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Abstract

Heterogeneity poses a fundamental challenge for many real-world large-scale
decision-making problems but remains largely understudied. In this paper, we
study the fully heterogeneous setting of a prominent class of such problems, known
as weakly-coupled Markov decision processes (WCMDPs). Each WCMDP con-
sists of N arms (or subproblems), which have distinct model parameters in the
fully heterogeneous setting, leading to the curse of dimensionality when N is
large. We show that, under mild assumptions, an efficiently computable policy
achieves an O(1/

→
N) optimality gap in the long-run average reward per arm for

fully heterogeneous WCMDPs as N becomes large. This is the first asymptotic

optimality result for fully heterogeneous average-reward WCMDPs. Our main
technical innovation is the construction of projection-based Lyapunov functions
that certify the convergence of rewards and costs to an optimal region, even under
full heterogeneity.1

1 Introduction

Heterogeneity poses a fundamental challenge for many real-world decision-making problems, where
each problem consists of a large number of interacting components. However, despite its practical
significance, heterogeneity remains largely understudied in the literature. In this paper, we study
heterogeneous settings of a prominent class of such problems, known as weakly-coupled Markov
decision processes (WCMDPs) [23]. A WCMDP consists of N arms (or subproblems), where each
arm itself is a Markov decision process (MDP). In a heterogeneous setting, the MDPs could be
distinct. At each time step, the decision-maker selects an action for each arm, which affects the arm’s
transition probabiltities and reward, and then the arms make state transitions independently. However,
these actions are subject to a set of global budget constraints, where each constraint limits one type
of total cost across all arms at each time step. The objective is to find a policy that maximizes the
long-run average reward over an infinite time horizon. We focus on the planning setting, where all
the model parameters (reward function, cost functions, budget, and transition kernel) are known.

WCMDPs have been used to model a wide range of applications, including online advertising [7, 57],
job scheduling [48], healthcare [5], surveillance [40], and machine maintenance [21]. A faithful
modeling of these applications calls for heterogeneity. For instance, in [5], arms are beneficiaries
of a health program and they could react to interventions differently; in [40], arms are targets of
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surveillance who have different locations and probabilities to be exposed; in [21], arms are machines
that could require distinct repair schedules.

Although heterogeneity is crucial in the modeling of these applications, most existing work on average-
reward WCMDPs establishes asymptotic optimality only for the homogeneous setting where all
arms share the same set of model parameters [14, 15, 22, 24–27, 39, 42, 47]. Only a few exceptions
[25, 39, 46] address heterogeneity, but in highly specialized settings. Among these, a common
approach to handle heterogeneity is to consider the typed heterogeneous setting, where the N arms
are divided into a constant number of types as N scales up, with each type having distinct model
parameters. While heterogeneous WCMDPs have been studied under the finite-horizon total-reward
and discounted-reward criteria, these results do not extend to the average-reward setting we consider.
We review related work in more detail at the end of this section and also in Appendix A.

The key distinction between the homogeneous (or typed heterogeneous) setting and the fully het-
erogeneous setting is whether the arms can be divided into a constant number of homogeneous
groups. In the former, the system dynamics depends only on the fraction of arms in each state in each
homogeneous group. Thus, the effective dimension of the state space is polynomial in N . In contrast,
in the fully heterogeneous setting, the state space grows exponentially in N , making the problem
truly high-dimensional.

Our contribution. In this paper, we study fully heterogeneous WCMDPs. We propose a policy
we call the ID policy with reassignment, which generalizes the ID policy in the literature [27]. In
our policy, we first perform an ID reassignment algorithm to reorder the arms, which ensures proper
arm prioritization during policy execution. We then run a variant of the ID policy adapted to handle
heterogeneity, which consists of two phases. The first phase is a pre-processing phase, where we
compute an optimal single-armed policy for each arm (denoted as ω̄→

i for the i-th arm) that prescribes
the ideal action the arm would take at each state. The second phase is the real-time phase. At each
time step, the policy iterates over the arms according to their reassigned IDs, and it lets as many
arms as possible follow their respective ideal actions while satisfying the budget constraints. Unlike
the original ID policy, which has only one optimal single-armed policy due to homogeneous arms,
our policy computes N optimal single-armed policies, one for each arm. Our proposed policy is
efficiently computable, with computational complexity polynomial in N .

We prove that the proposed ID policy with reassignment achieves an O(1/
→
N) optimality gap

under mild assumptions as the number of arms N becomes large. Here, the optimality gap refers
to the difference between the long-run average reward per arm under our policy and that under the
optimal policy. This is the first result establishing asymptotic optimality for fully heterogeneous

average-reward WCMDPs.

We remark that the original ID policy was designed for a special case of WCMDPs known as restless
bandits, and it is for the homogeneous setting. While the generalization in our proposed policy is
natural, identifying the appropriate generalization and establishing its optimality gap in the fully
heterogeneous setting are technically challenging and require new theoretical approaches.

Technical novelty. The main technical innovation of the paper is the introduction of a novel
Lyapunov function for fully heterogeneous WCMDPs. Specifically, to prove the asymptotic optimality
of a policy, a key step is to show that the system state is globally attracted to an optimal region

where most arms can follow the ideal actions generated by their respective optimal single-armed
policies ω̄→

i ’s. In the homogeneous setting, we can prove such convergence using state aggregation
techniques that rely on the symmetry of arms. However, in the heterogeneous setting, states of
different arms cannot be aggregated since arms are no longer symmetric. Our technique is to project

arm states onto a set of carefully selected feature vectors, and define the Lyapunov function based
on these projections. These feature vectors encode the minimal amount of information needed to
evaluate the relevant functions of the system state (e.g., instantaneous reward or cost) and predict
their future expectations. This projection-based Lyapunov function provides a principled way to
measure deviations of the system state from the optimal region in a fully heterogeneous setting. A
more detailed discussion of this approach can be found in Section 4.

Beyond WCMDPs, our techniques have the potential to be applied to more general heterogeneous
large stochastic systems. Heterogeneity has been a topic of strong interest in these systems, but it is
known to be a challenging problem with limited theoretical results. Only recently have there been
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notable breakthroughs. [1, 2] extended the popular mean-field analysis to a class of heterogeneous
large stochastic systems for the first time, but the results are only for transient distributions. Another
line of work [55, 56] studied heterogeneous load-balancing systems. They first analyzed the transient
distributions and then used interchange-of-limits arguments to extend the results to steady state. Our
method provides a more direct framework for steady-state analysis and has the potential to generalize
to a broader range of heterogeneous stochastic systems.

Related work. WCMDPs have been extensively studied with a rich body of literature. Here we
briefly overview the most relevant work and refer the reader to Appendix A for a detailed survey.

We first focus on the average-reward criterion. As mentioned earlier, most existing work considers
the homogeneous setting. Early work on WCMDPs primarily focuses on a special case known as
the restless bandit (RB) problem, where each arm’s MDP has a binary action space (active and
passive actions) and there is only one budget constraint that limits the total number of active actions
across all arms at each time step. The seminal work by Whittle [44] introduced the RB problem
and the celebrated Whittle index policy, which was later shown to achieve an o(1) optimality gap
as N ↑ ↓ under a set of conditions [42]. Subsequent work on RBs has focused on designing
policies that achieve asymptotic optimality under more relaxed conditions [25, 27, 39, 47], as well
as improving the optimality gap to O(1/

→
N) [25, 27] or O(exp(↔cN)) [14, 15, 26]. Among these

papers, [25, 39] address heterogeneous RBs. However, [39] focuses on the typed heterogeneous

setting, where the N arms are divided into a constant number of types as N ↑ ↓. The paper [25]
includes an extension to the fully heterogeneous setting. However, for their result to yield asymptotic
optimality, there need to be further assumptions on the orders of the so-called synchronization times
in the paper. The policies in both papers cannot be straightforwardly extended to general WCMDPs,
which have multiple actions, multiple budget constraints, and state-dependent cost functions.

Beyond RBs, work on general average-reward WCMDPs is scarce. The closest to ours are [24, 39, 46],
which studied WCMDPs with a single budget constraint and established o(1) optimality gaps, but
again in the homogeneous setting [24] or the typed heterogeneous setting [39, 46]. More recently,
[22] proved the first o(1) optimality gap result for WCMDPs with general budget constraints, but in
the homogeneous setting.

Under the finite-horizon total-reward or discounted-reward criteria, there has been more work on
heterogeneous settings, including both the typed heterogeneous setting [12, 17] and, more recently, the
fully heterogeneous setting [8–10, 50]. However, the optimality gap in these papers generally grows
super-linearly with the (effective) time horizon, except under restrictive conditions. Consequently, it
is difficult to extend these results to the average-reward setting and still achieve asymptotic optimality.

Although our work focuses on the planning setting where all model parameters are known, there
has been growing interest in developing reinforcement learning algorithms for the learning setting
with unknown parameters [3, 6, 13, 29, 30, 32, 33, 36, 45, 46]. Many of these approaches rely on
well-designed planning policies as a foundation to achieve learning efficiency. In this context, our
results can serve as an important building block for developing model-based learning algorithms for
fully heterogeneous WCMDPs.

General notation. Let R, N, and N+ denote the sets of real numbers, nonnegative integers,
and positive integers, respectively. Let [N ] ↭ {1, 2, . . . , N} for any N ↗ N+ and [n1 : n2] ↭
{n1, n1 + 1, . . . , n2} for n1, n2 ↗ N+ with n1 ↘ n2. Let [0, 1]N = {i/N : i ↗ N, 0 ↘ i/N ↘ 1},
the set of integer multiples of 1/N in [0, 1]. For a matrix A ↗ Rd↑d, we denote its operator norm
as ≃A≃p = supx ↓=0 ≃Ax≃p / ≃x≃p. We use boldface letters to denote matrices, and regular letters to
denote vectors and scalars. We write RS for the set of real-valued vectors indexed by elements of S,
or equivalently, the set of real-valued functions on S; for each v ↗ RS, let v(s) to denote its element
corresponding to s ↗ S.

2 Problem setup

We consider a weakly-coupled Markov decision process (WCMDP) that consists of N arms. Each arm
has an ID i ↗ [N ] and is associated with a smaller MDP denoted as Mi =

(
S,A,Pi, ri, (ck,i)k↔[K]

)
.

Here S and A are the state space and the action space, respectively, both assumed to be finite; Pi

describes the transition probabilities with Pi(s↗ | s, a) being the transition probability from state s
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to state s
↗ when action a is taken. The state transitions of different arms are independent given the

actions. When arm i is in state s and we take action a, a reward ri(s, a) is generated, as well as K
types of costs ck,i(s, a), k ↗ [K]. We assume that the costs are nonnegative, i.e., ck,i(s, a) ⇐ 0 for
all i ↗ N+, k ↗ [K], s ↗ S, and a ↗ A. Note that we allow the arms to be fully heterogeneous, i.e.,
the Mi’s can be all distinct.

When taking an action for each arm in this N -armed system, we are subject to budget constraints.
Specifically, suppose each arm i is in state si. Then the actions, ai’s, should satisfy the constraints:

∑

i↔[N ]

ck,i(si, ai) ↘ εkN, ⇒k ↗ [K], (1)

where each εk > 0 is a constant independent of N , and εkN is referred to as the budget for type-k
cost. We assume that there exists an action 0 ↗ A that does not incur any type of cost for any arm at
any state, i.e., ck,i(s, 0) = 0 for all k ↗ [K], i ↗ [N ], s ↗ S. This assumption guarantees that there
always exist valid actions (e.g., taking action 0 for every arm) regardless of the states of the arms.

Policy and system state. A policy ω for the N -armed problem specifies the action for each of
the N arms, in a possibly history-dependent way. Under policy ω, let Sω

i,t denote the state of the
ith arm at time t, and we refer to Sω

t ↭ (Sω
i,t)i↔[N ] as the system state. Similarly, let Aω

i,t denote
the action applied to arm i at time t, and we refer to Aω

t ↭ (Aω
i,t)i↔[N ] as the system action. In this

paper, we also use an alternative representation of the system state, denoted as Xω
t and defined as

follows. Let Xω
i,t = (Xω

i,t(s))s↔S ↗ R|S| be a row vector where the entry corresponding to state s is
given by X

ω
i,t(s) = {Sω

i,t = s}; i.e., Xω
i,t is a one-hot row vector whose s’s entry is 1 if Sω

i,t = s

and is 0 otherwise. Then let Xω
t be an N ⇑ |S| matrix whose ith row is Xω

i,t. It is easy to see that
Xω

t contains the same information as Sω
t , and we refer to both of them as the system state. In this

paper, we often encounter vectors like X
ω
i,t = (Xω

i,t(s))s↔S, whose entries correspond to different
states in S. For such vectors, say u and v, we use the inner product to write a sum for convenience
⇓u, v⇔ ↭ ∑

s↔S u(s)v(s). We sometimes omit the superscript ω when it is clear from context.

Maximizing average reward. Our objective is to maximize the long-run time-average reward
subject to the budget constraints. To be more precise, we follow the treatment for maximiz-
ing average reward in [35]. For any policy ω and an initial state S0 of the N -armed sys-
tem, consider the limsup average reward R

+(ω,S0) and the liminf average R
↘(ω,S0), de-

fined as R
+(ω,S0) = lim supT≃⇐

1
T

∑T↘1
t=0

1
N

∑
i↔[N ] E

[
ri(Sω

i,t, A
ω
i,t)

]
and R

↘(ω,S0) =

lim infT≃⇐
1
T

∑T↘1
t=0

1
N

∑
i↔[N ] E

[
ri(Sω

i,t, A
ω
i,t)

]
. If R+(ω,S0) = R

↘(ω,S0), then the average
reward of policy ω under the initial condition S0 exists and is defined as

R(ω,S0) = R
+(ω,S0) = R

↘(ω,S0) = lim
T≃⇐

1

T

T↘1∑

t=0

1

N

∑

i↔[N ]

E
[
ri(S

ω
i,t, A

ω
i,t)

]
. (2)

Note that these reward notions divide the total reward from all arms by the number of arms, N ,
measuring the reward per arm. The WCMDP problem is to solve the following optimization problem:

maximize
policy ω

R
↘(ω,S0) (3a)

subject to
∑

i↔[N ]

ck,i(S
ω
i,t, A

ω
i,t) ↘ εkN, ⇒k ↗ [K], ⇒t ⇐ 0. (3b)

Let the optimal value of this problem be denoted as R
→(N,S0). Note that since the WCMDP is

an MDP with finite state and action space, if we replace the R
↘(ω,S0) in the objective (3a) with

R
+(ω,S0), the optimal value stays the same [35, Proposition 9.1.6].

Asymptotic optimality. Recall that exactly solving the WCMDP problem is PSPACE-hard [34]. In
this paper, our goal is to design a policy ω that is efficiently computable and asymptotically optimal

as N ↑ ↓, with the following notion for asymptotic optimality. For any policy ω, we define its
optimality gap as R→(N,S0)↔R

↘(ω,S0). We say the policy ω is asymptotically optimal if

R
→(N,S0)↔R

↘(ω,S0) = o(1) as N ↑ ↓. (4)
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When we take this asymptotic regime as N ↑ ↓, we keep the number of constraints, K, as
well as the budget coefficients, ε1,ε2, . . . ,εK , fixed. We assume that the reward functions and
cost functions are uniformly bounded, i.e., supi↔N+

maxs↔S,a↔A |ri(s, a)| ↭ rmax < ↓ and
supi↔N+

maxk↔[K],s↔S,a↔A ck,i(s, a) ↭ cmax < ↓. This notion for asymptotic optimality is con-
sistent with that in the existing literature (e.g., [39, Definition 4.11]). We are interested in not only
achieving asymptotic optimality but also characterizing the order of the optimality gap.

In the remainder of this paper, we focus on stationary Markov policies, which are sufficient for
achieving the optimal value because the WCMDP problem is an MDP with finite state and action
spaces [35, Theorem 9.1.8]. Under any stationary Markovian policy, the long-run reward R(ω,S0) =
R

+(ω,S0) = R
↘(ω,S0) is always well-defined [35, Theorem 8.1.1].

LP relaxation and an upper bound on optimality gap. We consider the linear program (LP)
below, which will play a critical role in performance analysis and policy design:

R
rel
N ↭ maximize

(yi(s,a))i→[N],s→S,a→A

1

N

∑

i↔[N ]

∑

s↔S,a↔A
yi(s, a)ri(s, a) (5a)

subject to
1

N

∑

i↔[N ]

∑

s↔S,a↔A
yi(s, a)ck,i(s, a) ↘ εk, ⇒k ↗ [K], (5b)

∑

s↑↔S,a↑↔A
Pi(s | s↗, a↗)yi(s↗, a↗) =

∑

a↔A
yi(s, a), ⇒s ↗ S, ⇒i ↗ [N ], (5c)

∑

s↑↔S,a↑↔A
yi(s

↗
, a

↗) = 1, yi(s, a) ⇐ 0, ⇒s ↗ S, ⇒a ↗ A, ⇒i ↗ [N ]. (5d)

Lemma 1 below establishes a connection between this LP and the WCMDP.
Lemma 1. The optimal value of any N -armed WCMDP problem is upper bounded by the optimal

value of the corresponding linear program in (5), i.e.,

R
→(N,S0) ↘ R

rel
N , ⇒N, ⇒S0.

An immediate implication of Lemma 1 is that for any policy ω, its optimality gap is upper bounded as

R
→(N,S0)↔R

↘(ω,S0) ↘ R
rel
N ↔R

↘(ω,S0). (6)

Therefore, to derive an upper bound for the optimality gap, it suffices to control Rrel
N ↔R

↘(ω,S0),
which we will show is O(1/

→
N) in Theorem 1.

To see the intuition of Lemma 1, we interpret the optimization variable yi(s, a) as the long-run
fraction of time arm i spends in state s and takes action a. We refer to yi(s, a) as arm i’s state-action

frequency for the state-action pair (s, a). Then the constraints in (5b) of the LP can be viewed as
relaxations of the budget constraints in (3b) for the WCMDP. The constraints in (5c)–(5d) guarantee
that yi(s, a)’s are proper stationary time fractions. Therefore, the LP is a relaxation of the WCMDP
and thus achieves a higher optimal value. The proof of Lemma 1 is provided in Appendix C of [54].

Our LP (5) serves a similar role to the LP used in previous work on restless bandits and WCMDPs
(see, e.g., [15, 22, 24, 25, 39, 42, 46]), but with different forms and dependencies on N . Both
our LP and the LP in previous work relax the hard budget constraints to time-average constraints.
However, in the homogeneous arm setting [15, 22, 24, 42], the LP has only one set of state-action
frequencies y(s, a), and the LP is independent of N . As a result, both the optimal value of the LP and
the complexity of solving it are independent of N . Prior work for the typed-heterogeneous setting
[25, 39, 46] divides the arms into a constant number K of types and defines a set of state-action
frequency yk(s, a) for each type k. The optimal value of the resulting LP and the complexity of
solving it depend on the number of types K. Hong et al. [25] includes a generalization to the fully
heterogeneous setting, resulting in an LP similar to ours, although restricted to restless bandits.

In our LP, we define a separate set of state-action frequencies yi(s, a) for each arm i ↗ [N ], making
the LP explicitly depend on N . Therefore, the optimal value R

rel
N depends on N , and the complexity

of solving the LP grows with N . Nevertheless, because the number of variables and constraints scales
linearly with N , our LP can still be solved in polynomial time.
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Algorithm 1 ID reassignment

1: Input: optimal state-action frequencies (y→i (s, a))i↔[N ],s↔S,a↔A, budgets (εk)k↔[K]

2: Output: new arm ID, recorded in newID(i), for each arm with old ID i ↗ [N ]
3: Compute (C→

k,i)i↔[N ],k↔[K] and the set of active constraints A using (8)
4: if A = ↖ then
5: newID(i) ↙ i for all i ↗ [N ] ϑ No need for ID reassignment

6: else
7: Initialize F ↙ ↖ ϑ Set of arms that have been assigned new IDs

8: Initialize Dk ↙ {i ↗ [N ] : C→
k,i ⇐ ϖ} for all k ↗ A

9: ϖ ↙ εmin/4 ↭ mink↔[K] εk/4; d ↙
⌈
(cmax↘ε)K
ϑmin/2↘ε

⌉

10: for ϱ = 0, 1, . . . , ∝N/d′ ↔ 1 do
11: I(ϱ) ↙ [ϱd+ 1 : (ϱ+ 1)d]; j ↙ ϱd+ 1
12: for k ↗ A do
13: if

∑
i↔F C

→
k,i {newID(i) ↗ I(ϱ)} < ϖ then

14: Pick any i from Dk and set newID(i) ↙ j; remove i from Dk↑ for all k↗; add i to F
15: j ↙ j + 1
16: For all i ↗ [N ]\F , assign values to their newID(i)’s randomly from [N ]\{newID(i↗) : i↗ ↗ F}

3 ID policy with reassignment

In this section, we introduce the ID policy with reassignment, generalized from the ID policy designed
for homogeneous restless bandits in the literature [27]. Our policy first performs an ID reassignment
procedure, and then proceeds to run a variant of the ID policy adapted to handle heterogeneity. We
begin by introducing a building block of our policy, referred to as optimal single-armed policies,
followed by the ID reassignment algorithm and the execution of the adapted ID policy.

Optimal single-armed policies. Once we obtain a solution to the LP in (5), we can construct a
policy for each arm i, which we refer to as an optimal single-armed policy for arm i. In particular, let
(y→i (s, a))i↔[N ],s↔S,a↔A be an arbitrary optimal solution to the LP in (5). Then for arm i, the optimal
single-armed policy, ω̄→

i , is defined as

ω̄
→
i (a | s) =

{
y↓
i (s,a)∑

a→A y↓
i (s,a)

, if
∑

a↔A y
→
i (s, a) > 0,

1
|A| , if

∑
a↔A y

→
i (s, a) = 0,

(7)

where ω̄
→
i (a | s) is the probability of taking action a given that the arm’s current state is s. Note that

due to heterogeneity, this optimal single-armed policy ω̄
→
i can be different for different arms.

The rationale behind these policies is as follows. If each arm i individually follows its optimal
single-armed policy ω̄

→
i , then the average reward per arm (total reward divided by N ) achieves the

upper bound R
rel
N given by the LP. However, this strategy only guarantees that the budget constraints

are satisfied in a time-average sense, rather than conforming to the hard constraints in the original
N -armed WCMDP. Thus, having each arm follow its optimal single-armed policy is not a valid policy
for the original N -armed problem. Nevertheless, these optimal single-armed policies ω̄→

i ’s serve as a
guide for how the arms should ideally behave to maximize rewards. The ID policy uses the ω̄

→
i ’s as a

reference. It is then designed to ensure that even under the hard budget constraints, most arms follow
their optimal single-armed policies most of the time, yielding a diminishing gap to R

rel
N in reward.

ID reassignment. We first define a few quantities that will be used in the ID reassignment algorithm.
For each arm i ↗ [N ] and each cost type k ↗ [K], the expected cost under the optimal single-armed
policy is defined as C

→
k,i =

∑
s↔S,a↔A y

→
i (s, a)ck,i(s, a). Based on C

→
k,i’s, we divide the budget

constraints into active constraints and inactive constraints as follows. For each cost type k ↗ [K], we
say the type-k budget constraint is active if

∑

i↔[N ]

C
→
k,i ⇐

εk

2
N, (8)

and inactive otherwise. Let A ∞ [K] denote the set of cost types corresponding to active constraints.
Note that replacing εkN/2 with any constant and strict fraction of εkN will not change the results.
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Algorithm 2 ID policy with reassignment

1: Input: N -armed WCMDP instance (Mi)i↔[N ]
2: Preprocessing:
3: Solve the LP in (5) and obtain the optimal state-action frequencies (y→i (s, a))i↔[N ],s↔S,a↔A
4: Calculate the optimal single-armed policies (ω̄→

i )i↔[N ] using (7)
5: Perform ID reassignment using Algorithm 1
6: Real-time:
7: for t = 0, 1, 2, · · · do
8: Sample ideal actions Âi,t ∈ ω̄

→
i (· | Si,t) for all i ↗ [N ]

9: I ↙ 1
10: while

∑
i↔[I] ck,i(Si,t, Âi,t) ↘ εkN, ⇒k ↗ [K] do

11: For arm I , take action AI,t = ÂI,t; I ↙ I + 1
12: For each arm i ↗ {I, I + 1, . . . , N}, take action Ai,t = 0

Based on the costs C→
k,i’s and the active constraints, the ID reassignment algorithm rearranges arms

so that the cost incurred by each contiguous segment of arms is approximately proportional to the
length of the segment. We give a brief explanation of how the reassigned IDs affect the execution of
the policy at the end of this section. The algorithm is formally described in Algorithm 1, with more
details and properties provided in Appendix D of [54]. In the rest of the paper, we use the reassigned

IDs to refer to arms, i.e., arm i refers to the arm whose new ID assigned by Algorithm 1 is i.

Constructing ID policy. We are now ready to describe our generalized ID policy, formally described
in Algorithm 2. The policy begins with a one-time preprocessing phase: we solve the associated
LP, construct the optimal single-armed policies, and reassign arm IDs using the ID reassignment
algorithm (Algorithm 1). After the preprocessing, the policy proceeds at each time step t as follows.
For each arm i (where i is the reassigned ID), we first sample an action Âi,t, referred to as an ideal

action, from the optimal single-armed policy ω̄
→
i (· | Si,t). We then attempt to execute these ideal

actions, i.e., set the real actions equal to the ideal actions, in ascending order of arm IDs, starting
from i = 1, then i = 2, and so on. We continue the attempt until we have used up at least one type of
cost budget, at which point we let the remaining arms take action 0 (the no-cost action).

This ID policy is a natural generalization of the ID policy designed for homogeneous restless bandits
[27]. At a high level, using arm IDs to decide the priority order for executing ideal actions guarantees
that a subset of arms (those with smaller IDs) can persistently follow their ideal actions. This
persistency gives these arms time to converge to their optimal state-action frequencies, which in turn
allows their instantaneous costs to converge to steady-state values. This convergence creates slack in
the budget constraints, thereby allowing more arms to follow their ideal actions. In contrast, if we do
not use IDs but instead randomly select a subset of arms to follow their ideal actions, the convergence
may be disrupted. Indeed, [25] provides an example where this randomized strategy fails to achieve
asymptotic optimality in restless bandits.

When there is no ambiguity, we refer to the ID policy with reassignment simply as the ID policy.

How the reassigned IDs affect the policy execution. In the heterogeneous setting, arms differ in
their cost consumptions under their optimal single-armed policies. The ID reassignment algorithm
is designed to prevent “plateaus” in cumulative cost as we progress from smaller to larger IDs. If
such a plateau exists, the subset of arms allowed to follow their ideal actions (determined by the
budget constraints) can become sensitive to the randomness in action sampling, potentially leading
to performance instability. The ID reassignment algorithm ensures a regularity property of the cost
consumptions, stated in Lemma 2 in Appendix D of [54], which eliminates such plateaus.

4 Main results and technical overview

Before we present the main results, we first state our main assumption. This assumption is for the
optimal single-armed policies ω̄→

i ’s. Note that each ω̄
→
i is a stationary Markov policy. Therefore, under

this policy, the state of arm i forms a Markov chain. Let the transition probability matrix of this

7



Markov chain be denoted as Pi = (Pi(s, s↗))s↔S,s↑↔S, where the row index is the current state s and
the column index is the next state s

↗. Then Pi(s, s↗) can be written as

Pi(s, s
↗) =

∑

a↔A
Pi(s

↗ | s, a)ω̄→
i (a | s). (9)

One can verify that the stationary distribution of this Markov chain is µ
→
i = (µ→

i (s))s↔S with
µ
→
i (s) =

∑
a↔A y

→
i (s, a), which we refer to as the optimal state distribution for arm i. Let ςi be the

mixing time of this Markov chain, defined as

ςi = max
s↔S

min
{
t ↗ N :

∥∥P t
i (s, ·)↔ µ

→
i (·)

∥∥
1
↘ 1/e

}
, (10)

where P
t
i is the t-step transition probability matrix. The mixing time ςi is finite if the Markov chain

Pi is unichain (one recurrent class, possibly with transient states) and aperiodic.
Assumption 1. For each arm i ↗ N+, the induced Markov chain under the optimal single-armed

policy ω̄
→
i is an aperiodic unichain. Furthermore, the mixing times of these Markov chains have a

uniform upper bound; i.e., there exists a positive ς such that for all i ↗ N+,

ςi ↘ ς. (11)

We remark that in the homogeneous or typed heterogeneous settings, once we make the aperiodic
unichain assumption in Assumption 1, the uniform upper bound on mixing times automatically exists.

Next, we state our main theorem, Theorem 1, whose proof is provided in Appendix E of [54].
Theorem 1. Consider an N -armed WCMDP problem satisfying Assumption 1, with initial system

state S0. Let policy ω be the ID policy with reassignment (Algorithm 2). Then the optimality gap of ω

is bounded as

R
→(N,S0)↔R(ω,S0) ↘

CID→
N

,

where CID is a positive constant independent of N .

We re-emphasize that our proposed ID policy with reassignment is the first efficiently computable
policy that achieves an O(1/

→
N) optimality gap for fully heterogeneous average-reward WCMDPs.

In contrast, the best-known optimality gap for efficiently computable policies for average-reward
WCMDPs is o(1), achieved only under restrictive budget constraints and typed-heterogeneity.

We comment that the primary goal of this paper is to characterize the optimality gap in terms of its
order in N , which is in line with the main focus of the large body of prior work on restless bandits and
WCMDPs. While our analysis also gives an explicit expression for the constant CID, which shows
that CID = O(K5 max{rmax, cmax}7ς4/ε6

min), we have not attempted to optimize its dependence
on other problem parameters, either through refined analysis or alternative policy design.
Remark 1 (Generalization of result). Our result can be generalized to the setting where a g(N)
fraction of arms have unbounded mixing times, and the mixing times of the remaining arms scale
with N with an upper bound ς . In this case, we can modify the ID policy by reassigning this g(N)
fraction of arms the largest IDs, effectively ignoring these arms. Applying Theorem 1 to the remaining
arms then implies R→(N,S0)↔R(ω,S0) ↘ O

(
K

5 max{rmax, cmax}7ς4/(ε6
min

→
N)+rmaxg(N)

)
.

Consequently, this modified policy is asymptotically optimal when g(N) = o(1) and ς = o(N1/8).

Adapting the proof of Theorem 1 also gives the following finite-time bound (see Appendix I of [54]).
Proposition 1 (Finite-time bound). Under the same conditions as Theorem 1, we have for any T ⇐ 1,

R
→(N,S0)↔

1

TN

T↘1∑

t=0

∑

i↔[N ]

E
[
ri(S

ω
i,t, A

ω
i,t)

]
↘ CID→

N
+

Cfinite

T
, (12)

where Cfinite is another positive constant independent of N .

Technical overview

Our technical approach uses the Lyapunov drift method, which has found widespread applications in
queueing systems, Markov decision processes, reinforcement learning, and so on. While the basic
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framework of the drift method is standard, the key challenge lies in constructing the right Lyapunov
function with the desired properties, where the difficulty is exacerbated by the full heterogeneity of the
problem under study. Our construction of such a Lyapunov function is highly novel, yet still natural.
We reiterate that fully heterogeneous, high-dimensional stochastic systems are poorly understood in
the existing literature. Our approach opens up the possibility of analyzing the steady-state behavior
of such systems through the Lyapunov drift method.

In the remainder of this section, we consider the ID policy, also referred to as the policy ω. Let Xt

denote the system state under it, with the superscript ω omitted for brevity. To make this overview
more intuitive, here let us assume that Xt converges to its steady state X⇐ in a proper sense such
that taking expectations in steady state is the same as taking time averages. However, note that our
formal results do not need this assumption and directly work with time averages. We call a function
V a Lyapunov/potential function if it maps each possible system state to a nonnegative real number.

General framework of the drift method. Here we briefly describe the general framework of the
drift method when applied to our problem. The goal is to construct a Lyapunov function V such that

(C1) R
rel
N ↔R(ω,S0) ↘ C1E [V (X⇐)] /N +O(1/

→
N) for some constant C1;

(C2) (Drift condition) E [V (Xt+1) | Xt]↔V (Xt) ↘ ↔C2V (Xt)+O(
→
N) for a constant C2.

The drift condition requires that on average, the value of V approximately decreases (ignoring the
additive O(

→
N)) after a time step. The drift condition implies a bound on E [V (X⇐)]. To see this, let

Xt follow the steady-state distribution, which means Xt+1 also follows the steady-state distribution,
and take expectations on both sides of the inequality. Then we get 0 = E [V (Xt+1)]↔ E [V (Xt)] ↘
↔C2E [V (Xt)] + O(

→
N), which implies E [V (X⇐)] = E [V (Xt)] = O(

→
N). Combining this

with (C1) proves the desired O(1/
→
N) upper bound on the optimality gap.

Key challenge: constructing Lyapunov function. We highlight this challenge by contrasting
the homogeneous setting and the heterogeneous setting. In the homogeneous setting, there is only
one optimal state distribution, µ→. The Lyapunov function in [27] is defined based on the distance
between the empirical state distribution across arms and µ

→. Specifically, it is based on a set of
functions (h(Xt, D))D⇒[N ] defined as:

h(Xt, D) = ≃Xt(D)↔m(D)µ→≃ , (13)

where Xt(D) = (Xt(D, s))s↔S denotes within D, the number of arms in each state s, divided by
N ; m(D) = |D|/N ; and the norm ≃·≃ is a properly defined norm. The idea is that if all arms in D

follow the optimal single-armed policy, the state distribution of each arm in D gets closer to µ
→, and

thus Xt(D) gets closer to m(D)µ→ over time.

In the heterogeneous setting, we also want to construct a Lyapunov function h(Xt, D) to witness the
convergence of any set of arms D if they follow the optimal single-armed policies. However, unlike
the homogeneous setting, now it no longer makes sense to aggregate arm states into an empirical
state distribution, since each arm’s dynamics is distinct. Instead, our Lyapunov function considers
Xi,t ↔ µ

→
i , where recall Xi,t(s) is the indicator that arm i’s state is s at time t. A naive first attempt is

to construct the Lyapunov function from the pointwise distances, ≃Xi,t ↔ µ
→
i ≃ for each arm i, with a

properly defined norm ≃·≃. However, the pointwise distances are very noisy: ≃Xi,t ↔ µ
→
i ≃ could be

large even when the state of arm i independently follows the distribution µ
→
i for each i, a situation

when we should view the set of arms as already converged.

Intuitively, to make the Lyapunov function properly reflect the convergence of the set of arms (referred
to as “the system” in the rest of the section) following the optimal single-armed policies, we would
like it to depend less strongly on the state of each individual arm and focus more on the collective
properties of the whole system. Our idea is to project the system state onto a properly selected set of
feature vectors, and construct the Lyapunov function based on how far these projections are from the
projections of the optimal state distributions (µ→

i )i↔[N ]. Then what features of the system state do we
need to determine whether it has converged in a proper sense? The first feature we consider is the
instantaneous reward of the system,

∑
i↔D ⇓Xi,t, r

→
i ⇔, where r

→
i ↗ RS is the reward function of arm i

under ω̄→
i , and recall that the inner product is defined between two vectors whose entries correspond

to states in S. We also want to keep track of the ϱ-step ahead expected reward,
∑

i↔D

〈
Xi,tP

ϖ
i , r

→
i

〉
,
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for each ϱ ↗ N+. Intuitively, if
∑

i↔D

〈
(Xi,t ↔ µ

→
i )P

ϖ
i , r

→
i

〉
is small for each ϱ ↗ N, the reward of the

system should remain close to that under the optimal state distributions (µ→
i )i↔[N ] for a long time;

conversely, if the state of each arm i independently follows µ→
i , each of these features should be small

as well. We also consider the ϱ-step ahead expected type-k cost for each ϱ ↗ N and k ↗ [K] as
features, defined analogously.

Combining the above ideas, for any set of arms D, we let the Lyapunov function h(Xt, D) be the
supremum of the differences between Xt and µ

→ in all the features directions defined above, under
proper weightings:

h(Xt, D) = max
g↔G

sup
ϖ↔N


∑

i↔D

〈
(Xi,t ↔ µ

→
i )P

ϖ
i /φ

ϖ
, gi

〉
 , (14)

where φ = exp(↔1/(2ς)) for ς defined in Assumption 1; each element g ↗ G is either g = (r→i )i↔[N ],
or corresponds to the type-k cost for some k ↗ [K] (See Appendix E of [54] for the definition of G).
Note that dividing each term by powers of φ is another interesting trick, which induces a negative
drift in h(Xt, D) under the optimal single-armed policies (See the proof of Lemma 3 in [54]).

Now with the set of functions (h(Xt, D))D⇒[N ] defined, we generalize the idea of focus sets in [27]
to convert (h(Xt, D))D⇒[N ] into a Lyapunov function V (Xt). We prove that V satisfies (C1) and
(C2) using the structure of (h(Xt, D))D⇒[N ].
Remark 2. The idea for constructing h(Xt, D) is potentially useful for analyzing other heterogeneous
stochastic systems. At a high level, projecting the system state onto a set of feature vectors (and their
future expectations) can be roughly viewed as aggregating system states whose relevant performance
metrics remain close for a sufficiently long time. This idea provides a new way to measure the
distance between two system states in a heterogeneous system, and this distance notation enjoys
similar properties as that in a homogeneous system, without resorting to symmetry.

5 Experiments

Figure 1: Asymptotic optimality of
ID policy.

In this section, we perform two sets of experiments to illustrate
the numerical performance of the proposed ID policy for fully
heterogeneous WCMDPs.

In the first set of experiments, we demonstrate the asymptotic
optimality of the ID policy. We increase the number of arms as
N ↗ {100, 200, 400, 800, 1600, 3200}. Each arm’s MDP has
10 states and 4 actions, with parameters generated uniformly
at random in a proper sense. The N -armed problem has 4 bud-
get constraints, with cost functions also generated randomly.
More details are provided in Appendix B.1. We simulate the
policy for 2⇑ 104 time steps over 4 replications for each N .
To illustrate the performance more clearly, we measure the
optimality ratio, defined as the ratio between the long-run average reward achieved by a policy and the
LP relaxation upper bound R

rel
N . Confidence intervals are calculated using the batch means method

with a batch size of 4000, but they are typically too small to be visible on figures. Figure 1 shows
that the optimality ratio of the ID policy becomes increasingly close to 1 as N increases.

Figure 2: ID policy vs ERC policy.

In the second set of experiments, we compare the ID pol-
icy with the ERC policy proposed in [46]. As discussed in
Section 1, only a few prior papers address heterogeneous
WCMDPs. Among them, [46] considers the most general
setting, but is still limited to a single-budget constraint, state-
independent costs, and typed heterogeneity. To make a fair
comparison, we evaluate both policies under this special case,
while keeping all other settings the same as in the first set of
experiments. ID policy turns out to have a slight improvement
over ERC policy in some instances, one of which is shown in
Figure 2, and has comparable performance in others. Impor-
tantly, unlike ERC, the ID policy applies to far more general
classes of WCMDPs.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have stated our assumption (Assumption 1) in Section 4 right before
the main theorem (Theorem 1); we have added a cross-reference to the assumption in the
theorem’s statement. The proofs are given in the appendix of the arXiv version, and we have
referred to the corresponding sections in the arXiv version in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 5 and Appendix B, we have discussed in detail the method of
generating random instances, the simulation setting, and the baseline policy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have cited the link to our GitHub where the simulation code is available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 5 and Appendix B, we have discussed in detail the method of
generating random instances, the simulation setting, and the baseline policy. We have also
cited the link to the GitHub where the code is available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have plotted the confidence intervals in the figures, which turn out to be
negligibly small.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments are small-scaled and can be completed on a standard PC
(6-Core Intel Core i7) within one day.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Since this is a theoretical paper, we believe that there is no potential harms
caused by our research process, and our result does not have negative social impact and
harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our result is theoretical and we see no direct way that it can be linked to a
technology with negative social impacts.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose such risks, since it is mainly theoretical and only has
small-scale simulation experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper is mainly mathematical with only small-scale experiments. It does
not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have uploaded our simulation code to GitHub.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theory paper and it does not involve crowdsourcing or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a theory paper and it does not involve crowdsourcing or research with
human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development of the paper does not involve LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Detailed review on related work

In this section, we provide a more detailed, though still non-exhaustive, review of the literature. We
mainly focus on theoretical work with formal performance guarantees, leaving out the extensive body
of work with empirical results. We begin by surveying papers with the same reward criterion as
ours, i.e., infinite-horizon average-reward criterion. In this setting, we first review existing work on
restless bandits (RBs), which is an extensively studied special case of WCMDPs. We then give a
more detailed review of existing results on WCMDPs. Next, we turn to work that considers other
reward criteria: the finite-horizon total-reward criterion and the infinite-horizon discounted-reward
criterion. Finally, we briefly mention other problems that are related to WCMDPs.

Infinite-horizon average-reward RBs. For the homogeneous arm setting, the first asymptotic
optimality result for average-reward homogeneous RBs is established by Weber and Weiss [42]: they
show that the Whittle index policy [44] achieves an o(1) optimality gap as the number of arms N goes
to infinity. There are three key assumptions in [42]: indexability, the global attractor property, and
the aperiodic-unichain condition. These assumptions have been gradually relaxed in the subsequent
papers. In particular, [39] proposes a class of priority policies based on an LP relaxation. This class
of policies, later referred to as the LP-Priority policies, generalizes the Whittle index policy. Each
LP-Priority policy achieves an o(1) optimality gap without requiring indexability. The work [25]
is the first one that breaks the global attractor property assumption. The authors propose a policy
named Follow-the-Virtual-Advice (FTVA), which achieves an O(1/

→
N) optimality gap under an

assumption named the Synchronization Assumption; there exist problem instances that satisfy the
Synchronization Assumption but do not satisfy the global attractor property. Later work [27] further
relaxes the conditions and only requires the aperiodic-unichain condition to achieve an O(1/

→
N)

optimality gap. More recently, Yan [47] proposes the align-and-steer policy, which further weakens
the aperiodic-unichain condition and achieves an o(1) optimality gap.

Parallel to relaxing the assumptions for asymptotic optimality, another line of work has focused on
improving the optimality gap beyond O(1/

→
N) under slightly stronger assumptions [14, 15, 26].

Specifically, Gast et al. [14] show that the Whittle index policy has an O(exp(↔cN)) optimality gap
for some constant c > 0. In addition to indexability and the aperiodic-unichain condition, [14] also
requires a stronger version of the global attractor property named Uniform Global Attractor Property
(UGAP), and a condition called non-singularity. Subsequently, Gast et al. [15] show that LP-Priority
policies achieve O(exp(↔cN)) optimality gaps assuming the aperiodic-unichain condition, UGAP,
and a non-degenerate condition that is equivalent to non-singularity. More recently, Hong et al. [26]
propose a two-set policy that also achieves an O(exp(↔cN)) optimality gap while replacing UGAP
of [15] with a much weaker condition named local stability.

Among the aforementioned work, [39] and [25] have addressed the heterogeneous arm setting.
The setting studied in [39] is the typed heterogeneous setting, where the N arms are divided into a
constant number of types as N ↑ ↓. The paper [25] includes an extension to the fully heterogeneous
setting. In particular, the proposed FTVA policy generalizes to the fully heterogeneous setting and
leads to an optimality gap of O(ς sync

max/
→
N), where ς

sync
max is the maximum of a quantity called the

synchronization time across all arms. Therefore, for this result to yield asymptotic optimality, there
needs to be a further assumption that ς sync

max = o(
→
N). We re-emphasize that the FTVA policy does

not generalize to WCMDPs. The main reason is that FTVA heavily relies on the fact that an RB
only constrains the number of pulls, while a WCMDP has budget constraints on cost functions each
depending on both the state and action of an arm.

Infinite-horizon average-reward WCMDPs. Work on average-reward WCMDPs remains rel-
atively scarce, and to our knowledge, fully heterogeneous WCMDPs have yet to be addressed.
Compared to RBs, a WCMDP allows multiple actions for each arm and multiple cost constraints,
where each cost function is a function of both the state and the action of an arm. The line of research
[22, 24, 39, 46] has generalized the action space and cost model of RBs to WCMDPs, and some
of them allow for typed heterogeneity. In particular, Hodge and Glazebrook [24] generalize the
Whittle index policy to homogeneous WCMDPs with a single constraint and multiple actions, where
each action represents a different activation level and has a different cost. Verloop [39] extends the
LP-Priority policies to typed heterogeneous WCMDPs with a single constraint and multiple actions,
but requires each action to have the same cost. Then Xiong et al. [46] propose another index policy

21



for typed heterogeneous WCMDPs with a single constraint, and allow each action to have a different
cost. In the three papers above [24, 39, 46], o(1) optimality gaps have been proved under a similar set
of assumptions as in most restless bandit papers, i.e., aperiodic-unichain (or irreducibility) condition,
global attractor property, and a generalized indexability condition if the policy is Whittle index.
Finally, Goldsztajn and Avrachenkov [22] consider homogeneous WCMDPs with multiple actions
and multiple cost constraints with general cost functions, and propose a class of policies with o(1)
optimality gaps under a weaker-than-standard aperiodic-unichain condition.

Finite-horizon total-reward RBs and WCMDPs. Next, we review the asymptotic optimality
results for finite-horizon total-reward RBs and WCMDPs. The finite-horizon setting is better under-
stood than the average-reward setting, partly because the analysis in the finite horizon is not hindered
by the technical conditions arising in average-reward MDPs, such as the unichain condition and
the global attractor property. On the other hand, computing asymptotically optimal policies for the
finite-horizon setting is more complicated, requiring a careful optimization of the transient sample
paths.

Hu and Frazier [28] propose the first asymptotically optimal policy for finite-horizon homogeneous
RBs, which achieves an o(1) optimality gap without any assumptions.2 Since then, researchers
have established asymptotic optimality in more general settings [8, 10, 12, 17, 49]. Among these
papers, the most general setting is addressed by Brown and Zhang [10], where the authors consider
fully heterogeneous WCMDPs; they obtain O(1/

→
N) optimality gaps for a naive fluid policy and a

reoptimization-based fluid policy, among a few other results to be reviewed in the next paragraphs.
Notably, there is also a further generalization of fully heterogeneous WCMDPs, which involves an
exogenous state that affects all arms’ transitions, rewards, and constraints; Brown and Zhang [9]
propose this setting, where they achieve an O(1/

→
N) optimality gap using a dynamic fluid policy.

Another line of work has improved the optimality gap beyond the order O(1/
→
N) by making

an additional assumption called non-degeneracy. Specifically, Zhang and Frazier [51] establish
an O(1/N) optimality gap in non-degenerate homogeneous RBs. Gast et al. [15] then propose
a different policy for the same setting that improves the optimality gap to O(exp(↔cN)). Later,
Gast et al. [16] and Brown and Zhang [10] establish O(1/N) optimality gaps for homogeneous
and typed heterogeneous WCMDPs, respectively, assuming non-degeneracy. More recently, Zhang
[50] proposes a policy for fully heterogeneous WCMDPs; the optimality gap bound of the policy
interpolates between O(1/

→
N) and O(1/N) as the degree of non-degeneracy varies, unifying the

performance bounds in the degenerate and non-degenerate cases.

Despite the generality of the settings and the fast diminishing rate of the optimality gaps as N ↑ ↓,
most of the optimality gaps in the finite-horizon setting depend super-linearly on the time horizon,
so they do not carry over to the infinite-horizon average-reward setting. There are two exceptions,
[10, 16], which achieve optimality gaps that depend linearly on the time horizon under some special
conditions: [10] requires all entries of the transition kernels to be bounded away from zero; [16]
assumes an ergodicity property, which requires two arms in any different states to synchronize in a
fixed number of steps under any sequence of actions with a positive probability. However, without
these conditions, the optimality gaps in [10, 16] depend quadratically on the time horizon. Apart
from having distinct optimality gap bounds, all existing algorithms in the finite-horizon setting need
to (sometimes repeatedly) solve LPs whose number of variables scales with the time horizon, so they
cannot be directly adapted to the infinite-horizon average-reward setting.

Infinite-horizon discounted-reward RBs and WCMDPs. Asymptotic optimality has also been es-
tablished for RBs and WCMDPs under the infinite-horizon discounted-reward criterion. In particular,
Brown and Smith [8] establish an O(N log2(

⇑
ϱ)) optimality gap for fully heterogeneous WCMDPs

when φ ↗ (1/2, 1). Subsequently, Ghosh et al. [17], Zhang and Frazier [52] obtain O(1/
→
N)

optimality gaps for homogeneous and typed heterogeneous RBs, and Brown and Zhang [10] establish
the same order of optimality gap for fully heterogeneous WCMDPs. Similar to the finite-horizon
setting, most of these optimality gaps depend super-linearly on the effective time horizon 1/(1↔ φ)

2Here, we measure the optimality gap in terms of the reward per arm, to be consistent with our convention.
However, in the papers on the finite-horizon total-reward setting, it is also common to measure the optimality
gap in terms of the total reward of all arms, which differs from ours by a factor of N . We also adopt the same
convention when reviewing the papers on the infinite-horizon discounted-reward setting.

22



unless special conditions hold [10], so they do not carry over to the infinite-horizon average-reward
setting. The policies here also require solving LPs whose complexities scale with the effective time
horizon.

Restful bandits, stochastic multi-armed bandits. A special case of RB is the restful bandit (also
referred to as nonrestless bandits, rested bandits, or Markovian bandits), where an arm’s state does not
change if it is not pulled. The restful bandit problem has been widely studied, where the celebrated
Gittins index policy is proven to be optimal [4, 19, 20, 37, 38, 41, 43]. We refer the readers to [18] for
a comprehensive review of Gittins index and restful bandits. Another related topic is the stochastic
multi-armed bandit (MAB) problem, which has been extensively studied; see the book [31] for a
comprehensive overview. The key distinction between MABs and RBs is that arms are stateless in
MABs, but stateful in RBs. Consequently, MAB becomes trivial with known model parameters,
whereas RB is still non-trivial.

B Experimental details

In this appendix, we provide details of the two WCMDP instances considered in Section 5, and the
definition of the baseline policy, the ERC policy from [46]. The complete code for these experiments
is available on GitHub [53], and all results can be reproduced within 24 hours on a standard PC (e.g.,
6-Core Intel Core i7).

B.1 WCMDP instance generation

Details of the WCMDP instance 1 (In Figure 1). |S| = 10, |A| = 4, K = 4. For each i ↗ [N ],
s ↗ S, and a ↗ A, ri(s, 0) = 0, and ri(s, a) is independently sampled from the uniform distribution
over [0, 1] for each a ∋= 0; Pi(s, a, ·) is independently sampled from the uniform distribution over the
probability simplex. As for the cost function, for each i ↗ [N ], s ↗ S, a ↗ A, and k ↗ [K], we have
ck,i(s, 0) = 0, and ck,i(s, a) is independently sampled from the uniform distribution over [0, 1] for
each a ∋= 0. For each k ↗ [K], εk is uniformly sampled from {0.05, 0.1, 0.15, . . . , 0.45}, i.e., the
uniform distribution over integer multiples of 0.05 in the interval (0, 0.5).

Details of the WCMDP instance 2 (In Figure 2). This instance is typed heterogeneous with 10
types, with equal fraction of arms in each type. Each arm has |S| = 10 states, |A| = 4 actions. For
each type, the reward function and transition kernel are generated in the same way as each arm in ithe
first instance. The budget is also sampled from the same distribution as the first instance. There is a
single budget constraint. The cost function depends only on the action, consistent with the setting in
[46]; the cost of each of action a ↗ A is sampled from the uniform distribution over [0, 1].

B.2 Definition of ERC policy

The ERC policy [46] solves the same LP in (5) to define the single-armed policies ω̄→
i (a|s) as in (7).

At each time step, the policy computes an index for each arm-state pair (i, s) ↗ [N ]⇑ S:

I(i, s) =
∑

a↔A
ω̄
→
i (a|s)ri(s, a).

It then iterates through the arms in descending order of these indices. For each arm, it samples an
action a ∈ ω̄

→
i (· | s) and applies it only if the budget is sufficient. If not, it defaults to action 0.
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