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ABSTRACT

Understanding how deep learning models represent data is currently difficult due
to the limited number of methodologies available. This paper demonstrates a ver-
satile and novel visualisation tool for determining the axis alignment of embed-
ded data at any layer in any deep learning model. In particular, it evaluates the
distribution around planes defined by the network’s privileged basis vectors. This
method provides both an atomistic and holistic intuitive metric for interpreting
the distribution of activations across all planes. It ensures that both positive and
negative signals contribute, treating the activation vector as a whole. Depending
on the application, several variations of this technique are presented, with a reso-
lution scale hyperparameter to probe different angular scales. Using this method,
multiple examples are provided that demonstrate embedded representations tend
to be axis-aligned with the privileged basis. This is not necessarily the standard
basis, and it is found that activation functions directly result in privileged bases.
Hence, it provides a direct causal link between functional form symmetry breaking
and representational alignment, explaining why representations have a tendency
to align with the neuron basis. Therefore, using this method, we begin to answer
the fundamental question of what causes the observed tendency of representations
to align with neurons. Finally, examples of so-called grandmother neurons are
found in a variety of networks.

1 INTRODUCTION

This work aims to better understand how artificial neural networks represent human-interpretable
concepts embedded in their hidden layers. Introductory texts often state that individual artificial
neurons may respond to distinct real-world signals. This may be a visual neuron that responds to
the presence of fur, while another responds to grass. This has been termed a neural “local coding
scheme” (Foldiak & Endres, 2008), “grandmother neurons” (Gross, 2002; Connor, 2005), “gnostic
neurons” (Konorski, 1968) and sometimes “one-hot encoding” — depending on the research field.
It is unclear whether trained artificial neural networks produce this structure or whether this is an
oversimplification. This work provides a versatile new tool and evidence to aid in determining this
fundamental question.

Samples provided to a neural network are represented as vectors of activations. These are then
typically transformed through a series of affine and non-linear steps to achieve the desired result
of training. The activation vectors are frequently decomposed into a particular basis for applying
the non-linearities. This basis is typically the standard (Kronecker) basis. Each unit vector of the
standard basis, êi, is typically defined as an individual neuron whose response is often suggested to
represent a human-interpretable concept. The standard basis is a common instance of this more gen-
eral concept of a privileged basis. The term ‘privileged’ is generalised from Elhage et al. (2022)’s
paper: it indicates that some model property incurs a unique, inherent basis, which may significantly
predispose the model to a particular arrangement of its embeddings across all samples. This privi-
leged basis is a collection of directions where an activation function (or other function) has caused
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anisotropy around them; this makes these directions unique and stand out to the network. Therefore,
the network may alter its embedded distributions in response. For example, elementwise Tanh (and
most activation functions) would privilege this standard basis due to the elementwise application;
consequently, activations may cluster along the standard basis. This may result in neurons often be-
ing associated with specific activations and concepts, reinforcing the observation for representations
tending to align with the standard basis. This, in turn, supports the continued use of the standard
basis in decompositions and current functional forms. The tool presented detects whether embedded
activations preferentially cluster around vectors of the privileged basis after training. This work con-
firms the above hypothesis that functional form choices privilege a particular basis, which explains
why it might be expected that the standard decomposition is typically special due to elementwise
application privileging this basis. This conclusion is achieved by inducing a non-standard privileged
basis through new activation functions, with distributions observed to cluster only around this new
basis. This demonstrates that the standard basis appears special solely because of functional form
privileging. Hence, the privileged basis is more fundamental and predictive for representational
alignment.

A privileging of the standard basis is expected due to the elementwise nature of current activation
functions. This is because the (non-polynomial) non-linearity of the activation functions is essential
in approximating arbitrary functions and hence performing the desired computation. If an element-
wise activation function is used, anisotropies result around the standard basis vectors, breaking the
space’s rotational symmetry. Since the desired computation is typically achieved and, therefore,
dependent on the use of these functions, it may be expected that anisotropy in the distribution of em-
bedded activations will also be induced during training by such functions — producing observations
of representational alignment. This is expected to then cause a (detectable) increase in density for a
(sub)set of embedded activations about these anisotropies, which can suggest a local coding scheme
for the network layer. Therefore, if the activations depend on the privileged basis, they may align
or anti-align with this basis (the extrema). Alternatively, if independent, they may appear uniformly
distributed or uncorrelated with the privileged basis. This phenomenon can be directly measured
using the methods proposed in this paper and, therefore, can be used to determine whether neurons
correspond to particular human-interpretable concepts across any model. Moreover, this will also
be shown to generalise for more cases than just the standard basis.

This question has been explored numerous times before with as many methods. Some authors find
neurons do represent single ideas (Zhou et al., 2015), some authors find no alignment (Szegedy et al.,
2014), and sometimes differing arrangements are observed (Papyan et al., 2020; Elhage et al., 2022;
Kothapalli, 2023). Yet, on the whole, there is an emerging consensus that there is at least some
tendency of neural networks to produce a local coding representation (Vondrick et al., 2016; Bau
et al., 2017; Olah et al., 2019; Elhage et al., 2022). Therefore, this question is far from concluded and
requires further methodologies for new evidence. Presented in this paper: “The Spotlight-Resonance
Method” is such a tool. It directly measures the anisotropies of the high dimensional distribution
of the vector activations, which are typically not visualisable. It is simple, robust and generalisable
to any artificial neural network. It hopefully provides compelling evidence that artificial neural
networks tend to organise their embeddings about these anisotropies and can be used to determine
whether neurons respond to individual meanings. The tool may be seen as a generalisation and
extension to previous works (Szegedy et al., 2014; Bau et al., 2017), borrowing the rotating basis of
Bau et al. (2017), but can be applied to any neural network where a privileged basis is suspected.
It can capture a more holistic determination of the anisotropies, as it works across the full domain
rather than just the positive activations, which previous methods have been limited by (Bau et al.,
2017). Its application is flexible to individual or all privileged bivectors, which gives a local or global
impression of the distribution. Moreover, parameters allow one to probe the angular distribution
of embeddings at various angular scales for further insight. Therefore, this tool is hoped to be a
singularly useful method in determining how models represent embedded data.

The results presented will establish whether the entire dataset produces this alignment since it natu-
rally contains all subsets of human-interpretable concepts in the dataset. Therefore, global alignment
would suggest local coding but not be definitive. To truly establish the presence of a local coding-
like arrangement would require subdividing the dataset into categories reflecting meaningful human
concepts and then observing whether each category has corresponding individual neurons (defined
by decomposition in the privileged basis). Due to subjectivity, it is difficult to decide what consti-
tutes a meaningful concept. Nevertheless, the proposed tool can be used in both circumstances.
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The principle of the work is simple, and the following analogy suitably describes it: it is as if one
is counting the number of dust particles illuminated by a cone of light produced by a spotlight in a
dark room. The spotlight completes full rotations, averaged across all privileged planes. If those
particles have a tendency towards the corners of the walls. Then, when rotating, a resultant oscil-
lation is observed in particle density with a frequency corresponding to the angular distribution of
wall corners. Thus, it can be concluded that the shape of the room influences the dust distribution.
Hence, this method will be termed “The Spotlight-Resonance Method” (SRM). When transferring
this analogy back to deep learning: the dust particles are each embedded activation vectors corre-
sponding to a particular sample, whilst the corners of the walls correspond to privileged basis vectors
and oscillations indicate that activations align with the privileged basis vectors - this tendency has
been observed in the literature. If no such oscillations are observed by SRM, but instead a consistent
signal, then it is unambiguously concluded that no activation distribution skewing occurs towards
the privileged basis, and therefore, neurons probably do not correspond to concepts. This technique
can also be performed across various subsets of the dataset, which may be expected to correspond
to human-interpretable meanings, providing crucial evidence. In this paper, this methodology is
discussed, along with some examples of SRM applied to small neural networks. It is hoped that
the tool’s simplicity, easy interpretability, and versatility can then find applications within the wider
deep learning field, which will serve as a stepping stone to answering this fundamental question of
representational alignment.

2 METHODOLOGY

Below are two steps required to produce the method. Section 2.1 explains everything required to im-
plement the Spotlight-Resonance method for any artificial neural network, with detailed reasoning.
Section 2.2 gives some essential considerations for models used.

A quick-to-implement summary of Section 2.1 is provided in App. A without the accompanying
mathematical justification.

2.1 THE SPOTLIGHT-RESONANCE METHOD

Implementing the SRM method is broken down into two further steps. First, a n-dimensional rota-
tion matrix is generated, which rotates within a desired plane. Second, that rotation matrix is used
to perform the Spotlight-Resonance method. There are many ways to generate such rotations, but
the one discussed is reasonably simple to implement.

2.1.1 GENERATING ROTATION MATRICES USING PRIVILEGED BIVECTORS

The Spotlight-Resonance method is calculated across all privileged planes at any particular layer in
the model. For this explanation, there are n-neurons in the particular layer, so a Rn activation space.
Generalising, there may be m-privileged basis unit-vectors, denoted b̂i, induced by a functional form
choice within this space — note this basis can be under/overcomplete too. A privileged plane, to
be termed a privileged bivector, is defined by the plane produced by two distinct privileged basis
vectors: b̂i ∈ Rn and b̂j ∈ Rn measured from a third point: the origin, 0⃗. The ‘spotlight’ is then
rotated in each privileged bivector plane one at a time for a complete rotation.

In three dimensions, a cross-product could be utilised as an axis of rotation normal to a plane since
there are coincidentally three basis bivectors and three basis vectors scaling as m and 0.5m (m− 1)
respectively. Yet the cross-product is limited to three dimensions due to this coincidence. Instead,
the wedge product allows this concept to be generalised to m basis vectors and is therefore necessary
for arbitrary privileged bases. A bivector is an orientated plane defined by the wedge (or exterior)
product of two vectors. This method restricts the wedge product to two non-identical basis unit
vectors. The bivectors are required to produce the matrix rotations needed for the method in the
plane defined by the two chosen basis vectors.

The privileged vectors form the set {b̂i|i ∈ [0, 1, · · · ,m− 1]}, whilst the privileged bivectors form
the set B = {b̂i ∧ b̂j | (i ̸= j) ∩ (i, j ∈ [0, 1, · · · ,m− 1])}. The latter can be a set of unordered or
ordered pairs termed Permutation-SRM or Combination-SRM respectively, depending on the user’s
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symmetrisation preference for the later plot1. Each of these potentially non-standard, privileged
basis bivectors can then be decomposed into the standard bivector basis for Rn, such that they
become antisymmetric Rn×n matrices. In practice, this is achieved as B ∋ Bαβ = 1

2 (b̂αb̂
T
β − b̂β b̂

T
α)

for two basis unit-vectors b̂α, b̂β ∈ Rn.

This antisymmetric-matrix-represented bivector can then be treated as a member of the special or-
thogonal Lie algebra so (n), which can be used to generate rotations through the exponential map.
In effect, exponentiating this bivector matrix results in an n-dimensional rotation matrix for a ro-
tation in the plane defined by that bivector, as desired. In practice, this can be easily achieved by
eigendecomposition of the matrix bivector, Bαβ =

∑n−1
i=0 v⃗iλiv⃗

†
i as shown in Eqn. 1, where dagger

indicates the hermitian conjugate. The eigendecomposition produces two non-zero conjugate eigen-
values; these are normalised to ±i so that θ = 2π is one complete rotation: R (0) = R (2π) = In×n.

SO (n) ∋ Rαβ (θ) =

n−1∑
i=0

v⃗i exp (θλi) v⃗
†
i (1)

2.1.2 USING ROTATION MATRICES FOR SPOTLIGHT METHOD

This step intends to have a vector within the plane rotate with θ — this vector acts as the direction
of the ‘spotlight’. It is achieved by pre-multiplying the basis vector with its corresponding rotation
matrix: b̂′α (θ) = Rαβ (θ) b̂α. Then, taking the vector embeddings of a (sub)set of the training or
testing dataset at the desired layer, ∀d⃗ ∈ DL ⊂ Rn, find all unit-normalised activation vectors, d̂,
which are within angle ϕ of the reference vector. This is equivalent to those vectors which meet the
following dot-product condition: d̂ · b̂ ≥ ϵ, where cosϕ = ϵ. The quantity of interest is the ratio
of the cardinality of the set meeting this condition to the cardinality of the original set DL, this is
expressed in Eqn. 2 below.

fSRM (θ;DL, ϵ, {α, β}) =

∣∣∣{d⃗ ∈ DL | d̂TRαβ (θ) b̂α ≥ ϵ
}∣∣∣

|DL|
(2)

Varying the angle of ‘the spotlight’ can allow for finer resolution of angular scales; however, this
also reduces the number of data points producing the signal. If desirable, this formulation can be
adapted to non-Euclidean geometries through the inner product.

The method is then performed for all values of α and β in the privileged basis, with the results
collated. The expectation value for this quantity can be found in App. F. Collation of the results
could be achieved using an ensemble line plot, median, mean, or alternative method, depending on
what is being measured. In this paper’s results, an ensemble line plot and mean line are presented.

2.2 MODEL AND TRAINING

There may be many contributions within a network to the privileging of a particular basis, along-
side just activation functions. Many parts of the model may privilege their own respective bases,
which may result in interference between multiple privileged bases and yield an overall global priv-
ileged basis. Some of these model choices include initialisations, normalisations, regularisations,
optimisers, activation functions, and even the desired output layer structure. The hierarchy of these
contributions is presently unclear, and in future studies, this technique could establish how each
function influences the privileging of a basis. This complex interference effect may result in the ob-
served tendency towards a particular basis. This interference may explain the imperfect alignments
sometimes observed (Olah et al., 2019), or perhaps the imperfect alignment is a consequence of the
shape of the non-linearity for beneficial computation — which could be tested using alternative acti-
vation functions. In this work only the activation function’s role in basis privileging is demonstrated,
this is to demonstrate that it is functional form’s basis privileging which is a direct cause of observed

1There are several additional design choices so far: one can also produce privileged bivectors defined by
three points, corresponding to three privileged basis vectors — this can be more appropriate for simplexes with
three-fold discrete rotational symmetry. Furthermore, one may choose the bivectors to be constructed from
only neighbouring basis vectors. This restriction was not used in this method but may be desirable.

4



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

representational alignment. However, in a more general setting, these other sources could result in
non-static and difficult-to-determine privileged bases which representations may then align to.

This interplay of privileged bases initially complicates the test and establishing the SRM technique.
Therefore, so-called isotropic choices will be used to minimise interference in all tests and results.
This is discussed further in App. G. In practice, this means minibatch momentum gradient descent,
Xavier-normal initialiser (Glorot & Bengio, 2010), no regularisation or normalisation, and an au-
toencoding reconstruction task on MNIST (LeCun et al., 2010) or CIFAR (Alex, 2009). These are
essential training requirements when establishing the basic SRM method. It is the latent layer of
the autoencoder models which shall be analysed. All further details, such as model architecture and
training specifics, are discussed in App. E. Overall, this serves to isolate activation functions as the
sole contributor to the unambiguous privileged basis, which can be termed the: ‘activation function
privileged basis’ (if a single activation function is used across the network). The results of Sec. 3 use
a model without an activation function before the latent layer. This removes the bounding of the ac-
tivation function as a trivial confounding cause of any anisotropic distribution observed. Therefore,
any results are solely due to only the change in encoder parameters due to all other factors being
controlled.

Finally, a novel functional class of activation functions is used in all network models. It allows
the privileged basis induced by the activation function to be varied in rotation and completeness by
changing the number of vectors constituting it. In addition, it ensures that the privileged bases sel-
dom coincide with the standard basis. This shows SRM’s versatility on differing bases and demon-
strates that basis alignment is due to functional form choices’ inducements of privileged bases and
not fundamental to the standard basis. Further details of its implementation are provided in App. C.

3 RESULTS

A wide range of networks were tested with Fig. 1 being a good representative example, further re-
sults can be found in App. B. Figure 1 demonstrates the combined-SRM method on the small MNIST
autoencoder model. If the activation function induces a privileged basis-aligned representation after
training, then a strong oscillation will be observed in the ensemble. This oscillation would be in
phase with the reference self-SRM oscillation, indicating alignment.

Observed in Fig. 1 are clear oscillations in the SRM measure, only after training, which are in phase
with the self-SRM. This can only be caused by an increased density of embedded representations in
angles close to those privileged by the basis. The mean results, shown in dashed lines, for the trained
network SRM and self-SRM closely match agreeing with this assertion. Meanwhile, the SRM values
for the untrained network are very low. This is because there is a much greater proportion of space
outside the spotlight cone than inside, so if representations are approximately uniformly distributed
by random initialisation, then there is a low incidence with the spotlight cone.

Furthermore, there is a significant variation in oscillation amplitude in the trained network: some
planes’ SRM have large amplitudes of around 90% of the dataset, whilst many are close to zero.
This could be interpreted as the embedded activations only clustering about a subset of privileged
basis vectors whilst having a constant offset for others. The reasons for this are unclear but may be
due to the bias’ role in superposition interference or an excessive number of neurons — requiring
further investigation. Supplementary examples of SRM are demonstrated in App. B, alongside SRM
on human-interpretable subsets of the dataset which find grandmother neurons. Overall, the general
trend across all results is that representations align (or anti-align) with the privileged basis, solely
caused by the activation function applied. No alignment is observed with the standard basis when a
non-standard basis is privileged.

4 CONCLUSION

In conclusion, in all models tested, embedded representations tend to align (or anti-align) about
the privileged basis vectors. These activations cluster around these significant directions and pro-
duce a change in distribution density which is shown to be directly detectable using the new SRM
technique. These privileged directions are the extrema of the anisotropies caused by the applied
functional forms. In these experiments, this can only be produced by the choice of the activation
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Figure 1: Shows a representative example of combination-SRM applied to the small MNIST model
with n = 24 neurons and m = 48 privileged basis vectors — this creates a non-standard privileged
basis along which elementwise tanh is applied. The spotlight angle used is ϵ = 0.9. An unseen
testing data split was used to evaluate the SRM. The very faint, solid lines demonstrate the SRM
fraction for each of the privileged bivectors (an ensemble line plot). Many of these translucent lines
overlay, creating the dense oscillation pattern observed. The single dashed line per plot is the mean
result across all privileged bivectors. The left plot shows the results of SRM for the network before
training, whilst the right shows the exact same network after training. Centre shows self-SRM,
which is SRM computed for the vectors of the privileged basis; this indicates what a local coding
oscillation may appear like as a reference signal. It demonstrates that only after the training does
the SRM oscillations become consistent with representations being axis-aligned with the privileged
basis. Therefore, it appears training results in an activation symmetry breaking induced by the
symmetry breaking functional forms. Due to page restrictions, further results can be found in App. B.

function, demonstrating a clear cause and effect for the observed representational alignment. This
provides strong supporting evidence for the observed tendencies of activations to cluster about the
standard basis in prior works (Vondrick et al., 2016; Bau et al., 2017; Olah et al., 2019; Elhage et al.,
2022) — since elementwise functional forms are used, which privilege the standard basis. However,
this paper’s results also establish that this clustering is actually around the privileged basis which is
not necessarily the standard basis, as often thought. This is because the observed oscillations align
with the privileged basis, but not with the standard basis when a functional form with non-standard
basis privileging is implemented. Hence, prior observations of representations aligning with (stan-
dard) neurons are not an innate phenomenon of deep learning, but specifically due to choices in
activation function functional forms. This demonstrates there is little significance behind the stan-
dard basis besides the current practice of using it to apply activation functions elementwise along.
Instead, the more general concept of a privileged basis is shown to be the fundamental quantity.

This sets a foundation for a new generation of neural network functional forms, which may extend
beyond activation functions. These can be used to directly influence the representational alignment
in desirable and measurable ways for different tasks. Several (non-standard) grandmother neurons
are also identified in App. B, which seem to respond to human-interpretable concepts anywhere
in the provided image. This is surprising since the architectures are fully connected feedforward
networks opposed to the translational equivariant convolutional networks, where this behaviour may
be expected. The non-standard alignment also supports the hypothesis of general linear features.
Although results are demonstrated on autoencoders for establishing the technique, the methodology
is general and can be applied to all known deep learning models. Therefore, SRM may also be used
to add evidence on the neural collapse phenomena (Papyan et al., 2020), which may be a privileging
of a basis by the choice of one-hot output. Future work could expand this analysis on the functional
form hierarchy of basis privileging as well as more thoroughly investigating local coding through
meaningful subsets of the dataset.

Moreover, this paper establishes the spotlight-resonance method, in its various forms, as a simple,
interpretable, versatile and powerful tool for establishing representational alignment in general deep
learning models.
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A SUMMARY FOR IMPLEMENTING SRM

All the steps for SRM can be summarised as follows for easier implementation.

Initially, rotation matrices for each (privileged) bivector must be generated:

1. Determine the privileged basis vectors b̂i corresponding to the latent layer to be analysed.

2. Calculate all pairwise privileged basis bivectors in matrix form Bαβ = 1
2

(
b̂αb̂

T
β − b̂β b̂

T
α

)
and α ̸= β. Decide in this step whether to use permutation-SRM, combination-SRM or
other variations.

3. Eigendecompose each bivector Bαβ =
∑n−1

i=0 v⃗iλiv⃗
†
i .

4. Normalise the two non-zero conjugate eigenvalues to ±i.
5. Generate in-plane rotation by exponentiation of those eigenvalues with angle θ, as shown

in Eqn. 3.

SO (n) ∋ Rαβ (θ) =
n−1∑
i=0

v⃗i exp (θλi) v⃗
†
i (3)

For finding vectors within the spotlight:

1. Forward pass a (sub)set of d-samples of the dataset to the n-neuron latent layer, which is
to be analysed. Each sample can be stacked into the matrix: A ∈ Rd×n.

2. Normalise this matrix row-wise. This requires calculating the 2-norm in Rn of each row in
the above matrix. This ensures all the stacked vectors now become stacked unit vectors.

3. Rotate the corresponding privileged basis unit vector with its plane rotation: Rn ∋ b̂′α (θ) =

Rαβ (θ) b̂α.
4. Take the dot-products between rows of the matrix A and the plane-rotated privileged vector

b̂′α. This produces a vector of similarities [−1, 1]
d.

5. Count the number of elements of the vector which are greater than the threshold ϵ.
6. Divide this number by d to produce the final SRM value for the current α, β and θ.
7. Repeat steps two through five for all α’s, β’s and θ’s to be tested.
8. Plot as means, medians or each sample of α and β (ensemble plot), across the dependent

variable θ.

This concludes the basic implementation. The full code implementation is available at the GitHub
link https://github.com/GeorgeBird1/Spotlight-Resonance-Method.
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B EXTRA TESTS

In the following subsections, additional results for the Spotlight Resonance method are provided.

The first section (Sec. B.1) demonstrates that the observed alignment phenomena are unique to the
privileged basis. It compares otherwise identical SRM tests using a random basis, the standard basis
and the privileged basis. It is found that only the privileged basis produces a signal. This additionally
justifies that analysis along the privileged is most salient when determining alignment.

The second section (Sec. B.2) provides evidence that grandmother neurons are present in several
networks tested. These are found to respond to sea/sky, vehicles, and eyes in the large CIFAR net-
work tested. This is additionally interesting since these are not convolutional networks being tested,
so they don’t feature translational equivariance. Yet, they still seem to detect/represent localised ob-
jects, such as eyes, present across the image. Results on an MNIST autoencoder are also provided.
This is preliminary evidence that representations aligned with certain (privileged) neurons represent
human-interpretable concepts.

The third section (Sec. B.3) provides further supporting results for conclusions reached in Sec. 3.
These are for an elementwise basis, with results continuing to show that representations tend to
align with basis directions. Therefore, this shows the repeatability of the observation across various
networks and model architectures. In this section, SRM is performed on larger networks, which
produce differing strength oscillations depending on the plane.

In Sec. B.4 and Sec. B.5, results are shown for simplex and overcomplete activation function bases,
respectively. This demonstrates the versatility of the SRM technique. It also presents highly unusual
cases where activation functions are not applied typically. These results can offer further insights
into the fundamental behaviour of deep learning models. For example, the representations for the
simplex basis are consistently anti-aligned, whilst the overcomplete basis varies between alignment
and anti-alignment. To the best of the author’s knowledge, this is also the first time the effects of
varying the (privileged) basis of activation functions have been studied.

B.1 IS IT UNIQUE TO PRIVILEGED BASES?

The prior results state that SRM produces a signal after a model’s training that is consistent with
axis-aligned representations with the privileged basis but not necessarily the standard basis. This
section will evidence this statement.

The findings also support performing SRM only on the privileged basis-bivectors since this is suffi-
cient for determining axis alignment. Therefore, only performing SRM on the privileged basis gives
a good holistic impression of the overall angular distribution. It further demonstrates that SRM only
produces a positive oscillating signal when there is clear alignment or anti-alignment present, with
no signal otherwise. In future work, this may enable early stopping techniques to determine when
training is complete.

Figure 2 shows SRM performed on three differing bases: a random basis, the standard basis and the
activation function privileged basis.

This demonstrates that the axis alignment is unique to the privileged basis and that performing SRM
on only the privileged basis is sufficient for capturing the axis alignment of representations in the
model.

Since the behaviour is unique to the privileged basis, it can firmly be established that there is noth-
ing innately special about the standard basis. Any representational alignment is, therefore, due to
basis-dependent functional forms, which are anisotropic and consequently induce anisotropy in the
embedded activations. In this case, the only privileging functional form was the activation function,
allowing a definitive privileged basis to be established.
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Figure 2: The left plot demonstrates combination-SRM performed using random normal basis-
bivectors, the centre shows combination-SRM using bivectors of the standard basis, whilst the right
plot shows combination-SRM for the bivectors of the privileged basis. Every other parameter was
kept constant across all plots, and in all cases, the number of basis vectors was equal. The network
tested was the trained small MNIST model n = 10, m = 20 evaluated on the MNIST test set split.
These results were consistent with those of other networks tested. A value of ϵ = 0.9 was used. The
small peak on the centre plot could be for several reasons, such as a coincidently close alignment
between a standard bivector and a privileged bivector or a very small subset of representations which
do not display privileged basis axis alignment. In either case, the signal is very small, not oscillating
or in phase with the standard basis, so can be considered insignificant.

B.2 LOCAL CODING RESULTS

The primary motivation for developing the spotlight resonance method was to determine whether
local coding (aligned with a privileged basis) is present in a general network. The workshop paper is
intended to showcase the SRM method; however, in this section, preliminary results for local coding
are discussed. These preliminary results are provided for the CIFAR and MNIST datasets, showing
that directions corresponding to the privileged basis have a variation in activation embedding, which
meaningfully represents human-interpretable concepts. These are for autoencoders trained in recon-
struction, so no specific labelling is induced by a classification layer. It is shown that individual
neurons corresponding to the privileged basis do represent meaningful subdivisions in the datasets
even for purely self-supervised tasks.

All other results have been evaluated across the whole testing set, clearly demonstrating alignment
in general with the privileged basis. However, to determine the presence of locally coded neurons
or grandmother neurons, the individual neurons must correspond to human-identifiable classifica-
tions. This is essential, as even if the whole dataset’s SRM is uniform, subsets could still oscillate
about certain privileged basis planes, indicating local coding-like behaviour. Consequently, varying
alignment must be demonstrated for various meaningfully partitioned subsets of the whole dataset.
Ideally, a dataset such as Broden should be used, as produced by Bau et al. (2017), but this addi-
tional analysis was out-of-scope for this paper. Instead, subsets corresponding to individual digits of
the MNIST dataset are shown and various classifications within CIFAR. Furthermore, oscillations
could also indicate differing codings, such as higher frequency oscillations for sparse coding. An
alternative self-SRM could be constructed for such a test, but it was out of scope for this workshop
paper.

With a sufficiently trained CIFAR network, regions of the embedded activations may be expected to
represent subdivisions of the human-labelled categories, such as colours of trucks, types of dogs, etc.
On a less granular scale, a network may reproduce the human-labelled classifications: cars, trucks,
aeroplanes, etc. On a yet larger scale, it may be expected that representations are organised into
broader concepts such as the sky, water, blue, and the presence of roads. When analysing the large
CIFAR network, specific neurons are found for these broad categories, which also have a variation of
response with the human labelling. Therefore, it can be concluded that there are individual neurons
(of the privileged basis) which do represent single ideas, so effectively grandmother neurons. How-
ever, these are analyses of individual neurons, so an overall local coding cannot be established from
these results, especially since some neurons did not show such a variation in response per category
when analysed. This suggests grandmother neurons are present in the network but not universal.
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The Signed Spotlight Resonance method is described by Eqn 4. Intuitively, it is like the standard
SRM but subtracts off activations within the negative direction cone from the positive direction cone.

fsigned-srm (θ;DL, ϵ, {α, β})

=

∣∣∣{d⃗ ∈ DL | d̂TRαβ (θ) b̂α ≥ ϵ
}∣∣∣− ∣∣∣{d⃗ ∈ DL | d̂TRαβ (θ) b̂α ≤ −ϵ

}∣∣∣
|DL|

(4)

To begin, Fig. 3 shows local coding on a subset of latent layer neurons in the large CIFAR network.
The leftmost plot shows two oscillations at π/2 and 3π/2, therefore corresponding to the same

Figure 3: The three leftmost plots show the signed spotlight resonance method performed on hand-
picked single privileged bivectors. All three indicate that representations are strongly aligned with
a single neuron, and the sign and strength of firing of that neuron represent a human-interpretable
meaning, as discussed below. Therefore, all three are likely grandmother neurons for the CIFAR
dataset. The second-to-rightmost plot is a UMAP (McInnes et al., 2020) embedding of the latent
layer, whilst the rightmost is a colour-coded key for the diagram. None of these observed oscillations
in SRM were present before training. For the experiment, ϵ = 0.75 was used.

neuron (decomposed in privileged basis) in opposing directions. When observing how it varies
across classes, it is strongly negative firing for the ships, aeroplanes and slightly for the car categories
(in order of peak magnitude), whilst positive firing for frogs, horses, trucks, deer, dogs, cats, birds
and cars (in order of peak magnitude). Subjectively, this seems to represent the presence of woodland
scenes and the absence of sky and water. Looking at samples of the dataset, this is rather intuitive as
ships are rarely pictured out of the water, aeroplanes are mostly pictured in the sky or with substantial
sky in them but infrequently pictured on a runway. Frogs are nearly always pictured in green,
swamp-like backgrounds, horses and deer in fields, dogs and cats sometimes in the wild but often
in human environments, with birds appearing on the ground and with sky backgrounds and similar
for cars. Therefore, this leftmost neuron appears to be distinctly a scene detector and separates the
human-labelled categories into proportions, reflecting how much of the sky or water is typically
viewable in samples of that categorisation. It also appears this neuron approximately represents
the horizontal separation observed in the UMAP plot. Additional neurons very similar to this one
in response were found numerous times in the network, consistently strongly axis-aligned like this
one. This infers a redundancy to this specific detector. The consistent axis alignment suggests that
it is not just an oscillation in a linear direction which happens to also cause oscillations along the
privileged bases when projected but instead suggests several neurons individually responding to
similar stimuli. The reasons for this are presently unclear, especially the cause for this observed
redundancy. Yet, it may also be indicative of sparse coding due to the multiple redundancy, but this
is not conclusive.

The second-from-leftmost plot shows representations strongly aligned with a single neuron at π ±
π/2, responding strongly negative to dogs, then cats, then slightly to frogs and deers. It responds
most positively to trucks, then cars, then aeroplanes, then ships and less so to horses and birds.
One may subjectively interpret this as a detector for mechanical vehicles, metal or grey, whilst
negative firing for human homes with pets. Often, the pets are taken with professional photography
backgrounds or at home, unlike horses, frogs, deer and birds, to which the neuron responds little.
It is difficult to tell whether this has a corresponding direction in the associated UMAP latent space
embedding plot.
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Finally, the third-to-leftmost plot has representations generally aligned with the single neuron at π±
π/2. This neuron strongly negatively activates for aeroplanes, then trucks, with positive activations
in the greatest magnitude order of dogs, then frogs, cats, deer, cars, birds, and horses — finally, with
a little activation for ships. This seems like a detector similar to the leftmost plot but with some
differences. The presence of animals and cars in the positive activation could suggest that it is a
round-eye-like object to which it responds. Dogs, cats and frogs seem to often be imaged from the
front, with eyes visible, whilst deers, birds and horses are less so (and often from further away, so
smaller apparent eyes from the camera perspective). The headlights of a car could be mistaken by
the network for eyes. Therefore, subjectively, this neuron might be effectively the presence-of-eyes
neuron. This neuron does not seem to clearly correspond to a direction in the UMAP plot.

Therefore, it can be preliminarily concluded that some neurons in the latent layer of a large CIFAR
network do respond uniquely to human-interpretable categories, with embedded activations strongly
aligning with these specific neurons. This suggests that ‘grandmother neurons’ are spontaneously
produced in a reconstruction task, but there is so far insufficient evidence to conclude a local coding
across the full network. It is especially interesting since these are fully connected feed-forward
networks, not convolutional. Therefore, the networks do not have translational equivariance but still
seem to respond to the general presence of the stimulus in the image.

Similar results are seen in Fig. 4 for the large MNIST network. For the leftmost plot, there is strong

Figure 4: The two leftmost plots show the signed spotlight resonance method performed on hand-
picked single privileged bivectors. Both indicate that representations are strongly aligned with a
single neuron, and the sign and strength of firing of that neuron represents a human-interpretable
meaning, as discussed below. Therefore, both are probably grandmother neurons. The rightmost
plot is a UMAP of the embedding of MNIST in the latent layer, and it includes a colour-coded key
for the diagram. None of these observed oscillations in SRM were present before training. For the
experiment, ϵ = 0.75 was used.

representational alignment for a single (privileged basis) neuron activating positively for the digits
1, then 7, 3, and 2, then a significant gap followed by 5, 9, 4, 8, 0 and finally 6 — ordered in most
positive firing. This neuron is challenging to categorise its meaning, though roughly it appears to
activate strongly for the presence of an upper leftward facing sharp > or curved ⊃ open shape to
them. The central plot also has a strong representational alignment with a single privileged neuron,
but this time has a strong positive activation for digits 6, 0, 8, 4, 9, 5, and 2, then a gap followed by 3
and hardly any activation for 7 or 1. This is the opposite ordering of the leftmost neuron, suggesting
it responds to the absence of a leftward hook shape.

Other random bases were chosen, and the signed-SRM produced no signal, concurring with Sec. B.1.
Therefore, at least from these preliminary results, it can be concluded that deep learning models, to
some degree, have some locally coded, or grandmother, neurons which represent distinct, meaning-
ful concepts to humans. A more thorough analysis using the spotlight resonance method should be
undertaken to provide definitive evidence, particularly on datasets such as Broden (Bau et al., 2017)
with compelling human-interpretable subdivisions of the dataset.
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B.3 FURTHER ELEMENTWISE BASES

The vast majority of elementwise bases (m = 2n) tested continued to show the basis-aligned signal
found in Sec. 3, with only a few networks having no SRM signal until smaller values of ϵ ≈ 0.7
were chosen. These smaller value ϵ exceptions suggest that the activations are more diffuse but still
aligned with the privileged basis since the signal is only detectable with large spotlight-cone angles.
This is suspected to be due to incomplete training of the networks. In all cases, the privileged basis
does not coincide with the standard basis, so alignment is directly due to the functional form of the
activation functions. Fig. 5 shows a ‘large CIFAR’ network’s SRM oscillation at a lowered value of
ϵ = 0.8 — the observed oscillations continue to support the conclusions reached but indicate a more
diffuse alignment.

Figure 5: The left plot shows SRM performed on the untrained large CIFAR network, whilst the
right plot shows SRM on the same network following training on CIFAR, and the centre plot shows
the self-SRM measure. A value of ϵ = 0.8 was used for combination SRM — smaller than usual.
The number of basis vectors is m = 20 in R10, therefore elementwise. Although a smaller value
of ϵ was necessitated to observe any signal, a strong basis alignment can be observed. This lower
value of ϵ required suggests a more diffuse alignment with the privileged basis. In the untrained plot,
there are several dense crossover points in the SRM value, which can be seen at nπ/2. However,
these are all small valued oscillations. This is not thought to be a signal, but due to the geometry of
combination-SRM, discussed further below.

These larger autoencoder models continue to demonstrate alignment but often tend to show a sepa-
ration in the SRM values. This is demonstrated in Fig. 6. This complicated structure likely emerges
to benefit performance on the reconstruction. It may be indicative of local coding since it suggests
differing subsets of data are being distributed unevenly across various privileged basis vectors. This
more discerning embedding may be unique to larger networks, which can achieve better separation
of contrasting features in the data.

The low-valued dense crossover points, in the untrained plots of Figs. 5 and 6, probably should not
be confused with a unique positive signal. This is because for all α values for bivector B̂αβ , the
SRM values must agree at π±π/2. This is because these rotations always correspond to a spotlight
pointing in direction ∓b̂β , whilst ±b̂α for nπ. This produces a denser region where ensemble values
must cross regardless of a signal. This is corroborated by the mean SRM value not correlating with
the self-SRM, unlike the trained plot. Thus, the crossover points are likely only an artefact of the
geometry. Individual waves can be observed to be generally uncorrelated with the self-SRM before
training but in phase with self-SRM after. However, a small number of waves are in phase, which
may be due to the larger network having a bounded activation function before the latent layer. The
bounding may result in a slight in-phase distribution, as large magnitude activations are reduced to
form a hyper-cubic shape around the basis directions. Though the random initialised weights, after
the activation function, may be expected to rotate this anisotropic distribution contrary to what is
observed. Results from random matrix theory for the initialisation may explain this. Nevertheless,
this seems to explain why the phenomenon does not occur in the smaller autoencoder models, though
does need greater exploration in future work.
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There are a few high-magnitude anti-aligned oscillations in the trained plot of Fig. 6. This is par-
ticularly interesting and is not typically observable in alternative methods to SRM. Several factors
could result in this anti-aligned oscillation: perhaps it is an artefact of incomplete training, where
activations are midway through crossing between two privileged basis vectors. Despite this, it would
be unlikely to observe this crossover at the precise moment that it is perfectly anti-aligned; instead,
it is probably beneficial to performance somehow. Perhaps it is representation capacity: if an el-
ementwise basis is considered, with 2n privileged vectors, then representation alignment with the
privileged basis (local coding for elementwise basis privileging) limits the representation capacity to
the number of privileged vectors, 2n. However, if representational anti-alignment is used (effectively
a dense coding for elementwise basis privileging), then the representational capacity is 2n. However,
this higher representation capacity comes at the cost of increased interference and challenges with
disentangling the representations. Therefore, the observation may be consistent with sparse coding,
where some representations are aligned and some anti-aligned, balancing these factors.

Furthermore, this argument would suggest that smaller privileged bases m ≪ 2n, might prefer anti-
alignment, as this keeps higher representation capacity, compared to aligned representations, whilst
also featuring less interference and disentangling challenges for the network due to the smaller
number of privileged basis vectors being more angularly separated. This is consistent with the
simplex basis results below. However, this argument requires further study and does little to explain
the highly overcomplete basis observations. Overall, this shows that SRM can give a more nuanced
insight into the alignment of data embeddings.

Figure 6: The left plot shows SRM performed on the untrained large MNIST network, whilst the
right plot shows SRM on the same network following training on MNIST, and the centre plot shows
the self-SRM measure. A value of ϵ = 0.8 was used for combination SRM. The number of basis
vectors is m = 20 in R10. The oscillation in the trained data continues to strongly align with the
privileged basis. A split can be observed in the SRM values for each peak, a lower and a higher
amplitude alignment. This was found to be very common in the large autoencoder models (which
include an activation function before the latent layer). On the left untrained model plot, the SRM
values are much lower and generally uncorrelated with self-SRM. In the right plot, several anti-
aligned oscillations are also observed.

B.4 SIMPLEX BASES

The simplex bases are characterised by m = n + 1 vectors uniformly angularly distributed in Rn.
When performing the SRM technique on such an activation function’s privileged basis, an anti-basis
aligned oscillation is observed. This is displayed in Fig. 7.

This anti-alignment was observed in all of the simplex bases tested for small MNIST and CIFAR au-
toencoder models but not the large variety (where alignment was observed). It demonstrates how the
broken rotational symmetry, caused by the activation functional form, may induce a privileged basis
at either extrema: maximally aligned or maximally anti-aligned - which may be highly dependent
on the particular anisotropic non-linearity of the function. The reason for the contrasting alignment
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Figure 7: The left plot shows SRM performed on the untrained small CIFAR network, whilst the
right plot shows SRM on the same network following training on CIFAR, and the centre plot shows
the self-SRM measure. A value of ϵ = 0.8 was used for combination SRM. The number of basis
vectors is m = 25 in R24. A clear oscillation is observed in the rightmost plot, which has a large
amplitude at angles where self-SRM has a small amplitude and vice-versa. This strongly indicates
that simplex bases cause an anisotropic distribution in the embedded activations, but in this specific
case it is anti-aligned with the privileged basis.

in the larger networks is unclear. If one wishes to manipulate the representation distribution in a
particular way, it indicates that the choice of activation function could play a crucial role.

B.5 HIGHLY OVERCOMPLETE BASES

These results vary significantly across different networks, but all tend to have representations aligned
or anti-aligned with the privileged basis vectors, with SRM plots Figs. 8 and 9 demonstrating this
respectively. This shows that the SRM technique is also versatile to highly overcomplete privileged
bases and that the distribution of activations continues to be affected by the choice of functional
form for the activation functions — developing the same or opposing anisotropies to the generalised
tanh’s anisotropies.

Figure 8: Shows combination-SRM performed on a large MNIST model with n = 10, m = 40 and
ϵ = 0.8. The left plot shows SRM performed on the untrained model, whilst the right plot shows
the method performed on the trained model. The centre plot shows self-SRM for the m = 40 basis
vectors embedded in R10. In the trained plot, it can be observed that representations tend to align
with a privileged basis, as the SRM on the trained model is similar to the self-SRM reference.
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Figure 9: Shows combination-SRM performed on a large MNIST model with n = 24, m = 96
and ϵ = 0.6. As before, the left plot shows combination-SRM performed on the untrained network,
whilst the right plot shows it performed on the same network after training. The centre plot gives the
self-SRM reference values to compare against the left and right plots. Notably, ϵ was required to be
significantly lower before any signal was observed. It can be, therefore, concluded that the angular
distribution of embeddings is very diffuse, in opposing directions to the privileged basis vectors. The
lowered ϵ is likely the reason that a non-zero SRM is observed in the left untrained plot. This plot
has four regular peaks forming an oscillation. The reason for this could be the bounded activation
functions or possibly a geometrical artefact in the test.

C GENERALISED TANH ACTIVATION FUNCTION

This paper uses modified and novel versions of the tanh function to form a functional class. They are
modified such that an arbitrary basis of varying completeness can be used to construct a tanh-like
function. The tanh-like function’s operation is then basis dependent on this arbitrary basis, as the
basis vectors show up explicitly in its multivariate form. Therefore, the explicit dependence, results
in anisotropy being about these directions and hence, this arbitrary basis becomes the privileged
basis.

The motivation for this activation function is two-fold: it shows the versatility of the SRM method
for arbitrary privileged bases, and the decoupling of the privileged bases from the standard bases
directly shows how functional form choices induce representational alignment. However, these
are not expected to be a practical activation function in wider applications, unless a specific basis
privileging is necessitated. This section discusses its derivation.

In deep learning, tanh is typically applied elementwise to decomposed elements of the standard
basis. This multivariate function is shown in Eqn. 5, defining σ : Rn → Rn in terms of the standard
basis vectors êi for i = 1, . . . , n.

This multivariate representation differs from its usual (oversimplified) univariate form which obfus-
cates the basis privileging.

σ (x⃗) =

n−1∑
i=0

tanh (x⃗ · êi) êi (5)

However, a non-standard alternative (orthonormal) basis could be constructed, b̂i, and the tanh could
be applied along its decomposed elements. This is shown in Eqn. 6.

σ (x⃗) =

n−1∑
i=0

tanh
(
x⃗ · b̂i

)
b̂i (6)

Furthermore, this basis can be made overcomplete, complete or incomplete by varying the number
of basis vectors. So instead of having n orthonormal basis vectors for a Rn space, m unit-vectors
can be utilised for the same Rn space; in this work, it is important that they are Thompson bases
such that these m vectors are distributed evenly using a modified Thompson problem, discussed in
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App. D. For three dimensions, these bases sometimes form the corners of the platonic solids along
with extra shapes such as triangular dipyramids.

To prevent undesirable interference, only (Thompson) basis vectors with a positive dot-product with
the input contribute. This is demonstrated in Eqn. 7, defining σ : Rn → Rn in terms of the m
Thompson basis vectors. The use of a Thompson basis doubles the number of basis vectors required
to produce a rotated elementwise tanh function. Therefore, for m ≤ n, the basis is undercomplete,
and the basis vectors form a m − 1 dimensional simplex. For m = n + 1, the basis is complete
and forms an n dimensional simplex. For m > n + 1, the basis is overcomplete, with m = 2n
reproducing the standard elementwise application but rotated arbitrarily.

σ (x⃗) =

m−1∑
i=0

tanh
(
max

(
0, x⃗ · b̂i

))
b̂i (7)

In Eqn. 7, if one were to observe the mapping of a one-dimension subspace corresponding to b̂j ,
it would be observed that the map no longer applies the tanh function when m > 2n. Rather, it
applies a summed series of scaled tanh functions. This is undesirable since it causes a discontinuous
behaviour in the functional form for the class. Therefore, a correction term is added to preserve this
behaviour. For the correction, see Eqn. 8 below. It was chosen to be an addition of a function
that takes the magnitude of the input. This choice prevents unexpected angular oddities in the
mapping. It could be argued that the correction breaks the class structure for non-basis directions,
but empirically, it was found to benefit performance by preserving tanh along basis directions.
Additionally, the correction is only applied along positive dot-products as otherwise negative and
positive direction contributions can be cancelled out.

σ (x⃗) =

m−1∑
i=0

tanh
(
max

(
0, x⃗ · b̂i

))
b̂i +max

(
0, x̂ · b̂i

)
N (∥x⃗∥) b̂i (8)

The anti-interference correction term implicitly defined a quantity N (∥x⃗∥) which can be derived
in explicit form using the aforementioned one-dimensional slice with b̂j but is valid for all b̂j . The
derivation is shown below. To start, Eqn. 9 defines the desired equality:

σ
(
αb̂j

)
· b̂j := tanh (α) (9)

Eqn. 10 is produced by substituting in the function σ into Eqn. 9.
m−1∑
i=0

tanh
(
max

(
0, αb̂j · b̂i

))
b̂i · b̂j +max

(
0, b̂j · b̂i

)
N (α) b̂i · b̂j := tanh (α) (10)

Rearranging this last equation to isolate N (α) yields Eqn. 11.

N (α) =
tanh (α)−

∑m−1
i=0 tanh

(
max

(
0, αb̂j · b̂i

))
b̂i · b̂j∑m−1

i=0 max
(
0, b̂j · b̂i

)
b̂i · b̂j

(11)

This can then be simplified to Eqn. 12.

N (α) = −

∑
i ̸=j tanh

(
αmax

(
0, b̂j · b̂i

))
b̂i · b̂j∑m−1

i=0 max
(
0, b̂j · b̂i

)2 (12)

For exact Thompson bases, this function is constant for every b̂j ; however, for approximate bases,
an average over j can be taken, as shown in Eqn. 13.

N (α) = − 1

m

m−1∑
j=0

∑
i ̸=j tanh

(
αmax

(
0, b̂j · b̂i

))
b̂i · b̂j∑m−1

i=0 max
(
0, b̂j · b̂i

)2 (13)

This, with α = ∥x⃗∥, gives N (∥x⃗∥) explicitly as the correction term. This can be substituted into
Eqn. 8 to yield Eqn. 14 below. It is this activation function functional class that is used across all
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results for various stated m and n values. For each particular m and n all valid Thompson bases are
part of the functional class. In practice, this means the activation function’s privileged basis {b̂j}
may be rotated arbitrarily.

σ (x⃗) =

m−1∑
i=0

tanh
(
max

(
0, x⃗ · b̂i

))
b̂i

−max
(
0, x̂ · b̂i

) 1

m

m−1∑
j=0

∑
i ̸=j tanh

(
∥x⃗∥max

(
0, b̂j · b̂i

))
b̂i · b̂j∑m−1

i=0 max
(
0, b̂j · b̂i

)2 b̂i (14)

It is not proposed that this activation function is in any way computationally or practically desirable;
it is merely a tool to explore how activation functions can affect the privileging of a basis. Upcoming
work will explore this function class’ effect on performance for various m and n and crucially as
m → ∞. An alternative formulation could also be used as shown in Eqn. 15, which limits to an
exciting new class of activation functions and networks to be termed as Isotropic Deep Learning and
is briefly discussed in App. G

σ (x⃗) =
tanh (∥x⃗∥) x̂

max
b̂i

(
b̂i · x̂

) (15)
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D PRODUCING A THOMPSON BASIS

The Thompson basis is an attempt to (approximately) evenly distribute m vectors in Rn. Alternative
methods were considered, such as Fibonacci lattices, though the approximation provided by the
following method was better in terms of its distribution. An approximation is necessary as only
certain values for m produce exact vector arrangements in Rn. This approach allows generalisation
to other m values where arrangement may not be known or be possible.

A variety of Thompson-like bases generation methods are possible (Tammes, 1930; Claxton & Ben-
son, 1966; Erber & Hockney, 1991; Altschuler et al., 1994). To generate the bases in these exper-
iments, PyTorch’s gradient descent algorithm was used on the energy function shown in Eqn. 16,
which is written using Einstein summation convention. The m basis unit-vectors b̂i ∈ Rn are stacked
row-wise into matrix V ∈ Rn×m and initialised normally. The m-by-m identity matrix is denoted I

whilst a m-by-m matrix of all elements equal to one is denoted 1. The basis vectors b̂i, which forms
the rows of V, are constrained to unit-norm throughout training.

E = DijVkiVkj (1ij − Iij)ij (16)

Matrix D is an inverse-pairwise-distance matrix, found to be empirically necessary to avoid cancel-
lations between opposing directions, given elementwise by Eqn. 17. If a divide-by-zero occurs, the
value of that index is set to zero.

Rm×m ∋ Dij =

{
1

∥b̂i−b̂j∥2

2

: i ̸= j

0 : i = j
(17)

This differs substantially from Thompson’s electrostatic repulsion implementation, as it minimises
pairwise similarity. This was found to be empirically advantageous when using gradient descent and
provided a good and fast approximation of a Thompson Basis for the experiments.
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E AUTOENCODER MODEL ARCHITECTURES

The figures below show all the architectures of the networks used in this paper. They are illustrated
using the neural notation convention described in App. H. Figure 10 shows the small and large
architectures for the MNIST autoencoders. The value n is the neuron number of the hidden layer,
which will be listed per result alongside the number of privileged basis vector directions m. For
training, a batch size of 24, a learning rate of 0.08 and 100 epochs were used to standardise across
all networks. These values are largely arbitrary but offered good empirical performance on the
reconstruction — though no algorithmic fine-tuning of these hyperparameters was done. It is the
‘small MNIST’ model depicted in Fig. 10, which is presented in the primary results of Sec. 3. This
particular architecture was chosen for the primary result since it provided a good representation of
the overall results whilst also being the simplest and, therefore, interpretable model. It also has no
prior activation function before the latent space — as this could have reshaped the distribution more
complexly, as observed in Sec. B.3. The output latent space depicted in each figure is the resultant
data on which SRM was computed in all cases.

The models are in four varieties: small or large and MNIST or CIFAR. Each consists of an ‘encoder’
and ‘decoder’, from which the activations of the latent layer will be analysed.

Figure 10: Shows the autoencoding models used for the reconstruction of MNIST samples. The left
plot shows the ‘small’ model, whilst the right plot shows the ‘large’ model. Both use linear layers
and generalised tanh activation function σ. The architectures are displayed using the neural notation
convention described in App. H.

For consistency of interpretation, the autoencoder architecture for the CIFAR reconstruction is simi-
lar to MNIST. They are shown in Fig. 11 Extra demonstrations of the SRM technique on these extra
network architectures are shown in App. B.
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Figure 11: Shows the autoencoding models used for the reconstruction of CIFAR samples. The left
plot shows the ‘small’ model, whilst the right plot shows the ‘large’ model. Both use linear layers
and generalised tanh activation function σ. The architectures are displayed using the neural notation
convention described in App. H.

F RATIO OF VOLUMES OF AN N-SEGMENT TO N-BALL

Assuming a uniform, infinitely sampled, embedded dataset, the expectation value Eθ [fSRM], is the
ratio of the volumes of an n-segment to an n-ball, as given in Eqn. 18 (cf. JackT, 2022).

Eθ [fSRM] =
λn−1Bn−1

1

λnBn
1

(
2

n
sinn−1 (ϕ) cos (ϕ) +B

(
1

2
,
n+ 1

2

)
−Bcos2(ϕ)

(
1

2
,
n+ 1

2

))
(18)

With B being the beta function, Bcos2(ϕ) the unnormalised incomplete beta function, Bn
1 the volume

of the unit-n-ball and λn being the n-lebesgue measure.
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G ISOTROPIC APPROACHES TO DEEP LEARNING

Many of the most commonly used functions in deep learning are basis-dependent to a particular
basis (often the standard basis). This is not clear in many notations, which suppress this dependence
by only writing univariate forms of the function. This oversimplification of the functions obfuscates
the privileging of a basis in a deep learning model, which is likely unintentional by most developers.
Furthermore, there are some functional forms that privilege opposing bases, namely dropout.

In this paper, many model functional form choices were made to be isotropic. This prevented com-
peting privileged bases from complicating the analysis, isolating activation functions as the sole
cause for anisotropy. The functional form choices are reasoned below.

Many formulations of gradient descent, including nearly all adaptive methods, privilege the standard
basis in their formulation. For adaptive optimisers, this is usually due to a diagonal approximation
of the Hessian allowing for O (n) time computation in the number of parameters, as opposed to
the (isotropic) Newton method, which is O

(
n2

)
. Therefore, only (minibatch) standard gradient

descent or momentum variations were feasible and permittable for isolating anisotropies to activa-
tion functions. Therefore, momentum gradient descent was used with a learning rate of 0.08 and a
momentum factor of 0.9.

Any standard normal initialiser is isotropic due to the standard multivariate normal’s rotational
symmetry. This requires mean of µ⃗ = 0⃗ and covariance of Σ = σIn. Xavier-normal was simply
chosen for its particular covariance matrix. Orthogonal initialisers are also isotropic; however, they
may interact differently with the various completeness of the bases, and they may particularly favour
elementwise m = 2n bases. Hence, it was not used.

To simplify the models, no regularisation or normalisation was used, though isotropic forms such
as L2 and Zero-phase component analysis (ZCA) (Bell & Sejnowski, 1996) can be used. ZCA is
effectively an unrotated form of principal component analysis.

Finally, it was important that the task was reconstruction when isolating activation functions. Hu-
mans choose the final layer of classifiers to be human-interpretable. In practice, this typically means
a one-hot basis, which makes the goal of training the network the production of an anisotropic
function of the data. Using reconstruction prevents this privileging of a human-interpretable basis.
Interaction, such as between the activation function’s privileging of a basis against opposing output
layer privileging, may explain the neural collapse phenomenon’s relation to classification networks.
Despite this, the data may still privilege a particular completeness of basis due to its hypercubic
bounding: [0, 1]28×28 or [0, 1]32×32×3 for MNIST or CIFAR respectively. However, this is insepa-
rable from the dataset and similar in all datasets, so it is unavoidable unless using a toy dataset, such
as reconstructing random normal vectors. It was felt that testing on the standard MNIST and CI-
FAR datasets would provide more interpretability and utility to the reader. The MNIST and CIFAR
datasets were linearly rescaled to [−1, 1]

28×28 or [−1, 1]
32×32×3 respectively for all reconstruction

training, testing and analyses. This was to approximately centre the distributions at zero.

Overall, these isotropic functional form choices are essential if one wishes to determine a definitive
privileged basis. This was required to establish the basic efficacy of SRM. Despite this, the isotropic
functional form choices may be relaxed, and using SRM, a hierarchy could be constructed for which
functions influence the privileging of the basis the most or even detect the presence of hybridized
privileged bases perhaps present for phenomena like neural collapse. Isotropic approaches to deep
learning, including isotropic-tanh, are the primary topic of the author’s PhD, so will be explored
further in future work.
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H NEURAL ARCHITECTURE NOTATION CONVENTION

This section summarises the diagrammatic system used in the production of App. E figures.
This system intends to make available and publically editable a standardised and centralised
manner of depicting neural network architectures across papers to ease interpretation for the
reader. The system is centralised on a GitHub page (https://github.com/GeorgeBird1/
Diagramatic-Neural-Networks) which can be edited by the community.

The system is broken down into two figures: Figs. 12 and 13.

Figure 12: Shows the basic modules which can be used in the system. These are common ar-
chitectural blocks which appear in many models. The augmentation section is typically used for
convolutional blocks, indicating how padding should be applied.
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Figure 13: Shows how the modules from Fig. 13 can have extra information added to detail its
specific implementation in a model.
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