 135 While our primary focus is on explaining black-box predictions, our method can be readily applied
 136 for data-centric analysis using the ground-truth label as the explanation target, thereby uncovering
 137 the inherent temporal patterns most predictive of the true label.

138 **Time-series Segments.** Unlike point-wise explanations that assign importance scores to individual
 139 time points (*i.e.*, x_t), our objective is to find segment-wise explanations. More specifically, we aim
 140 to identify a set of contiguous subsequences $\mathbf{x}_{t_1:t_2} \stackrel{\text{def}}{=} (x_{t_1}, \dots, x_{t_2})$ with $1 \leq t_1 \leq t_2 \leq T$, that are
 141 collectively most predictive of the target. To formally denote this, we introduce a *segment-index*
 142 *variable* $s = (t^s, t^e)$, where $t^s, t^e \in [T]$ with $t^s \leq t^e$ denote the start and end time points, respec-
 143 tively. The random variable for the corresponding *segment* is then defined as $\mathbf{X}_s = \mathbf{X}_{t^s:t^e}$, with its
 144 realization denoted by $\mathbf{x}_s = \mathbf{x}_{t^s:t^e}$. Since explanations often rely on multiple informative regions
 145 within a time series, we further extend this notation to an arbitrary number of non-overlapping K
 146 segments. Specifically, let $\mathbf{s}_{1:K} = (s_1, \dots, s_K)$ be an ordered collection of segment-index variables.
 147 Then, the corresponding collection of segments can be represented as $\mathbf{X}_{\mathbf{s}_{1:K}} = (\mathbf{X}_{s_1}, \dots, \mathbf{X}_{s_K})$. We
 148 note that the number of segments can vary depending on the input time series.

149 **Segment-wise Explainer.** For a given instance \mathbf{X} , a segment-wise explanation of the black-box
 150 model is defined as the subset of segment-index variables that jointly capture the most predictive
 151 information about the target black-box outcome $g_\theta(\mathbf{X})$. To achieve this, we introduce a segment-
 152 wise explainer, \mathcal{E} , which maps an input time series to a set of segment-index variables representing
 153 candidate combinations of K non-overlapping segments. An *optimal* segment-wise explainer is then
 154 obtained by solving the following optimization problem:

155 **Definition 3.1** (Optimal Segment-wise Explainer). *Given \mathbf{X} , the optimal segment-wise explainer
 156 for $g_\theta(\mathbf{X})$, is defined as the solution to:*

$$157 \mathcal{E}^* = \arg \max_{\mathcal{E}} I(g_\theta(\mathbf{X}); \mathbf{X}_{\mathbf{s}_{1:K}}) - \lambda J(\mathbf{s}_{1:K}) \quad \text{subject to } \mathbf{s}_{1:K} \sim \mathcal{E}(\mathbf{X}), \quad (1)$$

158 where $I(g_\theta(\mathbf{X}); \mathbf{X}_{\mathbf{s}_{1:K}})$ denotes the mutual information (MI) that measures the predictive power of
 159 the selected segments $\mathbf{X}_{\mathbf{s}_{1:K}}$ with respect to $g_\theta(\mathbf{X})$, and $J(\cdot)$ regularizes the segmentation complex-

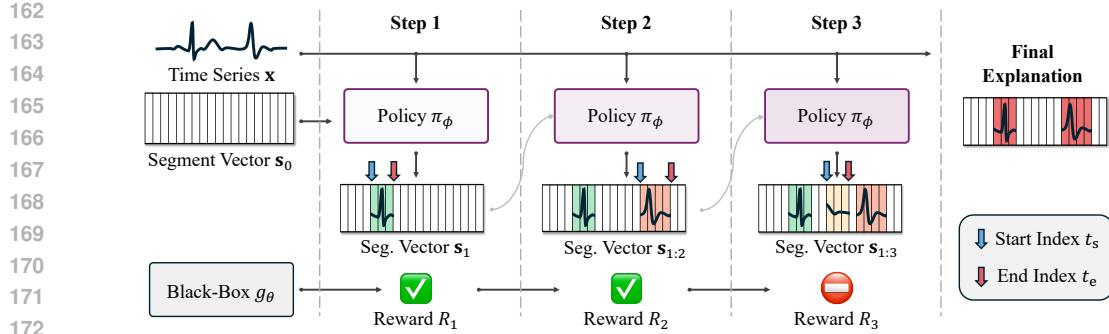


Figure 2: Overview of TimeSeg. Given an input time series \mathbf{x} , our policy π_ϕ sequentially samples variable-length segments. At each step k , TimeSeg masks \mathbf{x} to obtain $\mathbf{x}_{s_{1:k}}$ and computes the reward R_k as the *cross-entropy gap*. The procedure terminates when the marginal gain falls below a threshold (or K_{\max} is reached).

ity (e.g., each segment length). The coefficient $\lambda \in \mathbb{R}^+$ controls the trade-off between informativity and simplicity of the generated explanations.

The resulting optimal indices $\mathbf{s}_{1:K}^* = \mathcal{E}^*(\mathbf{x})$ provide an intuitive explanation by highlighting a sparse set of the most salient temporal patterns in \mathbf{x} that the black-box model relies on for predicting $g_\theta(\mathbf{x})$.

3.1 CHALLENGES OF OBTAINING SEGMENT-WISE EXPLANATIONS IN TIME SERIES

Solving Eq. (1) would provide an ideal explanation, consisting of *a minimal set of segments* that is *maximally informative* about the target outcome. However, directly optimizing this objective is intractable due to two fundamental challenges: First, accurately estimating the joint mutual information between arbitrary collections of time-series segments and the target outcome is infeasible. Second, identifying the optimal segment-wise explainer requires solving a combinatorial problem over all possible discrete mappings, making an exhaustive search computationally prohibitive.¹

To jointly address these challenges, we first adopt an *amortized* approach in which segment-index variables are treated as random variables sampled from a distribution parameterized by the explainer for each input time series. This stochastic formulation bypasses the need for direct combinatorial optimization over discrete mappings. We then reformulate the objective by decomposing the joint MI in Eq. (1) into conditional MI (CMI) via the chain rule, and estimate each CMI term as a cross-entropy difference using a variational approximation based on the stochastic explainer. This transformation converts the all-at-once selection of segments into a “sequential decision process”. The resulting formulation is not only computationally feasible – replacing exponential search with a tractable procedure – but also enables modeling segments as coherent explanatory units that generalize across different time-series instances. The details of our method are presented in the following section.

4 METHOD: TIMESEG

In this section, we propose a novel information-theoretic segment-wise explainer, which we refer to as TimeSeg. We present the key components of our method in the following order: (Sec. 4.1) reformulating the intractable joint MI optimization as a sequential decision process and casting it within a reinforcement learning (RL) framework, (Sec. 4.2) designing a two-step sampling process that factorizes segment selection into conditional distributions to ensure valid segment generation, (Sec. 4.3) handling the policy gradient optimization with PPO and adaptively determining the optimal number of segments for each instance, and (Sec. 4.4) describing how TimeSeg produces segment explanations end-to-end, from pre-trained black-box predictions to final segment selection.

4.1 REFORMULATING SEGMENT SELECTION AS A SEQUENTIAL PROCESS

To address the computational intractability of finding all segments simultaneously, we reformulate the joint MI in Eq. (1) as a sequential decision process that identifies important segments iteratively.

¹Since selecting K segments yields $\binom{T+1}{2K}$ segment candidate sets, summing over all feasible K gives $\sum_{K=1}^{\lfloor (T+1)/2 \rfloor} \binom{T+1}{2K} = 2^T - 1$, which grows exponentially with T (i.e., $\mathcal{O}(2^T)$); see details in Appendix A.3.

216 Using the chain rule, we decompose the joint MI into a sum of CMI terms as follows:
 217

$$218 \quad 219 \quad 220 \quad I(g_\theta(\mathbf{X}); \mathbf{X}_{s_{1:K}}) = \sum_{k=1}^K I(g_\theta(\mathbf{X}); \mathbf{X}_{s_k} \mid \mathbf{X}_{s_{1:k-1}}), \quad (2)$$

221 where the CMI term, $I(g_\theta(\mathbf{X}); \mathbf{X}_{s_k} \mid \mathbf{X}_{s_{1:k-1}})$, measures the information gain about the model’s
 222 prediction $g_\theta(\mathbf{X})$ from observing the k -th segment \mathbf{X}_{s_k} , conditioned on the set of previously identified
 223 segments $\mathbf{X}_{s_{1:k-1}}$.

224 Since the CMI terms in Eq. (2) are intractable to compute directly, we instead maximize a variational
 225 approximation derived from the information bottleneck principle (Alemi et al., 2016); see
 226 Appendix A.1 for details. The k -th conditional mutual information term is given by:

$$227 \quad 228 \quad I_{\theta, \phi}(Y; \mathbf{X}_{s_k} \mid \mathbf{X}_{s_{1:k-1}}) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:k} \sim \pi_\phi(\cdot \mid \mathbf{x})} \mathbb{E}_{p_\theta(y \mid \mathbf{x})} \left[\log p_\theta(y \mid \mathbf{x}_{s_{1:k}}) - \log p_\theta(y \mid \mathbf{x}_{s_{1:k-1}}) \right]. \quad (3)$$

229 Here, $p_\theta(y \mid \mathbf{x}_{s_{1:k}})$ denotes the predictive distribution for class y obtained by the black-box model
 230 when its input is restricted to the segments indexed by $\mathbf{s}_{1:k}$, i.e., $g_\theta(\mathbf{x}_{s_{1:k}})$. The explainer, \mathcal{E} , is im-
 231 plemented as a stochastic policy (parameterized by ϕ), π_ϕ , which sequentially generates segment in-
 232 dices $\mathbf{s}_{1:K}$. At each step k , the policy outputs a distribution over the next segment index, conditioned
 233 on input \mathbf{x} and previously selected indices $\mathbf{s}_{1:k-1}$, from which s_k is sampled: $s_k \sim \pi_\phi(\cdot \mid \mathbf{x}, \mathbf{s}_{1:k-1})$.

234 The objective in Eq. (3) can be optimized within a reinforcement learning (RL) framework. We view
 235 the explainer as an agent that sequentially interacts with the black-box model. Formally, the state
 236 at step k consists of the input \mathbf{x} and the history of previously chosen segment indices $\mathbf{s}_{1:k-1}$. The
 237 agent’s action is to select the next segment-index variable $s_k \sim \pi_\phi(\cdot \mid \mathbf{x}, \mathbf{s}_{1:k-1})$. The reward for
 238 this action is the CMI, which we compute as the cross-entropy gap between the black-box model’s
 239 outputs with and without augmenting the new segment. This reward is formulated as follows:

$$240 \quad 241 \quad r_\theta(\mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) \stackrel{\text{def}}{=} \mathbb{E}_{p_\theta(y \mid \mathbf{x})} \left[\log p_\theta(y \mid \mathbf{x}_{s_{1:k}}) - \log p_\theta(y \mid \mathbf{x}_{s_{1:k-1}}) \right]. \quad (4)$$

242 To discourage a trivial solution where the policy simply selects all available segments, we intro-
 243 duce a sparsity-inducing cost, $c(s_k)$, into the reward function in Eq. (4). The overall objective is
 244 thus to maximize the expected cumulative reward. This aligns our problem with a standard policy
 245 optimization framework (Sutton et al., 1998), and we reformulate the final objective as:

$$246 \quad 247 \quad 248 \quad \mathcal{L}(\phi) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:K} \sim \pi_\phi(\cdot \mid \mathbf{x})} \left[\sum_{k=1}^K r_\theta(\mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) - \lambda c(s_k) \right], \quad (5)$$

249 where λ is the trade-off coefficient introduced in Eq. (1).

251 4.2 STOCHASTIC POLICY FOR SEGMENT-INDEX VARIABLE SELECTION

253 A key challenge for the policy π_ϕ is to generate a valid segment-index variable $s_k = (t_k^s, t_k^e)$ that
 254 satisfies the ordering constraint $t_k^s \leq t_k^e$. To enforce this structurally, we avoid modeling the joint
 255 distribution over all valid “start-end” index pairs and instead factor the policy into a product of two
 256 conditional distributions: a start-policy π_{ϕ^s} and an end-policy π_{ϕ^e} . This decomposition is given as

$$257 \quad \pi_\phi(\mathbf{s} \mid \mathbf{x}, \mathbf{s}_{1:k-1}) \stackrel{\text{def}}{=} \pi_{\phi^s}(t^s \mid \mathbf{x}, \mathbf{s}_{1:k-1}) \pi_{\phi^e}(t^e \mid t^s, \mathbf{x}, \mathbf{s}_{1:k-1}). \quad (6)$$

258 In this two-step sampling process, our start-policy first samples a *where-to-start* index given the
 259 input \mathbf{x} and previously selected segment indices $\mathbf{s}_{1:k-1}$, i.e., $t^s \sim \pi_{\phi^s}(\cdot \mid \mathbf{x}, \mathbf{s}_{1:k-1})$. Then, further
 260 conditioning on this choice, our end-policy selects an *where-to-end* index from the valid range, i.e.,
 261 $t^e \sim \pi_{\phi^e}(\cdot \mid t^s, \mathbf{x}, \mathbf{s}_{1:k-1})$. This factorization guarantees by construction that all generated segments
 262 are valid and non-empty. In practice, the initial segment $\mathbf{s}_{1:0} = s_0$, where $k = 1$, is initialized as an
 263 empty set to provide an initial starting point.

264 This factorization decomposes the policy π_ϕ into two *categorical* distributions: π_{ϕ^s} and π_{ϕ^e} , both
 265 defined over absolute time indices. Optimizing this policy requires computing the gradients of the
 266 expected reward with respect to ϕ^s and ϕ^e . While individual categorical distributions typically allow
 267 continuous relaxations through techniques like Gumbel-Softmax reparameterization – as applied in
 268 point-wise explanations (Crabbé & Van Der Schaar, 2021) – the conditional constraint $t_k^s \leq t_k^e$
 269 prevents straightforward application of such reparameterization tricks, motivating the need for a
 policy gradient method described in the following section.

270
271

4.3 LEARNING SEGMENT SELECTION VIA POLICY GRADIENT

272
273
274
275

The primary optimization challenge is that the objective in Eq. (5) is not differentiable with respect to the policy parameters ϕ , since segment indices are sampled discretely as $s_k \sim \pi_\phi(\cdot | \mathbf{x}, \mathbf{s}_{1:k-1})$. While the REINFORCE method (Williams, 1992) gives an unbiased gradient estimate, its direct use is known to suffer from high variance, which often leads to unstable training (Sutton & Barto, 2018).

276
277
278
279
280
281
282
283

To improve stability, we adopt an actor-critic framework (Schulman et al., 2015). Specifically, we introduce a *value network* (critic), parameterized by ψ , that serves as a learnable baseline. This enables us to compute an *advantage*, A_k , which measures the relative benefit of selecting a new segment compared to the baseline, thereby reducing gradient variance. We define the advantage using the one-step temporal difference error: $A_k = R_k + \gamma V_\psi(\mathbf{x}, \mathbf{s}_{1:k}) - V_\psi(\mathbf{x}, \mathbf{s}_{1:k-1})$ where $R_k = r_\theta(\mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) - \lambda c(s_k)$ is the immediate reward of selecting the k -th segment and $\gamma \in [0, 1]$ is a discount factor. **The value network V_ψ is trained with a mean squared error loss to match a bootstrapped value target. Concretely, we minimize**

284
285

$$\mathcal{L}_{\text{value}}(\psi) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:k} \sim \pi_\phi^{\text{OLD}}} \left[(V_\psi(\mathbf{x}, \mathbf{s}_{1:k-1}) - (R_k + \gamma V_\psi(\mathbf{x}, \mathbf{s}_{1:k})))^2 \right],$$

286
287
288
289

such that V_ψ approximates the expected return and the resulting advantage A_k provides a low-variance baseline for the policy-gradient update. Furthermore, to regulate the magnitude of policy updates, we optimize the policy π_ϕ (actor) using the clipped surrogate objective of *proximal policy optimization* (PPO) (Schulman et al., 2017). Then, the final objective can be given as follows:

290
291
292
293

$$\mathcal{L}_{\text{PPO}}(\phi) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:k} \sim \pi_\phi^{\text{OLD}}} \left[\sum_{k=1}^K \min \left(\rho_k \cdot A_k, \text{CLIP}(\rho_k, 1 - \epsilon, 1 + \epsilon) A_k \right) \right], \quad (7)$$

294
295

where $\rho_k = \frac{\pi_\phi(s_k | \mathbf{x}, \mathbf{s}_{1:k-1})}{\pi_\phi^{\text{OLD}}(s_k | \mathbf{x}, \mathbf{s}_{1:k-1})}$ is the sampling ratio.

296
297

The policy and value networks are trained jointly, providing a robust and stable optimization procedure. Additional details are provided in Appendix A.2.

298
299
300
301
302
303

Determining the Number of Selected Segments. Since the optimal number of segments can vary across time series, we employ an instance-specific termination criterion to decide when to stop the selection process. At each step k , we compute the CMI reward in Eq. (4), which is the marginal information gain (*i.e.*, the difference in cross-entropy), from adding the newly proposed segment. We normalize it with the current cross-entropy and terminate the selection procedure when this relative reward falls below a predefined threshold τ :

304
305

$$r_\theta(\mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) / \mathbb{E}_{p_\theta(y|\mathbf{x})} [-\log p_\theta(y | \mathbf{x}_{s_{1:k-1}})] \leq \tau. \quad (8)$$

306
307
308

This allows TimeSeg to adaptively determine the number of selected segments K and produce instance-specific explanations. In our experiments, we set $\tau = 0.3$ and $K_{\text{max}} = 5$.

309
310

4.4 SEGMENT REPRESENTATION VIA GATING VECTORS

311
312
313
314
315

At each selection step, the policy network π_ϕ and value network V_ψ are provided with the entire sequence \mathbf{x} together with the previously selected segment indices $\mathbf{s}_{1:k-1}$. This full-context access allows these networks to assess the global structure of the time series and strategically search for the next informative segment. In contrast, the black-box time-series classifier g_θ only observes a set of segments $\mathbf{x}_{s_{1:k}}$, matching the limited view that will ultimately be provided as the explanation.

316
317
318
319
320

To encode this asymmetric access, we introduce *binary gate vectors*, $\mathbf{m}_1, \dots, \mathbf{m}_K$, where each $\mathbf{m}_k = (m_{k,1}, \dots, m_{k,T}) \in \{0, 1\}^T$ indicates whether a time point t is covered by the k -th selected segments: $m_{k,t} = 1$ if $t \in \{t_k^s, \dots, t_k^e\}$ and $m_{k,t} = 0$ otherwise. For the first k selections, we define the *combined* gate vector $\mathbf{m}_{1:k} = \mathbf{m}_1 \vee \mathbf{m}_2 \vee \dots \vee \mathbf{m}_k$, where \vee is an element-wise OR operator, which indicates whether each time point t is covered by any of the first k selected segments.

321
322
323

For the policy and value networks, we concatenate $\mathbf{m}_{1:k-1}$ to \mathbf{x} along the feature axis, forming an augmented input $[\mathbf{x}; \mathbf{m}_{1:k-1}]$. This design provides full temporal context while explicitly marking which segments have already been selected. Meanwhile, to ensure that the black-box model makes predictions only based on the selected segments, we apply the gate vector to the original sequence as

324 **Table 1:** Performance comparison on four datasets with ground-truth; **bold** indicates best, underlined indicates
 325 second-best, and the asterisk (*) denotes methods that violate the strict black-box setup.

Method	SeqComb-UV			LowVarDetect-UV		
	F1 ↑	IoU ↑	Cont. ↓	F1 ↑	IoU ↑	Cont. ↓
IG*	0.539±0.059	0.379±0.057	0.166±0.022	0.582±0.089	0.421±0.089	0.170±0.065
Dynamask	0.157±0.016	0.088±0.010	0.215±0.036	0.177±0.046	0.115±0.038	0.181±0.074
WinIT	0.208±0.033	0.123±0.021	0.178±0.031	0.383±0.022	0.242±0.017	0.117±0.024
LIMESegment	0.430±0.009	0.289±0.008	0.009±0.001	0.467±0.063	0.314±0.058	0.012±0.001
TimeX++*	<u>0.636±0.157</u>	<u>0.489±0.159</u>	0.098±0.015	0.432±0.082	0.291±0.057	0.231±0.025
TimeSeg	0.645±0.018	0.495±0.018	0.017±0.000	0.499±0.023	0.356±0.015	0.020±0.004

Method	FreqShapes-V			MIT-ECG		
	F1 ↑	IoU ↑	Cont. ↓	F1 ↑	IoU ↑	Cont. ↓
IG*	0.687±0.003	0.534±0.004	0.101±0.003	0.589±0.006	0.435±0.007	0.056±0.007
Dynamask	0.103±0.007	0.060±0.004	0.144±0.001	0.353±0.023	0.221±0.018	0.072±0.016
WinIT	0.454±0.005	0.307±0.005	0.114±0.001	0.241±0.062	0.147±0.042	0.133±0.014
LIMESegment	0.440±0.004	0.287±0.003	0.030±0.001	0.491±0.068	0.359±0.063	0.006±0.001
TimeX++*	0.799±0.001	0.666±0.002	0.120±0.001	0.593±0.146	<u>0.460±0.142</u>	0.016±0.002
TimeSeg	<u>0.722±0.014</u>	<u>0.576±0.018</u>	<u>0.085±0.001</u>	0.739±0.016	0.621±0.021	0.006±0.000

341 $\mathbf{x}_{s_{1:k}} = \mathbf{m}_{1:k} \odot \mathbf{x} + (1 - \mathbf{m}_{1:k}) \odot \bar{\mathbf{x}}$, where \odot is element-wise multiplication and $\bar{\mathbf{x}}$ is the empirical
 342 mean of the training set, used to neutralize unselected time points.

343 **Sparsity-inducing Regularization.** Using the gate vectors, we can formulate the sparsity regularization
 344 introduced in Eq. (1), which encourages the selection of compact and non-redundant segments.
 345 Specifically, at the k -th selection step, the sparsity cost, $c(s_k) = \frac{1}{T} \|\mathbf{m}_k\|_1$, is given by the
 346 length of the chosen segments, which is then integrated into the immediate reward as a penalty term:
 347 $R_k = r_\theta(\mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) - \lambda c(s_k)$.

348 **Segment Selection.** At training time, we sample the start and end indices from the policy’s output
 349 distribution to enable exploration and facilitate optimization. In contrast, at inference time, we use
 350 only the policy network and select segments deterministically via argmax. This produces stable and
 351 deterministic explanations. The process repeats until the termination criterion is satisfied.

353 5 EXPERIMENTS

356 **Datasets.** We evaluate TimeSeg on both synthetic and real-world time series datasets across three
 357 categories: (i) synthetic datasets with ground-truth explanatory segments, (ii) real-world datasets
 358 with segment-level annotations as ground-truth explanations, and (iii) real-world datasets without
 359 ground truth explanations. For the synthetic datasets, we adapt datasets from TimeX (Queen et al.,
 360 2023): **SeqComb-UV** (used as originally released), **FreqShapes-V** (a variant with duplicate class-
 361 defining segments removed to ensure single explanatory patterns per sequence), and **LowVarDetect-UV**
 362 (univariate adaptation of the multivariate LowVar dataset). For annotated real-world data, we use
 363 the **MIT-ECG** (Moody & Mark, 2001) arrhythmia detection dataset. For unannotated evaluation,
 364 we include the **Epilepsy** EEG seizure detection (Andrzejak et al., 2002), **Wafer** (Olszewski, 2001)
 365 and **GunPoint** (Ratanamahatana & Keogh, 2005). Additional details are provided in Appendix C.

366 **Benchmark Methods.** We compare TimeSeg against a set of state-of-the-art time series explainers,
 367 including gradient-based methods such as **Integrated Gradients (IG)** (Sundararajan et al., 2017),
 368 point-wise attribution methods including **Dynamask** (Crabbé & Van Der Schaar, 2021), **WinIT** (Le-
 369 ung et al.), and **TimeX++** (Liu et al., 2024), as well as the patch-wise method **LIMESegment** (Sivill
 370 & Flach, 2022). While IG requires direct access to model gradients and TimeX++ depends on inter-
 371 nal embeddings and architectural knowledge, TimeSeg operates in a *strict black-box setting* using
 372 only model inputs and outputs (requiring neither gradients nor internal representations). These meth-
 373 ods are therefore *evaluated under their optimal conditions*, ensuring a rigorous and fair comparison.

374 **Evaluation.** We evaluate the quality of explanations along three complementary dimensions, with
 375 all results reported as mean \pm standard deviation over 5-fold cross-validation:

- 376 • **Overlap with Ground Truth:** For datasets with ground-truth segments (*i.e.*, synthetic bench-
 377 marks and MIT-ECG), we measure the overlap between the selected temporal regions and the
 378 ground truth. We report the F1-score and Jaccard index (IoU) to quantify this overlap.

378 **Table 2:** Occlusion analysis on four datasets under two substitution strategies (Mean / Zero). For each baseline
 379 and dataset, we report AUROC drop ratio when retaining only selected segments (Suff. \downarrow) and when removing
 380 them (Comp. \uparrow), along with a Contiguity score (Cont. \downarrow).
 381

382 Method	MIT-ECG					Epilepsy				
	Mean		Zero		Cont. \downarrow	Mean		Zero		Cont. \downarrow
	Suff. \downarrow	Comp. \uparrow	Suff. \downarrow	Comp. \uparrow		Suff. \downarrow	Comp. \uparrow	Suff. \downarrow	Comp. \uparrow	
Random	55.21 \pm 3.45	0.01 \pm 0.01	53.63 \pm 2.20	0.02 \pm 0.01	0.07 \pm 0.01	3.12 \pm 1.37	0.04 \pm 0.07	4.17 \pm 1.82	0.04 \pm 0.05	0.22 \pm 0.02
WinIT	23.51 \pm 9.01	0.49 \pm 0.30	23.51 \pm 9.01	0.49 \pm 0.30	0.09 \pm 0.01	1.99 \pm 0.31	0.09 \pm 0.08	2.63 \pm 0.42	0.11 \pm 0.08	0.20 \pm 0.02
Dynamask	45.31 \pm 7.47	2.51 \pm 1.56	46.05 \pm 6.64	2.61 \pm 1.51	0.02 \pm 0.00	3.06 \pm 1.29	0.60 \pm 0.79	4.24 \pm 0.93	0.62 \pm 0.85	0.14 \pm 0.01
TimeX++*	40.31 \pm 7.52	5.31 \pm 3.54	42.52 \pm 6.05	5.79 \pm 3.67	0.01 \pm 0.00	6.79 \pm 9.46	0.07 \pm 0.11	13.09 \pm 20.79	0.09 \pm 0.10	0.07 \pm 0.02
TimeSeg	0.70\pm0.23	5.54\pm1.96	1.94\pm0.40	4.92\pm1.38	0.01\pm0.00	1.94\pm0.60	0.93\pm0.85	7.49\pm2.82	0.73\pm0.42	0.01\pm0.00
388 Method	Wafer					GunPoint				
	Mean		Zero		Cont. \downarrow	Mean		Zero		Cont. \downarrow
	Suff. \downarrow	Comp. \uparrow	Suff. \downarrow	Comp. \uparrow		Suff. \downarrow	Comp. \uparrow	Suff. \downarrow	Comp. \uparrow	
Random	34.23 \pm 4.53	0.01 \pm 0.00	34.23 \pm 4.53	0.01 \pm 0.00	0.18 \pm 0.02	32.42 \pm 4.47	1.42 \pm 0.19	32.42 \pm 4.47	1.42 \pm 0.19	0.31 \pm 0.03
WinIT	49.12 \pm 12.52	1.95 \pm 0.43	49.12 \pm 12.52	1.95 \pm 0.43	0.05 \pm 0.00	32.39 \pm 10.48	1.88 \pm 1.07	32.39 \pm 10.48	1.88 \pm 1.07	0.14 \pm 0.03
Dynamask	31.13 \pm 3.59	1.59 \pm 1.10	31.13 \pm 3.59	1.59 \pm 1.10	0.05 \pm 0.00	35.02 \pm 1.14	9.15 \pm 4.81	35.02 \pm 1.14	9.15 \pm 4.81	0.10 \pm 0.01
TimeX++*	52.39 \pm 8.13	0.22 \pm 0.20	52.39 \pm 8.13	0.22 \pm 0.20	0.03 \pm 0.02	45.41 \pm 8.95	7.10 \pm 6.45	45.41 \pm 8.95	7.10 \pm 6.45	0.01 \pm 0.00
TimeSeg	0.19\pm0.07	2.42\pm1.09	0.19\pm0.07	2.42\pm1.09	0.01\pm0.01	1.44\pm1.27	46.41\pm10.44	1.43\pm1.28	46.41\pm10.44	0.02\pm0.00

- **Explanation Fidelity:** To assess whether explanations correctly identify temporal regions used by the black-box model, we use two complementary metrics: (i) Sufficiency (\downarrow) measures the drop in AUROC when using only the selected segments while masking the remainder, and (ii) Comprehensiveness (\uparrow) measures AUROC drop when removing the selected segments from the original sequence. Masked regions are replaced with zero or the empirical mean.
- **Segment Quality:** We assess the quality of segment-based explanations using (i) Sparsity (\downarrow), the fraction of selected regions relative to total sequence length (lower values indicate more concise explanations) and (ii) Contiguity (\downarrow), which counts transitions between masked and unmasked regions, normalized by sequence length. Lower values indicate fewer segment boundaries, leading to less complex and more concise explanations.

Implementation Details. The target black-box model, g_θ , is implemented as a Temporal Convolutional Network (TCN) (Lea et al., 2017). For our method, both the policy, π_ϕ , and the value network, V_ψ , are implemented as 3-layer 1D CNNs. We provide the full details in Appendix C.

5.1 QUANTITATIVE ANALYSIS

Evaluation with Ground-Truth Annotations. We evaluate TimeSeg on datasets with segment-level ground truth annotations, including three synthetic datasets (SeqComb-UV, LowVarDetect-UV, FreqShapes-V) and one real-world dataset (MIT-ECG). Here, all evaluated methods are configured to achieve an equal level of sparsity within each dataset (*i.e.*, SeqComb-UV: 0.14, FreqShape-V: 0.10, LowVarDetect-UV: 0.18, and MIT-ECG: 0.14). As shown in Table 1, TimeSeg consistently achieves the best or second-best performance across all metrics. In particular, TimeSeg substantially outperforms other methods on the MIT-ECG dataset, achieving F1 and IOU scores of 0.739 and 0.621 (compared to the second-best benchmark, TimeX++, which achieves 0.593 and 0.460, respectively). This improvement is especially remarkable since TimeSeg operates in a strict black-box setting, relying solely on model inputs and outputs, whereas TimeX++ and IG utilize internal gradients and embeddings of the target black-box model. Regarding segment quality, TimeSeg significantly outperforms point-wise methods and achieves contiguity on par with LIMESegment. However, unlike LIMESegment, which struggles with pinpointing important temporal regions (evidenced by low F1 and IOU), TimeSeg produces segments that closely align with ground-truth annotations.

Evaluation without Ground-Truth Annotations. Since real-world datasets lack segment-level annotations, we measure the performance drop (*i.e.*, AUROC) of the target black-box model using Sufficiency and Comprehensiveness. Here, all evaluated methods are configured to achieve an equal level of sparsity within each dataset (*i.e.*, MIT-ECG: 0.14, Epilepsy: 0.10, Wafer: 0.09, and GunPoint: 0.19). As shown in Table 2, TimeSeg achieves the best performance across nearly all datasets and metrics, with particularly strong gains on the Wafer and GunPoint datasets. More specifically, TimeSeg shows $\leq 2\%$ drop when the target black-box model only utilizes the selected segments for prediction, whereas the second-best method suffers a drop of $\geq 31\%$. Moreover, these results are obtained with highly coherent segment-wise explanations, achieving contiguity scores as low as 1 – 2%, indicating the selected segments are both concise and well-connected.

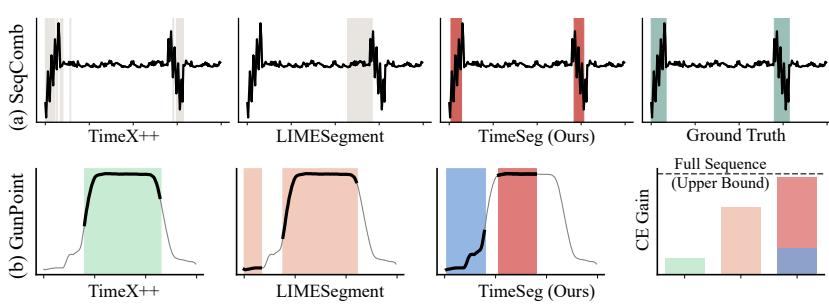


Figure 3: Qualitative Analysis on the SeqComb and GunPoint Datasets.

5.2 ABLATION STUDY: THE EFFECT OF λ

We investigate the impact of the sparsity-inducing coefficient λ on explanation quality and predictive performance. Results with varying λ on the MIT-ECG dataset are presented in Table 3. Here, increasing λ produces more compact segments with a slight drop in predictive performance, while decreasing λ yields larger segments that better preserve prediction performance at the cost of reduced conciseness. As such, the sparsity-inducing coefficient behaves as designed, providing intuitive control over the sparsity structure of the generated explanations.

5.3 QUALITATIVE ANALYSIS

Figure 3 presents a qualitative analysis of segments identified on the synthetic SeqComb dataset and the real-world GunPoint dataset. The classification task in the SeqComb dataset poses a unique challenge, requiring the explainer to accurately recover two distinct segments critical to the class label. Our analysis reveals notable differences among methods: (i) TimeX++ correctly pinpoints relevant regions but generates fragmented explanations, lacking coherence. (ii) LIMESegment produces contiguous segments; however, its reliance on fixed-size patches often results in misaligned explanations. In contrast, TimeSeg consistently identifies complete, well-aligned segments that closely match the ground-truth annotations.

For the GunPoint dataset, which lacks ground-truth annotations, we compare the selected temporal regions by measuring the cross-entropy gain of the black-box classifier when using the selected segments as an input. The dashed line in Figure 3 indicates the cross-entropy achieved with the full time series, serving as an upper bound. Although TimeSeg and TimeX++ select segments of comparable total length, TimeSeg achieves a cross-entropy gain near this upper bound, while TimeX++ exhibits substantially lower gains. LIMESegment selects segments that are roughly 25% longer than those of TimeSeg but still shows a lower cross-entropy gain, underscoring our method’s superior segment localization. Additional examples in Appendix D consistently demonstrate similar trends.

6 CONCLUSION

In this paper, we introduced TimeSeg, an information-theoretic framework for segment-wise explanations of time-series black-box models. Our work first defines what a meaningful segment is in time series, and formulates the segment selection problem as a sequential decision process, enabling the identification of concise and informative temporal segments under a strict black-box setting. Through extensive experiments on synthetic and real-world datasets, we demonstrated that TimeSeg produces more interpretable explanations than existing point-wise and patch-wise approaches, while maintaining competitive or superior explanation fidelity.

Future Work. Future work may explore incorporating more sophisticated policy optimization techniques, distributional RL objectives, or model-based exploration strategies to further improve stability and efficiency. In addition, the *reward design* can be extended beyond purely information-theoretic criteria to reflect human preferences for explanations or based on domain knowledge —

priors that encourage clinically meaningful segments. This opens the door to human-in-the-loop training (*i.e.*, preference learning), multi-objective formulations that trade off fidelity and readability, and application-specific constraints that tailor explanations to domain conventions. We believe that bridging explainable AI for time series with both the broader toolbox of RL methods *and* human-centric reward shaping offers a promising direction for developing more general and useful explanation models.

REFERENCES

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information bottleneck, 2016.

Ralph Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. *Physical review. E, Statistical, nonlinear, and soft matter physics*, 64:061907, 01 2002. doi: 10.1103/PhysRevE.64.061907.

Hyunseung Chung, Sumin Jo, Yeonsu Kwon, and Edward Choi. Time is not enough: Time-frequency based explanation for time-series black-box models. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management*, pp. 394–403, 2024.

Jonathan Crabbé and Mihaela Van Der Schaar. Explaining time series predictions with dynamic masks. In *International Conference on Machine Learning*, pp. 2166–2177. PMLR, 2021.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive. *IEEE/CAA Journal of Automatica Sinica*, 6(6):1293–1305, 2019.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. *arXiv preprint arXiv:1702.08608*, 2017.

Joseph Enguehard. Learning perturbations to explain time series predictions. In *International Conference on Machine Learning*, pp. 9329–9342. PMLR, 2023.

Aya Abdelsalam Ismail, Mohamed Gunady, Hector Corrada Bravo, and Soheil Feizi. Benchmarking deep learning interpretability in time series predictions. *Advances in neural information processing systems*, 33:6441–6452, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In *International Conference on Learning Representations*, 2017.

Ferdinand Küsters, Peter Schichtel, Sheraz Ahmed, and Andreas Dengel. Conceptual explanations of neural network prediction for time series. In *2020 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–6, 2020. doi: 10.1109/IJCNN48605.2020.9207341.

Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional networks for action segmentation and detection. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 156–165, 2017.

Kin Kwan Leung, Clayton Rooke, Jonathan Smith, Saba Zuberi, and Maksims Volkovs. Temporal dependencies in feature importance for time series prediction. In *The Eleventh International Conference on Learning Representations*.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. *Queue*, 16(3):31–57, 2018.

Zichuan Liu, Tianchun Wang, Jimeng Shi, Xu Zheng, Zhuomin Chen, Lei Song, Wenqian Dong, Jayantha Obeysekera, Farhad Shirani, and Dongsheng Luo. Timex++ learning time-series explanations with information bottleneck. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 32062–32082, 2024.

540 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 541 *in neural information processing systems*, 30, 2017.

542

543 G.B. Moody and R.G. Mark. The impact of the mit-bih arrhythmia database. *IEEE Engineering in*
 544 *Medicine and Biology Magazine*, 20(3):45–50, 2001. doi: 10.1109/51.932724.

545

546 Robert Thomas Olszewski. *Generalized feature extraction for structural pattern recognition in time-*
 547 *series data*. Carnegie Mellon University, 2001.

548

549 Owen Queen, Tom Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, and Marinka Zit-
 550 nik. Encoding time-series explanations through self-supervised model behavior consistency. *Ad-*
 551 *vances in Neural Information Processing Systems*, 36:32129–32159, 2023.

552

553 Chotirat Ann Ratanamahatana and Eamonn Keogh. Three myths about dynamic time warping data
 554 mining. In *Proceedings of the 2005 SIAM international conference on data mining*, pp. 506–510.
 555 SIAM, 2005.

556

557 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
 558 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 559 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

560

561 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 562 dimensional continuous control using generalized advantage estimation. *arXiv preprint*
 563 *arXiv:1506.02438*, 2015.

564

565 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 566 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

567

568 Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
 569 propagating activation differences. In *International conference on machine learning*, pp. 3145–
 570 3153. PMIR, 2017.

571

572 Torts Sivill and Peter Flach. Limesegment: Meaningful, realistic time series explanations. In
 573 *International Conference on Artificial Intelligence and Statistics*, pp. 3418–3433. PMLR, 2022.

574

575 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 576 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

577

578 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, 2
 579 edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.

580

581 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 582 press Cambridge, 1998.

583

584 Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and Anna Goldenberg.
 585 What went wrong and when? instance-wise feature importance for time-series black-box models.
 586 *Advances in Neural Information Processing Systems*, 33:799–809, 2020.

587

588 R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 589 learning. *Machine Learning*, 8:229–256, 1992. doi: 10.1007/BF00992696.

590

591

592

593

594

A MATHEMATICAL DERIVATIONS

595

A.1 DERIVATIONS FOR MUTUAL INFORMATION

598 We derive the objective used in Eq. (1), starting from the joint mutual information between the
 599 target Y and the selected segment set $\mathbf{X}_{s_{1:K}}$ and then obtaining a tractable variational lower bound
 600 for each conditional term. In our setting the target is the black-box prediction $g_\theta(\mathbf{X})$, but for brevity
 601 we write it as Y in this appendix.

602 **Chain Rule for Mutual Information.** For random variables Y and a ordered tuple of segment
 603 variables $\mathbf{X}_{s_{1:K}} = (\mathbf{X}_{s_1}, \dots, \mathbf{X}_{s_K})$, the chain rule gives
 604

$$605 I(Y; \mathbf{X}_{s_{1:K}}) = I(Y; \mathbf{X}_{s_1}, \dots, \mathbf{X}_{s_K}) \quad (9)$$

$$606 = I(Y; \mathbf{X}_{s_1}) + I(Y; \mathbf{X}_{s_2}, \dots, \mathbf{X}_{s_K} | \mathbf{X}_{s_1}) \quad (10)$$

$$607 = \dots$$

$$608 = I(Y; \mathbf{X}_{s_1}) + I(Y; \mathbf{X}_{s_2} | \mathbf{X}_{s_1}) \quad (11)$$

$$609 + \dots + I(Y; \mathbf{X}_{s_k} | \mathbf{X}_{s_1}, \dots, \mathbf{X}_{s_{k-1}})$$

$$610 = \sum_{k=1}^K I(Y; \mathbf{X}_{s_k} | \mathbf{X}_{s_{1:k-1}}). \quad (12)$$

611 with $\mathbf{s}_{1:0} = \emptyset$ and $I(Y; \mathbf{X}_{s_1} | \mathbf{X}_{s_{1:0}}) = I(Y; \mathbf{X}_{s_1})$. This is the chain-rule decomposition used
 612 in Eq. (2) of the main text when Y is replaced by the black-box prediction $g_\theta(\mathbf{X})$.
 613

614 **Variational Lower Bound for Conditional Mutual Information.** By definition, the conditional
 615 mutual information is
 616

$$617 I(Y; \mathbf{X}_{s_k} | \mathbf{X}_{s_{1:k-1}}) = \mathbb{E}_{\mathbf{x}_{s_{1:k}}, y} \left[\log \frac{p(y, \mathbf{x}_{s_k} | \mathbf{x}_{s_{1:k-1}})}{p(y | \mathbf{x}_{s_{1:k-1}}) \cdot p(\mathbf{x}_{s_k} | \mathbf{x}_{s_{1:k-1}})} \right] \quad (13)$$

618 where $\text{KL}(\cdot \| \cdot)$ denotes the Kullback–Leibler divergence and the conditionals $p(y | \mathbf{x}_{s_{1:k}})$ and $p(y | \mathbf{x}_{s_{1:k-1}})$ are induced by the black-box predictor g_θ (we drop the subscript θ for brevity). However,
 619 because the black-box setting precludes direct access to the densities $p(\mathbf{x}_{s_k} | \mathbf{x}_{s_{1:k-1}})$ and $p(y, \mathbf{x}_{s_k} | \mathbf{x}_{s_{1:k-1}})$, we rewrite the objective as below.
 620

$$621 I(Y; \mathbf{X}_{s_k} | \mathbf{X}_{s_{1:k-1}}) = \mathbb{E}_{\mathbf{x}_{s_{1:k}}, y} [\log p(y | \mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) - \log p(y | \mathbf{x}_{s_{1:k-1}})] \quad (14)$$

622 Lastly, we approximate the marginal $\mathbf{X}_{s_{1:k}}$ over \mathbf{X} by sampling segment indices from the policy π_ϕ
 623 and treating the segment as the induced subsequence of \mathbf{x} , $\mathbf{s}_{1:k} \sim \pi_\phi(\cdot | \mathbf{x})$.
 624

$$625 I_{\theta, \phi}(Y; \mathbf{X}_{s_k} | \mathbf{X}_{s_{1:k-1}}) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:k} \sim \pi_\phi(\cdot | \mathbf{x})} \mathbb{E}_{y | \mathbf{x}} [\log p(y | \mathbf{x}_{s_{1:k}}) - \log p(y | \mathbf{x}_{s_{1:k-1}})], \quad (15)$$

626 which we maximize with respect to ϕ (e.g., via policy-gradient methods), while $p(\cdot | \cdot)$ remains
 627 fixed and is provided by the black-box predictor g_θ .
 628

629

A.2 REINFORCEMENT LEARNING OPTIMIZATION DETAILS

630 **Policy Gradient with Discrete Segment Sampling.** Our training objective in Eq. (5) can be rewrite-
 631 ten more simplicity as
 632

$$633 \mathcal{L}(\phi) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:K} \sim \pi_\phi(\cdot | \mathbf{x})} \left[\sum_{k=1}^K R_k \right], \quad (16)$$

634 where $R_k = r_\theta(\mathbf{x}_{s_k}, \mathbf{x}_{s_{1:k-1}}) - \lambda c(s_k, \mathbf{s}_{1:k-1})$ denotes the conditional mutual information reward,
 635 and $c(\cdot)$ the sparsity cost. The policy π_ϕ generates a trajectory of segment indices $\mathbf{s}_{1:K}$, and the
 636 objective is to maximize the expected cumulative reward under this distribution.
 637

Since the actions s_k are discrete start–end indices, gradients cannot propagate directly through the sampling step. Instead, we apply the policy gradient methods to obtain the gradient respect to ϕ :

$$\nabla_{\phi} \mathcal{L}(\phi) = \nabla_{\phi} \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:K} \sim \pi_{\phi}} \left[\sum_{k=1}^K R_k \right] \quad (17)$$

$$= \mathbb{E}_{\mathbf{x}} \left[\int \left(\sum_{k=1}^K R_k \right) \cdot \nabla_{\phi} \pi_{\phi}(\mathbf{s}_{1:K} \mid \mathbf{x}) \, d\mathbf{s}_{1:K} \right] \quad (18)$$

$$= \mathbb{E}_{\mathbf{x}} \left[\int \left(\sum_{k=1}^K R_k \right) \cdot \nabla_{\phi} \pi_{\phi}(\mathbf{s}_{1:K} \mid \mathbf{x}) \cdot \frac{\pi_{\phi}(\mathbf{s}_{1:K} \mid \mathbf{x})}{\pi_{\phi}(\mathbf{s}_{1:K} \mid \mathbf{x})} d\mathbf{s}_{1:K} \right] \quad (19)$$

$$= \mathbb{E}_{\mathbf{x}} \left[\int \left(\sum_{k=1}^K R_k \right) \cdot \nabla_{\phi} \log \pi_{\phi}(\mathbf{s}_{1:K} \mid \mathbf{x}) \cdot \pi_{\phi}(\mathbf{s}_{1:K} \mid \mathbf{x}) \, d\mathbf{s}_{1:K} \right] \quad (20)$$

$$= \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:K} \sim \pi_\phi} \left[\nabla_\phi \log \pi_\phi(\mathbf{s}_{1:K} \mid \mathbf{x}) \cdot \sum_{k=1}^K R_k \right] \quad (21)$$

$$= \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:K} \sim \pi_\phi} \left[\sum_{k=1}^K (R_k \cdot \nabla_\phi \log \pi_\phi(s_k \mid \mathbf{x}, \mathbf{s}_{1:k-1})) \right] \quad (22)$$

$$\left[\sum_{k=1}^n k^2 \right] = \frac{n(n+1)(2n+1)}{6} \quad (23)$$

ows that policy optimization reduces to weighting the log-likelihood gradient of s_k by the observed reward R_k . Although unbiased, this estimator typically variance, motivating the use of variance reduction techniques such as actor-critic

This derivation shows that policy optimization reduces to weighting the log-likelihood gradient of the chosen segment s_k by the observed reward R_k . Although unbiased, this estimator typically suffers from high variance, motivating the use of variance reduction techniques such as actor–critic methods and proximal policy optimization (PPO).

Advantage in the Actor–Critic Framework. To reduce variance, we employ an actor–critic framework (Schulman et al., 2015). The policy π_ϕ plays the role of the actor, while we introduce a value network $V_\psi(x, s_{1:k})$, parameterized by ψ , as the critic. The critic estimates the expected cumulative return given the current sequence of selected segments, e.g.,

$$V_\psi(\mathbf{x}, \mathbf{s}_{1:k-1}) \approx \mathbb{E}_{\pi_\phi} \left[\sum_{t=k}^K \gamma^{t-k} R_t \mid \mathbf{x}, \mathbf{s}_{1:k-1} \right],$$

This allows us to compute the *advantage* function:

$$A_k \equiv R_k + \gamma V_{\mathcal{B}}(\mathbf{x}, \mathbf{s}_{1:k}) - V_{\mathcal{B}}(\mathbf{x}, \mathbf{s}_{1:k-1}), \quad (24)$$

where $\gamma \in [0, 1]$ is a discount factor. The advantage measures how much better the observed return is compared to the critic's baseline estimate. Replacing raw rewards R_k with advantages A_k significantly reduces gradient variance without introducing bias.

The value network is trained jointly with the policy using a temporal difference (TD) loss:

$$\mathcal{L}_{\text{value}}(\psi) = \mathbb{E}_{\mathbf{x}, \mathbf{s}_{1:k} \sim \pi_\phi} \left[(V_\psi(\mathbf{x}, \mathbf{s}_{1:k-1}) - (R_k + \gamma V_\psi(\mathbf{x}, \mathbf{s}_{1:k})))^2 \right]. \quad (25)$$

Stabilization via Proximal Policy Optimization. Although advantage estimates stabilize the gradient, policy updates can still be unstable if the new policy π_ϕ diverges too far from the old one π_ϕ^{old} . To address this, we adopt the PPO objective (Schulman et al., 2017), which clips large changes in the policy update:

$$\mathcal{L}_{\text{PPO}}(\phi) = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{s}_{1:K} \sim \pi_{\phi}^{\text{old}}} \left[\sum_{k=1}^K \min \left(\rho_k A_k, \text{clip}(\rho_k, 1 - \epsilon, 1 + \epsilon) A_k \right) \right], \quad (26)$$

where $\rho_k = \frac{\pi_\phi(s_k | \mathbf{x}, \mathbf{s}_{1:k-1})}{\pi_\phi^{\text{OLD}}(s_k | \mathbf{x}, \mathbf{s}_{1:k-1})}$ is the importance ratio, and ϵ controls the trust region. This formulation prevents large updates by clipping the policy ratio.

Concretely, at each iteration, we collect 1,024 rollout steps with the frozen old policy π_ϕ^{OLD} (step-level, not episode-level). Each step stores the transition tuple $(\mathbf{x}, \mathbf{s}_{1:k-1}, s_k, R_k, \log \pi_\phi^{\text{OLD}}(s_k | \mathbf{x}, \mathbf{s}_{1:k-1}), V_\psi(\mathbf{x}, \mathbf{s}_{1:k-1}), \text{done})$ in a FIFO buffer of capacity 20,000 steps; once full, the oldest steps are discarded. we sample a mini-batch from the shuffled buffer and run PPO for 4 epochs. One epoch is completed when 1,024 sampled steps are used once for updates. After the update phase, we set $\pi_\phi^{\text{OLD}} \leftarrow \pi_\phi$ and repeat: collect the next 1,024 steps, push them into the buffer, and perform 4 epoch updates over those steps. This step-level sampling/updating schedule makes the rollout size and the optimization loop explicit.

In our implementation, we use $\epsilon = 0.2$ for trust region, $\gamma = 0.99$ for the discount factor, and $\beta = 0.01$ for entropy regularization coefficient which is applied to encourage exploration of diverse segmentations. All hyperparameters are used within recommended in prior PPO researches.

A.3 COMBINATORIAL COMPLEXITY OF SEGMENT CANDIDATES

We prove that the number of candidate segment sets grows exponentially with the sequence length T . Throughout, we consider non-overlapping, non-empty discrete segments on indices $\{1, \dots, T\}$. A single segment is specified by a start–end pair (t^s, t^e) with $1 \leq t^s \leq t^e \leq T$, and a set of K segments $\mathbf{s}_{1:K} = (s_1, \dots, s_K)$ is required to be pairwise disjoint.

Counting K Disjoint Segments. Fix $T \in \mathbb{N}$ and $K \in \{1, \dots, \lfloor (T+1)/2 \rfloor\}$. Think of the time steps $\{1, \dots, T\}$ as being separated by $T+1$ boundaries at positions $\{0, 1, \dots, T\}$. Here, 0 denotes the position immediately to the left of the first time step, and T denotes the position immediately to the right of the last time step. Picking a non-overlapping segment is the same as picking two boundaries and filling in everything between them; picking K disjoint segments is the same idea repeated K times, so in total, pick $2K$ distinct boundaries and pair them up in order: $(b_1, b_2), (b_3, b_4), \dots, (b_{2K-1}, b_{2K})$. Each pair (b_{2i-1}, b_{2i}) forms a non-empty interval (since $b_{2i-1} < b_{2i}$), and the ordering prevents overlaps. Hence, choosing K disjoint segments is equivalent to choosing $2K$ distinct boundaries out of $T+1$ possibilities, which gives $\binom{T+1}{2K}$.

Total Number of Candidate Segment Sets. Summing over all feasible K , the total number of non-empty segment sets is

$$\sum_{K=1}^{\lfloor (T+1)/2 \rfloor} \binom{T+1}{2K} = 2^T - 1 = \mathcal{O}(2^T).$$

Here K denotes the number of disjoint segments selected. Each segment must contain at least one time step, so allocating K segments requires at least $2K$ distinct boundaries (start and end). Since there are only $T+1$ available boundaries, the maximum feasible number of segments is $\lfloor (T+1)/2 \rfloor$.

Remarks. (i) This counting assumes segments are non-overlapping and non-empty; if overlaps or empty segments were allowed, the number of feasible segment sets would be larger. (ii) The exponential growth $2^T - 1$ shows how quickly the search space expands as T grows, underscoring the combinatorial intractability of directly solving the joint optimization in Eq. (1). This motivates our decomposition into sequential CMI terms and policy-based optimization in the main paper.

756 **B PSEUDO CODE**
757758

759 **Algorithm 1** COLLECT (Step-level rollout with CMI reward and adaptive termination)

760

761 **Input:** Frozen old policy π_ϕ^{OLD} , value V_ψ , classifier g_θ , mask function $\text{MASK}(\cdot, \cdot)$, sparsity weights
762 λ , termination (τ, K_{\max}) , rollout length N_{roll}
763 **Output:** Replay buffer \mathcal{B} of step-level transitions

764 1: $\mathcal{B} \leftarrow \emptyset$
765 2: **while** $|\mathcal{B}| < N_{\text{roll}}$ **do**
766 3: Sample minibatch \mathbf{x} from training data
767 4: $k \leftarrow 0$, $\mathbf{s}_{1:k} \leftarrow \emptyset$, $\text{done} \leftarrow \text{False}$
768 5: $\mathbf{m}_{1:k} \leftarrow \mathbf{0}$ ▷ zero vector mask (no segment yet)
769 6: **while not** done **and** $k < K_{\max}$ **do**
770 7: $t_{k+1}^s \sim \pi_{\phi^s}^{\text{OLD}}(\cdot | \mathbf{x}, \mathbf{s}_{1:k})$, $t_{k+1}^e \sim \pi_{\phi^e}^{\text{OLD}}(\cdot | t_{k+1}^s, \mathbf{x}, \mathbf{s}_{1:k})$ ▷ propose next segment
771 8: $s_{k+1} = (t_{k+1}^s, t_{k+1}^e)$ ▷ propose next segment
772 9: $\mathbf{m}_{k+1} \leftarrow \text{SEGMENTOMASK}(s_{k+1})$; $\mathbf{m}_{1:k+1} \leftarrow \mathbf{m}_{1:k} \vee \mathbf{m}_k$
773 10: $\mathbf{x}_{\mathbf{s}_{1:k}} \leftarrow \text{MASKING}(\mathbf{x}, \mathbf{m}_{1:k})$; $\mathbf{x}_{\mathbf{s}_{1:k+1}} \leftarrow \text{MASKING}(\mathbf{x}, \mathbf{m}_{1:k+1})$
774 11: $p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k}}) \leftarrow \text{softmax}(g_\theta(\mathbf{x}_{\mathbf{s}_{1:k}}))$; $p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k+1}}) \leftarrow \text{softmax}(g_\theta(\mathbf{x}_{\mathbf{s}_{1:k+1}}))$
775 12: $r_\theta(s_{k+1}, \mathbf{s}_{1:k}) \leftarrow \mathbb{E}_{p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k}})} [\log p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k}}) - \log p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k+1}})]$
776 13: $c(s_{k+1}) \leftarrow \|\mathbf{m}_{k+1}\|_1 / T$; $R_k \leftarrow r_\theta(s_{k+1}, \mathbf{s}_{1:k}) - \lambda c(s_{k+1})$
777 14: $\text{done}_\tau \leftarrow 1 - \frac{\mathbb{E}_{p_\theta(y | \mathbf{x})} [\log p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k+1}})]}{\mathbb{E}_{p_\theta(y | \mathbf{x})} [\log p_\theta(y | \mathbf{x}_{\mathbf{s}_{1:k}})]} \geq \tau$; $\text{done} \leftarrow \text{done}_\tau$ **or** $(k+1 \geq K_{\max})$
778 15: $\log \pi^{\text{OLD}} \leftarrow \log \pi_{\phi^s}^{\text{OLD}}(t_{k+1}^s | \mathbf{x}, \mathbf{s}_{1:k}) + \log \pi_{\phi^e}^{\text{OLD}}(t_{k+1}^e | t_{k+1}^s, \mathbf{x}, \mathbf{s}_{1:k})$
779 16: $v_{1:k} \leftarrow V_\psi(\mathbf{x}, \mathbf{s}_{1:k})$; $v_{1:k+1} \leftarrow V_\psi(\mathbf{x}, \mathbf{s}_{1:k+1})$
780 17: Push $(\mathbf{x}, \mathbf{s}_{1:k}, s_{k+1}, R_k, \log \pi^{\text{OLD}}, (v_{1:k}, v_{1:k+1}), \text{done})$ into \mathcal{B}
781 18: $\mathbf{m}_{1:k} \leftarrow \mathbf{m}_{1:k+1}$; $k \leftarrow k+1$
782 19: **end while**
783 20: **end while**
784 21: **return** \mathcal{B}

785

786

787 **Algorithm 2** PPO_UPDATE (Clipped surrogate with step-level transitions)

788

789 **Input:** Buffer \mathcal{B} , current policy π_ϕ , value V_ψ , epochs E_{ppo} , minibatch size M , clip ϵ , discount γ ,
790 entropy coef β
791 **Output:** Updated (ϕ, ψ) and synced π_ϕ^{OLD}

792 1: **PPO epochs**
793 2: **for** $e = 1$ to E_{ppo} **do**
794 3: **for all** minibatch \mathcal{M} of size M sampled from \mathcal{B} **do**
795 4: Unpack $(\mathbf{x}, \mathbf{s}_{1:k}, s_{k+1}, R_k, \log \pi^{\text{OLD}}, (v_{1:k}, v_{1:k+1}), \text{done}) \in \mathcal{M}$
796 5: $\log \pi \leftarrow \log \pi_\phi(s_k | \mathbf{x}, \mathbf{s}_{1:k})$; $\rho \leftarrow \exp(\log \pi^{\text{new}} - \log \pi^{\text{old}})$
797 6: $A_k \leftarrow R_k + \gamma v_{1:k+1} - v_{1:k}$; $A_k \leftarrow \text{sg}[A_k]$
798 7: $L_{\text{clip}} \leftarrow \mathbb{E}[\min(\rho A_k, \text{clip}(\rho, 1 - \epsilon, 1 + \epsilon) A_k)]$
799 8: $L_{\text{value}} \leftarrow \mathbb{E}[(v_{1:k} - \text{sg}[R_k + \gamma v_{1:k+1}])^2]$
800 9: $H \leftarrow \mathbb{E}[\text{Entropy}(\pi_\phi(\cdot | \mathbf{x}, \mathbf{s}_{1:k}))]$ ▷ H means entropy of segment distribution
801 10: $L_{\text{total}} \leftarrow -(L_{\text{clip}} + \beta H) + L_{\text{value}}$ ▷ maximize policy, minimize value loss
802 11: Update (ϕ, ψ) by descending ∇L_{total}
803 12: **end for**
804 13: **end for**
805 14: **return** $(\phi, \psi, \pi_\phi^{\text{OLD}})$

806

807
808 **Remarks.** During inference, segments are deterministically sampled from the policy via mode
809 values.

C EXPERIMENT DETAILS

This appendix provides full details of datasets, preprocessing, model architectures, evaluation metrics, and ablations.

C.1 DATASETS AND PREPROCESSING

C.1.1 SYNTHETIC DATASETS

To evaluate the ability of TimeSeg to recover ground-truth explanatory regions, we construct synthetic datasets where the causal subsequences are known by design. Following prior work (Queen et al., 2023; Liu et al., 2024), we embed class-defining patterns into a noisy background such that predictions rely only on the inserted segments. Each dataset is initialized with a non-autoregressive moving average (NARMA) noise base, into which task-specific motifs are inserted. This setup ensures that classification cannot be solved by shortcuts, and that faithful explanations must identify the correct subsequences. A summary of dataset statistics is provided in Table 4.

SeqComb-UV. Each univariate sequence of length 200 is constructed by inserting two non-overlapping subsequences chosen from an *increasing* trend (I) and a *decreasing* trend (D). Trends are generated using sinusoidal patterns with random wavelength and additive Gaussian noise. There are four classes: (i) null (no pattern), (ii) I,I, (iii) D,D, and (iv) I,D. Ground-truth explanations are the positions of the inserted I/D subsequences.

FreqShapes-V. We adapt the frequency-based synthetic dataset from (Queen et al., 2023). Each sequence has length 50, and the class label is determined by the periodicity of a spike pattern. We use two spike shapes (upward and downward) and two frequencies (periods of 10 and 19 time steps), forming four classes in total. The ground-truth explanatory regions are the positions of the inserted spikes. Unlike the original version, we remove duplicate motif occurrences so that each sequence contains a single definitive explanatory segment. See Figure 4 for a visual comparison between the original FreqShapes and our modified FreqShapes-V.

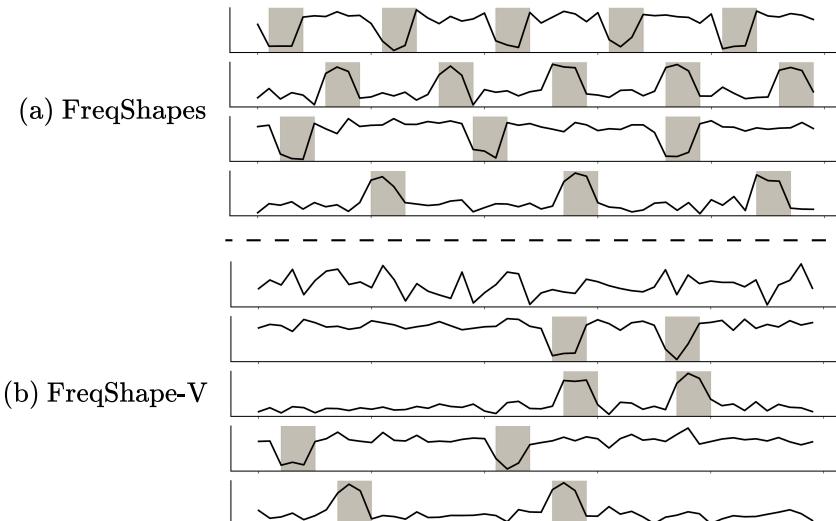


Figure 4: Illustration of the difference between FreqShape and FreqShapes-V.

LowVarDetect-UV. Each univariate sequence of length 200 is generated by inserting a low-variance region into the NARMA background. The predictive signal comes from both the variance level and the mean of the Gaussian noise in this subsequence. For binary classification, the low-variance subsequence is generated with either negative or positive mean, determining the label. This dataset differs from the anomaly-style tasks above, as the explanatory subsequence does not correspond to large amplitude changes but rather to more subtle statistical properties (variance reduction). Ground-truth explanations are the positions of the low-variance subsequences.

864
865
866 **Table 4:** Synthetic Dataset Description.
867
868
869
870

Dataset	#Samples	Length	Dim	Classes
SeqComb-UV	6,100	200	1	4
FreqShapes-V	6,100	50	1	5
LowVarDetect-UV	6,100	200	1	2

871
872 **C.1.2 REAL-WORLD DATASETS**
873874
875 We further evaluate TimeSeg on a suite of widely used real-world time-series classification bench-
876 marks. Unlike the synthetic datasets, real-world tasks pose additional challenges due to noise, inter-
877 subject variability, and the absence of segment-wise ground truth in most cases. Below we describe
878 each dataset and, when available, the annotation used as segment-wise ground-truth explanatory
879 regions.
880881 **MIT-ECG.** We use the arrhythmia detection dataset from the MIT-BIH Arrhythmia
882 Database (Moody & Mark, 2001), which provides electrocardiogram (ECG) recordings sampled at
883 360 Hz. Following common practice, we segment the recordings into short windows centered on in-
884 dividual beats. We focus on three representative classes: *Normal* (N), *Left Bundle Branch Block* (L),
885 and *Right Bundle Branch Block* (R). Because both L and R diagnoses are known to rely on the
886 morphology of the QRS complex, we use the cardiologist-annotated QRS intervals as segment-wise
887 ground-truth explanatory regions. This dataset allows quantitative evaluation of explanation over-
888 lap against clinically annotated ground truth. For comparability, we follow the exact preprocessing
889 protocol of TimeX (Queen et al., 2023).
890891 **Epilepsy.** The Epileptic Seizure Recognition dataset (Andrzejak et al., 2002) contains EEG record-
892 ings from 500 subjects. Each subject’s brain activity was recorded for 23.6 seconds, which was then
893 partitioned into non-overlapping 1-second windows, resulting in 11,500 single-channel sequences of
894 length 178 sampled at 178 Hz. The dataset provides five labels: (i) eyes open, (ii) eyes closed, (iii)
895 EEG from a healthy brain region, (iv) EEG from a tumor region, and (v) seizure. For binary seizure
896 detection, we merge the first four classes into the negative class and retain seizure as the positive
897 class. No segment-wise ground-truth annotations are available; thus evaluation is based on explana-
898 tion fidelity metrics (sufficiency/comprehensiveness). We also adopt the identical preprocessing as
899 TimeX (Queen et al., 2023).
900901 **Wafer.** The Wafer dataset (Dau et al., 2019) is derived from semiconductor manufacturing pro-
902 cesses, where sensor signals are used to detect faults in wafer production. It contains univariate
903 time-series of varying lengths that are standardized to a common length for evaluation. The classi-
904 fication task is to distinguish between normal and abnormal wafers. Since no segment-wise ground
905 truth is provided, we rely on fidelity and structural quality metrics to assess explanations.
906907 **GunPoint.** The GunPoint dataset (Dau et al., 2019) consists of motion capture time-series that
908 record hand movements. Subjects perform two distinct gestures: drawing a gun from a holster
909 versus pointing with a finger. Each sequence is univariate with length 150. Prior analyses of this
910 dataset suggest that informative patterns often coincide with short transitional movements (e.g.,
911 raising or lowering) rather than the static middle portion, though this can vary across instances.
912 Accordingly, GunPoint provides a convenient testbed to qualitatively assess whether an explainer
913 highlights plausible transition segments as segment-wise explanatory regions.
914915 **Table 5:** Real-World Dataset Description.
916
917

Dataset	#Samples	Length	Dim	Classes
MIT-ECG	90,337	360	1	2
Epilepsy	11,500	178	1	2
Wafer	7,164	152	1	2
GunPoint	400	150	1	2

918 C.2 EVALUATION METRICS
919

920 To assess the quality of segment-wise explanations, we employ three complementary categories of
921 metrics: **Overlap with Ground Truth**, **Explanation Fidelity**, and **Segment Quality**. These metrics
922 enable both quantitative comparisons on datasets with annotated explanatory regions and qualitative
923 assessment on datasets without annotations.

924 **Overlap with Ground Truth.** For datasets with segment-wise ground-truth annotations (e.g., syn-
925 synthetic datasets and MIT-ECG), we measure the degree of overlap between the predicted explanation
926 mask $\mathbf{m}_{1:K}$ and the ground-truth mask \mathbf{m}^* . Specifically, we report the **F1-score** and the **Jaccard**
927 **index (IoU):**

$$928 \quad F1 = \frac{2 \cdot |\mathbf{m}_{1:K} \cap \mathbf{m}^*|}{|\mathbf{m}_{1:K}| + |\mathbf{m}^*|}, \quad IoU = \frac{|\mathbf{m}_{1:K} \cap \mathbf{m}^*|}{|\mathbf{m}_{1:K} \cup \mathbf{m}^*|}.$$

930 **Explanation Fidelity.** To quantify how well the identified segments capture the predictive signal
931 used by the black-box model, we follow the insertion/removal evaluation framework:

$$933 \quad \text{SUFF} \downarrow = \frac{\text{AUROC}_{\text{base}} - \text{AUROC}_{\text{insert}}}{\text{AUROC}_{\text{base}}}, \quad \text{COMP} \uparrow = \frac{\text{AUROC}_{\text{base}} - \text{AUROC}_{\text{remove}}}{\text{AUROC}_{\text{base}}}.$$

935 Here $\text{AUROC}_{\text{base}}$ denotes the AUROC on the original time-series, $\text{AUROC}_{\text{insert}}$ the AUROC when
936 only the selected segments are retained, and $\text{AUROC}_{\text{remove}}$ the AUROC when the selected segments
937 are removed. Masked regions are replaced with either zeros or the dataset mean. Lower **SUFFI-**
938 **CENCY** and higher **COMPREHENSIVENESS** indicate more faithful explanations.

940 **Segment Quality.** Beyond fidelity, we evaluate the structural properties of the produced explana-
941 tions:

- 942 • **Sparsity** (\downarrow): the fraction of time points selected, $\text{Sparsity} = \frac{1}{T} \|\mathbf{m}_{1:K}\|_1$. Lower values indicate
943 more concise explanations.
- 944 • **Contiguity** (\downarrow): the normalized number of transitions between selected and unselected points,

$$946 \quad \text{Contiguity} = \frac{1}{T-1} \sum_{t=1}^{T-1} \mathbb{I}[\mathbf{m}_{1:K,t} \neq \mathbf{m}_{1:K,t+1}],$$

949 where smaller values indicate fewer boundaries, meaning more coherent segment-wise patterns.

950 C.3 IMPLEMENTATION DETAILS

952 We provide implementation details of the black-box predictor, the proposed segment-wise explainer,
953 and the reinforcement learning optimization, as well as hardware and reproducibility information.
954 **For completeness and reproducibility, we summarize all key hyperparameters used in our experi-
955 ments in Table 7.**

956 **Black-box Predictor.** For all datasets, the target black-box model g_θ is implemented as a Temporal
957 Convolutional Network (TCN) (Lea et al., 2017). The network consists of 6 convolutional blocks
958 with kernel size 3 and exponentially increasing dilations, each followed by residual connections,
959 ReLU activation, and dropout of $p = 0.1$. Global average pooling and a fully-connected classifier
960 map to the label space. We train g_θ using cross-entropy loss with Adam optimizer (learning rate
961 10^{-3} , weight decay 10^{-4} , batch size 128). Early stopping is applied based on validation F1 with
962 patience of 25 epochs.

963 **Explainer Networks (Policy and Value).** At each decision step k , both the policy π_ϕ and the value
964 network V_ψ take as input the full sequence \mathbf{x} together with the current explanation mask $\mathbf{m}_{1:k-1}$,
965 concatenated along the feature axis to form $[\mathbf{x}; \mathbf{m}_{1:k-1}] \in \mathbb{R}^{T \times (C+1)}$. This design provides the
966 global temporal context while explicitly encoding which regions have already been selected.

968 The policy is factorized into a start-policy π_{ϕ^s} and an end-policy π_{ϕ^e} , and each uses its own en-
969 coder backbone. To inject explicit dependency between the start and end distributions, the pooled
970 embedding produced by π_{ϕ^s} is added to the pooled embedding of π_{ϕ^e} before the final linear layer
971 of π_{ϕ^e} . In this way, the choice of an end index is conditioned on both the input sequence and the
representation of the chosen start index.

972
973
Table 6: AUROC performance of the black-box predictor g_θ on each dataset.
974
975

Dataset	#Classes	AUROC
SeqComb-UV	4	0.99±0.00
FreqShapes-V	5	1.00±0.00
LowVarDetect-UV	2	0.99±0.00
MIT-ECG	2	0.99±0.00
Epilepsy	2	0.99±0.00
Wafer	2	0.99±0.00
GunPoint	2	0.99±0.00

982
983
984 Concretely, after sampling a start index $t^s \sim \pi_{\phi^s}(\cdot \mid \mathbf{x}, \mathbf{s}_{1:k-1})$, we enforce the ordering constraint
985 $t^e \geq t^s$ by *masking* the end-policy’s categorical distribution before the final softmax. the end point
986 probability $\pi_{\phi^e}(t^e \mid t^s, \cdot) = 0$ for all $t^e < t^s$ and is renormalized over $\{t^s, \dots, T\}$, which guarantees
987 $t^e \geq t^s$ by construction. In practice, the mask is implemented by adding $-\infty$ (or a large negative
988 constant) to the logits at indices $t < t^s$ before the softmax. This start-conditioned masking is applied
989 at every decision step k .

990 The value network V_ψ also consumes $[\mathbf{x}; \mathbf{m}_{1:k-1}]$ as input, with its own encoder backbone that may
991 differ from both π_{ϕ^s} and π_{ϕ^e} . It outputs a scalar state-value estimate, serving as the critic in the
992 actor–critic framework.

993
994 **Table 7:** Hyperparameters used for TimeSeg.

N_{buffer}	4,096
N_{rollout}	1,024
Batch size	256
Total epochs	600
PPO epochs	4
Optimizer	AdamW
Policy LR	1×10^{-4}
Value LR	1×10^{-4}
Weight decay (value)	1×10^{-4}
Cosine LR scheduler	True
Warmup epochs	100
Warmup start LR	3.3×10^{-5}
Policy final LR	5×10^{-5}
Value final LR	2×10^{-5}
<hr/>	
CNN layers (policy/value)	3
CNN kernel size	3
Hidden dimension	128
MLP layers	2
γ (discount factor)	0.99
PPO clip ratio ϵ	0.2
PPO entropy coefficient	0.01
Value loss coefficient	1.0
λ (length penalty)	0.3, 0.5
τ (termination threshold)	0.3
K_{\max}	5

1019
1020
1021
1022
1023
1024
1025

1026 D ADDITIONAL RESULTS

1028 D.1 SYNTHETIC PREDICTION PERFORMANCE

1030 We report the prediction performance of the black-box classifier g_θ on the synthetic benchmarks.

1032 **Table 8:** Fidelity on synthetic datasets (single row with three dataset blocks; continuity removed).

Method	SeqComb-UV				FreqShapes-V				LowVarDetect-UV			
	Avg.		Zero		Avg.		Zero		Avg.		Zero	
	Suff.	Comp.	Suff.	Comp.	Suff.	Comp.	Suff.	Comp.	Suff.	Comp.	Suff.	Comp.
Random	18.43 \pm 1.19	0.08 \pm 0.04	47.41 \pm 3.20	0.20 \pm 0.11	8.59 \pm 2.05	0.00 \pm 0.00	30.31 \pm 5.99	0.00 \pm 0.00	28.61 \pm 2.90	0.53 \pm 0.08	45.17 \pm 1.68	1.39 \pm 0.18
WinIT	5.14 \pm 2.47	4.47 \pm 0.57	32.18 \pm 2.55	5.66 \pm 0.93	0.40 \pm 0.50	0.57 \pm 0.689	0.55 \pm 0.65	0.99 \pm 1.07	3.24 \pm 1.19	13.84 \pm 3.55	0.98 \pm 0.24	17.21 \pm 3.9
Dynamask	17.60 \pm 2.80	0.48 \pm 0.19	45.14 \pm 3.66	1.35 \pm 0.67	8.03 \pm 1.58	0.01 \pm 0.01	27.43 \pm 5.05	0.01 \pm 0.02	16.80 \pm 5.33	12.93 \pm 5.91	26.51 \pm 6.36	15.01 \pm 6.03
TimeX++	7.25 \pm 4.45	23.99 \pm 0.15	14.35\pm7.39	24.43 \pm 9.65	<u>0.22\pm0.032</u>	14.98\pm17.42	<u>0.32\pm0.28</u>	23.54\pm16.08	7.01 \pm 3.21	30.86\pm11.69	6.67 \pm 5.14	36.43\pm11.21
TimeSeg (Ours)	0.22\pm0.15	30.80\pm1.60	<u>28.71\pm1.92</u>	26.77\pm1.56	0.00\pm0.00	<u>1.47\pm0.58</u>	<u>1.21\pm1.71</u>	<u>2.91\pm0.98</u>	0.04\pm0.040	<u>24.76\pm2.64</u>	0.47\pm0.47	<u>20.74\pm2.77</u>

1040 D.2 ABLATION ON SEGMENT DISTRIBUTIONS (MIT-ECG)

1041 We study how the choice of the segment-index distribution affects performance on **MIT-ECG**.
1042 Recall that our policy factorizes the segment into $s_k = (t_k^s, t_k^e)$ and enforces $t^e \geq t^s$ via start-
1043 conditioned masking (see Appendix C.3). Here, we replace the default distribution with several
1044 variants while keeping all other components identical to the main setting.

1045 Variants of the Policy Network.

- 1046 • *Cat–Cat* (default): start π_{ϕ^s} and end π_{ϕ^e} are categorical over absolute indices with start-
1047 conditioned masking.
- 1048 • *Cat–Dur (Negative Binomial)*: start categorical; end is parameterized as *duration* $d = t^e - t^s + 1$
1049 via a Negative Binomial (NB); we map $(t^s, d) \mapsto t^e$ and mask invalid durations.
- 1050 • *Cat–Cat (+CauchySmooth)*: Cat–Cat with Cauchy smoothing on the end categorical distribution
1051 probabilities π_{ϕ^e} .

1052 **Cauchy Smoothing.** Under the assumption that two nearby time points should be more similar than
1053 those far away by modeling durations, we smooth the probabilities by assigning higher weights to
1054 nearby indices using the Cauchy kernel

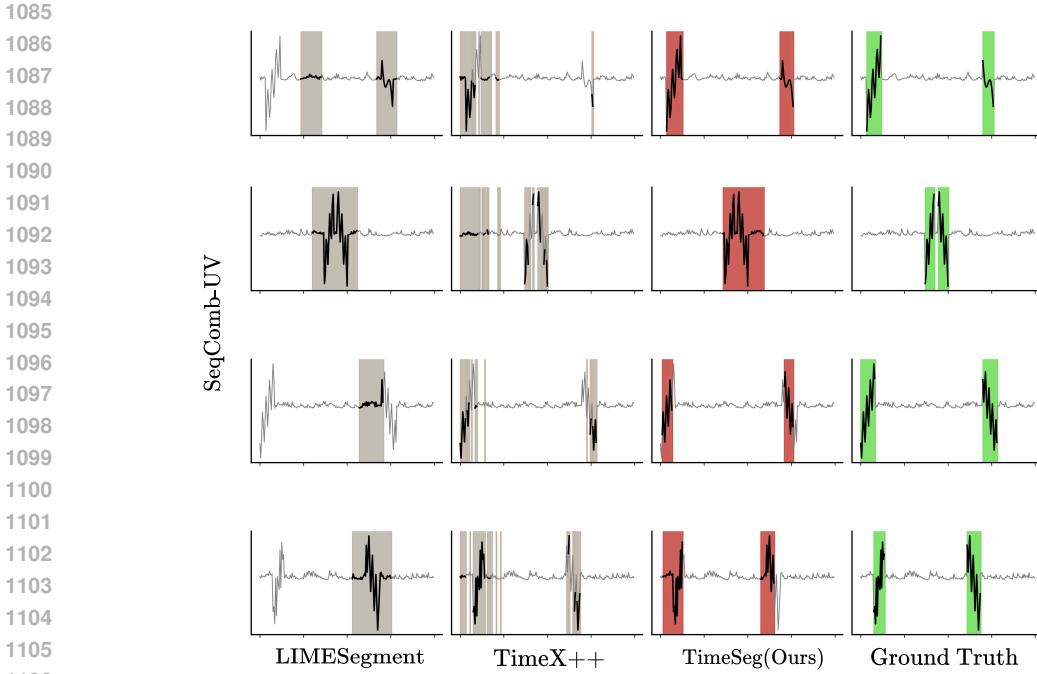
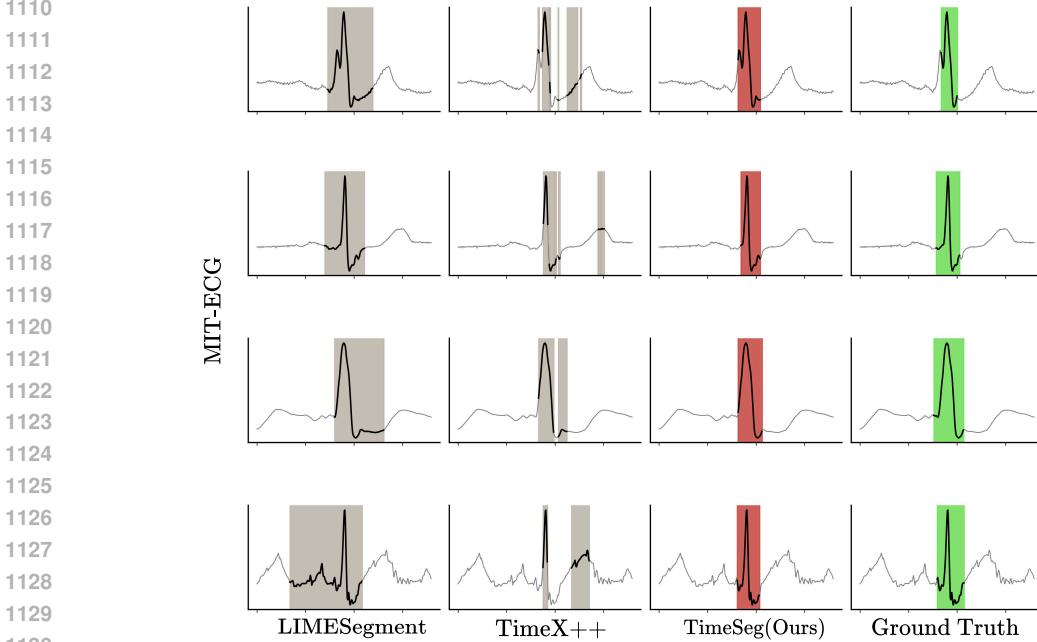
$$c_{\text{cauchy}}(\tau, \tau') = \sigma^2 \left(1 + \frac{(\tau - \tau')^2}{\ell^2} \right)^{-1},$$

1055 which can be seen as a mixture of infinitely many RBF kernels with different length scales. As
1056 $\ell \rightarrow \infty$, $c_{\text{cauchy}}(\tau, \tau') \rightarrow \sigma^2$, recovering uniform weights.

1057 **Table 9:** Performance comparison on **MIT-ECG** at an equal masking ratio (sparsity = 0.34) using the *Cat–Cat*
1058 (+ *CauchySmooth*) segment distribution. We report mean \pm std over five folds; **bold** is best, underlined is
1059 second-best.

Method	Overlap		Fidelity		Continuity
	F1	IoU	Suff.	Comp.	
Dynamask	0.29 \pm 0.01	0.17 \pm 0.01	35.97 \pm 6.98	5.19 \pm 2.99	0.12 \pm 0.02
TimeX++	0.48\pm0.12	<u>0.33 \pm0.10</u>	<u>21.43\pm3.32</u>	19.05\pm7.25	<u>0.02\pm0.00</u>
TimeSeg (Ours)	0.46 \pm 0.03	<u>0.32\pm0.03</u>	0.05\pm0.03	7.69 \pm 4.46	0.01\pm0.00

1076 **Remarks.** Although modeling duration with a Negative Binomial distribution is conceptually attrac-
1077 tive, it proved fragile in practice, as small changes in parameterization (r, p) led to large shifts in
1078 the implied length prior. Consequently, we could not obtain stable gains across experiments. Cauchy
1079 smoothing increases the entropy of the end-policy logits, which reduces run-to-run variance but does
1080 not necessarily yield the best overlap/fidelity trade-off.

1080 D.3 QUALITATIVE EXAMPLES
10811082 To complement the quantitative results, we provide qualitative comparisons of explanations generated
1083 by LIMESEGMENT, TimeX++, and TimeSeg on two representative datasets: **SeqComb-UV** (synthetic) and **MIT-ECG** (real-world).
10841107 **Figure 5: Qualitative examples on SeqComb-UV.** Each row shows a test instance with explanations from
1108 LIMESEGMENT, TIMEX++, and TimeSeg, followed by the ground-truth segment (green).
11091131 **Figure 6: Qualitative examples on MIT-ECG.** Columns show explanations from LIMESegment, TimeX++,
1132 and TimeSeg, with the cardiologist-annotated QRS interval as ground truth (green). LIMESegment remains
1133 contiguous but can be misaligned, TimeX++ highlights scattered points without clear segment structure, and
TimeSeg retrieves coherent segments closely matching the QRS complex boundaries.

1134

1135

1136

1137

D.4 SENSITIVITY ANALYSIS ON τ AND K_{\max}

1138

1139

1140

We analyze the effect of two key hyperparameters controlling the structure of the selected segments: (i) the termination threshold τ , which governs *how early* the policy stops selecting new segments, and (ii) the maximum number of segments K_{\max} , which acts as a *hard upper bound*.

1141

1142

1143

1144

1145

Importantly, K_{\max} is *not* a target; once set reasonably large, the number of segments rarely reach it. The effective number of segments is instead primarily determined by τ (termination) and jointly by λ (length penalty). We therefore report a sensitivity analysis over τ and K_{\max} on **SeqCombSingle**, measuring how sparsity, overlap quality (F1/IoU), contiguity, and the selected segment structure change under different values.

1146

1147

1148

1149

1150

1151

1152

1153

Effect of τ . Smaller values of τ make it easier for the policy to keep adding segments, so it tends to select *more* segments per instance. Under the sparsity penalty, this pressure is absorbed by shortening individual segments, leading to many short segments and slightly higher overall sparsity. As τ increases, the policy stops earlier, selects *fewer* segments, and instead allocates longer duration to each segment to match the sparsity budget. In our experiments on **SeqCombSingle**, F1/IoU remains stable over a wide range of τ (*e.g.*, 0.1–0.5), while non-positive τ values (*i.e.*, 0 and –0.1) effectively provide a margin that allows the policy to add new segments even when the immediate information gain is small, resulting in more frequent segment selections.

1154

1155

1156

1157

1158

Effect of K_{\max} . When K_{\max} is very small (*e.g.*, $K_{\max} = 1$), the explainer is forced into a single long segment. Once $K_{\max} \geq 3$, the policy does not saturate the bound and the metrics become stable. This confirms that K_{\max} only needs to be “large enough”. Table 10 and Table 11 contains the full quantitative results.

1159

1160

Table 10: Sensitivity to termination threshold τ .

τ	Sparsity	F1	IoU	Contiguity	# Segments	Segment Length
-0.1	0.170±0.037	0.523±0.031	0.377±0.030	0.025±0.002	4.747±0.038	10.219±2.280
0	0.193±0.029	0.627±0.026	0.468±0.029	0.022±0.001	3.785±0.059	16.998±2.186
0.1	0.143±0.021	0.667±0.024	0.524±0.022	0.019±0.001	1.865±0.057	16.607±2.509
0.3	0.141±0.016	0.645±0.018	0.497±0.018	0.017±0.000	1.631±0.060	17.615±2.869
0.5	0.137±0.030	0.618±0.012	0.468±0.009	0.015±0.000	1.521±0.040	16.364±2.265
0.7	0.138±0.031	0.612±0.018	0.459±0.020	0.014±0.000	1.419±0.021	18.070±2.873
0.9	0.136±0.020	0.599±0.013	0.443±0.014	0.013±0.000	1.300±0.031	19.487±2.370

1169

1170

Table 11: Sensitivity to maximum number of segments K_{\max} .

K_{\max}	Sparsity	F1	IoU	Contiguity	# Segments	Segment Length
1	0.188±0.017	0.499±0.013	0.343±0.012	0.010±0.000	1.000±0.000	37.549±3.473
2	0.170±0.022	0.643±0.024	0.494±0.028	0.016±0.001	1.619±0.056	21.751±3.416
3	0.154±0.017	0.652±0.011	0.504±0.010	0.016±0.001	1.647±0.060	18.102±2.412
5	0.141±0.016	0.645±0.018	0.497±0.018	0.017±0.000	1.631±0.060	17.615±2.869
7	0.140±0.025	0.642±0.015	0.492±0.017	0.016±0.001	1.647±0.061	17.610±3.789

1178

1179

1180

1181

D.5 MULTIVARIATE TIME-SERIES EXTENSION

1182

1183

1184

1185

1186

1187

Why we have focused on a Univariate Setup. In the main text we deliberately focused on *univariate* time series in order to highlight our primary contribution: moving from point-wise to segment-wise explanations under strict black-box constraints, and making the resulting combinatorial search over variable-length segments tractable. In this appendix section, we describe how the same formulation can be *naturally* extended to the multivariate setting by adding a simple channel-selection component to the action space, without modifying the underlying reward or black-box model.

1188
 1189 **Simple multivariate extension.** To extend TimeSeg to multivariate inputs, we augment the action
 1190 space with a **channel-selection policy**. Each segment becomes a joint draw

$$s = (c, t^s, t^e), \quad c \in [d],$$

1191 and the policy factorizes as

$$\pi_\phi(s | \cdot) = \pi_\phi(c, t^s, t^e | \cdot) = \pi_{\phi^c}(c | \cdot) \pi_{\phi^s}(t^s | c, \cdot) \pi_{\phi^e}(t^e | c, t^s, \cdot).$$

1192 Here, c denotes the chosen *channel index*, and π_{ϕ^c} is a categorical distribution whose logits are
 1193 produced by the policy network. All other components – the reward, sparsity penalty, termination,
 1194 and black-box predictor – remain unchanged; only the action space is expanded.

1195 **Additional experiments.** We evaluate the multivariate version of TimeSeg on **SeqComb-MV**, a
 1196 multivariate extension of **SeqCombSingle** in which channels are constructed with minimal cross-
 1197 channel interaction. TimeSeg achieves **comparable F1/IoU** to the univariate setting while preserv-
 1198 ing markedly better contiguity (Table 12), indicating that the framework transfers with minimal
 1199 modification.

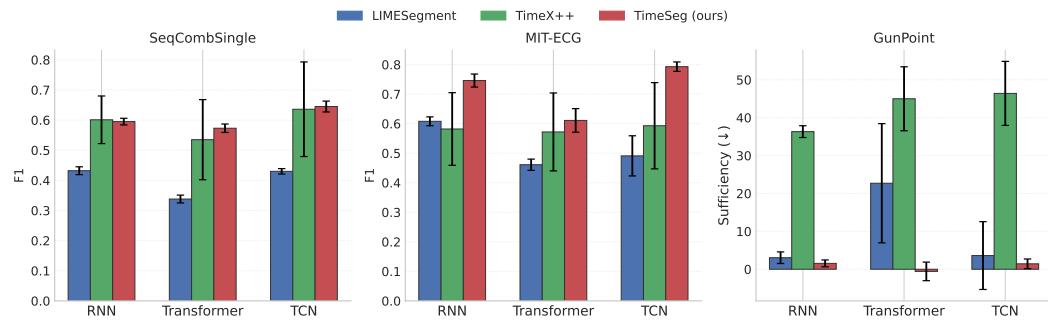
1200 **Table 12:** Multivariate results on SeqComb-MV (sparsity: 0.063).

Method	F1	IoU	Contiguity
TimeX++	0.471±0.038	0.334±0.030	0.064±0.009
Ours (TimeSeg)	0.502±0.034	0.353±0.032	0.003±0.000

1212 D.6 BLACK-BOX ARCHITECTURES: GENERALIZATION

1213 Beyond TCN, we assess whether TimeSeg transfers to qualitatively different black-box architec-
 1214 tures. To this end, we additionally evaluate **RNN** and **Transformer** classifiers on three representative
 1215 datasets: **SeqCombSingle** (synthetic), **MIT-ECG** (real, with ground-truth QRS annotations),
 1216 and **GunPoint** (real, without segment annotations), with results reported in Tables 13 to 18.

1217 Across all architectures and datasets, TimeSeg exhibits the *same qualitative behavior*: (1) compact
 1218 and coherent segments, (2) stable overlap when ground truth is available, (3) consistently strong
 1219 sufficiency/comprehensiveness fidelity, (4) minimal dependence on the specific backbone. This
 1220 supports that TimeSeg operates effectively under a strict black-box setting without relying on gradient
 1221 access or model structure, as summarized in Figure 7.



1234 **Figure 7: Backbone generalization.** For each dataset (SeqCombSingle, MIT-ECG, GunPoint), we compare
 1235 LIMESegment, TimeX++, and TimeSeg across three backbones (TCN, RNN, Transformer). Left/middle: F1
 1236 overlap with ground-truth explanatory regions (higher is better). Right: sufficiency on GunPoint (lower is bet-
 1237 ter). TimeSeg matches or exceeds the best performance across backbones while keeping the standard deviation
 1238 consistently small, indicating that its selected segments capture most of the predictive signal regardless of the
 1239 underlying architecture.

1240 **RNN results.** On SeqCombSingle and MIT-ECG, TimeSeg matches or exceeds TimeX++ on IoU/F1
 1241 while producing far more contiguous explanations. On GunPoint, TimeSeg achieves the lowest

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

sufficiency (best) among all methods except LIMESegment, while still capturing coherent segments rather than scattered points.

1264

Table 15: RNN backbone: GunPoint (sparsity: 0.06).

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Table 13: RNN backbone: SeqCombSingle (sparsity: 0.24).

Method	F1	IoU	Contiguity
IG	0.515 ± 0.028	0.352 ± 0.026	0.113 ± 0.014
LIMESegment	0.432 ± 0.013	0.290 ± 0.011	0.011 ± 0.000
TimeX++	0.601 ± 0.079	0.434 ± 0.069	0.141 ± 0.004
Ours	0.595 ± 0.011	0.437 ± 0.012	0.012 ± 0.000

Table 14: RNN backbone: MIT-ECG (sparsity: 0.12).

Method	F1	IoU	Contiguity
IG	0.628 ± 0.016	0.477 ± 0.018	0.035 ± 0.001
LIMESegment	0.608 ± 0.015	0.476 ± 0.015	0.006 ± 0.000
TimeX++	0.582 ± 0.123	0.463 ± 0.106	0.013 ± 0.002
Ours	0.746 ± 0.022	0.628 ± 0.026	0.006 ± 0.000

Table 16: Transformer backbone: SeqCombSingle (sparsity: 0.25).

Method	F1	IoU	Contiguity
IG	0.471 ± 0.028	0.314 ± 0.025	0.172 ± 0.010
LIMESegment	0.338 ± 0.013	0.215 ± 0.010	0.011 ± 0.000
TimeX++	0.535 ± 0.133	0.371 ± 0.090	0.093 ± 0.009
Ours	0.573 ± 0.014	0.416 ± 0.014	0.012 ± 0.000

Table 17: Transformer backbone: MIT-ECG (sparsity: 0.13).

Method	F1	IoU	Contiguity
IG	0.462 ± 0.019	0.313 ± 0.017	0.102 ± 0.016
LIMESegment	0.461 ± 0.041	0.343 ± 0.044	0.007 ± 0.001
TimeX++	0.572 ± 0.132	0.463 ± 0.098	0.013 ± 0.003
Ours	0.611 ± 0.040	0.484 ± 0.037	0.006 ± 0.000

1296 **Table 18:** Transformer backbone: GunPoint (sparsity: 0.14).
1297

Method	Suff. (Avg.)	Comp. (Avg.)	Suff. (Zero)	Comp. (Zero)	Contiguity
Random	48.152 ± 11.295	8.601 ± 3.745	48.152 ± 11.295	8.601 ± 3.745	0.242 ± 0.049
IG	13.547 ± 4.598	33.455 ± 14.972	13.547 ± 4.598	33.455 ± 14.972	0.146 ± 0.036
LIMESegment	22.703 ± 15.732	68.148 ± 14.702	22.703 ± 15.732	68.148 ± 14.702	0.014 ± 0.003
TimeX++	44.995 ± 8.446	3.745 ± 2.406	44.999 ± 8.447	3.745 ± 2.406	0.007 ± 0.001
Ours	-0.563 ± 2.452	40.953 ± 7.352	-0.561 ± 2.451	40.953 ± 7.352	0.014 ± 0.001

1305 **Summary.** These results demonstrate that TimeSeg is architecture-agnostic, producing coherent,
1306 compact, and high-fidelity segment-wise explanations across convolutional, recurrent, and Trans-
1307 former encoder backbones.

1310 D.7 COMPUTATIONAL COST

1312 **Interactions.** Standard RL typically rolls out episodes for $\sim 10^3$ – 10^4 steps, incurring a large num-
1313 ber of agent–environment interactions. In contrast, we cast RL as a *segment selection* problem: for
1314 each input we take at most K_{\max} decisions, and we explicitly cap the number of sampled steps per
1315 epoch (e.g., $N_{\text{rollout}} = 1024$). Collected trajectories are stored in a replay buffer and reused until
1316 eviction. As a result, our interaction budget is far below that of standard RL, and comparable to
1317 STE-based masking methods that also query the black box once per generated mask.

1318 **Computational cost.** We report *training* wall-clock time per batch (batch size 256), averaged over
1319 1,000 batches, and *inference* wall-clock time per 1,000 samples for each method (Table 19). For
1320 TimeSeg, the reported training time explicitly includes both the *segment-selection rollout* (policy
1321 interaction with the black-box) and the ensuing PPO update steps. LIMESegment is training-free,
1322 so only inference time is reported. All measurements were obtained on a same hardware setup
1323 with an Intel(R) Xeon(R) CPU and an NVIDIA RTX A6000 GPU, and all methods use identical
1324 preprocessing.

1325 **Table 19:** Wall-clock cost on **SeqCombSingle**. Rollout and training times are per batch (bs = 256), averaged
1326 over 1,000 batches; inference times are per 1,000 samples.

Method	Rollout Time (s)	Training Time (s)	Inference Time (s)
LIMESegment	–	–	6.166 ± 1.620
TimeX++	–	0.250 ± 0.025	0.003 ± 0.000
Ours	0.267 ± 0.059	0.040 ± 0.075	0.023 ± 0.036

1334 **Efficiency, stability, convergence.** To make training behavior transparent, we report both *training*
1335 and *validation* reward curves, and we further decompose the validation reward into its cross-entropy
1336 and length (sparsity) components. This reveals how the sparsity regularizer shapes the learning
1337 dynamics and how quickly the policy stabilizes (Figure 8).

1340 D.8 SEGMENT CLUSTERING ANALYSIS

1342 To provide population-level evidence for this structural view, we perform a simple clustering analy-
1343 sis on the extracted segments, and visualize the results in Figure 9. Concretely, we:

- 1344 1. collect all segments selected by TimeSeg on the test split of a given MIT-ECG dataset.
1345
2. compute pairwise DTW distances between segments and obtain a 2D embedding via a distance-
1346 based method.
1347
3. cluster the embedded segments with k -medoids using the DTW space.
1348
4. visualize both the embedded points and the segments at the cluster centroid.
1349

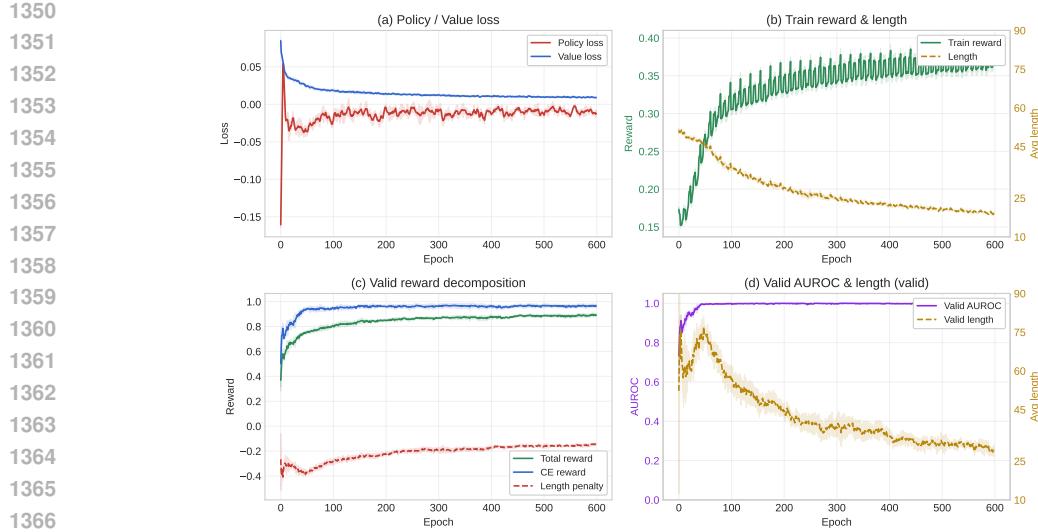


Figure 8: Training dynamics on SeqCombSingle. (a) policy/value losses; (b) training reward and average length; (c) validation total reward and its decomposition into cross-entropy and length terms; (d) validation AUROC and average explanation length. Curves show mean \pm std over five folds.

This yields groups of explanatory segments that correspond to recurring temporal segments (e.g., QRS-like shapes in **MIT-ECG**). Such segment-level structure is difficult to recover from purely point-wise saliency but becomes straightforward once explanations are expressed as contiguous segments as in our TimeSeg.

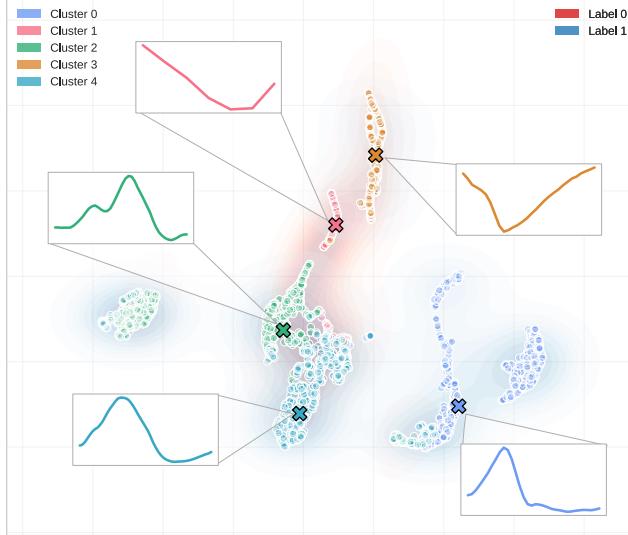


Figure 9: Segment clustering on MIT-ECG. Each point is an extracted segment embedded in a DTW-based space; colors denote clusters (via k -medoids), and crosses mark the cluster medoids. The corresponding medoid segments form representative QRS-like segments, illustrating that TimeSeg's contiguous segments aggregate into clinically meaningful patterns at the population level.

E THE USE OF LLMs IN THIS WORK

LLMs were used solely for minor sentence editing to improve readability and flow, with no involvement in idea generation, experimental design, analysis, or substantive content creation.