
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LazyLLM: DYNAMIC TOKEN PRUNING FOR EFFICIENT
LONG CONTEXT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The inference of transformer-based large language models consists of two sequen-
tial stages: 1) a prefilling stage to compute the KV cache of prompts and generate
the first token, and 2) a decoding stage to generate subsequent tokens. For long
prompts, the KV cache must be computed for all tokens during the prefilling stage,
which can significantly increase the time needed to generate the first token. Con-
sequently, the prefilling stage may become a bottleneck in the generation process.
An open question remains whether all prompt tokens are essential for generating
the first token. To answer this, we introduce a novel method, LazyLLM, that se-
lectively computes the KV for tokens important for the next token prediction in
both the prefilling and decoding stages. Contrary to static pruning approaches that
prune the prompt at once, LazyLLM allows language models to dynamically se-
lect different subsets of tokens from the context in different generation steps, even
though they might be pruned in previous steps. Extensive experiments on standard
datasets across various tasks demonstrate that LazyLLM is a generic method that
can be seamlessly integrated with existing language models to significantly ac-
celerate the generation without fine-tuning. For instance, in the multi-document
question-answering task, LazyLLM accelerates the prefilling stage of the LLama
2 7B model by 2.34× while maintaining accuracy.

1 INTRODUCTION

Standard prompt-based LLM inference has two sequential stages: prefilling and decoding, as shown
in Figure 1. During the prefilling stage, the model computes and saves the KV cache of each token
from the prompt, and predicts the first token. We refer to the time taken during prefilling stage as
“time-to-first-token” (TTFT). Following the prefilling stage is the decoding stage, where the model
reuses cached KVs to decode the next token iteratively until the stop criteria are met.

During the prefilling stage, all tokens from the prompt are used by all transformer layers. For long
prompts, TTFT could be slow because state-of-the-art transformer-based LLMs are both deep and
wide (Pope et al., 2023; Kim et al., 2023; Aminabadi et al., 2022), and the cost of computing at-
tention increases quadratically with the number of tokens in the prompts. For instance, Llama 2
(Touvron et al., 2023), with 7 billion parameters, stacks 32 transformer layers with a model dimen-
sion of 4096. In this scenario, TTFT requires 21× the walltime of each subsequent decoding step,
and accounts for approximately 23% of the total generation time on the LongBench benchmark1

(Bai et al., 2023). Therefore, optimizing TTFT is a critical path toward efficient LLM inference
(NVIDIA, 2024).

While optimizing LLM inference is an active area of research, many methods (Leviathan et al.,
2023; Cai et al., 2024; Zhang et al., 2024; Bhendawade et al., 2024; Li et al., 2024) have focused on
improving inference speed during the decoding stage. Yet, there is little attention given to improving
TTFT . We note that some compression-based works implicitly improve the TTFT by reducing the
size of LLMs (Frantar et al., 2022; Sun et al., 2023; Ma et al., 2023). However, an orthogonal line of
research(Li et al., 2023; Jiang et al., 2023; Dao et al., 2022) investigates how TTFT can be improved
given a static transformer architecture. Within this line of research, a natural question arises: Are all
prompt tokens essential for generating the first token?

1The average LongBench prompt length is 3376 tokens and the average generation length is 68 tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LazyLLM is a
training free token
pruning technique to
improve LLM
inference with

InputKV Cache

<empty>

Prefilling Decoding
Step #1

LazyLLM is a training
free token pruning
technique to improve
LLM inference with

InputKV Cache

negligible

Decoding
Step #2

LazyLLM is a training
free token pruning
technique to improve
LLM inference with
negligible

InputKV Cache

performance

Decoding
Step #3

LazyLLM is a training
free token pruning
technique to improve
LLM inference with
negligible
performance

InputKV Cache

loss

time-to-first-token (TTFT)

Overall Generation Time

Figure 1: Prompt-based LLM inference can be divided into two sequential stages: prefilling and
decoding. For long prompts, the first token generation during prefilling stage could be slow. As an
example, for Llama 2 7B model (Touvron et al., 2023), on average, the time to generate the first
token requires 21× the walltime of each subsequent decoding step and accounts for 23% of the total
generation time in the LongBench benchmark.

LLM profiling on the LongBench benchmark (Bai et al., 2023) in Figure 2 reveals that the attention
scores of input tokens w.r.t. to the first generated token are very sparse, indicating that many tokens
in the input prompt are redundant and can be removed without affecting the next token prediction.
To this end, we propose LazyLLM, a novel, simple, yet effective technique tailored for speeding up
prefilling. As depicted in Figure 3, in each generation step, LazyLLM selectively computes the KV
for tokens important for the next token prediction and “lazily” defers the computation of remaining
tokens to later steps when they become relevant. We propose using the attention score of the prior
transformer layer to measure the importance of tokens and progressively prune tokens along the
depth of the transformer. In contrast to prompt compression works (Li et al., 2023; Jiang et al.,
2023; Xu et al., 2023), which permanently reduce the prompt for all the following generation steps,
our method allows the model to revive previously pruned tokens, which we found crucial to retain
accuracy. Extending progressive token pruning to all generation steps is non-trivial. Specifically, if
a token is pruned at generation step t, and is revived at generation step t′ > t, some hidden states
would need to be recomputed during step t′. To avoid such repetitive computation, we employ an
additional caching mechanism, Aux Cache, to cache the hidden states of pruned tokens. This enables
a computationally efficient pathway to revive pruned tokens, and ensures that the worst runtime of
LazyLLM is never slower than the baseline.

In summary, the advantages of LazyLLM are: (1) Universal: LazyLLM can be seamlessly integrated
with any existing transformer-based LLM to improve inference speed, (2) Training-free: LazyLLM
doesn’t require any finetuning and can be directly integrated without any parameter modification,
(3) Effective: Empirical results on 16 standard datasets across 6 different language tasks shows
LazyLLM can improve the inference speed of the LLM during both prefilling and decoding stages.

2 RELATED WORK

The increase in the scale of large language models (LLMs) has greatly enhanced their performance
but also introduced challenges with respect to their inference efficiency. The inference of generative
LLMs consists of two distinct stages as depicted in Figure 1. In particular, extensive computation
is needed under long context scenarios to calculate the full KV cache during the prefilling stage,
resulting in a long time-to-first-token (TTFT). This delay causes users to wait several seconds after
submitting a prompt before receiving any response from the agent, leading to a poor user experience.

Efficient Long Context Inference. Extensive work (Merth et al., 2024; Chen et al., 2023; Beltagy
et al., 2020; Kitaev et al., 2020) has been proposed to improve inference efficiency for long context
applications by reducing the memory footprint and total computations. Some works have focused
on tailoring the architecture of the transformer for long context input. For instance, (Beltagy et al.,
2020) introduces a drop-in replacement for standard self-attention and combines local windowed
attention with task-motivated global attention. In parallel, Reformer (Kitaev et al., 2020) replaces

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 600 1200 1800 2400 3000
Token Index

0

5

10

15

20

25

30

L
ay

er
In

de
x

0.01

0.01

0.01

0.02

0 500 1000 1500 2000 2500 3000
Token Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
tte

nt
io

n
Sc

or
e

0 5 10 15 20 25 30
Token Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
tte

nt
io

n
Sc

or
e

(a) An Example of Attention Sparsity (b) Distribution Input Tokens’ Attention Scores

Figure 2: We visualize the attention scores of input tokens in the prompt w.r.t. to the next token for
each layer of Llama 2 7BTouvron et al. (2023). We also plot the distribution of the average attention
score across all transformer layers. Result reveals that the attention scores of input tokens w.r.t. to
the next token are very sparse, indicating that many tokens in the input prompt are redundant and
can be safely removed without affecting the next token prediction.

dot-product attention by one that uses locality-sensitive hashing to reduce its computational com-
plexity. Though the above methods can speed up long context inference, they require significant
model architecture change and re-training. This drawback makes them impractical to be applied to
existing pre-trained LLMs. Closer to our work are efficient techniques that optimize the KV cache
(Zhang et al., 2024; Li et al., 2024; Anagnostidis et al., 2024; Nawrot et al., 2024) by minimizing the
KV cache size and data transfer. However, these works only focus on accelerating decoding steps,
which are not applicable to reducing TTFT .

Token Pruning. Previous studies on the sentence classification task (Kim et al., 2022; Anagnos-
tidis et al., 2024; He et al., 2021) has shown that not all tokens (i.e. words) in an input sequence
are necessary to make a successful prediction. This provides several possibilities for token pruning,
which minimizes computational demands by selectively removing less important tokens during in-
ference. For example, (Kim et al., 2022) presents Learned Token Pruning which adaptively removes
unimportant tokens as an input sequence passes through transformer layers. In parallel, (He et al.,
2021) proposes to reduce width-wise computation via token pruning for transformer-based models
such as BERT (Devlin et al., 2018). These aforementioned approaches were designed for tasks re-
quiring only a single iteration of processing, such as text classification. In this work, we extend the
idea of token pruning to generative LLMs. Specifically, our method allows the model to dynamically
choose different sets of tokens at each generation step, which is crucial to retaining the performance.
Furthermore, we also introduce Aux Cache to ensure that each token is computed at most once along
the whole generation, and ensure the worst runtime of our method is not slower than the baseline.

3 LazyLLM

3.1 BACKGROUND ON LLM INFERENCE

Generative LLM inference consists of two stages: prefilling and decoding (see Figure 1). In the
prefilling stage, the model receives the prompt (a sequence of tokens) T = {ti}Ni=1 of length N,
where ti denotes a token and N denotes the length of the prompt, then computes and saves the KV
cache of each token, and produces the first token tn+1. The transformer architecture commonly
used in LLMs is a stack of layers where each layer shares the same architecture with a multiple-
head self-attention mechanism followed by a multi-layer perception (MLP). The time of prefilling is
referred to as time-to-first-token (a.k.a. TTFT). Following the prefilling is the decoding steps, where
the model appends the generated token tn+1 to the input, and subsequently decodes the following
token. The decoding step is repeatedly performed until the stop criteria are met. While the formula
of each decoding step is similar to prefilling, the amount of its computation is significantly lower

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Accumulated # of Token Computed

LazyLLM is a training free token pruning technique to improve LLM inference with negligible Iteration #1 (Prefilling) 13

LLM LazyLLM is a training free token pruning technique to improve LLM inference with negligible performanceIteration #2 14

LazyLLM is a training free token pruning technique to improve LLM inference with negligible performance lossIteration #3 15

LazyLLM improve inference with negligible Iteration #1 (Prefilling) 4

LazyLLM LazyLLM improve LLM inference with negligible performanceIteration #2 6

LazyLLM improve LLM inference with negligible performance lossIteration #3 7

red: token in computation yellow: retrieved from KV cache green: saved in KV cache but not used : not yet computedblack: generated token

Figure 3: Comparison between standard LLM and LazyLLM. Instead of computing the KV cache
of all input tokens at the prefilling stage, LazyLLM only selectively computes the tokens that are
important to the next token prediction, deferring the computation of remaining tokens to later steps.
LazyLLM significantly optimizes TTFT by reducing the amount of computation during prefilling.
Moreover, as some tokens in the prompt are never selected by LazyLLM during the whole generation
process (even though theoretically the model could use all tokens in the prompt), LazyLLM also
reduces the total amount of computation and accelerates the overall generation.

thanks to the KV cache. Specifically, with saved KV cache from prefilling, all the previous tokens
do not need to pass any linear layers in the model.

3.2 INFERENCE WITH LazyLLM

The overview of the proposed LazyLLM framework is illustrated in Figure 4. LazyLLM starts with
the full context and progressively prunes tokens to gradually reduce the number of computations
towards the end of the model. Note, LazyLLM allows the model to select different subsets of tokens
from the context in different generation steps, even though some of them may be pruned in previous
steps. Compared to static pruning which prunes all the tokens at once, dynamic pruning optimizes
the next token prediction in each generation step, which is crucial to retaining the performance.

Progressive Token Pruning. Prior to this work, token pruning has been successfully applied to
optimize LLM inference (Zhang et al., 2024; Li et al., 2024; Adnan et al., 2024; Nawrot et al., 2024).
However, these approaches require accumulating the full attention maps of predicting the first few
tokens to profile the importance of prompt tokens before starting pruning. Consequently, they are
not applicable to reduce TTFT as they still require computing all the KV cache at the prefilling stage.

In contrast, LazyLLM only “lazily” computes the tokens that are important to predict the next token
by starting from the first iteration of the inference (the prefilling step). A key challenge to pruning
tokens in the first iteration is determining their importance. Inspired by the early exiting work
(Elhoushi et al., 2024) which shows the token hidden states gradually evolve through the transformer
layers, we apply layer-wise token pruning in each generation step. Specifically, we use the attention
map of the layer Al ∈ RH×N×N to determine the importance of input token ti w.r.t. the next token
to be predicted as

sli =
1

H

H∑
h=1

Al
h,i,N (1)

where H denotes number of attention heads, N is the sequence length, and Ah,i,j is the attention
probability of the token tj attending to token ti at hth head.

After computing the confidence scores of tokens, it is challenging to determine the threshold value
to prune the token. Concretely, the threshold can change as the distribution of the attention scores
varies between different layers and different tasks. We address this challenge by using the top-
k percentile selection strategy to prune tokens. Specifically, token ti is pruned at layer l + 1 if its
confidence score sli is smaller than klth percentile among the input tokens. Once the token is pruned,
it is excluded from the computation of all successive layers. In other words, the tokens used in the
later layers will be a subset of previous layers.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Our study in Section 5.5 shows the performance changes with different locations of pruning layers
and the number of tokens pruned. In particular, when pruning at the same transformer layer, the
model’s performance gradually decreases as fewer tokens are kept. We also found pruning at later
transformer layers consistently has better performance than pruning at earlier layers, suggesting that
later layers are less sensitive to token pruning. To achieve a better balance of speedup and accuracy,
as shown in Figure 4, we apply progressive pruning that keeps more tokens at earlier transformer
layers and gradually reduces the number of tokens towards the end of the transformer.

Reviving Tokens. The key difference between LazyLLM and previous token pruning work Li et al.
(2023); Jiang et al. (2023); Xu et al. (2023); Kim et al. (2022); He et al. (2021) that permanently
reduce prompt is LazyLLM allows the model to select different subsets of input tokens at each
generation step. Since some input tokens pruned at one generation step might become important
in subsequent steps, reviving these tokens is crucial for maintaining accuracy. Efficiently reviving
pruned tokens during generation is non-trivial. Suppose a token ti is pruned at one generation step
and revived at a later one, a naive implementation to revive ti requires three steps: 1) updating the
keys and values of all previously computed tokens with smaller position IDs than the revived token,
2) computing the keys and values of the revived token, and 3) updating the keys and values of all
previously computed tokens with larger position IDs than the revived token. This process leads to
multiple updates for the same token, ultimately slowing down generation.

To address this challenge, our implementation skips the first and third steps of updating the keys
and values of existing tokens and only computes the revived tokens. Specifically, LazyLLM appends
the revived tokens to the end of the sequence and uses their position IDs to preserve their original
positional information. Consequently, the revived tokens can attend to all tokens selected in previous
generation steps, even though these tokens may have later position IDs in the sequence. We found
that this implementation is simple yet effective, avoiding repetitive updates of the same tokens and
empirically resulting in a negligible performance drop.

Aux Cache. In the prefilling stage, there is no KV cache and every token is represented by hidden
states. Thus, progressive token pruning can be implemented by removing pruned tokens’ hidden
states. However, extending the progressive token pruning to the following decoding steps is non-
trivial. This is because each decoding step leverages the KV cache computed in the prefilling to
compute attention. As the LazyLLM performs progressive token pruning at the prefilling stage, the
KV of tokens pruned at layer l (e.g. T4 in Figure 4) will not exist in the KV cache of layer l + 1.
As a reminder, the LazyLLM framework allows each generation step to pick a different subset set
of tokens from the full input token sequences in every step, regardless of whether they are pruned
in previous generation steps or not. For example, during the following decoding steps, those pruned
tokens (e.g. T4) that do not exist in the KV cache of layer l + 1 may be re-selected to compute
attention. In such cases, the model can not retrieve the KV cache of these tokens. An intuitive
solution is to pass those tokens again from the beginning of the transformer. However, that would
cause repetitive computation for the same token, and eventually slow down the whole generation.

To tackle this challenge, we introduce Aux Cache in addition to the original KV cache, which stores
the hidden states of those pruned tokens (e.g. T4 and T7 in Figure 4) if their KV is not present in
the following layer’s KV cache, which could be potentially retrieved for the following iterations. As
shown in Figure 4, in each decoding step, each transformer layer (e.g. layer l + 1) first retrieves the
KV cache of past tokens if they exist (e.g. T1 and T8). For those tokens that do not exist in the
KV cache (e.g. T3), we could retrieve their hidden states from the Aux Cache of its previous layer
directly instead of passing through previous layers again. The introduction of Aux Cache ensures
that each token is computed at most once in every transformer layer, and ensures the worst runtime
of LazyLLM is not slower than the baseline. It is worth noting that a token resides either in the KV
cache or the Aux Cache, ensuring that the overall cache size does not exceed that of the baseline.

4 IMPLEMENTATIONS DETAILS

We implement LazyLLM on Llama 2 (Touvron et al., 2023) and XGen (Nijkamp et al., 2023) and
evaluate it on the LongBench (Bai et al., 2023) using HuggingFace2. We follow the official GitHub

2https://github.com/huggingface/transformers/

5

https://github.com/huggingface/transformers/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

30% Layers

Transformer

10% Layers

30% Layers

Next Token

N
 Iterations

30% Layers

Prune 30% tokens

Prune 30% tokens

Prune 30% tokens

Attention Matrix
from Last Layer Keep TopK Percentile

Layer l+1
KV Cache

(T1 T8)

Layer l+1
KV Cache

(T1 T8 T3 T5 T9)

Transformer Layer

T1 T5T2 T7T3 T8T4 T9T6

T1 T3 T9T8T5

Following Layers

Update

(a) LazyLLM Inference (b) Layer-wise Token Prune

Layer l
Aux Cache

(T2 T3)

Layer l
Aux Cache

(T2 T3 T4 T7)

T1 T5T3 T8 T9

add to
Aux Cache

add to
Aux Cache

T1 T3 T9T8T5

T1 T3 T9T8T5

Layer l

Retrieve

Retrieve hidden states
of tokens that missing KV

Previous Layers

Update

Token in KV Cache
(No Computing Needed)

Token in Hidden States
(Needs Computing)

Token in Aux Cache
(Needs Computing)

Layer l+1

Append

Full Input Sequence with N tokens

Transformer Layer

Figure 4: Overview of the LazyLLM framework. LazyLLM starts with the full context and progres-
sively prunes tokens to gradually reduce the number of computations towards the end of the model.
LazyLLM allows the model to select different subsets of tokens from the context in different gener-
ation steps, which is crucial to retaining the performance.

repository3 of LongBench for data preprocessing and prompting in all experiments. The LongBench
benchmark consists of multiple datasets in different tasks, where each task may have different met-
rics, including ROUGE-L, F1, Accuracy, and Edit Sim. Following the official evaluation pipeline,
we categorize all results over major task categories by computing the macro-average score.

As previously noted, the proposed LazyLLM doesn’t require any training. Thus, LazyLLM uses
the exact same existing checkpoints as the baseline, for all models. For inference, we conduct all
experiments on NVIDIA A100 GPUs. We measure and report the speedup based on the empirical
walltime improvement. Specifically, for TTFT Speedup, we measure the empirical walltime between
when the prompt is fed to the model, and when the model generates the first token. For Generation
Speedup, we measure the empirical walltime between when the prompt is fed to the model, and
when the model finished generating all output tokens. We add 5 warmup runs for each experiment
before starting the time measurement to remove the noise such as loading model parameters.

5 EXPERIMENTS

We examine our method using two large language models: Llama 2 7B and XGen 7B. We compare
our method with baselines using the same publicly released pretrained checkpoints, without employ-
ing any additional training. We perform experiments using LongBench, a multi-task benchmark for
long content understanding. The LongBench comprises 16 datasets and covers 6 tasks including
single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code comple-
tion.

3https://github.com/THUDM/LongBench

6

https://github.com/THUDM/LongBench

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For the metrics, we primarily evaluate the effectiveness and efficiency of each method in the TTFT
speedup vs. accuracy trade-off. Following LongBench, the accuracy (score) denotes the macro-
averaged scores across datasets in each task. The TTFT speedup measures the wall time improve-
ment w.r.t. to the baseline for generating the first token. In analysis, we also assess the impact of
our method on % of Prompt Token Computed and Generation speedup. The % of Prompt Token
Computed measures the accumulated percent of prompt tokens computed at the end of the genera-
tion, which indicates the save of total computation. The Generation speedup measures the walltime
change w.r.t. to the baseline for completing the entire generation process.

Tasks Method
Llama 2 XGen

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA

Baseline 25.79 1.00 25.19 1.00

Random Token Drop 20.05 1.20 18.32 1.58

Static Token Pruning 21.89 1.18 19.30 1.61

Prompt Compression 22.88 0.12 15.31 0.20

LazyLLM (Ours) 25.59 1.36 25.00 1.96

Multi-Document QA

Baseline 22.43 1.00 20.71 1.00

Random Token Drop 16.77 1.19 14.86 1.37

Static Token Pruning 19.93 2.16 17.23 2.11

Prompt Compression 8.42 0.13 11.56 0.19

LazyLLM (Ours) 22.31 2.34 20.68 2.65

Summarization

Baseline 24.65 1.00 24.85 1.00

Random Token Drop 24.39 1.39 24.47 1.70

Static Token Pruning 24.59 1.33 24.46 1.65

Prompt Compression 25.16 0.12 24.57 0.17

LazyLLM (Ours) 24.75 1.46 24.74 1.91

Few-shot Learning

Baseline 62.90 1.00 56.40 1.00

Random Token Drop 53.93 1.19 46.35 1.62

Static Token Pruning 56.54 2.16 51.93 3.17

Prompt Compression 24.18 0.10 23.72 0.15

LazyLLM (Ours) 62.81 2.19 56.12 3.42

Synthetic

Baseline 4.97 1.00 5.40 1.00

Random Token Drop 3.57 1.18 2.53 1.13

Static Token Pruning 2.81 2.15 3.00 4.14

Prompt Compression 3.20 0.12 1.42 0.17

LazyLLM (Ours) 4.98 2.89 5.66 4.77

Code Completion

Baseline 55.18 1.00 36.49 1.00

Random Token Drop 44.92 1.23 32.34 1.57

Static Token Pruning 37.51 1.84 32.27 2.97

Prompt Compression 17.45 0.49 11.38 0.69

LazyLLM (Ours) 53.30 1.94 36.47 3.47

Table 1: Comparisons of TTFT speedup vs. accuracy on various tasks. Without requiring any train-
ing/finetuning, LazyLLM consistently achieves better TTFT speedup with negligible accuracy drop.
Note that the prompt compression approach fails at improving TTFT because the overhead of run-
ning LLMs to compress the prompt is very computationally expensive.

5.1 RESULTS

Table 1 presents the TTFT speedup vs. accuracy comparisons between LazyLLM, standard LLM,
and other baselines. In the table, the “baseline” refers to the standard LLM inference. The “random
token drop” baseline is based on (Yao et al., 2022) that randomly prunes the prompt tokens before
feeding them to the LLMs. We report the average metrics across 5 runs for the “random token drop”
baseline. Our “static token pruning” baseline prunes input tokens at once based on their attention
score of the first few transformer layers during the prefilling stage. We also compare with the prompt
compression method (Li et al., 2023) which pruning redundancy in the input context using LLMs.
Table 1 shows LazyLLM consistently achieves better TTFT speedup with negligible accuracy drop
across multiple tasks. It is worth noting that the overhead of running LLMs to compress the prompt

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

is very computationally expensive. Even though the inference on the reduced prompt is faster, the
actual TTFT of the “prompt compression” baseline is longer than the baseline.

5.2 TTFT SPEEDUP vs. ACCURACY

The inference efficiency of LazyLLM is controlled using three parameters: 1) the number of pruning
layers, 2) the locations of these pruning layers, and 3) the number of tokens pruned within these
layers. Increasing the number of pruning layers and pruning more tokens optimize computation
by processing fewer tokens, and pruning tokens at earlier layers can save the computations for the
successive layers. Prompting these factors will give more overall computation reduction, and offer
better TTFT speedup. As a side effect, excessively pruning tokens may cause information loss and
eventually lead to performance degradation. Similarly, the TTFT speedup and accuracy of baselines
can vary with different hyperparameters.

We compare TTFT speedup vs. accuracy in Figure 6 with different hyperparameters. The visual-
ization shows that, without any training, the proposed LazyLLM retains the accuracy better than
baselines under the same TTFT speedup. For example, our method can offer 2.34× TTFT speedup
in the multi-document question-answering task with negligible (≤ 1%) performance loss. By con-
trolling the pruning parameters, LazyLLM provides a good trade-off between accuracy and inference
speed as compared to baseline methods. For instance, LazyLLM can achieve 3.0× TTFT speedup
in the multi-document question-answering task with ≤ 10% degradation in accuracy. On the other
hand, baseline methods accuracy degrades significantly for similar TTFT speed-up. Note that the
prompt compression approaches fail at improving TTFT because of the compression overhead.

5.3 IMPACT ON OVERALL GENERATION SPEED

To evaluate the impact of the proposed method on the overall generation process, we also profile
the % of Prompt Token Computed and Generation speedup in Table 2. We can find the % of Token
Computed of LazyLLM is less than 100%, indicating that not all tokens in the prompt are selected
by LazyLLM at the end of the generation, even though theoretically the model could use all tokens.
Computations in the FFN layers increase linearly, while those in the attention layers grow quadrati-
cally with the % of Token Computed. A lower % of Token Computed indicates LazyLLM reduces the
total computation, consequently offering additional speedup to the overall generation process across
diverse tasks.

5.4 IMPACT ON MEMORY AND COMPUTING COST

20 40 60 80
FLOPs Reduction Ratio (%)

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

LazyLLM

Figure 5: FLOPs-Performance Trade-
off Curve of LazyLLM for Llama 2 7B
evaluated on the Average LongBench
Metric.

By progressively pruning tokens across the transformer
layers, LazyLLM reduces the size of the attention maps,
thereby decreasing the overall memory footprint. Since
all tokens are utilized in the initial layers, the peak mem-
ory usage remains equivalent to that of the baseline.

Regarding computational cost, we adopt the methodol-
ogy from Chen et al. (2024) to calculate the total FLOPs
reduction ratio compared to the baseline. Varying the
parameters of LazyLLM influences both the FLOPs re-
duction ratio and the model’s performance. To illustrate
this, we present the FLOPs-performance trade-off curve
in Figure 5. The results indicate that LazyLLM can sig-
nificantly lower computational costs with negligible per-
formance drop.

5.5 DROP RATE IN DIFFERENT LAYERS

In this section, we analyze the effect of the locations of pruning layers, and the number of tokens
pruned. In particular, we report a series of experiments using a simplified version of LazyLLM that
prunes tokens just once within the transformer. For each trial, we position the pruning layer at var-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Few-shot Learning

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

120

140

160

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Synthetic Task

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Code Completion

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Single-Doc QA

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Multi-Document QA

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Summarization

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

Figure 6: TTFT speedup vs. accuracy comparison for Llama 2 7B across different tasks.

TASKS
% OF PROMPT TOKEN COMPUTED OVERALL GENERATION SPEEDUP

LLAMA 2 XGEN LLAMA 2 XGEN

SINGLE-DOCUMENT QA 87.31 89.16 1.34 1.33

MULTI-DOCUMENT QA 63.94 69.60 1.56 1.70

SUMMARIZATION 99.59 96.11 1.02 1.09

FEW-SHOT LEARNING 69.98 65.30 1.28 1.59

SYNTHETIC 63.73 40.54 1.79 3.16

CODE COMPLETION 68.57 72.61 1.01 1.16

Table 2: The % of Prompt Token Computed and Generation speedup of LazyLLM on various tasks.
Reported values are based on the same setting as Table 1. A lower % of Token Computed indicates
LazyLLM reduces the total computation, consequently offering additional speedup to the overall
generation process across diverse tasks.

ious levels of the transformer stack and apply different pruning ratios. We perform the experiments
for both Llama 2 and XGen, and visualize the results in Figure 7.

The results show both models share a similar trend. As expected, when pruning at the same trans-
former layer, the model’s performance gradually decreases as fewer tokens are kept. Furthermore,
pruning at later transformer layers consistently yields better performance compared to pruning at
earlier layers, suggesting that later layers are less sensitive to token pruning. Based on these ob-
servations, we propose progressive token pruning in Section 3.2, which strategically prunes more
tokens in later layers while preserving more in the earlier layers, optimizing the balance between
efficiency and performance retention.

5.6 PROGRESSIVE KV GROWTH

In this section, we characterize the internals of the model with the token pruning logic. Specifically,
we seek to understand what fractions of prompt tokens are cumulatively used and, inversely, not
used. This “cumulative token usage” can be equivalently defined as the KV cache size at each given
step. Figure 8 presents these cumulative prompt token usage numbers for each of the stages of the
LazyLLM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30
Pruning Layer Index

0

5

10

15

20

25

Sc
or

e

keep 10% tokens
keep 30% tokens
keep 50% tokens
keep 70% tokens
keep 90% tokens
Baseline

5 10 15 20 25 30
Pruning Layer Index

0

5

10

15

20

25

30

Sc
or

e
keep 10% tokens
keep 30% tokens
keep 50% tokens
keep 70% tokens
keep 90% tokens
Baseline

(a) Llama 2 (b) XGen

Figure 7: Effect of the locations of pruning layers, and the number of tokens pruned. The results of
both Llama 2 7B Touvron et al. (2023) and XGen 7B Nijkamp et al. (2023) share a similar trend: 1)
when pruning at the same transformer layer, the model’s performance gradually decreases as fewer
tokens are kept, and 2) Pruning at later transformer layers consistently has better performance than
pruning at earlier layers, suggesting that later layers are less sensitive to token pruning.

0 5 10 15 20 25 30 35

20

40

60

80

100

Layer 1-9
Layer 10-19
Layer 20-28
Layer 29-32
Baseline

Generation Time Step (absolute)

%
 o

f P
ro

m
pt

 T
ok

en
 C

om
pu

te
d

Figure 8: Statistics on number of tokens processed during generation using our LazyLLM technique
with Llama 2 7B (Touvron et al., 2023). We visualize the statistics of 1000 samples randomly
sampled from LongBench. The x-axis represents the (absolute) generation time step, and the y-axis
represents the number of prompt tokens processed at that time step (normalized by the prompt size).
We visualize these statistics for various stages within the network. Note that cumulative token usage
is upper-bounded by the baseline (evident with early layers).

Our analysis supports the hypothesis that many tokens are never selected by the model (even though
theoretically the model could use all tokens in the prompt). Since this model retains accuracy on the
task(s), we can conclude that the model effectively drops the tokens which do not affect the output
quality.

6 CONCLUSION

In this work, we proposed a novel LazyLLM technique for efficient LLM inference, in particular
under long context scenarios. LazyLLM selectively computes the KV for tokens important for the
next token prediction and “lazily” defers the computation of remaining tokens to later steps, when
they become relevant. We carefully examine LazyLLM on various tasks, where we observed the
proposed method effectively reduces TTFT with negligible performance loss. It is worth noting that
our method can be seamlessly integrated with existing transformer-based LLMs to improve their
inference speed without requiring any fine-tuning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. arXiv preprint arXiv:2403.09054, 2024.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mah-
yar Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. arXiv preprint arXiv:2403.06764, 2024.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Xuanli He, Iman Keivanloo, Yi Xu, Xiang He, Belinda Zeng, Santosh Rajagopalan, and Trishul
Chilimbi. Magic pyramid: Accelerating inference with early exiting and token pruning. arXiv
preprint arXiv:2111.00230, 2021.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 784–794, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Thomas Merth, Qichen Fu, Mohammad Rastegari, and Mahyar Najibi. Superposition prompt-
ing: Improving and accelerating retrieval-augmented generation. 2024. URL https://api.
semanticscholar.org/CorpusID:269033436.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Jesse Vig,
Semih Yavuz, Philippe Laban, Ben Krause, et al. Xgen-7b technical report. arXiv preprint
arXiv:2309.03450, 2023.

NVIDIA. NVIDIA L40S: Unparalleled AI and graphics performance for the data center. https:
//resources.nvidia.com/en-us-l40s/l40s-datasheet-28413, 2024. [On-
line; accessed 31-May-2024].

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, and An-
shumali Shrivastava. Compress, then prompt: Improving accuracy-efficiency trade-off of llm
inference with transferable prompt. arXiv preprint arXiv:2305.11186, 2023.

Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes, Minjia Zhang, Cheng Li, and Yuxiong
He. Random-ltd: Random and layerwise token dropping brings efficient training for large-scale
transformers. arXiv preprint arXiv:2211.11586, 2022.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

12

https://api.semanticscholar.org/CorpusID:269033436
https://api.semanticscholar.org/CorpusID:269033436
https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413
https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2 Pseudocode of LazyLLM
Require: Input tokens T = {ti}Ni=1, transformer model with L layers
Require: Pruning thresholds {kl}Ll=1 for each layer

1: Initialize KV Cache and Aux Cache as empty
2: Initialize active tokens A0 ← T
3: Initialize previous attention scores si0 ← 1 for all tokens
{Progressive Token Pruning with Selective Aux Cache Updates}

4: for layer l = 1 to L do
5: if l is pruning layer then
6: Use attention scores sil−1 from previous layer for pruning decision
7: Find kl-th percentile threshold θl of sil−1

8: Al ← {ti ∈ Al−1|sil−1 ≥ θl} {Keep top-k tokens}
9:

10: missing tokens← {ti ∈ Al|ti /∈ KV Cache ∧ ti /∈ hidden states}
11: Retrieve missing tokens from Aux Cache
12:
13: pruned tokens← Al−1 \Al {Identify pruned tokens}
14: cacheable tokens ← {ti ∈ pruned tokens|ti /∈ missing tokens ∧ ti ∈

hidden states}
15: Add cacheable tokens to Aux Cache
16: else
17: Al ← Al−1

18: end if
19: Compute layer outputs for tokens in Al

20: Compute current layer attention scores sil using Eq.(1) for tokens in Al

21: Update KV Cache for tokens in Al

22: end for
23: return Final hidden states for tokens in AL

A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 presents presents LazyLLM’s progressive token pruning strategy enhanced with an aux-
iliary caching mechanism. For each transformer layer, the algorithm first uses attention scores from
the previous layer to make pruning decisions, maintaining only the most relevant tokens. After
pruning, it identifies tokens missing from both KV Cache and hidden states, retrieving them from
the Auxiliary Cache when needed.

B VISUAL EXAMPLE

To better illustrate how LazyLLM operates, we present a detailed walkthrough of our method in Fig-
ure 9. Consider a simple example where the model processes the input “LazyLLM is a training free
token pruning technique to improve LLM inference with” and generates subsequent tokens “negli-
gible performance loss”. The visualization demonstrates how LazyLLM evolves through different
stages of generation.

During the prefilling stage, instead of computing all tokens in the prompt, methodname selec-
tively processes only those tokens deemed important for the next token prediction. In our example,
methodname initially processes only 13 tokens compared to the baseline’s full sequence processing.
Notably, when generating the first token “negligible”, methodname focuses on key contextual to-
kens like “LazyLLM”, “improve”, and “inference”, while deferring the computation of less relevant
tokens.

In subsequent decoding steps (Step #2 and Step #3), methodname continues to operate efficiently
by:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1. Reusing previously computed KV cache values when possible
2. Selectively computing only newly important tokens that were deferred earlier
3. Maintaining the ability to revive previously pruned tokens if they become relevant

This dynamic approach results in significantly reduced computation, compared to the baseline which
processes all tokens at every step. The visualization clearly shows how tokens in red indicate active
computation, and green denotes retrieved from KV cache.

This example demonstrates how LazyLLM achieves substantial computational savings without sac-
rificing model performance. The method’s ability to dynamically adjust token selection at each
generation step, while maintaining efficiency through strategic caching, represents a key advance-
ment over static pruning approaches.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Method - Example Explained
Prefilling Stage

LazyLLM is a training free token pruning technique to improve LLM inference with

30% Layers

LazyLLM is a token pruning technique to improve LLM inference with

30% Layers

30% Layers

10% Layers

LazyLLM improve inference with

LazyLLM is a technique to improve inference with

negligible

KV Cache (30% Layers)

Update

Update

Update

Update

KV Cache (30% Layers)

KV Cache (30% Layers)

KV Cache (10% Layers)

LazyLLM is a token
pruning technique
to improve LLM
inference with

LazyLLM improve
inference with

LazyLLM is a
technique to
improve inference
with

LazyLLM is a
training free token
pruning technique
to improve LLM
inference with

Aux Cache (30%th Layer)

Update training, free

Aux Cache (60%th Layer)

Update token, pruning,
LLM

Aux Cache (90%th Layer)

Update a, technique, to

Method - Example Explained
Generation Stage - Step 1
LazyLLM is a training free token pruning technique to improve LLM inference with negligible

30% Layers

a token pruning technique to improve LLM inference with negligible

30% Layers

30% Layers

10% Layers

LLM inference with negligible

technique improve LLM inference with negligible

performance

KV Cache (30% Layers)

Update

Update

Update

Update

KV Cache (30% Layers)

KV Cache (30% Layers)

KV Cache (10% Layers)

LazyLLM is a
training free token
pruning technique
to improve LLM
inference with

LazyLLM is a token
pruning technique
to improve LLM
inference with

LazyLLM is a token
pruning technique
to improve LLM
inference with +
negligible

LazyLLM improve
inference with +
LLM negligible

LazyLLM improve
inference with

LazyLLM is a
technique to
improve inference
with

LazyLLM is a
technique to
improve inference
with + LLM
negligible

LazyLLM is a
training free token
pruning technique
to improve LLM
inference with +
negligible

Aux Cache (30%th Layer)

Update training, free

Aux Cache (60%th Layer)

Update token, pruning

Aux Cache (90%th Layer)

Update a, technique, to

training, free

token, pruning,
LLM

a, technique, to

LazyLLM is a training
free token pruning
technique to improve
LLM inference with +
negligible + performance

LazyLLM is a
training free token
pruning technique
to improve LLM
inference with +
negligible

LazyLLM is a token
pruning technique
to improve LLM
inference with +
negligible +
performance

LazyLLM is a token
pruning technique
to improve LLM
inference with +
negligible +
performance

LazyLLM improve
inference with +
LLM negligible +
performance

LazyLLM improve
inference with +
LLM negligible

LazyLLM is a
training to improve
inference with +
technique LLM
negligible

LazyLLM is a
training to improve
inference with +
technique LLM
negligible +
performance

Method - Example Explained
Generation Stage - Step 2
LazyLLM is a training free token pruning technique to improve LLM inference with negligible performance

30% Layers

a pruning technique improve LLM inference with negligible performance

30% Layers

30% Layers

10% Layers

improve inference negligible performance

technique improve inference with negligible performance

loss

KV Cache (30% Layers)

Update

Update

Update

Update

KV Cache (30% Layers)

KV Cache (30% Layers)

KV Cache (10% Layers)

Aux Cache (30%th Layer)

Update training, free

Aux Cache (60%th Layer)

Update token, pruning

Aux Cache (90%th Layer)

Update a, technique, to

training, free

token, pruning

a, technique, to

Figure 9: Visual Example

15

	Introduction
	Related Work
	LazyLLM
	Background on LLM Inference
	Inference with LazyLLM

	Implementations Details
	Experiments
	Results
	TTFT Speedup vs@汥瑀瑯步渠. Accuracy
	Impact on Overall Generation Speed
	Impact on Memory and Computing Cost
	Drop Rate in Different Layers
	Progressive KV Growth

	Conclusion
	Appendix
	Pseudocode

	Visual Example

