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ABSTRACT

Despite their simple intuition, convolutions are more tedious to analyze than dense
layers, which complicates the transfer of theoretical and algorithmic ideas. We
provide a simplifying perspective onto convolutions through tensor networks (TNs)
which allow reasoning about the underlying tensor multiplications by drawing dia-
grams, and manipulating them to perform function transformations and sub-tensor
access. We demonstrate this expressive power by deriving the diagrams of vari-
ous autodiff operations and popular approximations of second-order information
with full hyper-parameter support, batching, channel groups, and generalization
to arbitrary convolution dimensions. Further, we provide convolution-specific
transformations based on the connectivity pattern which allow to re-wire and sim-
plify diagrams before evaluation. Finally, we probe computational performance,
relying on established machinery for efficient TN contraction. Our TN implemen-
tation speeds up a recently-proposed KFAC variant up to 4.5 x and enables new
hardware-efficient tensor dropout for approximate backpropagation.

1 INTRODUCTION

Convolutional neural networks (CNNs) (LeCun et al., 1989) mark a milestone in the development of
deep learning architectures as their ‘sliding window’ approach represents an important inductive bias
for vision tasks. Their intuition is simple to explain with graphical illustrations such as in Dumoulin
& Visin (2016). Yet, convolutions are more challenging to analyze than fully-connected layers in
multi-layer perceptrons (MLPs) or transformers (Vaswani et al., 2017). One reason is that they are
hard to express in matrix notation and—even when switching to index notation—compact expressions
that are convenient to work with only exist for special hyper-parameter choices (e.g. Grosse &
Martens, 2016; Arora et al., 2019). Many hyper-parameters (stride, padding, . . . ) and additional
features like channel groups (Krizhevsky et al., 2012) introduce additional complexity. And related
objects like (higher-order) derivatives and related routines for autodiff inherit this complexity.
Between CNNs and MLPs, we observe a delay of analytical and algorithmic developments, e.g.

for MLPs for CNNs
Approximate Hessian diagonal 1989 2023
Kronecker-factored curvature (KFAC, KFRA, KFLR) 2015, 2017, 2017 2016, 2020b, 2020b
Kronecker-factored quasi-Newton methods (KBFGS) 2021 2022
Neural tangent kernel (NTK) 2018 2019
Hessian rank 2021 2023

Here, we seek to reduce this complexity gap by providing a new perspective onto convolutions
through tensor networks (TNs, e.g. Penrose, 1971; Biamonte & Bergholm, 2017; Bridgeman &
Chubb, 2017), which express the underlying tensor multiplications as diagrams. Those simplify
reading off structure like factorization, and can seamlessly be (i) manipulated to take derivatives or
add batching, (ii) merged with other diagrams, and (iii) sliced to extract sub-tensors.

TNs are not only convenient for analytic investigations. Techniques to efficiently evaluate TNs
have been developed by the quantum simulation community (e.g. Smith & Gray, 2018; Gray &
Kourtis, 2021; Zhang, 2020; cuQuantum development team, 2023) and are accessible through a
simple interface (einsum) with automated under-the-hood-optimizations like finding a high-quality
contraction order, or distributing computations. In summary:
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from einconv import conv_index_pattern; from einops import einsum; from torch import nn, rand

I, K, D, P, S = ... # convolution hyper-parameters (2-tuples)
X = rand(C_in, I[0], I[1]) # input to convolution
kfc_shape = (C_in * K[0] * K[1], C_in * K[0] * K[1])

def kfc_im2col():
"""Compute Kronecker factor via im2col."""
X_unf = nn.functional.unfold(X, K, D, P, S)
return einsum(X_unf, X_unf, "i out, j out -> i j")

def kfc_tn():
"""Compute Kronecker factor via its tensor network."""
Pi1 = conv_index_pattern(I[0], K[0], S[0], P[0], D[0])
Pi2 = conv_index_pattern(I[1], K[1], S[1], P[1], D[1])
return einsum(X, Pi1, Pi2, X, Pi1, Pi2, "c_in i1 i2, "

+ "i1 o1 k1, i2 o2 k2, c_in_ i1_ i2_, i1_ o1_ k1_, "
+ "i2_ o2_ k2_ -> c_in k1 k2 c_in_ k1_ k2_").reshape(kfc_shape)

def kfc_simplified_tn(): # for dense convolutions
"""Compute Kronecker factor via its simplified tensor network."""
X_re = X.reshape(C_in, I[0] // K[0], K[0], I[1] // K[1], K[1])
return einsum(X_re, X_re, "c_in o1 k1 o2 k2, c_in_ o1_ k1_ o2_ k2_ ",

+ "-> c_in k1 k2 c_in_ k1_ k2_").reshape(kfc_shape)

Figure 1: Convolutions and related operations can be expressed as TNs and evaluated with einsum.
We illustrate this for the input-based factor of the Kronecker-factorized Fisher approximation (KFC
Grosse & Martens, 2016), whose standard implementation (top) requires unfolding the input (large
memory). By replacing the unfolded input with its TN (middle), a contraction path optimizer like
opt einsum (Smith & Gray, 2018) can automatically optimize run time and/or memory inside
einsum. (Bottom) For many convolutions, the TN further simplifies due to structures in the index
pattern, which reduces cost. In practise, the TN versions need not be implemented; our framework
automatically generates their einsum expressions.
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• We use the TN format of convolution from Hayashi et al. (2019) to derive diagrams for vari-
ous autodiff routines and structural approximations of second-order information with support
for all hyper-parameters, batching, channel groups, and arbitrary dimensions (Table 1).

• We present transformations based on the convolution’s connectivity pattern to re-wire and
symbolically simplify TNs before evaluation (see Figure 1 for a full example).

• We compare the performance of default and TN implementation, demonstrating speed-ups
up to 4.5 x for a recent KFAC variant, and use its increased flexibility to impose hardware-
efficient dropout that reduces the cost of randomized backpropagation.

2 PRELIMINARIES

We briefly review 2d convolution (§2.1), describe tensor multiplication and the einsum interface
(§2.2), introduce the graphical TN notation, and apply it to convolution (§2.3). Bold lower-case
(a), upper-case (A), and upper-case sans-serif (A) symbols indicate vectors, matrices, and tensors.
Entries follow the same convention but use regular font weight and [·] denotes slicing ( [A]i,j = Ai,j).
Parenthesized indices mean reshapes, e.g. [a](i,j) = [A]i,j where a is the flattened matrix A.

2.1 CONVOLUTION

2d convolutions process channels of two-dimensional signals X ∈ RCin×I1×I2 with Cin channels
of spatial dimensions1 I1, I2 by sliding a collection of Cout filter banks, arranged in a kernel W ∈
RCout×Cin×K1×K2 with kernel size K1,K2, over the input. The sliding operation depends on various
hyper-parameters (padding, stride, dilation, see Dumoulin & Visin, 2016). At each step, the filters
are contracted with the overlapping area, yielding the channel values of a pixel in the output Y ∈
RCout×O1×O2 with spatial dimensions O1, O2. Optionally, a bias from b ∈ RCout is added per channel.

One way to implement convolution is via matrix multiplication (Chellapilla et al., 2006), similar to
fully-connected layers. First, one extracts the overlapping patches from the input for each output, then
flattens and column-stacks them into a matrix JXK ∈ RCinK1K2×O1O2 , called the unfolded input (also

1We prefer I1, I2 over the more common choice H,W to simplify generalization to higher dimensions.
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∑
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Figure 2: TN representation of a 2d convolution with input X and ker-
nel W (no batch dimension and no channel groups). The connectivity
pattern along each dimension is made explicit via a tensor Π. Eval-
uating the indicated tensor multiplications (closed connections mean
summation) yields the convolution’s result Y.

called im2col). Multiplying a matrix view W ∈ RCout×CinK1K2 of the kernel onto the unfolded
input then yields a matrix view Y of Y (the vector of ones, 1O1O2

, copies the bias for each channel),

Y = W JXK + b1⊤
O1O2

∈ RCout×O1O2 . (1)

Alternatively, convolution can be seen as an affine map of the flattened input x ∈ RCinI1I2 into a
vector view y of Y with a Toeplitz-structured matrix A(W) ∈ RCoutO1O2×CinI1I2 ,

y = A(W)x+ b⊗ 1O1O2
∈ RCoutO1O2 . (2)

This perspective of unfolding the kernel is uncommon in implementations, but used in theoretical
works (e.g. Singh et al., 2023) as it highlights the similarity between convolutions and dense layers.

2.2 TENSOR MULTIPLICATION

Tensor multiplication unifies inner, element-wise (Hadamard), and outer (Kronecker) multiplication
and relies on the input-output index relation to infer the multiplication type. We start with the binary
case, then generalize to more inputs: Consider A,B,C whose index names are described by the index
tuples S1, S2, S3 where S3 ⊆ (S1 ∪ S2) (converting tuples to sets if needed). Any multiplication of
A and B can be described by the tensor multiplication operator ∗(S1,S2,S3) with

C = ∗(S1,S2,S3)(A,B) ⇔ [C]S3
=
∑

(S1∪S2)\S3
[A]S1

[B]S2
, (3)

summing over indices that are not present in the output. E.g., for two matrices A,B, their product is
AB = ∗((i,j),(j,k),(i,k))(A,B) (see §H.2), their Hadamard product A⊙B = ∗((i,j),(i,j),(i,j))(A,B),
and their Kronecker product A ⊗B = ∗((i,j),(k,l),((i,k),(j,l)))(A,B). Libraries support this func-
tionality via einsum, which takes a string encoding of S1, S2, S3, followed by A,B. It also accepts
longer sequences A1, . . . ,AN with index tuples S1, S2, . . . , SN and output index tuple SN+1,

AN+1 = ∗(S1,...,SN ,SN+1)(A1, . . . ,AN ) ⇔ [AN+1]SN+1
=
∑

(
⋃N

n=1 Sn)\SN+1

(∏N
n=1[An]Sn

)
. (4)

Binary and N -ary tensor multiplication are commutative: Simultaneously permuting operands
and their index tuples does not change the result, ∗(S1,S2,S3)(A,B) = ∗(S2,S1,S3)(B,A) and
∗(...,Si,...,Sj ,... )(. . . ,Ai, . . . ,Aj . . . ) = ∗(...,Sj ,...,Si,... )(. . . ,Aj , . . . ,Ai, . . . ). They are also asso-
ciative, i.e. we can multiply operands in any order. However, the notation becomes involved as it
requires additional set arithmetic to detect when an index can be summed (see §H.1 for an example).

2.3 TENSOR NETWORKS & CONVOLUTION

A simpler way to understand tensor multiplications is via diagrams developed by e.g. Penrose (1971).
Rank-K tensors are represented by nodes with K legs labelled by the index’s name2. For instance,
a i denotes a vector a, Bi j a matrix B, and Ci j

k a rank-3 tensor C. The 2d Kronecker delta
[δ]i,j = δi,j is simply a line, δ ij = I ij =j i. Multiplications are indicated by connections
between legs. For inner multiplication, we join the legs of the involved indices, e.g. the matrix
multiplication diagram is ABi k = A Bi kj . Element-wise multiplication is similar, but with a
leg sticking out. For example, the Hadamard and Kronecker product diagrams are

A⊙Bi j =
A

B
i j , A⊗B(i, k) (j, l) =

A

B
(i, k) (j, l)

i

k

j

l
. (5)

2We use identical shapes for all tensors. Leg orientation does not assign properties like co-/contra-variance.
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Table 1: Contraction expressions of operations related to 2d convolution. They include batching and
channel groups, which are standard features in implementations. We describe each operation by a
tuple of input tensors and a contraction string that uses the einops library’s syntax (Rogozhnikov,
2022) which can express index (un-)grouping. Some quantities are only correct up to a scalar factor
which is suppressed for brevity. See §B for visualizations and Table B2 for more operations.

Operation Operands Contraction string (einops (Rogozhnikov, 2022) convention)

Convolution (no bias) X,Π(1),Π(2), W "n (g c in) i1 i2, i1 o1 k1, i2 o2 k2, (g c out) c in k1 k2
-> n (g c out) o1 o2"

Unfolded input (im2col) X,Π(1),Π(2)
"n c in i1 i2, i1 o1 k1, i2 o2 k2 -> n (c in k1 k2) (o1 o2)"

Unfolded kernel (Toeplitz) Π(1),Π(2), W "i1 o1 k1, i2 o2 k2, c out c in k1 k2
-> (c out o1 o2) (c in i1 i2)"

Weight VJP X,Π(1),Π(2), V(Y) "n (g c in) i1 i2, i1 o1 k1, i2 o2 k2, n (g c out) o1 o2
-> (g c out) c in k1 k2"

Input VJP (transpose conv.) W,Π(1),Π(2), V(Y) "(g c out) c in k1 k2, i1 o1 k1, i2 o2 k2, n (g c out) o1 o2
-> n (g c in) i1 i2"

KFC/KFAC-expand X,Π(1),Π(2), X,Π(1),Π(2) "n (g c in) i1 i2, i1 o1 k1, i2 o2 k2, n (g c in ) i1 i2,
i1 o1 k1 , i2 o2 k2 -> g (c in k1 k2) (c in k1 k2 )"

KFAC-reduce X,Π(1),Π(2), X,Π(1),Π(2) "n (g c in) i1 i2, i1 o1 k1, i2 o2 k2, n (g c in ) i1 i2,
i1 o1 k1 , i2 o2 k2 -> g (c k1 k2) (c k1 k2 )"

Note that the outer tensor product yields a rank-4 tensor which needs to be reshaped (indicated by
black triangles3) to obtain a matrix. This syntax allows for extracting and embedding tensors along
diagonals; e.g. taking a matrix diagonal, diag(A) i= A i, or forming a diagonal matrix, diag(a) ii =

a ii ; and generalizes to larger diagonal blocks (§B). In the following, we stick to the simplest case
to avoid the more advanced syntax. However, it shows the expressive power of TNs and is required to
support common features of convolutions like channel groups (known as separable convolutions).

Application to Convolution: We define a binary tensor P ∈ {0, 1}I1×O1×K1×I2×O2×K2 which
represents the connectivity pattern between input, output, and kernel. Pi1,o1,k1,i2,o2,k2

is 1 if input
locations (i1, i2) overlap with kernel positions (k1, k2) when computing output locations (o1, o2)
and 0 otherwise. The spatial couplings are independent along each dimension, hence P decomposes
into Pi1,o1,k1,i2,o2,k2 = Π

(1)
i1,o1,k1

Π
(2)
i2,o2,k2

where the index pattern tensor Π(j) ∈ {0, 1}Ij×Oj×Kj

encodes the connectivity along dimension j. With that, one obtains

Ycout,o1,o2 = bcout +
∑Cin

cin=1

∑I1
i1=1

∑I2
i2=1

∑K1

k1=1

∑K2

k2=1 Xcin,i1,i2Π
(1)
i1,o1,k1

Π
(2)
i2,o2,k2

Wcout,cin,k1,k2
,

which translates into the TN diagram shown in Figure 2 if neglecting the bias.

3 TENSOR NETWORKS FOR CONVOLUTION OPERATIONS

We now demonstrate the elegance of TNs for computing derivatives (§3.1), autodiff operations (§3.2),
and approximate second-order information (§3.3) by graphical manipulation. For simplicity, we
exclude batching (vmap-ing like in JAX (Bradbury et al., 2018)) and channel groups, and provide
the diagrams with full support in §B. Table 1 summarizes our derivations (with batching and groups).

As a warm-up, we identify the unfolded input and kernel from the matrix-multiplication view from
Equations (1) and (2). They follow by contracting the index patterns with either the input or kernel,

[JXK](cin,k1,k2),(o1,o1)
=
∑I1

i1=1

∑I2
i2=1 Xcin,i1,i2Π

(1)
i1,o1,k1

Π
(2)
i2,o2,k2

,

[A(W)](cout,o1,o2),(cin,i1,i2)
=
∑K1

k1=1

∑K2

k2=1 Π
(1)
i1,o1,k1

Π
(2)
i2,o2,k2

Wcout,cin,k1,k2 ,

or, in diagram notation,

JXK (cin, k1, k2)

(o1, o2)

=
Π(1)

Π(2)

X

i1

i2

(o1, o2)

(cin, k1, k2)

cin

k1

k2

o1

o2 and
A(W)(cin, i1, i2)

(cout, o1, o2)

=
Π(1)

Π(2)

W

k1

k2

(cout, o1, o2)

(cin, i1, i2)

cin cout

i1

i2

o1

o2 . (6)

3.1 TENSOR NETWORK DIFFERENTIATION

Derivatives play a crucial role in theoretical and practical ML. First, we show that differentiating a TN
diagram amounts to a simple graphical manipulation. Then, we derive the Jacobians of convolution.

3Reshape can be seen as tensor multiplication with a one-hot tensor, but we decided to use a separate symbol
to emphasize that it merely serves for re-interpreting the tensor and does not cause expensive computations.
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Figure 3: TN differentiation as graph-
ical manipulation. (a) Differentiating
a 2d convolution w.r.t. W requires cut-
ting it out of the diagram, introducing
indices for open legs. (b) Weight Jaco-
bian after simplifying the new legs con-
nected to other tensors. (c) Same proce-
dure applied to the Jacobian w.r.t. X.

Consider an arbitrary TN represented by the tensor multiplication from Equation (4). The Jacobian
tensor [JAj

AN+1]SN+1,S′
j
= ∂[AN+1]SN+1/∂[Aj ]S′

j
w.r.t. an input Aj collects all partial derivatives and

is addressed through indices Sn+1 × S′
j with S′

j an independent copy of Sj . Assume that Aj only
enters once in the tensor multiplication. Then, taking the derivative of Equation (4) w.r.t. [Aj ]S′

j

simply replaces the tensor by a Kronecker delta δSj ,S′
j
,

∂[AN+1]SN+1

∂[Aj ]S′
j

=
∑

(
⋃N

n=1 Sn)\Sn+1
[A1]S1 · · · [Aj−1]Sj−1

(∏
i∈Sj

δi,i′
)
[Aj+1]Sj+1 · · · [AN ]SN

. (7)

If an index i ∈ Sj is summed, i ̸∈ Sn+1, we can sum the Kronecker delta δi,i′ , effectively replacing
all occurrences of i by i′. If instead i is part of the output index, i ∈ Sn+1, the Kronecker delta
remains part of the Jacobian and imposes structure. Figures 3a and 3b illustrate this process in
diagrams for differentiating a convolution w.r.t. its kernel. Equation (7) amounts to cutting out the
argument of differentiation and assigning new indices to the resulting open legs (Figure 3a). Then, we
can simplify the new legs connected to other tensors (Figure 3b). For the weight Jacobian JWY, this
introduces structure: If we re-interpret the two disjoint diagrams in Figure 3b as matrices, compare
with the Kronecker diagram from Equation (5) and use Equation (6), we find JXK⊤ ⊗ ICout for the
Jacobian’s matrix view (e.g. Dangel et al., 2020a). Figure 3c shows the input Jacobian JXY which is
given by a tensor view of A(W), as expected from the matrix-vector perspective of Equation (2).

Differentiating a TN is more convenient than using matrix calculus (Magnus & Neudecker, 1999)
as it amounts to a simple graphical manipulation and does not rely on a flattening convention and
therefore preserves the full index structure. The resulting TN can still be translated back to matrix
language, if desired. It also simplifies the computation of higher-order derivatives (e.g. ∂2Y/∂W∂X),
since differentiation yields another TN and can thus be repeated. If a tensor occurs more than once in
a TN, the product rule applies and the derivative is a sum of TNs with one occurrence removed.

3.2 AUTOMATIC DIFFERENTIATION & CONNECTIONS TO TRANSPOSE CONVOLUTION

Although Jacobians can sometimes be useful, crucial routines for integration with autodiff are vector-
Jacobian and Jacobian-vector products (VJPs, JVPs). Both are simple to realize with TNs due to
access to full Jacobians. VJPs are used in backpropagation to pull back a tensor V(Y) ∈ RCout×O1×O2

from the output space. The VJP results V(X) ∈ RCin×I1×I2 and V(W) ∈ RCout×Cin,K1,K2 are

V (X)
c′in,i

′
1,i

′
2
=
∑

cout,o1,o2
V (Y)
cout,o1,o2

∂Ycout,o1,o2

∂Xc′in,i
′
1,i′2

, V (W)
c′out,c

′
in,k

′
1,k

′
2
=
∑

cout,o1,o2
V (Y)
cout,o1,o2

∂Ycout,o1,o2

∂Wc′out,c
′
in,k

′
1,k′

2

.

Both are simply new TNs constructed from contracting the vector with the respective Jacobian, see
Figure 4 (VJPs are analogous). The input VJP is often used to define transpose convolution (Dumoulin
& Visin, 2016). In the matrix-multiplication perspective (Equation (2)), this operation is defined
relative to a convolution with kernel W by multiplication with A(W)⊤, i.e. using the same connectivity
pattern but mapping from the convolution’s output space to its input space. The TN makes this pattern
sharing explicit as the same Πs are used, and provides a clean definition of transpose convolution.4

3.3 KRONECKER-FACTORED APPROXIMATE CURVATURE (KFAC)

The Jacobian TN diagrams allow to construct the TNs of second-order information like the Fisher/-
generalized Gauss-Newton (GGN) matrix and sub-tensors like its diagonal (see §C) Here, we focus

4In standalone implementations of transpose convolution, one must supply an additional parameter to
unambiguously reconstruct the convolution’s input dimension (see §D for how to compute Π in this case).
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Figure 4: TNs of 2d convolution VJPs for backpropa-
gation. Jacobians from Figure 3 are shaded, only their
contraction with the vector V(Y) is highlighted. (a)
VJP for the weight and (b) input Jacobian (transpose
convolution). JVPs are similar, but contract vectors
V(X) ∈ RCin×I1×I2 ,V(W) ∈ RCout×Cin×K1×K2 with
the input and kernel indices of JXY,JWY.
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Figure 5: TNs of input-based Kronecker factors for
block-diagonal Fisher/GGN approximations (no batch-
ing, no channel groups). The unfolded input is shaded,
only additional contractions are highlighted. (a) Ω
(KFC/KFAC-expand) from Grosse & Martens (2016)
and (b) Ω̂ (KFAC-reduce) from Eschenhagen (2022)
(the vectors of ones effectively amount to sums).

on the popular Kronecker-factored approximation of the GGN (Martens & Grosse, 2015; Grosse
& Martens, 2016; Eschenhagen, 2022; Martens et al., 2018) whose input-based Kronecker factor
requires the unfolded input JXK which requires large memory. State-of-the-art libraries that provide
access to it (Dangel et al., 2020b; Osawa et al., 2023) rely on this approach via im2col. Using
the TN of JXK, we can often avoid expanding it explicitly and save memory. Here, we describe the
existing Kronecker approximations of the GGN and their TNs (see §5.1 for their run time evaluation).

KFC (KFAC-expand): Grosse & Martens (2016) introduce a Kronecker approximation for the
kernel’s GGN, G ≈ Ω ⊗ Γ where Γ ∈ RCout×Cout and the input-based factor is Ω = JXK⊤JXK ∈
RCinK1K2×CinK1K2 (Figure 5a), the unfolded input’s self-inner product (averaged over a batch).

KFAC-reduce: Eschenhagen (2022) generalized KFAC to graph neural networks and trans-
formers based on the concept of weight sharing, also present in convolutions. They identify
two approximations—KFAC-expand and KFAC-reduce—the former of which corresponds to
KFC (Grosse & Martens, 2016). The latter shows similar performance in downstream tasks, but
is cheaper to compute. It relies on the column-averaged unfolded input, i.e. the average over all
patches sharing the same weights. KFAC-reduce approximates G ≈ Ω̂⊗ Γ̂ with Γ̂ ∈ RCout×Cout and
Ω̂ = 1/(O1O2)

2(1⊤
O1O2

JXK)⊤1⊤
O1O2

JXK ∈ RCinK1K2×CinK1K2 (Figure 5b; averaged over a batch).

4 TENSOR NETWORK SIMPLIFICATIONS & IMPLEMENTATION ASPECTS

Many convolutions in real-world CNNs use structured connectivity patterns that allow for simplifica-
tions which we describe here along with implementation aspects for efficient TN contraction.

4.1 CONVOLUTION INDEX PATTERN STRUCTURE & SIMPLIFICATIONS

The index pattern Π encodes the connectivity of a convolution and depends on its hyper-parameters.
Along one dimension, Π = Π(I,K, S, P,D) with input size I , kernel size K, stride S, padding
P , and dilation D. We provide pseudo-code for computing Π in §D which is easy to implement
efficiently with standard functions from any numerical library (Algorithm D1). Its entries are

[Π(I,K, S, P,D)]i,o,k = δi,1+(k−1)D+(o−1)S−P , i= 1, . . . , I, o= 1, . . . , O, k= 1, . . . ,K (8)

with spatial output size O(I,K, S, P,D) = 1+ ⌊(I+2P−(K+(K−1)(D−1)))/S⌋. Since Π is binary and
has size linear in I,O,K, it is cheap to pre-compute and cache.

The index pattern’s symmetries allow for re-wiring a TN. For instance, the symmetry of (k,D) and
(o, S) in Equation (8) and O(I,K, S, P,D) permits a kernel-output swap, exchanging the role of
kernel and output dimension (Figure 6a). Rochette et al. (2019) used this to phrase the per-example
gradient computation (weight VJP, Figure 4a) as convolution.

For many convolutions of real-world CNNs (see §E for a hyper-parameter study) the index pat-
tern possesses structure that simplifies its contraction with other tensors into either smaller con-
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tractions or reshapes: Dense convolutions use a shared kernel size and stride, and thus process
non-overlapping adjacent tiles of the input. Their index pattern’s action can be expressed as

Π(I,K, S, P,D) = Π(I,K,D, P, S)i

o

k i

k

o

(a) Kernel-output swap

Π(I,K,K, 0, 1) = Πi

o

k i

o

k

(b) Dense convolution

V Π(I,K, S > K, 0, 1) = Ṽ Π(IK/S,K,K, 0, 1)i i′

o

k

o

k

(c) Down-sampling convolution
Figure 6: TN illustrations of index pattern
simplifications and transformations. See §D.3
for their mathematical formulation.

a cheap reshape (Figure 6b). Such convolutions are
common in DenseNets (Huang et al., 2017), Mo-
bileNets (Howard et al., 2017; Sandler et al., 2018),
ResNets (He et al., 2016), and ConvNeXts (Liu et al.,
2022). InceptionV3 (Szegedy et al., 2016) has 2d
mixed-dense convolutions that are dense along one
dimension. Down-sampling convolutions use a larger
stride than kernel size, hence only process a sub-set
of their input, and are used in ResNet18 (He et al.,
2016), ResNext101 (Xie et al., 2017), and WideRes-
Net101 (Zagoruyko & Komodakis, 2016). Their pat-
tern contracts with a tensor V like that of a dense con-
volution with a sub-tensor Ṽ (Figure 6c). §5.1 shows
that those simplifications accelerate computations.

4.2 PRACTICAL BENEFITS OF THE TN ABSTRACTION & LIMITATIONS FOR CONVOLUTIONS

Contraction order optimization: There exist various orders in which to carry out the summations
in a TN and their performance can vary by orders of magnitude. One extreme approach is to carry
out all summations via nested for-loops. This so-called Feynman path integral algorithm requires
little memory, but many FLOPS since it does not re-cycle intermediate results. The other extreme is
sequential pair-wise contraction. This builds up intermediate results and can greatly reduce FLOPS.
The schedule is represented by a binary tree, but the underlying search is in general at least #P-
hard (Damm et al., 2002). Fortunately, there exist heuristics to find high-quality contraction trees for
TNs with hundreds of tensors (Huang et al., 2021; Gray & Kourtis, 2021; cuQuantum development
team, 2023), implemented in packages like opt einsum (Smith & Gray, 2018).

Index slicing: A common problem with high-quality schedules is that intermediates exceed memory.
Dynamic slicing (Huang et al., 2021) (e.g.cotengra (Gray & Kourtis, 2021)) is a simple method
to decompose a contraction until it becomes feasible by breaking it up into smaller identical sub-tasks
whose aggregation adds a small overhead. This enables peak memory reduction and distribution.

Sparsity: Π is sparse as only a small fraction of the input contributes to an output element. For a
convolution with stride S < K and otherwise default parameters (P = 0, D = 1), for fixed output
and kernel indices k, o, there is exactly one non-zero entry in [Π]:,o,k. Hence nnz(Π) = OK, which
corresponds to a sparsity of 1/I. Padding leads to more kernel elements that do not contribute to an
output pixel, and therefore a sparser Π. For down-sampling and dense convolutions, we showed
how Π’s algebraic structure allows to simplify its contraction. However, if that is not possible, Π
contains explicit zeros that add unnecessary FLOPS. One way to circumvent this is to match a TN
with that of an operation with efficient implementation (like im2col, (transpose) convolution) using
transformations like the kernel-output swap or by introducing identity tensors to complete a template,
as done in Rochette et al. (2019); Dangel (2021) for per-sample gradients and im2col.

Approximate contraction & structured dropout: TNs offer a principled approach for stochastic
approximation via Monte-Carlo estimation to save memory and run time at the cost of accuracy.
The basic idea is best explained on a matrix product C := AB =

∑N
n=1 [A]:,n [B]n,: with A ∈

RI×N ,B ∈ RN,O. To approximate the sum, we introduce a distribution over n’s range, then use
column-row-sampling (CRS, Adelman et al., 2021) to form an unbiased Monte-Carlo approximation
with sampled indices, which only requires the sub-matrices with active column-row pairs . Bernoulli-
CRS samples without replacement by assigning a Bernoulli random variable Bernoulli(πn) with
probability πn for column-row pair n to be included in the contraction. The Bernoulli estimator is
C̃ :=

∑N
n=1

zn/πn [A]n,: [B]n,: with zn ∼ Bernoulli(πn). With a shared keep probability, πn := p,
this yields the unbiased estimator C ′ = 1/p

∑
n=1,...,N A′B′ where A′ = AK and B′ = KB with

K = diag(z1, . . . , zN ) are the sub-matrices of A,B containing the active column-row pairs. CRS
applies to a single contraction. For TNs with multiple sums, we can apply it individually. Also, we
can impose a distribution over the result indices, which leads to computing a (scaled) sub-tensor.
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Figure 7: Run time ratios of TN (w/o sim-
plifications) versus standard implementa-
tion for dense convolutions of 9 CNNs.
With simplifications, convolution and in-
put VJP achieve median ratios slightly
above 1, and the TN implementation is
faster for weight VJP, KFC & KFAC-
reduce. The coloured boxes in Figure 1
correspond to default, TN, and simplified
TN implementation for KFC.

5 EXPERIMENTS

5.1 RUN TIME EVALUATION

We implement the presented TNs’ contraction strings and operands5 in PyTorch (Paszke et al., 2019).
The simplifications from §4 can be applied on top and yield a modified einsum expression. To
find a contraction schedule, we use opt einsum (Smith & Gray, 2018) with default settings. We
extract the unique convolutions of 9 architectures for ImageNet and smaller data sets, then compare
some operations from Table 1 with their standard implementation on an Nvidia Tesla T4 GPU (16
GB); see §F for all details. Due to space constraints, we highlight important insights here and
provide references to the corresponding material in the appendix. In general, the performance gap
between standard and TN implementation decreases the less common an operation is (Figure F16);
from forward pass (inference & training), to VJPs (training), to KFAC (training with a second-order
method). This is intuitive as more frequently used routines have been optimized more aggressively.

Impact of TN simplifications: While general convolutions remain unaffected (Figure F17d)
when applying the transformations of §4, mixed dense, dense, and down-sampling convolutions
consistently enjoy significant run time improvements (Figures F17a to F17c). As an example, we
show the performance comparison for dense convolutions in Figure 7: The performance ratio’s
median between TN and standard forward and input VJP is close to 1, that is both require almost the
same time. In the median, the TN even outperforms PyTorch’s highly optimized weight VJP, also for
down-sampling convolutions (Figure F20). For KFC, the median performance ratios are well below 1
for dense, mixed dense, and sub-sampling convolutions (Figure F21).

KFAC-reduce: For all convolution types, the TN implementation achieves its largest improvements
for Ω̂ and consistently outperforms the PyTorch implementation in the median when simplifications
are enabled (Figure F22). The standard implementation unfolds the input, takes the row-average,
then forms its outer product. The TN does not need to expand JXK in memory and instead averages
the index pattern tensors, which reduces peak memory and run time. We observe performance ratios
down to 0.22 x (speed-ups up to ≈ 4.5 x, Table F8) and memory savings up to 3 GiB (§G.1). Hence,
our approach can significantly reduce the overhead of a 2nd-order optimizer based on KFAC-reduce
like that of Petersen et al. (2023) which only relies on the input-based factor (setting Γ ∝ I).

5.2 RANDOMIZED AUTODIFF VIA APPROXIMATE TENSOR CONTRACTION

CRS is an alternative to gradient checkpointing (Griewank & Walther, 2008) to lower memory
consumption of backpropagation (Oktay et al., 2021; Chen et al., 2023; Adelman et al., 2021). Here,
we focus on unbiased gradient approximations by applying the exact forward pass, but CRS when
computing the weight VJP, which requires storing a sub-tensor of X. For convolutions, the approaches
of existing works are limited by the supported functionality of ML libraries. Adelman et al. (2021)
restrict to sampling X along cin, which eliminates many gradient entries as the index is part of the
gradient. The randomized gradient would thus only train a sub-tensor of the kernel per step. Oktay
et al. (2021); Chen et al. (2023) apply unstructured dropout to X, store it in sparse form, and restore the
sparsified tensor during the backward pass. This reduces memory, but does not reduce computation.

5einsum does not yet support index un-grouping, so we must reshape manually before and after.
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(a) Real-world data
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(b) Synthetic data
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Figure 8: Sampling spatial axes is more effective
than sampling channels on both (a) real-world and
(b) synthetic data. We take the untrained All-CNN-
C (Springenberg et al., 2015) for CIFAR-100 with
cross-entropy loss, disable dropout, and modify
the convolutions to use use a fraction p of X when
computing the weight gradient via Bernoulli-CRS.
For mini-batches of size 128, we compute the de-
terministic gradients for all kernels, then flatten
and concatenate them into a vector g; likewise for
its proxy ĝ. CRS is described by (pcin , pi1 , pi2),
the keep rates along the channel and spatial dimen-
sions. We compare channel and spatial sampling
with same memory reduction, i.e. (p, 1, 1) and
(1,

√
p,
√
p). To measure approximation quality,

we use the normalized residual norm ∥g−ĝ∥2/∥g∥2

and report mean and standard deviation of 10 dif-
ferent model and batch initializations.

Our TN implementation is more flexible and can, for example, tackle spatial dimensions with CRS.
This reduces memory to the same extent, but also run time due to fewer contractions. Importantly, it
does not zero out the gradient for entire filters. In Figure 8 we compare the gradient approximation
errors of channel and spatial sub-sampling. For the same memory reduction, spatial sub-sampling
yields a smaller approximation error on both real & randomly generated data. E.g., instead of keeping
75 % of channels, we achieve the same approximation quality using only 35 % of pixels.

6 RELATED WORK

Structured convolutions: We use the TN formulation of convolution from Hayashi et al. (2019)
who focus on connecting kernel factorizations to existing (depth-wise separable (Howard et al., 2017;
Sandler et al., 2018), factored (Szegedy et al., 2016), bottleneck (He et al., 2016), flattened/CP
decomposed, low-rank filter (Smith, 1997; Rigamonti et al., 2013; Tai et al., 2015)) convolutions
and explore new factorizations. Our work focuses on operations related to convolutions, diagram
manipulations, the index pattern structure, and computational performance/flexibility. Structured
convolutions integrate seamlessly with our framework by replacing the kernel with its factorized TN.

Higher-order autodiff: ML frameworks prioritize differentiating scalar-valued objectives once. A
recent line of works (Laue et al., 2018; 2020; Ma et al., 2020) developed a tensor calculus framework
for computing (higher-order) derivatives of matrix/tensor-valued functions, along with compilation
techniques based on linear algebra and common sub-expression elimination (CSE). By phrasing
convolution as einsum, we allow it to be integrated into such frameworks, make it amenable to their
optimizations, and complement them with our convolution-specific simplifications.

7 CONCLUSION

We proposed using tensor networks (TNs), a diagrammatic representation of tensor multiplications,
to analyze convolutions and provide white-box implementations of related routines for autodiff
and curvature approximations via simple einsum expressions. We derived the diagrams of those
operations with full hyper-parameter support, channel groups, batching, and generalization to arbitrary
dimensions. This abstraction benefits from automated under-the-hood performance optimizations
inside einsum (contraction path search, distributing computations). We complemented those by
convolution-specific simplifications based on structure in the connectivity pattern and demonstrated
their effectiveness to speed up the computation of approximate second-order information (up to 4.5 x).

Our work underlines the elegance and expressiveness of TNs for applying function transformations
(differentiation, batching) and partial operand access (diagonal extraction) by simple graphical
manipulations. We believe they are a versatile tool to improve the understanding of convolutions and
will—due to their simplicity and flexibility—open up new algorithmic possibilities for them.
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Sören Laue, Matthias Mitterreiter, and Joachim Giesen. A simple and efficient tensor calculus. In AAAI
Conference on Artificial Intelligence, 2020.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Computation, 1989.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet
for the 2020s. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Linjian Ma, Jiayu Ye, and Edgar Solomonik. Autohoot: Automatic high-order optimization for tensors. In
International Conference on Parallel Architectures and Compilation Techniques (PACT), 2020.

J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics.
Probabilistics and Statistics. 1999.

James Martens. Deep learning via Hessian-free optimization. In International Conference on Machine Learning
(ICML), 2010.

James Martens. New insights and perspectives on the natural gradient method, 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate curvature.
In International Conference on Machine Learning (ICML), 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for recurrent neural
networks. In International Conference on Learning Representations (ICLR), 2018.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. Fast finite width neural tangent kernel. In
International Conference on Machine Learning (ICML), 2022.

Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, and Ryan P Adams. Randomized automatic
differentiation. In International Conference on Learning Representations (ICLR), 2021.

Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler. Asdl: A unified interface for
gradient preconditioning in pytorch, 2023.

11



Under review as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS). 2019.

Roger Penrose. Applications of negative dimensional tensors. Combinatorial Mathematics and its Applications,
1971.

Felix Petersen, Tobias Sutter, Christian Borgelt, Dongsung Huh, Hilde Kuehne, Yuekai Sun, and Oliver Deussen.
ISAAC newton: Input-based approximate curvature for newton’s method. In International Conference on
Learning Representations (ICLR), 2023.

Yi Ren, Achraf Bahamou, and Donald Goldfarb. Kronecker-factored quasi-newton methods for deep learning,
2022.

Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning separable filters. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

Gaspar Rochette, Andre Manoel, and Eric W. Tramel. Efficient per-example gradient computations in convolu-
tional neural networks, 2019.

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In International
Conference on Learning Representations (ICLR), 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In IEEE conference on computer vision and pattern recognition
(CVPR), 2018.

Frank Schneider, Lukas Balles, and Philipp Hennig. DeepOBS: A deep learning optimizer benchmark suite. In
International Conference on Learning Representations (ICLR), 2019.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
computation, 2002.

Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. Analytic insights into structure and rank of neural
network hessian maps. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Sidak Pal Singh, Thomas Hofmann, and Bernhard Schölkopf. The hessian perspective into the nature of
convolutional neural networks. 2023.

Daniel G. A. Smith and Johnnie Gray. opt einsum - A python package for optimizing contraction order for
einsum-like expressions. Journal of Open Source Software (JOSS), 2018.

Steven W. Smith. The scientist and engineer’s guide to digital signal processing. 1997.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity:
The all convolutional net, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In IEEE conference on computer vision and pattern recognition (CVPR),
2016.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-rank
regularization. 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In IEEE conference on computer vision and pattern recognition (CVPR), 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. 2016.

Fang Zhang. A parallel tensor network contraction algorithm and its applications in quantum computation. 2020.

12


