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ABSTRACT

The inference of transformer-based large language models consists of two sequen-
tial stages: 1) a prefilling stage to compute the KV cache of prompts and generate
the first token, and 2) a decoding stage to generate subsequent tokens. For long
prompts, the KV cache must be computed for all tokens during the prefilling stage,
which can significantly increase the time needed to generate the first token. Con-
sequently, the prefilling stage may become a bottleneck in the generation process.
An open question remains whether all prompt tokens are essential for generating
the first token. To answer this, we introduce a novel method, LazyLLM, that se-
lectively computes the KV for tokens important for the next token prediction in
both the prefilling and decoding stages. Contrary to static pruning approaches that
prune the prompt at once, LazyLLM allows language models to dynamically se-
lect different subsets of tokens from the context in different generation steps, even
though they might be pruned in previous steps. Extensive experiments on standard
datasets across various tasks demonstrate that LazyLLM is a generic method that
can be seamlessly integrated with existing language models to significantly ac-
celerate the generation without fine-tuning. For instance, in the multi-document
question-answering task, LazyLLM accelerates the prefilling stage of the LLama
2 7B model by 2.34× while maintaining accuracy.

1 INTRODUCTION

Standard prompt-based LLM inference has two sequential stages: prefilling and decoding, as shown
in Figure 1. During the prefilling stage, the model computes and saves the KV cache of each token
from the prompt, and predicts the first token. We refer to the time taken during prefilling stage as
“time-to-first-token” (TTFT). Following the prefilling stage is the decoding stage, where the model
reuses cached KVs to decode the next token iteratively until the stop criteria are met.

During the prefilling stage, all tokens from the prompt are used by all transformer layers. For long
prompts, TTFT could be slow because state-of-the-art transformer-based LLMs are both deep and
wide (Pope et al., 2023; Kim et al., 2023; Aminabadi et al., 2022), and the cost of computing at-
tention increases quadratically with the number of tokens in the prompts. For instance, Llama 2
(Touvron et al., 2023), with 7 billion parameters, stacks 32 transformer layers with a model dimen-
sion of 4096. In this scenario, TTFT requires 21× the walltime of each subsequent decoding step,
and accounts for approximately 23% of the total generation time on the LongBench benchmark1

(Bai et al., 2023). Therefore, optimizing TTFT is a critical path toward efficient LLM inference
(NVIDIA, 2024).

While optimizing LLM inference is an active area of research, many methods (Leviathan et al.,
2023; Cai et al., 2024; Zhang et al., 2024; Bhendawade et al., 2024; Li et al., 2024) have focused on
improving inference speed during the decoding stage. Yet, there is little attention given to improving
TTFT . We note that some compression-based works implicitly improve the TTFT by reducing the
size of LLMs (Frantar et al., 2022; Sun et al., 2023; Ma et al., 2023). However, an orthogonal line of
research(Li et al., 2023; Jiang et al., 2023; Dao et al., 2022) investigates how TTFT can be improved
given a static transformer architecture. Within this line of research, a natural question arises: Are all
prompt tokens essential for generating the first token?

1The average LongBench prompt length is 3376 tokens and the average generation length is 68 tokens.
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Figure 1: Prompt-based LLM inference can be divided into two sequential stages: prefilling and
decoding. For long prompts, the first token generation during prefilling stage could be slow. As an
example, for Llama 2 7B model (Touvron et al., 2023), on average, the time to generate the first
token requires 21× the walltime of each subsequent decoding step and accounts for 23% of the total
generation time in the LongBench benchmark.

LLM profiling on the LongBench benchmark (Bai et al., 2023) in Figure 2 reveals that the attention
scores of input tokens w.r.t. to the first generated token are very sparse, indicating that many tokens
in the input prompt are redundant and can be removed without affecting the next token prediction.
To this end, we propose LazyLLM, a novel, simple, yet effective technique tailored for speeding up
prefilling. As depicted in Figure 3, in each generation step, LazyLLM selectively computes the KV
for tokens important for the next token prediction and “lazily” defers the computation of remaining
tokens to later steps when they become relevant. We propose using the attention score of the prior
transformer layer to measure the importance of tokens and progressively prune tokens along the
depth of the transformer. In contrast to prompt compression works (Li et al., 2023; Jiang et al.,
2023; Xu et al., 2023), which permanently reduce the prompt for all the following generation steps,
our method allows the model to revive previously pruned tokens, which we found crucial to retain
accuracy. Extending progressive token pruning to all generation steps is non-trivial. Specifically, if
a token is pruned at generation step t, and is revived at generation step t′ > t, some hidden states
would need to be recomputed during step t′. To avoid such repetitive computation, we employ an
additional caching mechanism, Aux Cache, to cache the hidden states of pruned tokens. This enables
a computationally efficient pathway to revive pruned tokens, and ensures that the worst runtime of
LazyLLM is never slower than the baseline.

In summary, the advantages of LazyLLM are: (1) Universal: LazyLLM can be seamlessly integrated
with any existing transformer-based LLM to improve inference speed, (2) Training-free: LazyLLM
doesn’t require any finetuning and can be directly integrated without any parameter modification,
(3) Effective: Empirical results on 16 standard datasets across 6 different language tasks shows
LazyLLM can improve the inference speed of the LLM during both prefilling and decoding stages.

2 RELATED WORK

The increase in the scale of large language models (LLMs) has greatly enhanced their performance
but also introduced challenges with respect to their inference efficiency. The inference of generative
LLMs consists of two distinct stages as depicted in Figure 1. In particular, extensive computation
is needed under long context scenarios to calculate the full KV cache during the prefilling stage,
resulting in a long time-to-first-token (TTFT). This delay causes users to wait several seconds after
submitting a prompt before receiving any response from the agent, leading to a poor user experience.

Efficient Long Context Inference. Extensive work (Merth et al., 2024; Chen et al., 2023; Beltagy
et al., 2020; Kitaev et al., 2020) has been proposed to improve inference efficiency for long context
applications by reducing the memory footprint and total computations. Some works have focused
on tailoring the architecture of the transformer for long context input. For instance, (Beltagy et al.,
2020) introduces a drop-in replacement for standard self-attention and combines local windowed
attention with task-motivated global attention. In parallel, Reformer (Kitaev et al., 2020) replaces
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(a) An Example of Attention Sparsity (b) Distribution Input Tokens’ Attention Scores

Figure 2: We visualize the attention scores of input tokens in the prompt w.r.t. to the next token for
each layer of Llama 2 7BTouvron et al. (2023). We also plot the distribution of the average attention
score across all transformer layers. Result reveals that the attention scores of input tokens w.r.t. to
the next token are very sparse, indicating that many tokens in the input prompt are redundant and
can be safely removed without affecting the next token prediction.

dot-product attention by one that uses locality-sensitive hashing to reduce its computational com-
plexity. Though the above methods can speed up long context inference, they require significant
model architecture change and re-training. This drawback makes them impractical to be applied to
existing pre-trained LLMs. Closer to our work are efficient techniques that optimize the KV cache
(Zhang et al., 2024; Li et al., 2024; Anagnostidis et al., 2024; Nawrot et al., 2024) by minimizing the
KV cache size and data transfer. However, these works only focus on accelerating decoding steps,
which are not applicable to reducing TTFT .

Token Pruning. Previous studies on the sentence classification task (Kim et al., 2022; Anagnos-
tidis et al., 2024; He et al., 2021) has shown that not all tokens (i.e. words) in an input sequence
are necessary to make a successful prediction. This provides several possibilities for token pruning,
which minimizes computational demands by selectively removing less important tokens during in-
ference. For example, (Kim et al., 2022) presents Learned Token Pruning which adaptively removes
unimportant tokens as an input sequence passes through transformer layers. In parallel, (He et al.,
2021) proposes to reduce width-wise computation via token pruning for transformer-based models
such as BERT (Devlin et al., 2018). These aforementioned approaches were designed for tasks re-
quiring only a single iteration of processing, such as text classification. In this work, we extend the
idea of token pruning to generative LLMs. Specifically, our method allows the model to dynamically
choose different sets of tokens at each generation step, which is crucial to retaining the performance.
Furthermore, we also introduce Aux Cache to ensure that each token is computed at most once along
the whole generation, and ensure the worst runtime of our method is not slower than the baseline.

3 LazyLLM

3.1 BACKGROUND ON LLM INFERENCE

Generative LLM inference consists of two stages: prefilling and decoding (see Figure 1). In the
prefilling stage, the model receives the prompt (a sequence of tokens) T = {ti}Ni=1 of length N,
where ti denotes a token and N denotes the length of the prompt, then computes and saves the KV
cache of each token, and produces the first token tn+1. The transformer architecture commonly
used in LLMs is a stack of layers where each layer shares the same architecture with a multiple-
head self-attention mechanism followed by a multi-layer perception (MLP). The time of prefilling is
referred to as time-to-first-token (a.k.a. TTFT). Following the prefilling is the decoding steps, where
the model appends the generated token tn+1 to the input, and subsequently decodes the following
token. The decoding step is repeatedly performed until the stop criteria are met. While the formula
of each decoding step is similar to prefilling, the amount of its computation is significantly lower

3
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Figure 3: Comparison between standard LLM and LazyLLM. Instead of computing the KV cache
of all input tokens at the prefilling stage, LazyLLM only selectively computes the tokens that are
important to the next token prediction, deferring the computation of remaining tokens to later steps.
LazyLLM significantly optimizes TTFT by reducing the amount of computation during prefilling.
Moreover, as some tokens in the prompt are never selected by LazyLLM during the whole generation
process (even though theoretically the model could use all tokens in the prompt), LazyLLM also
reduces the total amount of computation and accelerates the overall generation.

thanks to the KV cache. Specifically, with saved KV cache from prefilling, all the previous tokens
do not need to pass any linear layers in the model.

3.2 INFERENCE WITH LazyLLM

The overview of the proposed LazyLLM framework is illustrated in Figure 4. LazyLLM starts with
the full context and progressively prunes tokens to gradually reduce the number of computations
towards the end of the model. Note, LazyLLM allows the model to select different subsets of tokens
from the context in different generation steps, even though some of them may be pruned in previous
steps. Compared to static pruning which prunes all the tokens at once, dynamic pruning optimizes
the next token prediction in each generation step, which is crucial to retaining the performance.

Progressive Token Pruning. Prior to this work, token pruning has been successfully applied to
optimize LLM inference (Zhang et al., 2024; Li et al., 2024; Adnan et al., 2024; Nawrot et al., 2024).
However, these approaches require accumulating the full attention maps of predicting the first few
tokens to profile the importance of prompt tokens before starting pruning. Consequently, they are
not applicable to reduce TTFT as they still require computing all the KV cache at the prefilling stage.

In contrast, LazyLLM only “lazily” computes the tokens that are important to predict the next token
by starting from the first iteration of the inference (the prefilling step). A key challenge to pruning
tokens in the first iteration is determining their importance. Inspired by the early exiting work
(Elhoushi et al., 2024) which shows the token hidden states gradually evolve through the transformer
layers, we apply layer-wise token pruning in each generation step. Specifically, we use the attention
map of the layer Al ∈ RH×N×N to determine the importance of input token ti w.r.t. the next token
to be predicted as

sli =
1

H

H∑
h=1

Al
h,i,N (1)

where H denotes number of attention heads, N is the sequence length, and Ah,i,j is the attention
probability of the token tj attending to token ti at hth head.

After computing the confidence scores of tokens, it is challenging to determine the threshold value
to prune the token. Concretely, the threshold can change as the distribution of the attention scores
varies between different layers and different tasks. We address this challenge by using the top-
k percentile selection strategy to prune tokens. Specifically, token ti is pruned at layer l + 1 if its
confidence score sli is smaller than klth percentile among the input tokens. Once the token is pruned,
it is excluded from the computation of all successive layers. In other words, the tokens used in the
later layers will be a subset of previous layers.
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Our study in Section 5.5 shows the performance changes with different locations of pruning layers
and the number of tokens pruned. In particular, when pruning at the same transformer layer, the
model’s performance gradually decreases as fewer tokens are kept. We also found pruning at later
transformer layers consistently has better performance than pruning at earlier layers, suggesting that
later layers are less sensitive to token pruning. To achieve a better balance of speedup and accuracy,
as shown in Figure 4, we apply progressive pruning that keeps more tokens at earlier transformer
layers and gradually reduces the number of tokens towards the end of the transformer.

Reviving Tokens. The key difference between LazyLLM and previous token pruning work Li et al.
(2023); Jiang et al. (2023); Xu et al. (2023); Kim et al. (2022); He et al. (2021) that permanently
reduce prompt is LazyLLM allows the model to select different subsets of input tokens at each
generation step. Since some input tokens pruned at one generation step might become important
in subsequent steps, reviving these tokens is crucial for maintaining accuracy. Efficiently reviving
pruned tokens during generation is non-trivial. Suppose a token ti is pruned at one generation step
and revived at a later one, a naive implementation to revive ti requires three steps: 1) updating the
keys and values of all previously computed tokens with smaller position IDs than the revived token,
2) computing the keys and values of the revived token, and 3) updating the keys and values of all
previously computed tokens with larger position IDs than the revived token. This process leads to
multiple updates for the same token, ultimately slowing down generation.

To address this challenge, our implementation skips the first and third steps of updating the keys
and values of existing tokens and only computes the revived tokens. Specifically, LazyLLM appends
the revived tokens to the end of the sequence and uses their position IDs to preserve their original
positional information. Consequently, the revived tokens can attend to all tokens selected in previous
generation steps, even though these tokens may have later position IDs in the sequence. We found
that this implementation is simple yet effective, avoiding repetitive updates of the same tokens and
empirically resulting in a negligible performance drop.

Aux Cache. In the prefilling stage, there is no KV cache and every token is represented by hidden
states. Thus, progressive token pruning can be implemented by removing pruned tokens’ hidden
states. However, extending the progressive token pruning to the following decoding steps is non-
trivial. This is because each decoding step leverages the KV cache computed in the prefilling to
compute attention. As the LazyLLM performs progressive token pruning at the prefilling stage, the
KV of tokens pruned at layer l (e.g. T4 in Figure 4) will not exist in the KV cache of layer l + 1.
As a reminder, the LazyLLM framework allows each generation step to pick a different subset set
of tokens from the full input token sequences in every step, regardless of whether they are pruned
in previous generation steps or not. For example, during the following decoding steps, those pruned
tokens (e.g. T4) that do not exist in the KV cache of layer l + 1 may be re-selected to compute
attention. In such cases, the model can not retrieve the KV cache of these tokens. An intuitive
solution is to pass those tokens again from the beginning of the transformer. However, that would
cause repetitive computation for the same token, and eventually slow down the whole generation.

To tackle this challenge, we introduce Aux Cache in addition to the original KV cache, which stores
the hidden states of those pruned tokens (e.g. T4 and T7 in Figure 4) if their KV is not present in
the following layer’s KV cache, which could be potentially retrieved for the following iterations. As
shown in Figure 4, in each decoding step, each transformer layer (e.g. layer l + 1) first retrieves the
KV cache of past tokens if they exist (e.g. T1 and T8). For those tokens that do not exist in the
KV cache (e.g. T3), we could retrieve their hidden states from the Aux Cache of its previous layer
directly instead of passing through previous layers again. The introduction of Aux Cache ensures
that each token is computed at most once in every transformer layer, and ensures the worst runtime
of LazyLLM is not slower than the baseline. It is worth noting that a token resides either in the KV
cache or the Aux Cache, ensuring that the overall cache size does not exceed that of the baseline.

4 IMPLEMENTATIONS DETAILS

We implement LazyLLM on Llama 2 (Touvron et al., 2023) and XGen (Nijkamp et al., 2023) and
evaluate it on the LongBench (Bai et al., 2023) using HuggingFace2. We follow the official GitHub

2https://github.com/huggingface/transformers/
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Figure 4: Overview of the LazyLLM framework. LazyLLM starts with the full context and progres-
sively prunes tokens to gradually reduce the number of computations towards the end of the model.
LazyLLM allows the model to select different subsets of tokens from the context in different gener-
ation steps, which is crucial to retaining the performance.

repository3 of LongBench for data preprocessing and prompting in all experiments. The LongBench
benchmark consists of multiple datasets in different tasks, where each task may have different met-
rics, including ROUGE-L, F1, Accuracy, and Edit Sim. Following the official evaluation pipeline,
we categorize all results over major task categories by computing the macro-average score.

As previously noted, the proposed LazyLLM doesn’t require any training. Thus, LazyLLM uses
the exact same existing checkpoints as the baseline, for all models. For inference, we conduct all
experiments on NVIDIA A100 GPUs. We measure and report the speedup based on the empirical
walltime improvement. Specifically, for TTFT Speedup, we measure the empirical walltime between
when the prompt is fed to the model, and when the model generates the first token. For Generation
Speedup, we measure the empirical walltime between when the prompt is fed to the model, and
when the model finished generating all output tokens. We add 5 warmup runs for each experiment
before starting the time measurement to remove the noise such as loading model parameters.

5 EXPERIMENTS

We examine our method using two large language models: Llama 2 7B and XGen 7B. We compare
our method with baselines using the same publicly released pretrained checkpoints, without employ-
ing any additional training. We perform experiments using LongBench, a multi-task benchmark for
long content understanding. The LongBench comprises 16 datasets and covers 6 tasks including
single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code comple-
tion.

3https://github.com/THUDM/LongBench
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For the metrics, we primarily evaluate the effectiveness and efficiency of each method in the TTFT
speedup vs. accuracy trade-off. Following LongBench, the accuracy (score) denotes the macro-
averaged scores across datasets in each task. The TTFT speedup measures the wall time improve-
ment w.r.t. to the baseline for generating the first token. In analysis, we also assess the impact of
our method on % of Prompt Token Computed and Generation speedup. The % of Prompt Token
Computed measures the accumulated percent of prompt tokens computed at the end of the genera-
tion, which indicates the save of total computation. The Generation speedup measures the walltime
change w.r.t. to the baseline for completing the entire generation process.

Tasks Method
Llama 2 XGen

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA

Baseline 25.79 1.00 25.19 1.00

Random Token Drop 20.05 1.20 18.32 1.58

Static Token Pruning 21.89 1.18 19.30 1.61

Prompt Compression 22.88 0.12 15.31 0.20

LazyLLM (Ours) 25.59 1.36 25.00 1.96

Multi-Document QA

Baseline 22.43 1.00 20.71 1.00

Random Token Drop 16.77 1.19 14.86 1.37

Static Token Pruning 19.93 2.16 17.23 2.11

Prompt Compression 8.42 0.13 11.56 0.19

LazyLLM (Ours) 22.31 2.34 20.68 2.65

Summarization

Baseline 24.65 1.00 24.85 1.00

Random Token Drop 24.39 1.39 24.47 1.70

Static Token Pruning 24.59 1.33 24.46 1.65

Prompt Compression 25.16 0.12 24.57 0.17

LazyLLM (Ours) 24.75 1.46 24.74 1.91

Few-shot Learning

Baseline 62.90 1.00 56.40 1.00

Random Token Drop 53.93 1.19 46.35 1.62

Static Token Pruning 56.54 2.16 51.93 3.17

Prompt Compression 24.18 0.10 23.72 0.15

LazyLLM (Ours) 62.81 2.19 56.12 3.42

Synthetic

Baseline 4.97 1.00 5.40 1.00

Random Token Drop 3.57 1.18 2.53 1.13

Static Token Pruning 2.81 2.15 3.00 4.14

Prompt Compression 3.20 0.12 1.42 0.17

LazyLLM (Ours) 4.98 2.89 5.66 4.77

Code Completion

Baseline 55.18 1.00 36.49 1.00

Random Token Drop 44.92 1.23 32.34 1.57

Static Token Pruning 37.51 1.84 32.27 2.97

Prompt Compression 17.45 0.49 11.38 0.69

LazyLLM (Ours) 53.30 1.94 36.47 3.47

Table 1: Comparisons of TTFT speedup vs. accuracy on various tasks. Without requiring any train-
ing/finetuning, LazyLLM consistently achieves better TTFT speedup with negligible accuracy drop.
Note that the prompt compression approach fails at improving TTFT because the overhead of run-
ning LLMs to compress the prompt is very computationally expensive.

5.1 RESULTS

Table 1 presents the TTFT speedup vs. accuracy comparisons between LazyLLM, standard LLM,
and other baselines. In the table, the “baseline” refers to the standard LLM inference. The “random
token drop” baseline is based on (Yao et al., 2022) that randomly prunes the prompt tokens before
feeding them to the LLMs. We report the average metrics across 5 runs for the “random token drop”
baseline. Our “static token pruning” baseline prunes input tokens at once based on their attention
score of the first few transformer layers during the prefilling stage. We also compare with the prompt
compression method (Li et al., 2023) which pruning redundancy in the input context using LLMs.
Table 1 shows LazyLLM consistently achieves better TTFT speedup with negligible accuracy drop
across multiple tasks. It is worth noting that the overhead of running LLMs to compress the prompt

7
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is very computationally expensive. Even though the inference on the reduced prompt is faster, the
actual TTFT of the “prompt compression” baseline is longer than the baseline.

5.2 TTFT SPEEDUP vs. ACCURACY

The inference efficiency of LazyLLM is controlled using three parameters: 1) the number of pruning
layers, 2) the locations of these pruning layers, and 3) the number of tokens pruned within these
layers. Increasing the number of pruning layers and pruning more tokens optimize computation
by processing fewer tokens, and pruning tokens at earlier layers can save the computations for the
successive layers. Prompting these factors will give more overall computation reduction, and offer
better TTFT speedup. As a side effect, excessively pruning tokens may cause information loss and
eventually lead to performance degradation. Similarly, the TTFT speedup and accuracy of baselines
can vary with different hyperparameters.

We compare TTFT speedup vs. accuracy in Figure 6 with different hyperparameters. The visual-
ization shows that, without any training, the proposed LazyLLM retains the accuracy better than
baselines under the same TTFT speedup. For example, our method can offer 2.34× TTFT speedup
in the multi-document question-answering task with negligible (≤ 1%) performance loss. By con-
trolling the pruning parameters, LazyLLM provides a good trade-off between accuracy and inference
speed as compared to baseline methods. For instance, LazyLLM can achieve 3.0× TTFT speedup
in the multi-document question-answering task with ≤ 10% degradation in accuracy. On the other
hand, baseline methods accuracy degrades significantly for similar TTFT speed-up. Note that the
prompt compression approaches fail at improving TTFT because of the compression overhead.

5.3 IMPACT ON OVERALL GENERATION SPEED

To evaluate the impact of the proposed method on the overall generation process, we also profile
the % of Prompt Token Computed and Generation speedup in Table 2. We can find the % of Token
Computed of LazyLLM is less than 100%, indicating that not all tokens in the prompt are selected
by LazyLLM at the end of the generation, even though theoretically the model could use all tokens.
Computations in the FFN layers increase linearly, while those in the attention layers grow quadrati-
cally with the % of Token Computed. A lower % of Token Computed indicates LazyLLM reduces the
total computation, consequently offering additional speedup to the overall generation process across
diverse tasks.

5.4 IMPACT ON MEMORY AND COMPUTING COST
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Figure 5: FLOPs-Performance Trade-
off Curve of LazyLLM for Llama 2 7B
evaluated on the Average LongBench
Metric.

By progressively pruning tokens across the transformer
layers, LazyLLM reduces the size of the attention maps,
thereby decreasing the overall memory footprint. Since
all tokens are utilized in the initial layers, the peak mem-
ory usage remains equivalent to that of the baseline.

Regarding computational cost, we adopt the methodol-
ogy from Chen et al. (2024) to calculate the total FLOPs
reduction ratio compared to the baseline. Varying the
parameters of LazyLLM influences both the FLOPs re-
duction ratio and the model’s performance. To illustrate
this, we present the FLOPs-performance trade-off curve
in Figure 5. The results indicate that LazyLLM can sig-
nificantly lower computational costs with negligible per-
formance drop.

5.5 DROP RATE IN DIFFERENT LAYERS

In this section, we analyze the effect of the locations of pruning layers, and the number of tokens
pruned. In particular, we report a series of experiments using a simplified version of LazyLLM that
prunes tokens just once within the transformer. For each trial, we position the pruning layer at var-
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Figure 6: TTFT speedup vs. accuracy comparison for Llama 2 7B across different tasks.

TASKS
% OF PROMPT TOKEN COMPUTED OVERALL GENERATION SPEEDUP

LLAMA 2 XGEN LLAMA 2 XGEN

SINGLE-DOCUMENT QA 87.31 89.16 1.34 1.33

MULTI-DOCUMENT QA 63.94 69.60 1.56 1.70

SUMMARIZATION 99.59 96.11 1.02 1.09

FEW-SHOT LEARNING 69.98 65.30 1.28 1.59

SYNTHETIC 63.73 40.54 1.79 3.16

CODE COMPLETION 68.57 72.61 1.01 1.16

Table 2: The % of Prompt Token Computed and Generation speedup of LazyLLM on various tasks.
Reported values are based on the same setting as Table 1. A lower % of Token Computed indicates
LazyLLM reduces the total computation, consequently offering additional speedup to the overall
generation process across diverse tasks.

ious levels of the transformer stack and apply different pruning ratios. We perform the experiments
for both Llama 2 and XGen, and visualize the results in Figure 7.

The results show both models share a similar trend. As expected, when pruning at the same trans-
former layer, the model’s performance gradually decreases as fewer tokens are kept. Furthermore,
pruning at later transformer layers consistently yields better performance compared to pruning at
earlier layers, suggesting that later layers are less sensitive to token pruning. Based on these ob-
servations, we propose progressive token pruning in Section 3.2, which strategically prunes more
tokens in later layers while preserving more in the earlier layers, optimizing the balance between
efficiency and performance retention.

5.6 PROGRESSIVE KV GROWTH

In this section, we characterize the internals of the model with the token pruning logic. Specifically,
we seek to understand what fractions of prompt tokens are cumulatively used and, inversely, not
used. This “cumulative token usage” can be equivalently defined as the KV cache size at each given
step. Figure 8 presents these cumulative prompt token usage numbers for each of the stages of the
LazyLLM.

9
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Figure 7: Effect of the locations of pruning layers, and the number of tokens pruned. The results of
both Llama 2 7B Touvron et al. (2023) and XGen 7B Nijkamp et al. (2023) share a similar trend: 1)
when pruning at the same transformer layer, the model’s performance gradually decreases as fewer
tokens are kept, and 2) Pruning at later transformer layers consistently has better performance than
pruning at earlier layers, suggesting that later layers are less sensitive to token pruning.
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Figure 8: Statistics on number of tokens processed during generation using our LazyLLM technique
with Llama 2 7B (Touvron et al., 2023). We visualize the statistics of 1000 samples randomly
sampled from LongBench. The x-axis represents the (absolute) generation time step, and the y-axis
represents the number of prompt tokens processed at that time step (normalized by the prompt size).
We visualize these statistics for various stages within the network. Note that cumulative token usage
is upper-bounded by the baseline (evident with early layers).

Our analysis supports the hypothesis that many tokens are never selected by the model (even though
theoretically the model could use all tokens in the prompt). Since this model retains accuracy on the
task(s), we can conclude that the model effectively drops the tokens which do not affect the output
quality.

6 CONCLUSION

In this work, we proposed a novel LazyLLM technique for efficient LLM inference, in particular
under long context scenarios. LazyLLM selectively computes the KV for tokens important for the
next token prediction and “lazily” defers the computation of remaining tokens to later steps, when
they become relevant. We carefully examine LazyLLM on various tasks, where we observed the
proposed method effectively reduces TTFT with negligible performance loss. It is worth noting that
our method can be seamlessly integrated with existing transformer-based LLMs to improve their
inference speed without requiring any fine-tuning.
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Algorithm 2 Pseudocode of LazyLLM
Require: Input tokens T = {ti}Ni=1, transformer model with L layers
Require: Pruning thresholds {kl}Ll=1 for each layer

1: Initialize KV Cache and Aux Cache as empty
2: Initialize active tokens A0 ← T
3: Initialize previous attention scores si0 ← 1 for all tokens
{Progressive Token Pruning with Selective Aux Cache Updates}

4: for layer l = 1 to L do
5: if l is pruning layer then
6: Use attention scores sil−1 from previous layer for pruning decision
7: Find kl-th percentile threshold θl of sil−1

8: Al ← {ti ∈ Al−1|sil−1 ≥ θl} {Keep top-k tokens}
9:

10: missing tokens← {ti ∈ Al|ti /∈ KV Cache ∧ ti /∈ hidden states}
11: Retrieve missing tokens from Aux Cache
12:
13: pruned tokens← Al−1 \Al {Identify pruned tokens}
14: cacheable tokens ← {ti ∈ pruned tokens|ti /∈ missing tokens ∧ ti ∈

hidden states}
15: Add cacheable tokens to Aux Cache
16: else
17: Al ← Al−1

18: end if
19: Compute layer outputs for tokens in Al

20: Compute current layer attention scores sil using Eq.(1) for tokens in Al

21: Update KV Cache for tokens in Al

22: end for
23: return Final hidden states for tokens in AL

A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 presents presents LazyLLM’s progressive token pruning strategy enhanced with an aux-
iliary caching mechanism. For each transformer layer, the algorithm first uses attention scores from
the previous layer to make pruning decisions, maintaining only the most relevant tokens. After
pruning, it identifies tokens missing from both KV Cache and hidden states, retrieving them from
the Auxiliary Cache when needed.

B VISUAL EXAMPLE

To better illustrate how LazyLLM operates, we present a detailed walkthrough of our method in Fig-
ure 9. Consider a simple example where the model processes the input “LazyLLM is a training free
token pruning technique to improve LLM inference with” and generates subsequent tokens “negli-
gible performance loss”. The visualization demonstrates how LazyLLM evolves through different
stages of generation.

During the prefilling stage, instead of computing all tokens in the prompt, methodname selec-
tively processes only those tokens deemed important for the next token prediction. In our example,
methodname initially processes only 13 tokens compared to the baseline’s full sequence processing.
Notably, when generating the first token “negligible”, methodname focuses on key contextual to-
kens like “LazyLLM”, “improve”, and “inference”, while deferring the computation of less relevant
tokens.

In subsequent decoding steps (Step #2 and Step #3), methodname continues to operate efficiently
by:
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1. Reusing previously computed KV cache values when possible
2. Selectively computing only newly important tokens that were deferred earlier
3. Maintaining the ability to revive previously pruned tokens if they become relevant

This dynamic approach results in significantly reduced computation, compared to the baseline which
processes all tokens at every step. The visualization clearly shows how tokens in red indicate active
computation, and green denotes retrieved from KV cache.

This example demonstrates how LazyLLM achieves substantial computational savings without sac-
rificing model performance. The method’s ability to dynamically adjust token selection at each
generation step, while maintaining efficiency through strategic caching, represents a key advance-
ment over static pruning approaches.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Method - Example Explained
Prefilling Stage

LazyLLM is a training free token pruning technique to improve LLM inference with 

30% Layers

LazyLLM is a token pruning technique to improve LLM inference with 

30% Layers

30% Layers

10% Layers

LazyLLM improve inference with 

LazyLLM is a technique to improve inference with 

negligible

KV Cache (30% Layers)

Update

Update

Update

Update

KV Cache (30% Layers)

KV Cache (30% Layers)

KV Cache (10% Layers)

LazyLLM is a token 
pruning technique 
to improve LLM 
inference with

LazyLLM improve 
inference with

LazyLLM is a 
technique to 
improve inference 
with

LazyLLM is a 
training free token 
pruning technique 
to improve LLM 
inference with

Aux Cache (30%th Layer)

Update training, free 

Aux Cache (60%th Layer)

Update token, pruning, 
LLM

Aux Cache (90%th Layer)

Update a, technique, to 

Method - Example Explained
Generation Stage - Step 1
LazyLLM is a training free token pruning technique to improve LLM inference with negligible

30% Layers

a token pruning technique to improve LLM inference with negligible 

30% Layers

30% Layers

10% Layers

LLM inference with negligible  

technique improve LLM inference with negligible 

performance

KV Cache (30% Layers)

Update

Update

Update

Update

KV Cache (30% Layers)

KV Cache (30% Layers)

KV Cache (10% Layers)

LazyLLM is a 
training free token 
pruning technique 
to improve LLM 
inference with 

LazyLLM is a token 
pruning technique 
to improve LLM 
inference with 

LazyLLM is a token 
pruning technique 
to improve LLM 
inference with + 
negligible

LazyLLM improve 
inference with + 
LLM negligible

LazyLLM improve 
inference with 

LazyLLM is a 
technique to 
improve inference 
with 

LazyLLM is a 
technique to 
improve inference 
with + LLM 
negligible

LazyLLM is a 
training free token 
pruning technique 
to improve LLM 
inference with + 
negligible

Aux Cache (30%th Layer)

Update training, free 

Aux Cache (60%th Layer)

Update token, pruning

Aux Cache (90%th Layer)

Update a, technique, to 

training, free 

token, pruning, 
LLM

a, technique, to 

LazyLLM is a training 
free token pruning 
technique to improve 
LLM inference with + 
negligible + performance

LazyLLM is a 
training free token 
pruning technique 
to improve LLM 
inference with + 
negligible

LazyLLM is a token 
pruning technique 
to improve LLM 
inference with + 
negligible + 
performance

LazyLLM is a token 
pruning technique 
to improve LLM 
inference with + 
negligible + 
performance

LazyLLM improve 
inference with + 
LLM negligible + 
performance

LazyLLM improve 
inference with + 
LLM negligible

LazyLLM is a 
training to improve 
inference with + 
technique LLM 
negligible

LazyLLM is a 
training to improve 
inference with + 
technique LLM 
negligible + 
performance

Method - Example Explained
Generation Stage - Step 2
LazyLLM is a training free token pruning technique to improve LLM inference with negligible performance

30% Layers

a pruning technique improve LLM inference with negligible performance

30% Layers

30% Layers

10% Layers

improve inference negligible performance

technique improve inference with negligible performance

loss

KV Cache (30% Layers)

Update

Update

Update

Update

KV Cache (30% Layers)

KV Cache (30% Layers)

KV Cache (10% Layers)

Aux Cache (30%th Layer)

Update training, free 

Aux Cache (60%th Layer)

Update token, pruning

Aux Cache (90%th Layer)

Update a, technique, to 

training, free 

token, pruning

a, technique, to 

Figure 9: Visual Example
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