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Abstract

With the rise of powerful closed-sourced LLMs
(ChatGPT, GPT-4), there are increasing inter-
ests in distilling the capabilies of close-sourced
LLMs to smaller open-sourced LLMs. Previ-
ous distillation methods usually prompt Chat-
GPT to generate a set of instructions and an-
swers, for the student model to learn. How-
ever, such standard distillation approach ne-
glects the merits and conditions of the student
model. Inspired by modern teaching principles,
we design a personalised distillation process,
in which the student attempts to solve a task
first, then the teacher provides an adaptive re-
finement for the student to improve. Instead of
feeding the student with teacher’s prior, person-
alised distillation enables personalised learning
for the student model, as it only learns on exam-
ples it makes mistakes upon and learns to im-
prove its own solution. On code generation, per-
sonalised distillation consistently outperforms
standard distillation with only one third of the
data. With only 2.5-3K personalised examples
that incur a data-collection cost of 4-6$, we
boost CodeGen-mono-16B by 7% to achieve
36.4% pass@1 and StarCoder by 12.2% to
achieve 45.8% pass@1 on HumanEval.1

1 Introduction

Recently, powerful close-sourced large langauge
models (LLMs) including ChatGPT, GPT-4 have
become predominant, accumulating over 170 mil-
lion users within 5 month of its launch. Such close-
sourced LLMs demonstrate strong performance in
a wide range of tasks, from improving writing pro-
ficiency to code generation. However, due to their
closed-source nature, concerns have been raised
regarding factors such as the availability of these
services, high associated costs, concerns on ethics
and safety, and potential data privacy implications,

*These authors contributed equally to this work
1Our codes will be available at https://github.

com/salesforce/PersDistill

all of which limit their seamless integration into
real-world applications. In light of these concerns,
a natural question arises: Can we distill the remark-
able abilities exhibited by closed-source LLMs into
smaller open-source LLMs?

Researchers have explored such distillation idea
(Taori et al., 2023; Wang et al., 2022; Xu et al.,
2023b), by querying ChatGPT to generate task
instruction and solution pairs, and using the col-
lected data to finetune a student model. However,
this standard distillation approach fits different stu-
dent models to the same data distribution (teacher’s
prior), disregarding their unique abilities and ca-
pacity. In education domain, personalised learn-
ing which provides customized learning experience
that adapts to student’s learning progress and capac-
ity, has proven highly effective and widely adopted
(Roberts-Mahoney et al., 2016; Shemshack and
Spector, 2020). Inspired by such finding, we hy-
pothesize that personalised learning is also benefi-
cial for model distillation.

In this work, we propose personalised distilla-
tion and empirically evaluate its effectiveness in
the domain of code generation. Similar to standard
distillation, we first employ ChatGPT to generate
task instructions accompanied by unit test cases.
Then we follow three steps for personalized distil-
lation as shown in Figure 1. First, we let the student
model attempt to solve the task. Then, we evaluate
the student’s attempt with unit test cases and get
execution feedback. If the execution feedback con-
tains errors, in the final step we prompt the teacher
model (ChatGPT) to refine the student’s attempt.

Such data collection process makes the learning
experience both interactive — as the student partic-
ipates to make attempts, and personalised — both
the input (tasks) and output (refinement data) are
customised to the student. Essentially, personalised
labeled data help the student to refine its own policy,
rather than adopting a new prior of the teacher.

With the personalized code data as target out-
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Figure 1: Overview of our framework. Left: standard distillation. 1 Teacher generates standard answer to a
given problem for the student to learn Right: personalised distillation. 1 Student first generates its own attempt to
solve the task. 2 Executor evaluates generated code with unit test cases. 3 Teacher provides adaptive refinement
given student’s attempt and its execution feedback.

put, we construct three variants of finetuning data
(i) PERsD data which formats it as a typical text-
to-code generation task, (ii) PERsD-refine which
treats it as a code-refinement task, given a task in-
struction, incorrect code and execution error feed-
back (ii) PERsD-combine which simply combines
PERsD and PERsD-refine finetuning data, i.e. code
generation and refinement tasks.

We collect 10K standard distillation examples
and around 2.5-3K personalised examples for pre-
training. Through zero-shot evaluation on Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), we observe that all PERsD variants
consistently outperform their counterparts which
use standard distillation. This compelling result
strongly validates our hypothesis regarding the
advantages of personalized distillation. Ablation
studies further reinforce our hypothesis, uncover-
ing intriguing properties such as the benefits of
multi-round personalized distillation and the ability
of our models to leverage execution feedback for
self-correction. Notably, personalised distillation
boosts the state-of-the-art open-sourced pretrain
model StarCoder (Li et al., 2023a) significantly —
by 12.2% to achieve 45.8 in pass@1 and 82.3 in
pass@100 on HumanEval.

2 Related Work

2.1 Distillation from ChatGPT

Previous works have explored distillation from
ChatGPT including Alpaca(Taori et al., 2023), Vi-
cuna(Chiang et al., 2023) and Baize(Xu et al.,
2023b). However, these works can all be consid-
ered as standard distillation as they do not consider
the conditions and capacity of student model. Wiz-

Methods Personalised Interactive Code-related

Alpaca ✗ ✗ ✗

Vicuna ✗ ✗ ✗

Baize ✗ ✗ ✗

WizardLM ✗ ✗ ✗

WizardCoder ✗ ✗ ✓

Lion Input ✓ ✗

PERsD Input + Output ✓ ✓

Table 1: Related work on distillation from ChatGPT

ardLM(Xu et al., 2023a) and WizardCoder(Luo
et al., 2023) iteratively prompts teacher model to
generate more complex instructions. Their ap-
proach can be seen as an orthogonal advancement
that can potentially be combined with personalised
distillation.

Lion (Jiang et al., 2023) proposes to incorpo-
rate student model’s answer and sample more hard
tasks for which the student failed to solve. Thus,
Lion can be considered as input personalised dis-
tillation as only the input tasks are customised for
different student. Our approach differs as we pro-
vide customization both on input and output, and
we empirically show that personalising labels is
critically beneficial.

2.2 Code Generation with Feedback
Recently, there has been an increasing amount
of research on exploring on how to use feed-
back for an iterative and improved code genera-
tion through code-refinement. Self-refine(Madaan
et al., 2023), Self-debug(Chen et al., 2023b) and
Reflexion (Shinn et al., 2023) are inference-time
methods which use powerful close-sourced LLMs
to generate better code from internal or external
feedback. Although they show high performance,



Methods
Training Inference

Single Data Source Personalised w/ execution w/o

Model feedback ChatGPT

Self-refine ✓ No Training ✗ ✗ ✗

Self-debug ✓ No Training ✗ ✓ ✗

Reflexion ✓ No Training ✗ ✓ ✗

Self-edit ✗ Standard GT ✗ ✓ ✓

Self-correct ✗ Self-exploration ✓ ✓ ✓

ILF ✗ Human labeled ✓ ✓ ✓

PERsD-refine ✓ ChatGPT ✓ ✓ ✓

Table 2: Related work on Code Generation w/ feedback

these methods are limited as they require access to
close-sourced LLMs.
Self-edit (Zhang et al., 2023) trains a separate code
editor to rectify generated code from a base LLM.
The training label is from original gold answer,
thus not label-personalised. Similarly, Self-correct
(Welleck et al., 2022) trains a separate corrector
model to rectify the output from a fixed genera-
tor model. However, the training label is from
self-exploration of the corrector model: sampling
multiple refinements and choosing the one leading
to higher reward. Finally, ILF (Chen et al., 2023a)
collects human-annotated code refinement data to
train a separate refinement model on it. Fhe refine-
ment model is used to generate text-to-code data
for finetuning the code-generation LLM. Unlike
ILF, our approach is more scalable as we do not re-
quire human annotation and our personalized data
proves significantly more effective than ILF as we
empirically investigate in §5.

2.3 Reinforcement Learning from (Human)
Feedback

After the launch of ChatGPT, aligning LLMs to
human preference has drawn tremendous attention
to research communities. As one of the most influ-
ential approaches in this direction, reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022; Li et al., 2023b), adopts an actor-critic
framework, where the student model is optimized
to generate responses to receive higher reward from
the critic model. In InstructGPT (Ouyang et al.,
2022), the critic (reward model) is trained from
human annotation. Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) drops the need
of training a reward model, by using a reference
LLM and offline trajectories to estimate the reward.
Chain-of-Hindsight (Liu et al., 2023) converts hu-
man preference annotations into simple natural lan-
guage feedback, and thus turns RL optimization
to conditional generation. In above methods, the

assumption is that there are no ground truth targets
and thus they try to improve the LLM based on
the assessment (critic) of multiple generated out-
puts. However, such RL-style training will be less
effective and efficient to supervised finetuning, es-
pecially for challenging tasks with sparse rewards –
e.g. sovling math puzzles or coding tasks. Unlike
these methods, our approach can acquire "ground
truth" outputs from a personalised teacher, thus su-
pervised finetuning can be applied which makes
the learning effective and efficient, even for chal-
lenging tasks like solving coding problems.

3 Method

3.1 Standard Distillation

Assume a dataset of code generation tasks
D = {(t, u)} where each problem (or task)
consists of a task instruction t and a unit test
collection u. During training, we have access
to a teacher model πϕ and a student model πθ.
The objective is to distill how the teacher solves
code generation tasks to the student model, in the
context of D. For each task (t, u), we first query
the teacher πϕ(t) with the task instruction, to get a
direct generated code snippet cϕ. Then, we execute
the generated code cϕ against unit test cases u
and get its execution feedback f ← EXEC(cϕ, u),
where the EXEC function returns passed if the
code passes all the unit tests, otherwise it returns
an error message from the executor. By filtering
out the tasks where cϕ do not pass all the unit tests
(i.e., f ̸= passed), we get a new clean dataset
DSTAND = {(t, u, c)}, where each task consists
a task instruction t, a suite of unit tests u and a
correct solution code c.

We then finetune the student model πθ on
{(u, c)} ∼ DSTAND, where the input is the task
instruction u and the output is the corresponding
code solution c. We name this approach STAND.

3.2 Personalised Distillation

The STAND approach simply samples training
examples (instructions and labels) from the
prior distribution of the teacher model and
feeds it to the student without considering the
conditions of the student model. Inspired by
modern education principles which advocates
interactive and personalised learning experience,
we propose personalised distillation: adapting
teaching materials to student’s current knowledge



Algorithm 1 personalised distillation for code gen-
eration (PERsD-combined).

1: Input: Dataset DSTAND, student LLM πθ , unit test ex-
ecutor EXEC, refinement template Trefine, teacher LLM
πϕ

2: Drefine ← {} ▷ refinement data for finetuning
3: Dcode ← {} ▷ direct generation data
4: for (t, u, c) ∈ DSTAND do
5: cθ ← πθ(t) ▷ student generates cθ
6: f ← EXEC(cθ, u) ▷ exec. feedback for cθ
7: if f ̸= passed then
8: // personalised refinement from teacher
9: crefine ← πϕ(t, cθ, f)

10: // create refinement task instruction
11: trefine ← Trefine(t, cθ, f)
12: if EXEC(crefine, u) = passed then
13: Drefine.insert({trefine, crefine})
14: Dcode.insert({t, c})
15: end if
16: end if
17: end for
18: πθ∗ ← FINETUNE(πθ,Drefine +Dcode)

and capacity. We propose three variants:

PERSD-combined Algorithm 1 shows detailed
steps for PERSD-combined. This method takes the
standard distillation dataset DSTAND from §3.1 and
first lets the student generate solutions for each task.
Then it filters out the tasks where the student model
can already solve correctly. For the remaining tasks,
it obtains the teacher’s personalised refinement con-
ditioned on the student’s attempt and its execution
error feedback, and only keeps the tasks where the
teacher’s refinement is valid (i.e., passes all the unit
test cases). Figure 1 visualizes these three steps.

For this final task-set, we create two datasets:
i) Dcode containing task instruction as input and
teacher’s direct answer as output, and ii) Drefine
containing task refinement instruction as input and
personalised refinement answer as output. The
task refinement instruction (line 9 in Algorithm
1) is created by concatenating task instruction t,
student’s attempt cθ and its execution feedback f
with a refinement template Trefine (More details in
Appendix C). Such refinement instruction turns
standard code generation into a code refinement
task, teaching the student how to refine its own
solution. PERSD-combined then finetunes the
student model on Drefine combined with Dcode.

PERSD-refine Similar to PERSD-combined, this
variant follows line 1-15 of Algorithm 1 to collect
refinement data Drefine. However, it differs from
the above model as it only uses Drefine to finetune
the student model.

PERSD This variant takes the training data Drefine
from PERSD-refine and replace the input of each
data point from code refinement prompt to original
task instruction. It thus trains the student model
with personalised labels on code generation.

To illustrate the difference between personalised
refinement and teacher’s direct solution, we show
a real example in Figure 2. The top shows the per-
sonalised refinement for the given task, while the
bottom section shows the direct teacher’s gener-
ation for the same task. Note how the teacher’s
direct generation is significantly different from the
student model’s attempt, while the teacher’s refine-
ment follows the student’s attempt and improves
upon it. We hypothesize that such adaptive refine-
ment where the teacher aligns to student’s genera-
tion, helps the student to learn more efficiently and
effectively, similar to how humans benefit from
personalised learning.

Figure 2: Example: (Top) Personalised refinement from
student’s attempt and execution feedback; (Bottom) Di-
rect solution generated by teacher conditioned on task.

3.3 Iterative Inference

Let Dtest = {(t, u)} denote our test set for
inference, where each data point (t, u) consists
of a task instruction t and a suite of hidden
unit test cases u. We also assume that the task
instruction contains some simple unit test cases
in its doc-string (as often seen in code generation
instructions), which we can extract and format
using rule-based heuristics to obtain a suite of seen
unit test cases useen (More details in Appendix A).



For single-step inference, we use the standard
approach to evaluate pass@k. Specifically, for
each task t, we query the model n times with the
task instruction: ciθ ← πθ(t) for i = 1 . . . n. Then,
following (Chen et al., 2021), we estimate pass@k
from the number of attempts that passed the hidden
unit test cases: EXEC(ciθ, u) = passed.

Multi-step inference If the model πθ has been
trained to rectify, following our approach in
PERsD-refine or PERsD-combine, and if unit
tests are available during inference, we can per-
form 2-step inference: for each generated at-
tempt ciθ in 1-step, we first get execution feedback
f i

seen ← EXEC(ciθ, useen). If f i
seen = passed,

we reuse the original attempt as the 2-step at-
tempt. Otherwise, we create a refinement in-
struction ti ← Trefine(t, c

i
θ, f

i
seen) following the ap-

proach in PERsD-refine or PERsD-combined, and
query the same model with the refinement instruc-
tion for 2-step attempt: ciθ,2-step ← πθ(t

i). We
then compute pass@k over the 2-step generations
similar to 1-step inference.

4 Experimental Setup

4.1 Baselines

The first baseline is STAND, the standard distilla-
tion approach mentioned in §3.1.

To measure the effectiveness of personalised
labels quantitatively, we also compare with
Input-personalised distillation baselines as well,
where only the input tasks are selected in a manner
customized to the student’s abilities. However, the
output labels are not personalised, as they are taken
from teacher’s direction generation c instead of
personalised refinement crefine. We start with Dcode
from PERSD-combined and have three variants:

INPD We finetune the student model πθ on
{(t, c)} ∼ Dcode, where the input is a task
instruction and the output is a code solution. This
variant is more customized than STAND as it filters
out the tasks which the student can already solve
correctly.

INPD-refine Similar to PERsD-refine, InpD-refine
trains the student model to rectify its wrong
attempt. The difference is in InpD-refine, the
refined code is from teacher’s direct solution c,
instead of personalised refinement crefine.

INPD-combined Similar to PERSD-combined,
InpD-combined trains the student on rectifying its

answers as well as directly solving the task. The
difference is that in InpD-combined, the labels
for both code refinement and code generation are
taken from teacher’s direct solution c.

4.2 Pretraining Data Construction

To construct our pretraining data, we adopted the
data collection process in code-alpaca(Chaudhary,
2023) and used a set of 374 seed tasks from MBPP
(task-ids 601-974) as in-context prompt to query
ChatGPT for novel code generation tasks. This
seed-set increases the likelihood of ChatGPT gen-
erating python codes.

Through this process, we obtained a corpus of
20K code generation tasks from ChatGPT each
comprising a task instruction and the corresponding
generated code, which is typically a single python
function. Next we show each generated instance to
ChatGPT again and prompt it to generate 5 unique
test-case inputs (i.e. input argument values) for
the python function. We then parse and format
the generated test-case input and execute the gen-
erated code on it obtain an output. Thus, out of
20K, for 14880 instances we could successfully
generate and parse 5 unit test case inputs and for
10172 instances we were able to successfully exe-
cute the generated code and obtain outputs on all
5 inputs. This final corpus of 10K code generation
tasks, each comprising a task instruction and the
corresponding generated code along with 5 unit test
input and outputs forms our standard distillation
dataset DSTAND.

To collect personalised distillation data, we fol-
low §3.2 to first ask the student model to generate 1
output code per task, setting sampling temperature
to 0.3. We then evaluate the student’s attempt and
only keep the tasks with the wrong generations (i.e.
the ones which failed any of the unit test-case). We
use this to query ChatGPT for personalised refine-
ments and only retain the valid refinements which
passed all unit tests. Our prompt to ChatGPT con-
tains the original task instruction and code from
DSTAND along with the student model’s generated
code and execution feedback (compiler errors or
unit test failures). Our instruction to ChatGPT is to
generate a correct solution that rectifies the errors
and is closest in semantics to the student’s code
(More details in Appendix B). Table 3 shows the
statistics of personalised data construction process.



Student Model # Wrong Attempt # Validated Per- Data

by Student sonalised Tasks Cost

CodeGen-mono-6B (Nijkamp et al., 2023) 6.5K 3.25K 5.5$

CodeGen-mono-6B (round2) 4K 1.4K 4.4$

CodeGen-mono-16B 6.2K 2.8K 6.5$

StarCoder (Li et al., 2023a) 4.3K 2.5K 4.3$

Table 3: Statistics of Personalised Data Construction

4.3 Model Evaluation

We evaluate our models on two datasets: Hu-
manEval(Chen et al., 2021), which contains 164
Python problems, and the subset MBPP(Austin
et al., 2021) sanitized set that has no overlap with
our MBPP seed tasks for pretraining data collec-
tion. This corresponds to test+validation+prompt
splits of MBPP-sanitized and consists of 306
Python problems. We use nucleus sampling with
temperature 0.2 to generate 20 candidates per
task for estimating pass@1, and with tempera-
ture 0.8, 100 candidates per task for estimating
pass@5/10/20/50/100.

For multi-step inference, we first extract the
“seen” unit test-cases from the doc-string of the
task instruction (More details in Appendix A).
Next, we generate output samples in the usual
code-generation style forming the set of 1-step gen-
erations for each instance. Each of these candi-
date generations are then executed on the extracted
“seen” unit test cases to obtain a refined code, thus
forming the set of 2-step generations.

4.4 Pretraining Setup

For all experiments with CodeGen-mono-6B back-
bone, we use effective batch size of 1024 and pre-
train for 20 epochs. For backbone as CodeGen-
mono-16B, we use effective batch size of 1024
and pretrain for 3 epochs, as the training converges
much faster than CodeGen-mono-6B. For PERsD-
combine with StarCoder model, we use effective
batch size of 1024 and pretrain for 8 epochs, which
results in similar training loss as CodeGen-mono-
16B. We implement using HuggingFace transform-
ers(Wolf et al., 2020) and DeepSpeed Zero (Ra-
jbhandari et al., 2020). All experiments are con-
ducted on a cluster of 8 A100-40GB GPUs.

5 Experimental Results
5.1 Main Results

We empirically test the hypothesis that personalised
distillation helps student model learn more effec-
tively, by comparing PERsD models with baseline
distillation methods (InpD, StanD) in Table 4.

Personalised labeled-data is generally bet-
ter than standard data Comparing PERsD-
combine to InpD-combine, we find PERsD-
combine outperforms InpD-combine in all settings,
often with a significant margin (two backbones,
two datasets, two inference steps, 4 pass@k met-
ric). Similar observation holds true when compar-
ing PERsD-refine to InpD-refine (except for 2/32
settings), and PERsD to InpD. Thus, we conclude
that PERsD-variants are generally significantly bet-
ter than their InpD counterparts, providing strong
evidence that personalised labels are more effective
for the student model to learn than standard labels.

PERsD outperforms StanD with less than one-
third of its data We observe that PERsD out-
performs StanD for every pass@k on both 16B
and 6B CodeGen-mono backbone across both Hu-
manEval and MBPP, even though StanD has 10K
data and PERsD has only 3.3K and 2.8K exam-
ples for CodeGen-mono-6B and 16B. The only
exception is in the setting CodeGen-mono-16B,
MBPP, pass@1, where StanD edges out PERsD
by 1.2 points. Given that our pretraining data is
constructed from seed tasks taken from MBPP, we
hypothesize that StanD might enjoy an unfair ad-
vantage due to its having three times more data,
making it more susceptible to data leakage. We
verify such hypothesis further in §5.2. In summary,
with PERsD outperforming StanD in 15 out of 16
settings while having less than a third of the data,
it’s evident that personalized labeled data makes
the learning more efficient.

Multi-step inference consistently improves an-
swer quality For PERsD-refine and PERsD-
combine models, we find that 2 step inference con-
sistently improves performance on HumanEval and
MBPP. This shows the models successfully learn
how to rectify its solution based on execution er-
ror feedback. Note that InpD-refine yields worse
accuracy with 2 step inference on HumanEval
pass@10/20, strengthening the advantage of per-
sonalised labeled data over standard labeled data.

5.2 Train-Test overlap analysis

As observed in Table 4, PersD-variants enjoy
higher average improvements over their InpD coun-
terparts, on HumanEvan than on MBPP. To delve
deeper, we conduct a data overlap analysis. For
each test task, we extract the most similar training
task and use GPT-3.5-turbo to score their seman-
tic similarity, with 0 indicating no relation and 1



(a) Backbone as CodeGen-mono-6B

Methods #Data
Pass@1 Pass@5 Pass@10 Pass@20

step=1 step=2 step=1 step=2 step=1 step=2 step=1 step=2

HumanEval

StanD 10K 32.41 - 41.79 - 45.67 - 49.26 -

InpD 3.3K 31.65 - 44.55 - 50.72 - 56.76 -

-refine 3.3K 29.70 29.70 43.82 41.99 51.28 47.89 58.29 53.51

-combined 6.5K 30.15 32.30 42.94 45.27 47.91 50.50 52.54 55.46

PERsD 3.3K 34.63 - 49.34 - 55.34 - 60.41 -

-refine 3.3K 32.35 33.35 48.69 49.35 56.07 56.87 63.60 64.76
-combined 6.5K 33.81 35.53 44.64 49.67 49.96 55.67 55.23 61.21

MBPP

StanD 10K 43.11 - 55.24 - 59.07 - 62.51 -

InpD 3.3K 43.59 - 55.83 - 63.13 - 67.34 -

-refine 3.3K 44.44 47.81 62.25 66.43 67.61 71.44 71.68 75.22

-combined 6.5K 42.69 47.25 56.70 62.17 61.39 66.49 65.46 70.22

PERsD 3.3K 45.47 - 59.90 - 64.85 - 69.73 -

-refine 3.3K 48.24 52.65 63.65 68.49 69.00 73.34 73.16 77.62
-combined 6.5K 42.77 48.92 56.91 62.29 61.43 66.89 65.22 70.96

(b) Backbone as CodeGen-mono-16B

Methods #Data
Pass@1 Pass@5 Pass@10 Pass@20

step=1 step=2 step=1 step=2 step=1 step=2 step=1 step=2

HumanEval

StanD 10K 33.96 - 50.56 - 57.69 - 63.82 -

InpD 2.8K 36.68 - 49.51 - 53.85 - 57.47 -

-refine 2.8K 30.55 31.28 48.40 48.13 55.00 54.52 61.31 60.62

-combined 5.6K 34.66 36.49 50.65 53.89 56.75 60.07 62.78 65.85

PERsD 2.8K 37.74 - 56.57 - 63.92 - 69.97 -

-refine 2.8K 36.77 37.99 51.86 54.23 58.07 60.92 63.17 67.13

-combined 5.6K 36.40 37.74 53.57 55.80 60.81 63.37 67.3 70.50

MBPP

StanD 10K 48.90 - 62.21 - 66.91 - 71.33 -

InpD 2.8K 46.27 - 58.45 - 62.61 - 66.43 -

-refine 2.8K 48.79 54.87 66.89 71.32 72.24 75.71 75.82 78.84

-combined 5.6K 47.39 53.59 59.14 66.38 63.48 70.76 67.10 74.35

PERsD 2.8K 47.68 - 65.80 - 71.56 - 76.02 -

-refine 2.8K 51.50 56.21 66.82 71.86 72.06 76.78 76.03 80.42
-combined 5.6K 51.44 56.44 66.45 71.31 71.64 76.43 76.04 80.20

Table 4: Comparing PERsD models to StanD & InpD

indicating complete semantic overlap (further de-
tails in Appendix D). Table 5 reveals more overlap
in MBPP than HumanEval, and more overlap for
StanD compared to PERsD. This overlap could be
why StanD surpasses PERsD in the 1/16 setting
(CodeGen-mono-16B, MBPP, pass@1), as StanD
has an unfair advantage of having significantly
more data leakage. In addition, if we test our meth-
ods on clean-MBPP where the leaked data points
are removed, then PERsD becomes almost on-par
with StanD in this specific setting while having
larger margin over StanD on the rest 15/16 settings
(from 4.8 points average margin to 5.9 points, more
details at Appendix E). Altogether, this overlap
analysis, coupled with results from cleaned MBPP,
further underscores the advantages of personalized
distillation.

5.3 Effect of mixing StanD and InpD data

Table 6 shows the ablation study on mixing stan-
dard distillation data to PERsD-refine and InpD-
refine: while mixing standard data to InpD-refine
improves its 1-step performance on MBPP and

Method Backbone %("leak") Similarity

HumanEval

StanD 6B,16B 6.1% 0.22

PERsD 6B 3.6% 0.18

PERsD 16B 3.05% 0.22

MBPP

StanD 6B,16B 18.24% 0.40

PERsD 6B 8.47% 0.30

PERsD 16B 7.49% 0.30

Table 5: Train-Test Overlap Analysis. 6B/16B denotes
CodeGen-mono-{6/16}B backbones. %("leak") denotes
the percentage of test data that are semantically leaked
in training data. ’Similarity’ represents the average
similarity score (range: 0 to 1; higher values indicate
greater similarity)

roughly maintains its performance on other set-
tings, mixing StanD data to PERsD-refine signifi-
cantly deteriorate its performance (except pass@1
inf-step=2 on HumanEval). We conjecture that as
StanD has much larger data volume than PERsD-
refine, it overwhelms the student training on stan-
dard distillation. However, combining with a bal-
anced input-personalised data can be beneficial, as
we observe from the good performance of PERsD-
combined in Table 4 on CodeGen-mono-16B.

Methods Inf Pass@1 Pass@5 Pass@10 Pass@50 Pass@100

Step HumanEval

StanD + InpD-refine

1

30.59 40.04 44.20 54.23 58.54

StanD + InpD-refine* 29.45 39.83 44.07 54.55 59.76

StanD + PERsD-refine 32.13 43.82 48.66 59.55 64.02

PERsD-refine 32.35 48.69 56.07 72.10 77.44
StanD + InpD-refine

2

30.87 42.88 47.90 58.21 60.98

StanD + InpD-refine* 30.12 42.71 47.42 58.69 64.02

StanD + PERsD-refine 35.00 47.89 52.96 64.36 69.51

PERsD-refine 33.35 49.35 56.87 74.13 79.88

MBPP

StanD + InpD-refine

1

42.60 53.18 56.49 62.11 63.07

StanD + InpD-refine* 44.08 54.12 57.82 64.96 66.34

StanD + PERsD-refine 45.63 53.20 56.38 63.02 65.36

PERsD-refine 48.24 63.65 69.00 78.16 81.70
StanD + InpD-refine

2

46.32 58.84 62.80 69.80 71.23

StanD + InpD-refine* 46.92 58.18 62.03 68.82 68.95

StanD + PERsD-refine 48.44 58.37 62.47 70.64 73.20

PERsD-refine 52.65 68.49 73.34 82.72 85.62

Table 6: Ablation on mixing StanD, with Backbone as
CodeGen-mono 6B. InpD-refine* denotes using all 6.5K
tasks where the student model made mistakes, which
covers around 3K more tasks than InpD-refine.

Similarly, in Table 7 we show another ablation:
that mixing InpD data with PERsD roughly main-
tains the performance on HumanEval but degrades
on MBPP. This shows personalised labels are of
higher quality and mixing non personalised labels
for the same task generally hurts performance.



Methods Pass@1 Pass@5 Pass@10 Pass@50 Pass@100

HumanEval

PERsD 34.63 49.34 55.34 65.56 67.93
PERsD + InpD 34.88 48.35 54.06 64.88 68.90

MBPP

PERsD 45.47 59.90 64.85 76.05 80.07
PERsD + InpD 43.84 59.02 63.77 71.69 74.84

Table 7: Ablation on PERsD mixing InpD with
CodeGen-mono 6B as backbone

Round Inf Pass@1 Pass@5 Pass@10 Pass@50 Pass@100

Step HumanEval

1
1

33.81 44.64 49.96 61.75 70.73

2 32.74 45.50 51.52 66.14 71.95
1

2
35.53 49.67 55.67 68.16 77.44

2 36.75 49.71 56.13 70.24 75.00

MBPP

1
1

42.77 56.91 61.43 68.84 70.67

2 45.07 57.75 62.27 70.49 72.55
1

2
48.92 62.29 66.89 75.09 77.25

2 49.59 63.43 68.30 76.00 78.10

Table 8: Ablation on multi-round distillation on PERsD-
combined with CodeGen-mono 6B as backbone

5.4 Multi-round Distillation

After finetuning the student model with the per-
sonalised distillation data, can we perform an-
other round of personalised distillation, on the new
model? We show such an ablation study in Ta-
ble 8. Encouragingly, we find PERsD-combined
round-2 generally outperforms PERsD-combined
round-1 by a modest margin. This improvement
provides further evidence of the benefits of per-
sonalized learning, even when applied to models
trained with personalized distillation. These find-
ings suggest the intriguing possibility of an online
or active version of personalized distillation, where
data collection and model training occur simulta-
neously to ensure each batch is fully personalized
and has higher sample efficiency. However, we will
leave such intriguing exploration for future work.

5.5 Utilizing feedback for multi-step Inference

To better understand the role of execution feed-
back during training and multi-step inference, we
show an ablation study in Table 9, where we
compare PERsD-combine with a specific variant
(PERsD-combine*) that excludes feedback dur-
ing both training and inference. we observed that
PERsD-combine* performs comparably to PERsD-
combine on HumanEval and slightly better on
MBPP for 1-step inference. However, for 2-step
inference, PERsD-combine* consistently underper-

forms PERsD-combine. This result aligns well
with our expectations that code-rectification needs
the execution feedback to guide the refinement.

Methods Inf Pass@1 Pass@5 Pass@10 Pass@50 Pass@100

Step HumanEval

PERsD-combine
1

33.81 44.64 49.96 61.75 70.73
PERsD-combine* 33.29 45.47 50.90 62.87 68.29

PERsD-combine
2

35.53 49.67 55.67 68.16 77.44
PERsD-combine* 34.59 49.54 55.59 67.27 71.95

MBPP

PERsD-combine
1

42.77 56.91 61.43 68.84 70.67

PERsD-combine* 44.76 56.95 60.85 68.67 71.57
PERsD-combine

2
48.92 62.29 66.89 75.09 77.25

PERsD-combine* 47.83 61.28 65.54 73.03 75.49

Table 9: Ablation on removing execution feedback with
CodeGen-mono 6B as backbone. PERsD-combine*
denotes combined personalised distillation without exe-
cution feedback in input prompt.

5.6 Cross-Model Personalised Distillation
To investigate whether personalised distillation
data of one model can be benefical to another,
we conduct an ablation in Table 10 by using
PERsD-combined data of CodeGen-mono-6B to
train CodeGen-mono-16B. The results show that
such cross-model persionalised data do not per-
form as well as real personalised data: leading to
a consistent performance drop by a large margin.
This finding reinforces our notion that learning data
should be tailored to the specific student model, as
personalized data suitable for one model may not
necessarily benefit others.

Model Inf Pass@1 Pass@5 Pass@10 Pass@50 Pass@100

Step HumanEval

CodeGen-mono-6B
1

33.81 44.64 49.96 61.75 70.73

CodeGen-mono-16B* 32.99 47.81 54.58 69.31 73.98

CodeGen-mono-16B 36.40 53.57 60.81 74.64 79.88
CodeGen-mono-6B

2
35.53 49.67 55.67 68.16 77.44

CodeGen-mono-16B* 35.85 51.31 58.23 74.02 76.60

CodeGen-mono-16B 37.74 55.80 63.37 77.14 81.10

MBPP

CodeGen-mono-6B
1

42.77 56.91 61.43 68.84 70.67

CodeGen-mono-16B* 43.24 60.14 65.19 72.31 74.19

CodeGen-mono-16B 51.44 66.45 71.64 80.62 82.93
CodeGen-mono-6B

2
48.92 62.29 66.89 75.09 77.25

CodeGen-mono-16B* 48.12 65.31 70.02 76.60 78.70

CodeGen-mono-16B 56.44 71.31 76.43 84.39 86.76

Table 10: Ablation on cross-model personalised distil-
lation with PERsD-combined. CodeGen-mono-16B*
means distillation data is from CodeGen-mono-6B.

5.7 Comparison with other Feedback-based
Code Generation Models

Comparison with ILF (Chen et al., 2023a): In
order to compare with ILF, one of our closest re-
lated work, we experiment on a separate setting:



starting with full MBPP dataset (974 tasks) and
use Task-Ids 11-111 as test split and remaining
863 as training data. On the training set, our stu-
dent model CodeGen-6B (same as ILF) generated
wrong attempts on 562 tasks, which were shown to
ChatGPT along with the task instruction and execu-
tion error feedback to eventually collect 288 valid
personalized code rectification labels.

The original MBPP text-to-code
data and this collected personalized
code-refinement data for the 288 tasks

MBPP Test Set

Method Cost Pass@1 Pass@10

ILF >4K$ 36 68
PERSD 0.65$ 46.8 67.4

-refine 0.65$ 41.8 66.8

-combined 0.65$ 47.8 64.8

Table 11: Comparison with
ILF

respectively form
the finetuning data
Dcode and Drefine
on which we train
models PERSD and
PERSD-refine. We
further combine
Dcode and Drefine
to train PERSD-
combined. Our experimental results in Table
11 show that all PERSD-variants significantly
outperform ILF by 11.8% at pass@1 at a cost 1e-4
times lower than ILF, thus showcasing the lack of
scalability of ILF-style models.

Comparison with Self-Edit: Since Self-Edit
(Zhang et al., 2023) uses a trainable CodeGen-
350M code editor model and a frozen code-
generation model, our experimental setup is not
directly comparable with theirs. However, our
INPD-refine and INPD-combined models can actu-
ally be considered as very close counterparts to a
version of Self-Edit with shared a code-generation
and code-refinement model and CodeGen-6B back-
bone. The consistent performance improvement of
the personalized distillation models over the input-
distilled ones across the board, alludes towards the
prospect that PERSD-models are indeed more ef-
fective than Self-Edit style models.

5.8 Comparison with SOTA Models

Fianlly, we compare PERsD-combine models
with open-source and close-sourced state-of-the-
art models on HumanEval in Table 12.We find
that PERsD-combine methods can significantly im-
prove the backbone model, with a performance
gain of 6.2 points for CodeGen-mono 6B (8.4% er-
ror reduction), 5.9 points for CodeGen-mono 16B
(8.3% error reduction) and 12.2 points for Star-
Coder (18.4% error reduction). Moreover, Star-
Coder with PERsD-combined, outperforms other
open-sourced models except WizardCoder. Note

Model Model size Pass@1 Pass@10 Pass@100

Closed-source models

LaMDA 137B 14.0 - 47.3

PaLM 540B 26.2 - 76.2

Codex 12B 28.8 46.8 72.3

code-cushman-001 - 33.5 54.3 77.4

code-davinci-002 - 47.0 74.9 92.1
GPT-3.5 - 48.1 - -

phi-1 1.3B 50.6 - -

GPT-4 - 67.0 - -

Open-source models

CodeGeeX 13B 22.9 39.6 60.9

LLaMA 65B 23.7 - 79.3

StarCoder 15B 33.6 - -

CodeGen-mono 6B 26.1 42.3 65.8

CodeGen-mono 16B 29.3 49.9 75.0

InstructCodeT5+ 16B 35.0 54.5 77.9

WizardCoder 15B 57.3 - -

CodeGen-mono (PERsD-combined) 6B 33.8 50.0 70.7

CodeGen-mono (PERsD-combined) 16B 36.4 60.8 79.9

StarCoder (PERsD-combined) 15B 45.8 68.3 82.3

Table 12: Results of pass@k(%) on HumanEval

that our model ues 5K data examples while Wiz-
ardCoder uses 78K. As mentioned in §2.1, Wiz-
ardCoder is an orthogonal approach that can be
integrated into personalised distillation.

6 Conclusion

In this paper, we introduced personalized distilla-
tion as a method for collecting customized labeled
data that adapts to the capacity of student models,
resulting in more effective learning. We demon-
strated the advantages of personalized distillation
over standard distillation in the field of code gen-
eration, achieving superior performance on both
the HumanEval and MBPP datasets. Through com-
prehensive ablation studies, we confirmed that per-
sonalized distillation leads to higher data quality,
benefits from multi-round distillation, and enables
models to leverage execution feedback for self-
rectification. We believe personalized distillation
represents an exciting step towards better distilla-
tion of closed-source LLMs to open-source models.

Limitations

In this section, we discuss some limitations of this
paper and future directions to make it more valu-
able:

On Data Scale For a fair comparison, we have
conducted all experiments based on the same 10K
DSTAND data (introduced §4.2) and the correspond-
ing personalised data processed from DSTAND are
of size 2-3K as shown in Table 3. However, as
we have proven personalised distillation supports



more effective and efficient learning, it is intriguing
to investigate how well does personalised distilla-
tion scale with the data size. For example, if we
scale personalised distillation data to 50K, how
much more performance gain will PERsD meth-
ods receive compared to InpD and StanD with the
scaling of data size.

Online Personalised Distillation As discussed
in §5.4, conducting a second round personalised
distillation continues to improve a student model
that is already trained with PERsD-combine. Such
observation suggests the potential of an online ver-
sion of personalised distillation, which collects
a batch of personalised data on-the-fly with the
teacher model, after each optimization step during
finetuning. As we have proven that true person-
alised data is more beneficial than standard data
or cross-model personalised data (§5.6), such on-
line personalised distillation will in-principle maxi-
mally benefit from personalised distillation, as each
batch of training data is fully tailored to the student
model.
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A Details in Multi-step Model Evaluation

As the docstrings are ill-formated in HumanEval,
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B ChatGPT Prompt Template for
Personalised Distillation

In Figure 3, we show the prompt template we use
to query ChatGPT for personalised refinement. For
each task example, with task instruction t, unit test
cases u and correct code c, we query ChatGPT API
with two turn conversation history.

For the first turn, we use the template in Fig-
ure 3a and replace «TASK», «HEADER» with the
actual task instruction t and function header ex-
tracted. This is added to first turn’s user input and
the correct code c is included as first turn’s assistant
output. For the second turn, we use the template in
Figure 3b and replace «CODE», «ERROR» with
the student model’s attempt and its execution feed-
back. This is added to second turn’s user input and
we query ChatGPT with the constructed conver-
staion history to get second turn’s assistant output
as personalised code refinement.
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(a) Turn-1 Prompt Template

(b) Turn-2 Prompt Template

Figure 3: Prompt templates to query personalised re-
finement. Top(a): prompt template for first turn con-
versation, Botton(b): prompt template for second turn
conversation.

C Prompt Template for Code Refinement
Finetuning

Figure 4 shows the refinement template Trefine in-
troduced in §3.2), which is used to construct input
prompt for code refinement finetuning. we replace
«TASK» with task instruction, «CODE» with the
initial wrong attempt from student, «ERROR» with
the execution feedback, and «HEADER» with func-
tion header extracted from task instruciton.

D Details in Data Overlap Analysis

This section describes the detailed procedures to
conduct train-test data overlap analysis. The objec-
tive is to assess the extent of data leakage in the
test datasets originating from our self-constructed
pretraining corpus.

Figure 4: Prompt template for code refinement finetun-
ing.

Firstly, we have performed exact string match
and found no data leakage in any test data (Hu-
manEval/MBPP).

To measure the semantic similarity between
training/test tasks, we did the following:

1. For each task in the test (MBPP/HumanEval)
we retrieve two closest training tasks (based
on cosine similarity of starcoder embedding
& tf-idf vectors of task description).

2. We use gpt-3.5-turbo-16k to identify whether
there is a data leak between a train and test
instance by classifying the pair into (“leak”,
“somewhat similar”, “somewhat not similar”,
“not related”). We use a prompt with instruc-
tions and manually created few-shot exam-
ples and ask gpt-3.5 to generate the reasoning
and categorization. We manually examined
several examples per category to ensure the
reasoning and judgment is done correctly and
consistently.

3. Map the similarity categories to 0-1 similarity-
score (“leak” -> 1, “somewhat similar” ->
0.75, “somewhat not similar” -> 0.25, “not
related” -> 0) and show the mean score and %
of cases classified as “leak”. Note that StanD
& PERsD have 10K & 3K training data re-
spectively so their scores are different.

E Results in MBPP-Cleaned

In Appendix D, we find 55 data instances that are
potentially leaked (with similarity score = 1) in
MBPP test data. In this section, we construct a
new MBPP-Cleaned dataset, where the leaked data
points are removed (originally 306 problems → 251
problems after filtering). The results on this new
MBPP-Cleaned dataset is shown in Table 13. From



the results, we can see for setting CodeGen-mono-
16B, pass@1, PERsD becomes almost on-par with
StanD (from a gap of -1.21 to -0.17). For the rest of
15/16 settings on PERsD comparing with StanD, its
average margin is increased from 4.8 points to 5.9
points. Besides, PERsD-refine on MBPP-Cleaned
shows more consistent and sizable improvements
over InpD-refine, with an average edge of +0.86 for
1 step inference, and +1.91 for two step inference.
Overall, with overlapped test data removed, PERsD
methods show even larger advantages compared to
StanD or InpD methods.

(a) Backbone as CodeGen-mono-6B

Methods #Data
Pass@1 Pass@5 Pass@10 Pass@20

step=1 step=2 step=1 step=2 step=1 step=2 step=1 step=2

MBPP-Cleaned

StanD 10K 37.51 - 50.89 - 55.15 - 58.87 -

InpD 3.3K 38.80 - 53.91 - 58.47 - 62.73 -

-refine 3.3K 37.58 42.95 57.65 62.29 63.52 67.79 67.92 71.96

-combined 6.5K 38.11 43.01 52.69 58.32 57.36 62.75 61.19 66.18

PERsD 3.3K 41.30 - 56.20 - 61.86 - 67.53 -

-refine 3.3K 43.86 47.73 59.33 64.41 65.19 69.95 69.62 74.33
-combined 6.5K 38.86 43.75 52.78 57.04 57.35 61.78 61.52 66.19

(b) Backbone as CodeGen-mono-16B

Methods #Data
Pass@1 Pass@5 Pass@10 Pass@20

step=1 step=2 step=1 step=2 step=1 step=2 step=1 step=2

MBPP-Cleaned

StanD 10K 43.10 - 57.53 - 62.92 - 68.12 -

InpD 2.8K 40.64 - 53.88 - 58.82 - 62.88 -

-refine 2.8K 43.67 49.60 63.14 68.21 69.27 73.28 73.36 76.85

-combined 5.6K 41.63 47.77 54.74 62.24 59.67 67.33 63.75 71.57

PERsD 2.8K 42.93 - 62.40 - 68.90 - 74.10 -

-refine 2.8K 47.73 52.63 63.62 69.21 69.84 75.17 74.90 79.69
-combined 5.6K 46.33 51.67 63.46 68.65 69.49 74.26 74.53 78.83

Table 13: Comparing performance of PERsD models to
StanD & InpD on MBPP-Cleaned


