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Abstract

Federated learning (FL) aims to collaboratively train a global model using local data from a
network of clients. To warrant collaborative training, each federated client may expect the
resulting global model to satisfy some individual requirement, such as achieving a certain loss
threshold on their local data. However, in real FL scenarios, the global model may not satisfy
the requirements of all clients in the network due to the data heterogeneity across clients.
In this work, we explore the problem of global model appeal in FL, which we define as the
total number of clients that find that the global model satisfies their individual requirements.
We discover that global models trained using traditional FL approaches can result in a
significant number of clients unsatisfied with the model based on their local requirements. As
a consequence, we show that global model appeal can directly impact how clients participate
in training and how the model performs on new clients at inference time. Our work proposes
MAXFL, which maximizes the number of clients that find the global model appealing.
MAXFL achieves a 22-40% and 18-50% improvement in the test accuracy of training clients
and (unseen) test clients respectively, compared to a wide range of FL approaches that tackle
data heterogeneity, aim to incentivize clients, and learn personalized/fair models.

1 Introduction

Federated learning (FL) is a distributed learning framework that considers training a machine learning
model using a network of clients (e.g., mobile phones, hospitals), without directly sharing client data with a
central server McMahan et al.| (2017). FL is typically performed by aggregating clients’ updates over multiple
communication rounds to produce a global model [Kairouz et al.| (2019). In turn, each client may have its
own requirement that it expects to be met by the resulting global model under different settings such as at
inference or with some fine-tuning. For example, clients such as hospitals or edge devices may expect that the
global model performs at least better than a local model trained in isolation on the client’s limited local data
before contributing to FL training. Unfortunately, due to data heterogeneity across the clients, the global
model may fail to meet the requirements of all clients [Yu et al.| (2020).

Previously, a plethora of works in FL on techniques such as variance reduction Karimireddy et al. (2019),
personalization [Fallah et al.| (2020); Dinh et al.| (2020)), and fairness |Li et al. (2019) have proposed to train a
global model or several personalized models that can better cater to the needs of the clients or the server.
However, prior work has not directly focused on the total number of clients that are satisfied with the single
global model based on their individual requirements, and has not explored how this may affect the training of
the global model from the server’s perspective when clients have the autonomy to freely join or leave the
federation. Recent closely related works focus on clients’ incentives from a game-theoretic lens [Han et al.
(2022); Kang et al.| (2019); [Zhang et al.| (2021) and establish useful insights for simple linear tasks, but it
is difficult to extend these to practical non-convex machine learning problems. Other related works design
strategies specifically to prevent client dropout [Wang & Xu (2022); |Gu et al.| (2021), but these algorithms are
stateful, i.e., they require saving the gradient information from previously participating clients for the current
updates, making them impractical to implement in cross-device settings Kairouz et al. (2019). Moreover,
these works only provide convergence guarantees to the global minimum with respect to the standard FedAvg
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objective McMahan et al.| (2017), lacking theoretical justification that their objectives can yield solutions
that guarantee more participating clients compared to other classic FL objectives, even in simplified settings;
we provide such guarantees for our proposed objective for mean estimation problems, which helps to shed
light on our strong empirical performance (Section .

Proposing a new and formal metric to evaluate FL
systems, we define that a global model is appeal-
ing to a client if it satisfies the client’s specified
requirement, such as incurring at most some max
training loss. Subsequently, we define the number
of clients which find the global model appealing as
global model appeal (GM-APPEAL; formalized in Def-
inition . We show that having a high global model
appeal is critical for the server to maintain a large
pool of clients to select from for training, and for
gathering additional willingly participating clients.
This is especially true in the light of clients possi-
bly opting out of FL due to the significant costs
associated with training (e.g., computational over-
head, privacy risks, logistical challenges), which is
a practical concern not typically considered in prior
work. With a larger pool of clients to select from,
a server can not only improve privacy-utility trade-
offs McMahan et al.| (2018), but can also improve
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Figure 1: Test acc. and GM-Appeal of the global
model for FMNIST. A higher GM-Appeal results in a
higher test accuracy for both the seen clients that have
participated during training and unseen clients that
have not, due to the server having a larger pool of clients
to select from. MAXFL, which aims to maximize GM-
Appeal, results in the highest test accuracy compared
to the other baselines that do not consider GM-Appeal.

test accuracy on participating clients, and produce
a global model that generalizes better at inference to new unseen clients (see Fig. [l|and Table .

In this work, we seek to understand: (1) What benefits exist when maximizing global model appeal relative
to other common federated modeling approaches, and (2) What strategies exist to maximize global model
appeal in federated settings. Our key contributions are summarized as follows:

e We introduce the notion of global model appeal (referred to as GM-APPEAL), the fraction of clients
that have their local requirements met by the global model. We then propose MAXFL, an objective that
directly maximizes global model appeal, and show that having a high global model appeal can lead to
better test accuracy on training clients, as well as better generalization to new unseen clients at inference
time.

o We theoretically show for mean estimation that the MAXFL objective yields a solution that guarantees
higher GM-APPEAL than standard FL objectives and provide convergence guarantees for our MAXFL
solver which allows partial client participation, is applicable to non-convex objectives, and is stateless
(does not require clients to maintain local parameters during training).

o We empirically evaluate the performance of MAXFL to thoroughly understand the benefits of maximiz-
ing GM-APPEAL with experiments where i) clients can flexibly opt-out of training, ii) there are new
incoming (unseen) clients, iii) there are Byzantine clients participating in training, and iv) clients perform
personalization via local fine-tuning with the global model.

e We show that MAXFL significantly improves the global model appeal in practice, leading to a 22-40%
and 18-50% test accuracy improvement for the seen clients and unseen clients respectively, compared to a
wide range of FL. methods, including those that tackle data heterogeneity, aim for variance reduction or
incentivizing clients, or provide personalization or fairness.

Overall, our goal in comparing MAXFL with a variety of other FL. methods that have varying goals is not
necessarily to compete against these methods, but rather to understand and demonstrate the potential
benefits of our proposed notion of global model appeal relative to other objectives under different scenarios,
such as with flexible client participation or new incoming clients. As global model appeal has not been studied
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previously in FL, our work is the first to explore its possible implications, and then propose an objective to
train a global model that can maximize the number of clients whose individual requirements are satisfied. We
hope our proposed perspective of viewing and evaluating FL systems can inspire future works in different FL
scenarios and applications where client participation is not necessarily taken for granted, and can potentially
be used in conjunction with prior approaches in FL (e.g., see Section . We provide a more detailed review
of prior work and related areas of fairness, personalization and client incentives in Section

2 Problem Formulation

Setting. We consider a setup where M clients are connected to a central server to collaboratively train a
global model. For each client k € [M], its true loss function is given by fi(w) = E¢op, [¢(W,&)] where Dy,
is the true data distribution of client k, and ¢(w, &) is the composite loss function for the model w € R?
for data sample . In practice, each client only has access to its local training dataset By with |B| = Ny
data samples sampled from Dj. Client k’s empirical loss function is Fj(w) = @ > cen, {(w,§). While
some of the take-aways of our work (e.g., improving performance on unseen clients) may be more specific to
cross-device applications, our general setup and method are applicable to both cross-device and cross-silo FL.

Defining Global Model Appeal. Each client’s natural aim is to find a model that minimizes its true
local loss fi(w). Clients can have different thresholds of how small this loss should be, and we denote such
self-defined threshold for each client as py, k € [M]. For instance, each client can perform solo training on its
local dataset By to obtain an approximate local model wj and have its threshold to be the true loss from
this local model, i.e., pr = fx (vAvk) Based on these client requirements, we provide the formal definition of
global model appeal below:

Definition 1 (Global Model Appeal). A global model w is said to be appealing to client k € [M] if fr.(w) < p,
i.e., the global model w yields a smaller local true loss than the self-defined threshold of the client. Accordingly,
we define the fraction of clients to which the global model is appealing as global model appeal (GM-APPEAL)
with T being the indicator function:
M
1
GM-APPEAL = — ]; I{ fr(W) < pi} (1)

Our GM-APPEAL metric measures the exact fraction of clients that find the global model appealing by
focusing on whether the global model satisfies the clients’ requirements or not instead of looking at the gap
between f,(w) and pg. Another variation of (1) could be to measure the margin Y, max{py — fi(w), 0},
but this does not capture the motivation behind our work which is to understand how the number of clients
that find the global model appealing affects the global model performance.

Why Explore GM-Appeal in FL? GM-APPEAL measures how many clients have their requirements
satisfied by the global model. Thus, it can gauge important characteristics of the server’s global model such
as 1) how many clients are likely to dropout with the current global model or ii) how many new incoming
clients that do not have the capacity for additional training will likely be satisfied with the current global
model without any additional training to the model. Ultimately, a high global model appeal can lead to a
larger pool of clients for the server to select from. The standard FL objective [McMahan et al.| (2017) or its
popular variants [Karimireddy et al. (2019); [Li et al.| (2020); [Fallah et al.| (2020) does not consider whether
the global model satisfies the clients’ requirements, and implicitly assumes that the server will have a large
number of clients to select from. However, this may not necessarily be true if clients are allowed to dropout
when they find the global model unappealing. We show that acquiring a larger pool of clients by improving
global model appeal is useful for improving the global model for both the seen clients at training as well as
the unseen clients at inference (see Fig. |I and Table . In fact, we find that other baselines such as those
that aim to tackle data heterogeneity, improve fairness, or provide personalization have low GM-Appeal,
leading to a large number of clients opting out. Due to this, the global model is trained on just a few limited
data points, resulting in poor performance. Our work explores a new notion of global model appeal, showing
its significance in FL.

IThe client can have held-out data used for calculating the true loss fx(+) or use its training data as a proxy. We explain in
more detail of defining pj in Section E
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2.1 Proposed MaxFL Objective

In this section, we first introduce MAXFL whose aim is to train a global model that maximizes GM-APPEAL.
A naive approach can be to directly maximize GM-APPEAL defined in as follows:

M
argmax GM-APPEAL = argminz sign(fr(w) — pi). (2)

where sign(z) = 1 if z > 0 and 0 otherwise. There are two immediate difficulties in minimizing . First,
clients may not know their true data distribution Dy, to compute fi(w) — pr. Second, the sign function makes
the objective nondifferentiable and limits the use of common gradient-based methods. We resolve these issues
by proposing a "proxy" for with the following relaxations.

i) Replacing the Sign function with the Sigmoid function o(:): Replacing the non-differentiable
0-1 loss with a smooth differentiable loss is a standard tool used in optimization [Nguyen & Sanner (2013);
Masnadi-shirazi & Vasconcelos| (2008). Given the many candidates (e.g. hinge loss, ReLU, sigmoid), we find
that using the sigmoid function is essential for our objective to faithfully approximate the true objective in
. We further discuss the theoretical implications of using the sigmoid loss in Section

ii) Replacing fi(w) with Fj(w): As clients do not have access to their true distribution Dy to compute
fx(-) we propose to use an empirical estimate o(Fi(w) — pg). This is again similar to what is done in standard
FL where we minimize Fy(w) instead of fi(w) at client k. Note that the global model w is trained on
the data of all clients, making it unlikely to overfit to the local data of any particular client, leading to
fe(w) &~ Fj,(w), which we also show empirically in Appendix [D.3|

With the two relaxations above, we present our proposed MAXFL objective:

M
MAXFL Obj.: min F(w) = min % ZE(W), where Fy(w) := o(Fy(w) — p;). (3)
i=1

Before presenting our proposed solver for the MAXFL objective, we first present a motivating toy example
with mean estimation which shows that MAXFL’s objective leads to a different solution that has higher
GM-APPEAL compared to the solution obtained from the classic FL objective.

2.2 Toy Example: Maximizing GM-Appeal in Mean Estimation

We consider a toy setup with M = 2 clients where the true loss function at each client is given by
fr(w) = (w — 0;)?. 1In practice, clients only have N samples drawn from the distribution given by
ek, ~ N0k, v?), Vj € [Ny]. We further assume that the empirical loss function at each client is given by

Fp(w) = (w— é\k)Q + (§k — 01)? where §k is the empirical mean, §k = |Bi1k| Zivz"l ek,;. It is easy to see that the

minimizer of Fj(w) is the empirical mean §k Thus, we set the solo-trained model at each client as Wy = §k
and the loss threshold requirement at a client as px = Fj (W) = (0 — 1)

GM-Appeal for Standard FL. Model Decreases Exponentially with Heterogeneity. For simplicity
let us assume N; = No = N where 42 = v?/N is the variance of the local empirical means and %2; =
((6; — 62)/2)? > 0 is the measure of heterogeneity between the true means. The standard FL objective will
always set the FL model to be the average of the local empirical means (i.e. w = (51 + 52)/2) and does
not take into account the heterogeneity among the clients. As a result, the GM-Appeal of the global model
decreases exponentially as 7% increases.

Lemma 2.1. The expected GM-Appeal of the standard FL model is upper bounded by 2 exp (—7%/(572)),
where the expectation is taken over the randomness in the local datasets By, Bs.

Maximizing GM-Appeal with Relaxed Objective. We now maximize the GM-Appeal for this setting
by solving a relaxed version of the objective in as proposed earlier. We replace the true loss f(-) with
the empirical loss F(-) and replace the 0-1 (sign) loss with a differentiable approximation h(-). We first show
that setting h(-) to be a standard convex surrogate for the 0-1 loss (e.g. log loss, exponential loss, ReLU)
leads to our new objective behaving the same as the standard FL objective.
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Lemma 2.2. Let h be any function that is convez, twice differentiable, and strictly increasing in [0,00).
Then our relazed objective is strictly convex and has a unique minimizer at w* = (61 + 62)/2.

MaxFL Objective Leads to Increased GM-Appeal. Based on Lemma we see that we need
nonconvexity in h(-) for the objective to behave differently than standard FL. We set h(z) = o(z) =
exp(x)/1 + exp(x), as proposed in our MAXFL objective in and find that the MAXFL objective adapts to
the empirical heterogeneity parameter 72 = (52 — 6 /2)2. If 3% < 1 (small data heterogeneity), the objective
encourages collaboration by setting the global model to be the average of the local models. Conversely, if
72 > 2 (large data heterogeneity), the objective encourages separation by setting the global model close to
the local model of either client (see Fig. [2| below). Based on this observation, we have the following theorem.

Theorem 2.1. Let w be a local minima of the MAXFL objective. The expected GM-Appeal using w is lower
bounded by exp (—7’2) /16 where the expectation is over the local datasets By, Ba.

Observe that even with v& > 0, MAXFL will keep satisfying the requirement of at least one client by adapting
its objective accordingly. We show the behavior of MAXFL in a 3-client setup which further highlights the
non-trivialness of our proposed MAXFL’s formulation in Appendix [A]along with the simulation details for
Fig. 2] Details of our proof in this section can be found in Appendix [Bl

1 1 1 1
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Figure 2: (a): GM-APPEAL for FedAvg decays exponentially while GM-Appeal for MAXFL is lower bounded.
Replacing the sigmoid approximation with ReLU in MAXFL leads to the same solution as FedAvg. (b-c):
MAXFL adapts to the heterogeneity of the problem—for small heterogeneity it encourages collaboration
by having a single global minima, for large heterogeneity it encourages separation by having far away local

minimas.

3 Proposed MaxFL Solver
In this section, we present our MAXFL objective’s solver. The MAXFL algorithm enjoys the following
properties: i) uses the same local SGD procedure as in standard FedAvg, ii) allows partial client participation,
and iii) is stateless. By stateless, we mean that clients do not carry varying local parameters throughout
training rounds, preventing issues from stale parameters Wang et al. (2021). With the sigmoid approximation
of sign loss and for differentiable Fj(w), our objective F(w) in @ is differentiable and can be minimized
with gradient descent and its variants. Its gradient is given by:

Vi) =13 (- AR VA® (®)

Ay M 2 k(W k(W E\W).

aggregating weight:=qx (w)

Observe that VF (w) is a weighted aggregate of the gradients of the clients’ empirical losses, similar in
spirit to the gradient VF(w) in standard FL. The key difference is that in MAXFL, the weights qx(w) :=
(1 — Fx(w))Fy(w) depend on how much the global model appeals to the clients and are dynamically updated
based on the current model w, as we discuss below.

Behavior of the Aggregation Weights. For a given w, the aggregation weights qx(w) depend on the
GM-APPEAL Gap, Fy,(w) — py; (see Fig.[3). When Fj,(w) < pg, the global model w sufficiently meets the
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client’s requirement. Therefore, MAXFL sets ¢, (w) =~ 0 to focus on the updates of other clients. Similarly,
if Fj.(w) > pr, MAXFL sets g, (w) ~ 0. This is because Fi(w) > pj, implies that the current model w is
incompatible with the requirement of client k£ and hence it is better to avoid optimizing for this client at
the risk of sacrificing other clients’ requirements. MAXFL gives the highest weight to clients for which the
global model performs similarly to the clients’ requirements since this allows it to increase the GM-APPEAL
without sabotaging other clients’ requirements.

A Practical MaxFL Solver. Directly minimizing the MAXFL
objective using gradient descent can be slow to converge and
impractical, as it requires all clients to be available for training.
Instead, we propose a practical MAXFL algorithm, which uses

More Appealing  Less Appealing

multiple local updates at each client to speed up convergence as gﬁ 02
done in standard FL [McMahan et al. (2017) and allow partial = _
client availability. We use the superscript (¢,7) to denote the %‘J E/ 0.1
communication round ¢ and the local iteration index r. In each ‘§D S
round ¢, the server selects a new set of clients () uniformly a
at random and sends the most recent global model w(*? to the j:" 0'0710 0 10
clients in S®*9). Clients in S®*°) perform 7 local iterations with a
(tr+1) _ _ (tr) GM-Appeal Gap Fi(w) — Pk

learning rate m to calculate their updates as w,,’ =W,

(t,r) ((t,r) - (t,r) ((t,r) _
mg(wk &), Y:; < {.0 7 — 1} where g(wy ", £.77) Figure 3: Aggregating weight qi(w) versus
3 Eé.eg(t » Vf(w, "7, &) is the stochastic gradlent computed {10 GM-APPEAL gap defined as Fi(w) — pi

using a mini-batch §(t ") of size b that is randomly sampled for any client k € [M].

from client k’s local dataset Bj. The weight g (w,, (t, ))

(¢,0)

can be computed at each client by calculating the

loss over its training data with w;, >, which is a snnple inference step. Clients in S*% then send their local

updates Awg 0 s w (t‘T) wl(f 0) and weights qk(wgf 0)) back to the server, which updates the global model

(t+1,0) _ o (£,0) _ (t 0) (t,0) (t,0) (t,0) _ g ; ;
as w w Y okesto (W )AW!"? where 7§ =S e 18 the adaptive

server learning rate with global learning rate 7, and € > 0. We discuss the reasoning for such a learning rate
below. The pseudo-code for our MAXFL solver can be found in Algorithm [T]in Appendix

Adaptive Server Learning Rate for MaxFL. With L. continuous and Ly smooth Fj(w), Vk € [M]

(see Assumption , the objective F(w) is L, smooth where L, = L. 224:1 qr(w) + Le (see Appendix |§)

Hence, the optimal learning rate 7j for the MAXFL is given by, 77 = 1/L, = Mn/ (22/121 qr(w) + e), where
n= T is the optimal learning rate for standard FL and € = JZILL“ > 0 is a constant. The denominator of the

optimal 7 is proportional to the sum of the aggregation Welghts qr(w) and acts as a dynamic normalizing

factor. Therefore, we propose using an adaptive global learning rate n(t 0 — Mg/ (D peswo qk (w0) +¢)
with hyperparameters 7, €

Setting p; as Fj(wy) for MaxFL. One intuitive way to set p; for each client is to set it as the training
loss value F(Wy) where Wy, is a client local model that is solo-trained with a few warm-up local SGD steps
on its local data. The loss value only needs to be computed once and saved as a constant beforehand at each
client. How to train the local model wy, such as deciding the number of steps of training or whether to add
regularization, is dependent on the personal resources and requirements of the clients. Therefore, the quality
of the local model (such as whether it has overfitted or underfitted) is not explicitly controlled by MAXFL.
Nevertheless, we do provide an ablation study on the number of local SGD steps we take for training the
local trained model and provide the results in Appendix [D.3 which shows that MAXFL performance is in fact
robust to the number of local SGD steps we take and the performance does not vary much on this number.
In the essence, py is a client-dependent parameter that the client can choose, and our proposed MAXFL is a
more general framework that can be used for any client-defined pi. One might raise concerns that adversarial
clients can send arbitrarily small p; in the hope to get high weights, but as Fig. |3| clearly shows this will in
fact make the client get smaller weights. Further, we add experiments with byzantine clients in Section |5| and
show that MAXFL is robust to these scenarios.
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Appeal-based Flexible Client Participation. It may appear that our MAXFL solver requires clients
to always participate in FL if selected even when the global model does not appeal to them. However, our
algorithm is easily modified to allow clients to participate flexibly during training depending on whether they
find the global model appealing or not. For such appeal-based flexible client participation, we assume that
clients are available for training if selected only during a few initial training rounds. After these rounds, clients
are included in the pool of clients where the server can select the clients from only if they find the global
model appealing. We demonstrate this extension of MAXFL with appeal-based flexible client participation in
Table [If and Table [2] These experiments show that with flexible client participation, retaining a high global
model is even more imperative for the server to achieve good test accuracy and generalization performance.
We also show that even after we allow clients to participate flexibly, MAXFL retains a significantly higher
number of clients that find the global model appealing compared to the other baselines.

3.1 Convergence Properties of MaxFL

In this section, we show the convergence guarantees of MAXFL in Algorithm [I. Our convergence analysis
shows that the gradient norm of our global model goes to zero, and therefore we converge to a stationary
point of our objective F(w). First, we introduce the assumptions and definitions below.

Assumption 3.1 (Continuity & Smoothness of Fj(w), V k). The local objective functions Fy(w), ..., Far(w),
are L¢-continuous and Lg-smooth for any w.

Assumption 3.2 (Unbiased Stochastic Gradient with Bounded Variance for Fy(w), V k). For mini-batch

&, uniformly sampled at random from By, the resulting stochastic gradient is unbiased, i.e., E[gp (W, &)] =

VFy(wy), and its variance is bounded: E[||gy (Wi, &) — VFy(w)|?] < op.

Assumption 3.3 (Bounded Dissimilarity of F(w)). There exists > > 1, x> > 0 such that
M M

37 Limt [VEW)IIP < 8257 3205, VE(W)|? + 12 for any w.

Assumption are standard assumptions used in the optimization literature [Stich| (2019); |Karimireddy
et al.| (2019); Bistritz et al. (2020)); Wang et al. (2020), including the L.-continuity assumption |Shalev-Shwartz
et al.| (2009); [Riis et al.[ (2021). Note that we do not assume anything for our proposed objective function
F (w) and only have assumptions over the standard objective function F(w) to prove the convergence of
MAXFL over F(w) in Theorem

Theorem 3.1 (Convergence to the MAXFL Objective F(w)). Under Assumption suppose the
server uniformly selects m out of M clients without replacement in each round of Algorithm [I. With

m = ﬁ, N9 = /Tm, for a sufficiently large T' we have:

e[l =0 () o (2) o GR) o (57) o

where O subsumes all constants (including Ls and L.).

Theorem [3.1] shows that with a sufficiently large number of communication rounds 7" we reach a stationary
point of our objective function F'(w). The proof is deferred to Appendix E where we also show a version of
this theorem that contains the learning rates 7, and 7, with the constants.

4 Related Work

To the best of our knowledge, the notion of GM-APPEAL and the proposal to maximize it while considering
flexible client participation have not appeared before in the previous literature. Previous works have focused
on the notion of satisfying clients’ personal requirements from a game-theoretic lens or designing strategies
specifically to prevent client dropout, including the use of personalization, which have their limitations, as we
discuss below.

4.1 Incentivizing Clients and Preventing drop-out

A recent line of work in game theory models FL as a coalition of self-interested agents and studies how
clients can optimally satisfy their individual incentives defined differently from our goal. Instead of training a
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single global model, [Donahue & Kleinberg| (2021aib) consider the problem where each client tries to find the
best possible coalition of clients to federate with to minimize its own error. Blum et al.| (2021) consider an
orthogonal setting where each client aims to satisfy its constraint of low expected error while simultaneously
trying to minimize the number of samples it contributes to FL. While these works establish useful insights for
simple linear tasks, it is difficult to extend these to practical non-convex machine learning tasks. In contrast
to these works, in MAXFL we aim to directly maximize the number of satisfied clients using a global model.
This perspective alleviates some of the analysis complexities occurring in game-theoretic formulations and
allows us to consider general non-convex objective functions.

A separate line of work looks at how to prevent and deal with client drop-out in FL. Wang & Xu| (2022)
introduce a notion of ‘friendship’ among clients and proposes to use friends’ local update as a substitute
for the update of dropped-out clients. |Gu et al.| (2021) propose to use previous updates of dropped-out
clients as a substitute for their current updates. Both algorithms are stateful. Another line of work [Han et al.
(2022); [Kang et al. (2019); [Zhang et al. (2021) aims to incentivize clients to contribute resources for FL and
promote long-term participation by providing monetary compensation for their contributions, determined
using game-theoretic tools. These techniques are orthogonal to MAXFL’s formulation and can be combined if
needed to further incentivize clients.

4.2 Personalized and Fair Federated Learning

Personalized federated learning (PFL) methods aim to increase performance by training multiple related models
across the network (e.g., Smith et al., [2017)). In contrast to PFL, MAXFL focuses on the challenging goal of
training a single global model that can maximize the number of clients for which the global model outperforms
their local model. Unlike PFL which may require additional training on new clients for personalization,
MaxFL’s global model can be used by new clients without additional training (see Table . Also, MAXFL
is stateless, in that clients do not carry varying local parameters throughout training rounds as in many
popular personalized FL methods [Smith et al. (2017); [Dinh et al.| (2020); Fallah et al. (2020); Li et al.| (2021)),
preventing parameter staleness problems which can be exacerbated by partial client participation |Wang et al.
(2021). Furthermore, MAXFL is orthogonal to and can be combined with PFL methods. We demonstrate
this in Table [4, where we show results for MAXFL jointly used with personalization via fine-tuning [Jiang
et al.| (2019). We compare MAXFL +Fine-tuning with another well known PFL method PerFedAvg [Fallah
et al. (2020)) and show that MAXFL appeals to a significantly higher number of clients than the baseline.

Finally, another related area is fair FL, where a common goal is to train a global model whose accuracy
has less variance across the client population than standard FedAvg |Li et al.| (2019); Mohri et al.| (2019). A
side benefit of these methods is that they can improve global model appeal for the worst performing clients.
However, the downside is that the performance of the global model may be degraded for the best performing
clients, thus making it unappealing for them to participate. We show in Appendix [D.3] that fair FL methods
are indeed not effective in increasing GM-APPEAL.

5 Experiments

In this section we evaluate MAXFL for a number of different datasets while comparing with a wide range of
baselines to show that maximizing GM-APPEAL, i.e., training a global model that can appeal to a larger
number of clients, provide many benefits for FL including: i) the server gaining more participating clients to
select clients from for training a better global model for the seen clients, ii) the global model having a higher
chance to have a good performance on unseen clients, iii) being robust against byzantine clients, and iv)
clients gaining better performance with the global model when they combine MAXFL with local fine-tuning.

Datasets and Model. We evaluate MAXFL in three different settings: image classification for non-iid
partitioned (i) FMNIST Xiao et al.| (2017)), (ii) EMNIST with 62 labels|Cohen et al. (2017), and (iii) sentiment
analysis for (iv) Sent140 |Go et al.| (2009)with a MLP. For FMNIST, EMNIST, and Sent140 dataset, we
consider 100, 500, and 308 clients in total that are used for training where we select 5 and 10 clients uniformly
at random per round for FMNIST and EMNIST, Sent140 respectively. These clients are active at some point
in training the global model and we call them ‘seen clients’. We also sample the ‘unseen clients’ from
the same distribution from which we generate the seen clients, with 619 clients for Sent140, 100 clients for
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Seen Clients Unseen Clients
FMNIST EMNIST FMNIST EMNIST

Test Acc. GM-APPEAL Test Acc. GM-APPEAL Test Acc. GM-APPEAL Test Acc. GM-APPEAL
FedAvg 43.70(x0.02) 0.04(x0.0) 35.15(zx0.51) 0.02(+0.01) 43.14(+0.23) 0.07(x0.01) 37.14(+0.10) 0.06(+0.0)
FedProx  44.59(+1.94) 0.05(+0.01) 34.06(+1.21) 0.004(+0.0) 43.80(+1.67) 0.07(+0.01) 36.82(+0.22) 0.008(+0.0)
Scaffold  39.90(+0.59) 0.0(+0.0) 34.78(+2.05) 0.0(+0.0) 39.24(+0.68) 0.01(+0.0) 34.19(+1.25) 0.004(+0.0)
PerFedAvg 46.62(+1.0) 0.05(+0.0) 34.78(+1.05) 0.003(+0.0) 46.00(x0.87) 0.07(+0.0) 36.92(+0.51) 0.008(+0.0)
pFedme  31.06 (+2.06) 0.0 (£0.0) 9.78 (+2.13) 0.0 (+0.0) 20.11 (+3.4) 0.0 (x0.0) 7.05 (£1.03) 0.0 (£0.0)
qFFL 29.92(+3.13)  0.0¢(x0.0) 15.95(%3.02) 0.0(+0.00 19.63(+2.17)  0.0(+0.00  5.41(+0.52)  0.0(+0.0)
MW-Fed 44.41(+2.38) 0.04(x0.0) 30.44(+3.07) 0.01¢xo0.0) 43.46(£2.15) 0.06(£0.0) 36.54(+0.40) 0.01(%0.0)
MAXFL  70.86(+2.18) 0.37(+0.05) 57.34(+1.41) 0.25(+0.03) 74.53(+0.50) 0.39(+0.07) 55.62(+0.86) 0.31(+0.03)

Table 1: Avg. test accuracy and GM-Appeal where we train for 200 communication rounds. At the 10th
communication round, we let clients flexibly opt-out or opt-in depending on whether the global model has
met their requirements. We report the final avg. test accuracy and GM-Appeal at the 200th communication
round.

FMNIST, and 500 for EMNIST. These unseen clients represent new incoming clients that have not been seen
before during the training rounds of FL to evaluate the generalization performance at inference. Further
details of the experimental settings are deferred to Appendix

Baselines. We compare MAXFL with numerous well-known FL algorithms such as standard FedAvg |[McMa-
han et al.|(2017); FedProx|Sahu et al. (2020) which aims to tackle data heterogeneity; SCAFFOLD Karimireddy
et al.| (2019) which aims for variance-reduction; PerFedAvg, pFedme [Dinh et al. (2020) [Fallah et al.| (2020)
which facilitates personalization; MW-Fed Blum et al.| (2021) which incentivizes client participation; and
qFFL which facilitates fairness|Li et al. (2019). For all algorithms, we set py, to be the same, i.e., pp = Fi(Wg),
where Wy, is obtained by running a few warm-up local SGD steps on client k’s data as outlined in Section|3|to
ensure a fair comparison across baselines. We perform grid search for hyperparameter tuning for all baselines
and choose the best performing ones.

Evaluation Metrics: GM-Appeal, Average Test Accuracy, and Preferred-model Test Accuracy.
We evaluate MAXFL and other methods with three key metrics: 1) GM-APPEAL, defined in (), 2) average
test accuracy (avg. test acc.) across clients, and a new metric that we propose called 3) preferred-model
test accuracy. Preferred-model test accuracy is the average of the clients’ test accuracies computed on either
the global model w or their solo-trained local model Wy, whichever one satisfies the client’s requirement.
We belive that average test accuracy is a more server-oriented metric as it assumes that clients will use the
global model by default. On the other hand, preferred-model test accuracy is a more client-centric metric
that allows clients to select the model which works best, thereby better reflecting their actual satisfaction.

Note that the preferred-model test accuracy is a complementary novel metric we propose to gauge the
satisfaction of the clients when they can choose between the global and local models. For instance, if we have
a high preferred-model test accuracy but a low GM-Appeal where all clients are not interested in the global
model, then the primary objective of MAXFL has not been achieved. However, in our results we show that
in fact MAXFL has the complementary effect of not only being able to maximize the GM-Appeal, but also
have higher preferred-model test accuracy. This is because MAXFL is able to find the global model that can
perform better than a prefixed threshold for as many clients as possible, and therefore compared to the other
global models trained from different baselines, the test accuracy for those clients who chose the global model
is higher.

5.1 Experiment Results

Average Test Accuracy of Seen Clients & Unseen Clients. We first show that we improve the
GM-APPEAL and thus the average test accuracy performance for the ‘seen clients’ used during the training
of the global model. In Table[l] we show the average test accuracy across clients where we let clients flexibly
join or drop-out depending on whether the global model is appealing after 5% of communication rounds of
mandatory participation. We show that MAXFL achieves the highest GM-APPEAL than other baselines for



Under review as submission to TMLR

FMNIST EMNIST
Byz=0.1 Byz=0.05 Byz=0.1 Byz=0.05

Test Acc.  GM-APPEAL Test Acc. GM-APPEAL Test Acc. GM-APPEAL Test Acc. GM-APPEAL
MW-Fed 17.24 (+2.35) 0.01 (+0.0) 21.28 (x1.79) 0.02 (+0.0) 15.83 (+1.52) 0.004 (+0.0) 22.22 (+0.63) 0.008 (+0.001)
MAxFL 69.42 (+2.87) 0.35 (+0.05) 70.60 (+2.76) 0.42 (+0.03) 52.74 (+0.44) 0.20 (+0.01) 56.10 (+0.77) 0.23 (+0.01)

Table 2: Byzantine clients are included in the total clients where they artificially report large losses to the
server and add noise to their gradients. The ratio of the Byzantine clients is denoted as ‘Byz’. We report the
final avg. test accuracy and GM-Appeal across the seen clients where we train for 200 communication rounds.
At the 10th round, clients flexibly opt-out or opt-in depending on whether the global model has met their
requirements.
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Figure 4: GM-APPEAL and preferred-model test accuracy for the seen clients are significantly higher for
MAaXFL. Therefore, clients can also benefit from choosing either the local or global model for best performance,
while the server also gains a large number of clients to select from.

both FMNIST and EMNIST by 0.32-0.39 and 0.23-0.31 improvement, respectively. Since MAXFL is able to
retain a larger pool of clients due to having a higher GM-APPEAL, it therefore trains from selecting from a
more larger client pool, leading to the highest average test accuracy compared to the baselines by 22-40% and
18-50% improvement respectively for the seen and unseen clients. Since the other baselines do not consider
the notion of GM-APPEAL entirely, it fails in preventing client dropouts leading to poor performance. Note
that we do not use any of the ‘unseen clients’ during training and only calculate the GM-APPEAL and test
accuracy via inference with the global model trained with the ‘seen clients’.

Robustness of MaxFL Against Byzantine

Clients. One may think that MAXFL may be percepti- GM-APPEAL  Preferred-Model Test Acc.
ble to attacks from Byzantine clients that intentionally FMNIST Sent140 FMNIST Sent 140

send a greater GM-APPEAL gap to the server to gain
a higher aggregation weight. To show MAXFL’s ro-
bustness against such attacks we show in Table 2 the
performance of MAXFL with Byzantine clients attacks
which send higher losses to gain higher weights and
then send Gaussian noise mixed gradients to the server.

FedAvg 0.08(+0.01) 0.37(+0.07) 98.53(£0.13) 57.05(+1.44)
FedProx 0.07(+0.01) 0.37(+0.07) 98.43(+0.21) 57.07(+1.42)
Scaffold 0.02(+0.01) 0.03(+0.05) 98.26(+0.20) 51.59(+0.11)
MW-Fed0.05(+0.04) 0.17(+0.03) 98.32(+0.13) 55.57(+1.28)
MAXFL 0.55(+0.0) 0.43(+0.05) 98.83(+0.06) 57.16(+1.35)

We compare Wi.th. MW‘Eed Blum'e"c al.. (2021) V‘{hiCh Table 3: GM-APPEAL and preferred-model test accu-
aims for incentivizing client participation by clients racy of the final global models for the unseen clients.
sending higher weights to the server and performing N axFL improves the GM-APPEAL by at least 47%

more local updates. In Table [2] we see that for both foy FMNIST, and 6% for Sent140 and achieves the
high and low byzantine client ratios, MAXFL achieves same or higher preferred-model test accuracy.

only 1-5% lower test accuracy for seen and unseen

clients compared to the case where there are no Byzantine clients in Table [I. This is due to our objective
giving lower weight to those clients that give a too high GM-APPEAL gap (see Fig. . Hence MaXFL
disregards these clients that send artificially high GM-APPEAL gaps.

Preferred-model Test Accuracy: Clients’ Perspective. Recall that a high preferred-model test
accuracy implies that the client has a higher chance of satisfying its requirement by choosing between the

10
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global or solo-trained local model, whichever performs better. In Fig. [ we show that as the GM-APPEAL
increases across the communication round, preferred-model test accuracy also increases. MAXFL achieves
the highest final GM-APPEAL and preferred-model test accuracy indicating that it provides a win-win case
for both the server and clients, since the clients have the highest accuracy by choosing the better model
between the global model w and the local model Wy, and the server has the highest fraction of participating
clients. Similarly, in Table [3] MAXFL achieves the highest GM-APPEAL and preferred-model test accuracy.
Although the preferred-model test accuracy improvement compared to the other baselines may appear small,
showing that MAXFL is able to maintain a high preferred-model test accuracy while also achieving a high
GM-APPEAL implies that it does not sabotage the benefit of clients while also bringing the server more
clients to select from.

Local Tuning for Personalization. Per-

sonalized FL methods can be used to fine-tune Seen Clients Unseen Clients
the global model at each client before compar- FMNIST Sent140 FMNIST Sent140
ing it with the client’s locally trained model. FedAvg  0.38(+0.06) 0.25(£0.09) 0.39(%0.06) 0.42(+£0.06)
MAXFL can be combined with these methods FedProx  0.40(+0.07) 0.26(+0.09) 0.41(+0.07) 0.43(£0.12)
by simply allowing clients to perform some fine- Scaffold  0.02(+0.02) 0.16(+0.22) 0.03(+0.02) 0.07(+0.01)
tuning iterations before computing the aggre- PerFed Avg 0.45(+0.05) 0.24(+0.10) 0.46(+0.06) 0.47(0.06)
gation weights in Step 7 of Algorithm Both MW-Fed 0.28(+0.07) 0.08(+0.01) 0.39(+0.04) 0.20(+0.01)
for clients that are active during training and MAXFL  0.55(+0.01)0.36(0.05)0.56(+0.01) 0.55(+0.01)

unseen test clients, we show in Table [ that
MAXFL increases the GM-APPEAL by at least Lable 4: GM-APPEAL of locally-tuned models with 5 local

10% compared to all baselines. For FMNIST steps from the final global models for seen clients and unseen
and Sent140, the improvement in GM-Appgar,  clients. Both for clients that are active during training and
unseen test clients, MAXFL increases the fraction of clients
that find the global model appealing by at least 10% as
compared to all baselines.

over other methods is up to 27%, 28% respec-
tively for active clients and 17%, 4% respec-
tively for unseen clients.

6 Limitations and Concluding Remarks

In this work, we explore the notion of global model appeal by proposing to train a global model that maximizes
the number of clients whose requirements are satisfied. We show that when participating clients drop out or
clients do not join due to small global model appeal, the test accuracy for the current training clients and
generalization performance to the new unseen clients can suffer significantly. With theoretical insights and
guarantees, we show through extensive experiments that MAXFL retains many clients for training and thus
achieves a high average test accuracy across the participating clients and also across the new incoming clients.

We note that our proposed metric GM-APPEAL and MAXFL objective have some limitations. For instance,
it is possible train a global model that sacrifices the performance of a few clients to maximize GM-APPEAL,
potentially reducing fairness. However, we expect that MAXFL could potentially be altered by modulating
the py value to cover such limitations such as setting pi to a constant that retains fairness. Another limitation
in MAXFL is that it does not currently consider specific incentive mechanisms for various settings such
as what cost we can set for the new incoming clients that wants to use the global model at inference
without participating in training. Without setting this cost, one may raise the concern of free-rider problems.
Nevertheless, our work presents a first step towards maximizing the set of clients that are interested in the
global model; how to design the cost of using a global model would be an interesting, orthogonal direction of
future work. As a similar notion of global model appeal has not been thoroughly examined previously, we
hope our work can open up new research directions in understanding the role played by the server to prevent
client dropout and recruit new clients by finding a global model that serves as many clients as possible.

Broader Impact Statement

Our work proposes a new objective to maximize global model appeal in federated learning, which can
incentivize more clients to participate and prevent clients from dropping out, and improve generalization
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performance on unseen clients. Despite these benefits, it is worth acknowledging the potential negative
effects of the proposed objective and algorithm in terms of other metrics, such as unfairness (e.g., increased
performance gap) between different subpopulations or vulnerability to Byzantine clients. Here, we note that
(1) Our MAXFL framework is general in the sense that it could be adjusted to trade off fairness/utility by
setting the local requirement parameters p; appropriately for specific subpopulations, arriving at a fairer
model that reduces the number of clients suffering from inferior performance; and (2) Our results demonstrate
that MAXFL is in fact more robust to Byzantine clients than competitors due to its dynamic reweighting
scheme (see Table . In general, however, it remains critical to carefully consider trade-offs between issues
such as model appeal, fairness, and robustness for the application at hand. The goal of this work is to
explore the implications of MAXFL both theoretically and empirically so that we can understand various
benefits and limitations of GM-APPEAL in different scenarios. We hope practitioners and researchers can
thus appropriately adjust the framework and/or combine it with other learning schemes depending on the
application of interest, weighing potential benefits of the approach relative to existing methods in terms of
achieving higher accuracy, broader participation, and increased fairness or robustness.
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