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ABSTRACT

We consider the problem of length generalization in sequence prediction. We define a new metric of
performance in this setting — the Asymmetric-Regret— which measures regret against a benchmark
predictor with longer context length than available to the learner. We continue by studying this
concept through the lens of the spectral filtering algorithm. We present a gradient-based learning
algorithm that provably achieves length generalization for linear dynamical systems. We conclude
with proof-of-concept experiments which are consistent with our theory.

1 INTRODUCTION

Sequence prediction is a fundamental problem in machine learning with widespread applications in natural language
processing, time-series forecasting, and control systems. In this setting, a learner observes a sequence of tokens and
iteratively predicts the next token, suffering a loss that measures the discrepancy between the predicted and the true
token. Predicting future elements of a sequence based on historical data is crucial for tasks ranging from language
modeling to autonomous control.

A key challenge in sequence prediction is understanding the role of context length—the number of previous tokens
used to make the upcoming prediction—and designing predictors that perform well with limited context due to compu-
tational and memory constraints. These resource constraints become particularly significant during the training phase
of a predictor, where the computational cost of using long sequences can be prohibitive. Consequently, it is beneficial
to design predictors that can learn from a smaller context length while still generalizing well to longer sequences.
This leads us to the central question of our investigation: Can we develop algorithms that learn effectively using short
contexts but perform comparably to models that use longer contexts?

To address this question, we introduce a new performance metric—Asymmetric-Regret—which measures the differ-
ence in total prediction loss between an online predictor with limited context length and a benchmark predictor with
a longer context. Unlike classical regret, which assumes both the learner and the benchmark operate under the same
conditions, Asymmetric-Regret accounts for the asymmetry in context lengths, providing a more realistic assessment
of performance in resource-constrained settings. With a formal and well-defined notion of Asymmetric-Regret in
hand, we begin our investigation with the following question: are there algorithms that can attain non-trivial bounds
on the Asymmetric-Regret for natural sequences?

We explore this concept through the lens of spectral filtering algorithms (Hazan et al., 2017b;|2018). Spectral filtering
has emerged as a robust method for learning linear dynamical systems when the system is unknown and the hidden state
is unobserved. Linear dynamical systems are a useful and rich class to study. Although they are applicable in many
domains, they have been particularly useful in large language modeling applications. Since next-token generation is
a sequence prediction problem, these methods are naturally applicable as a building block to use as layers in LLM:s.
Methods which are designed to solve sequence prediction in linear dynamical systems have been used to design
state space models which have achieved SOTA performance on many LLM tasks, with efficiency gains during both
training and inference (Gu et al.| (2021b)); [Poli et al. (2023); |Gu & Dao (2023). Spectral filtering was introduced in
Hazan et al. (2017a) as a method which provably achieves O(\/T ) regret when compared with the best LDS predictor
(without any assumptions on the sequence data). Beyond their theoretically sound properties, spectral filtering-based
predictors have proven practical in recent applications. Notably, the Spectral Transform Unit (Agarwal et al., |2023),
a neural architecture built using spectral filtering, has recently shown promise on sequence prediction over a range of
modalities (Liu et al., [2024).



In this work, we extend the theoretical understanding of spectral filtering by demonstrating that these predictors can
achieve length generalization. Specifically, we present a gradient-based online learning algorithm for spectral filtering
and show that we can learn and make predictions on a smaller context length while still achieving the same regret
bounds as if we had used a much longer context length. Formally, we prove that this algorithm guarantees Asymmetric-

Regret O(V/T).

Beyond theoretical interest, our work is practically motivated by challenges in length generalization faced by large
language models (LLMs). As previously mentioned, methods which emerged from studying linear dynamical systems
have proven useful in LLMs, including spectral filtering and the Spectral Transform Unit. Current LLMs often struggle
to generalize to longer sequences than those seen during training (Abbe et al.| 2023} |Anil et al.| 2022} Jelassi et al.|
2023; Zhou et al.| 2023} |Delétang et al.,[2022; |Dzir1 et al.,[2024;|Zhou et al.,|2024)) and a significant body of empirical
research has been dedicated to addressing this limitation (Kazemnejad et al., 2024; Shen et al., 2023 [Dai, [2019} |Chi
et al.| 2022} [Li et al., 2023} [Press et al.l 2021). Despite its importance and extensive empirical research, provable
theoretical results on length generalization remain largely elusive. We view our work as a step toward addressing this
gap. The asymmetric regret bounds we establish in this paper imply that spectral filtering is able to implicitly handle
the difficult problem of deciding how to use and store tokens much earlier in a sequence for next-token prediction.
Since most empirical methods introduced to improve length generalization are task-specific, this is an exciting feature.
It suggests that simply incorporating spectral filtering into neural architectures may have the potential to improve
length generalization.

1.1 OUR CONTRIBUTIONS

Consider online sequence prediction in which the predictor iteratively receives input u; € R% and then makes a
prediction §j; € R%u of the output, after which the true output y; is revealed. The goal of the predictor is to minimize
error according to a given convex and Lipschitz loss function ¢;(y;, 9: ). In this work we consider the class of spectral
filtering predictors, introduced by Hazan et al. (2017b). A spectral filtering predictor is characterized by parameters
(T, M;¥_,, k) and outputs predictions 7, of the form

K
Ut = yr—1+ Zi:l Miu—1).00:,

nxT i5 a matrix whose columns are the previous inputs w;_1, u;_o, . . . , ug (possibly zero-padded

where u(;_1y.0 € R?
as necessary), {¢; ?:1 are the T'-dimensional spectral filters, {Ml}ic=1 C Rdouxdin are matrices which are learned

online, and k is the number of filters used. Hazan et al. (2017b) provide an algorithm to learn {Mi}f:1 and show this
achieves nearly optimal regret bounds when measured against the best Linear Dynamical System (LDS) predictor. We
investigate whether it is necessary to use the entire history w;_1).o to learn the optimal set of matrices {Mz}i’c:1 More
broadly, we explore whether predictor classes and corresponding online learning algorithms exist that can achieve
context length generalization—that is, they use only a short recent history during learning but perform nearly as well
as if they had used the full, much longer history length. Of course, predictors which perform poorly on systems that
require long memory can trivially achieve context length generalization if their performance is poor regardless of the
context length used. Therefore, it is important to note that one of the key features of spectral filtering predictors is that
they are able to perform well on systems that have long memory (Hazan et al.,|2017b).

To properly understand context length generalization, we introduce the notion of Asymmetric-Regret. The idea is to
consider the regret of learning a predictor from a class which is only allowed to use context length L’ against the best
predictor which is allowed to use (potentially much longer and therefore asymmetric) context length L. Let IT;, denote
the class of predictors in IT which use context length L. Given an algorithm .A(L’) which learns over predictors from
some class II7/, the Asymmetric-Regret over horizon 7 is

def x\—T' AL . o
RegretAsymmetric,T (A(L/>7 HL) = Zt:l gt (yt7 Yt ( )) — MNrely et (yta Yi )

Our first result shows that spectral filtering generalizes from a history of 7%, where ¢ € [0, 1], to T for certain linear
dynamical systems. It is formally given in the following theorem.

Theorem 1. Let T € Z > ¢ and g € [0,1]. Consider a sequence (y1, . .., yr) generated by an unknown and noiseless
linear dynamical system defined by matrices (A, B, C, D) as per Eq. E] Assume the input sequence ug.;_1y is suffi-

ciently well-conditioned, satisfying Z;‘F:_Ol (T — tyugu, = (%) 1. Suppose the eigenvalues of A lie within the

log(T
range {0,1 - °8g1(1q)} ULl - 5557 1]



Let A(L) denote Algorithm ll] operating with context length L, and let H%F denote the class of spectral filtering
predictors using context length L. For the squared loss ((y,y') = |y — y'|* and sufficiently large T, it holds that:

RegretAsymmetric,T ('A(Tq)v H%“F) S O(\/T)

This theorem indicates that for any ¢ € [0, 1], the Asymmetric-Regret is bounded by O(v/T)). However, as ¢ decreases,
the class of linear dynamical systems for which this bound holds becomes more restricted due to the eigenvalue
conditions on A. The spectrum of A determines the memory of the system; when the eigenvalues of A are 1, the system
is only marginally-stable and standard predictors which aim to use low memory typically fail. Critically, Theorem I]
holds even for these marginally-stable systems. When interpreting this result, it’s important to note that the class of
spectral filtering predictors I15F which use the full context length are provably able to predict well on marginally-stable
Linear Dynamical Systems (Hazan et al., 2017b Therefore, this result implies that spectral filtering predictors are
able to context length generalize in a nontrivial way.

Inspired by the way in which Theorem [I] is sensitive to the spectrum of A, we develop a novel variation on the
Spectral Filtering algorithm, presented in Algorithm [2| which achieves robust length generalization without added
assumptions on the spectrum of A (whenever the context-length is at least 7/4). Algorithm [2|achieves this by using
two autoregressive components y;_1 and y;_o to construct its prediction g; of y;. We provide our main theorem of
this work.

Theorem 2. Let T € Z > and q € [i + W, 1}. Consider a sequence (yi,...,yr) generated by an

unknown and noiseless linear dynamical system defined by matrices (A, B, C, D) as per Eq. (Il Assume the input

sequence ug,;—1) is sufficiently well-conditioned, satisfying ZtT:_Ol (T — tyugu, = (2|C7\/HTB|> 1. Let A(L) denote

Algorithmlgloperating with context length L, and let H%F denote the class of spectral filtering predictors using context
length L. For the squared loss {;(y,y') = |y — y'|* and sufficiently large T, it holds that:

Regre[Asymmetric,T (‘A(Tq)’H%F) < O(\/f)

Finally, we experimentally confirm the results of Theorem [I|and Theorem [2| on synthetic data generated by an LDS.
Interestingly, we find that Theorem [I] accurately predicts when length generalization is possible; indeed, when the
data is generated by an LDS which has eigenvalues in the “bad” range [1 — log(T")/(879),1 — 1/(2T°%/*)] we find
that the limited context length spectral filtering predictors are unable to length generalize. However, when the data is
generated by and LDS which has eigenvalues “hugging” this bad range (i.e. either just smaller than 1 —log(7T)/(877)
or just larger than 1 —1/(27°°/4)), the limited context length spectral filtering predictors successfully length generalize,
demonstrating the sharpness of our analysis. Next, we see that adding the second autoregressive term allows for robust
length generalization on marginally-stable systems with no spectral assumption. Lastly, we conduct experiments using
the STU neural architecture to test the hypothesis that this architecture should simply length generalize without any
task-specific engineering. We consider the induction heads synthetic task and find that the out-of-the-box STU neural
architecture does indeed enjoy some level of length generalization. This suggests that incorporating spectral filtering
into neural architectures, like the STU, may provide improved length generalization in deep learning applications. We
leave further empirical study on this for future work.

1.2 RELATED WORK

The literature for sequence prediction is too broad to survey in detail, so we give a few highlights of the recent rapid
advancements. The most notable progress includes the Transformer model (Vaswani et al., 2017) that incorporates an
attention mechanism for accurate sequence prediction in many domains (Brown et al., 2020; |Dosovitskiy et al., 2020;
Jumper et al.,|2021). Transformer models and their attention layers have memory/computation requirements that scale
quadratically with context length. Many approximations have been proposed (see Tay et al.|(2022) for a recent survey).

Motivated by the high memory and compute requirements of transformers, state space models were revisited starting
from (Gu et al.}|2020;2021b)) who propose and develop the HiPPO theory. |Gu et al. (2021a) develop the S4 parameter-
ization to address the bottlenecks of training efficiency, performance and numerical stability. Further works in the area

'The only LDS’s for which there can be any useful results are those with A’s eigenvalues in [—1,1], i.e. marginally-stable
systems. We recall that the spectral filtering principle can be readily applied to handle negative eigenvalues in [—1, 0] (see Appendix
D of |Agarwal et al.| (2023), for example). For ease of presentation, we focus on capturing the length generalization effects of
eigenvalues in [0, 1] in the sequel, and so we suppose without loss of generality that A > 0.



show SOTA performance and include Gupta et al.| (2022)); |Smith et al. (2023));|Orvieto et al.|(2023)); Gu & Dao (2023).
State space models are very efficient for training and inference, but can suffer in long-context applications. This mo-
tivated the use of spectral filtering technique for learning marginally-stable linear dynamical systems (Hazan et al.|
2017bj 2018). This technique was incorporated to a neural architecture in |Agarwal et al.| (2023), that was recently
shown to perform well across several modalities (Liu et al., 2024).

From an applied perspective, generalization in sequence prediction has been recently studied in |[Hou et al. (2024)
through the theoretical lens of Turing programs. They propose a methodology that empirically improves length gen-
eralization across a diverse set of tasks. There are also architecture-specific approaches to length generalization such
as ALiBi positional embeddings for transformers (Press et al.,[2022)), but such methods lack provable guarantees and
can have varying empirical performance (Kazemnejad et al., 2024).

In contrast, our investigation starts from the theory of regret minimization in games and online learning. Regret
minimization has the advantage that it implies generalization in the statistical learning setting (see e.g. |Cesa-Bianchi
et al.| (2004)) and is usually accompanied by efficient algorithms such as online gradient descent (see e.g. [Hazan
et al.[(2016))). Our new notion of Asymmetric-Regret incorporates asymmetric information access between the online
learner and the benchmark class.

2 BACKGROUND AND SETTING

In the online sequence prediction setting the predictor iteratively receives input u; and makes prediction g of the
output, after which the true output y, is revealed. The goal is to minimize error according to a given (convex Lipschitz)
loss function ¢ (ys, Gt)-

In online learning, we usually do not make statistical assumptions about the generation of the input sequence. As such,
performance is measured relative to a certain benchmark class of predictors. A prediction algorithm .4 is measured by
regret, or difference in total loss, vs. a class of reference predictors II™f (such as linear predictors), i.e.

T T
Regrety (A, II) = thl Clye, ) — frnelll'} thl Ce(ye, 97 )-

This formulation is valid for online sequence prediction of any signal. We are particularly interested in signals that are
generated by dynamical systems. A time-invariant linear dynamical system is given by the dynamics equations

Tip1 = Az + Bug +wp , Yey1 = Oy + Dug + G, (D

where z; is the (hidden) state, u, is the input or control to the system, and y; is the observation. The terms wy, ; are
noise terms, and the matrices A, B, C, D are called the system matrices.

Many methods exist for linear dynamical systems and their performance guarantees rely heavily on the spectrum of
A. The system is unstable whenever | Amax(A)| > 1 because the norm of the observations tends towards infinity, stable
when |Amax(A4)| < 1, and marginally-stable if |[Amax(A)| = 1. When [Apax(A4)] = 1 — § < 1, typical methods (i.e.
Kalman filtering) must use a history of at least > % previous states to accurately capture the dynamics. As § gets
smaller (i.e. long memory) it therefore becomes difficult for methods to directly learn these relationships. Methods
which learn the system matrices require knowledge of the dimension of the hidden state (which may be very large)
and can also be unstable for systems with long memory. Through a particular parameterization and convex relaxation,
however, the spectral filtering algorithm is able to efficiently predict observations from marginally-stable systems with
sublinear regret. We provide more background on spectral filtering in Section 2.2} and more details on the rich theory
of linear dynamical systems may be found in|Hazan et al. (2020).

2.1 CONTEXT LENGTH GENERALIZATION AND THE ASYMMETRIC-REGRET METRIC

We say that an online predictor has context length L if it bases its prediction gj; only on information from the previous
L timesteps, i.e. us.;—1 and y..:— . Open loop predictors base their prediction only on u;..— 1, whereas closed loop
predictors can also use y;.¢—r,. The key question in our work is whether there are predictor classes with corresponding
online learning algorithms learn and predict using a short context length, but perform as well as had they been allowed
to use long context length. To formalize this notion, we introduce Asymmetric-Regret whose definition we restate
here:



Definition 3 (Asymmetric-Regret). Let IT¥9™ be a class of predictors which use context length L’ and let T be a
reference class of predictors which use context length L. The Asymmetric-Regret with respect to (convex Lipschitz)
loss ¢; over horizon T of an algorithm .A(L’) which tries to learn a predictor from IT!#™ js

T

£\ def T ~A(L .
RegretAsymmetric,T (A(L,), Hrf ) = Zt:l gt (yt’ Yt ( )) - 73211_}1 =1

gt (yta QZT ) .

To gain a better understanding of Asymmetric-Regret, note that the typical notion of regret in sequence prediction sets
L' = T for the given class of predictors and sets L = T for the given reference class of predictors I by default. In
this case Asymmetric-Regret recovers typical regret,

Regret (-’4’ Href) = RegretAsymmetric,T (A(T)7 Hl’}e“f) .

However, if L' < T, any upper bound on Regret ., metric 7 (A(L'), II5") immediately implies an upper bound on

Regret (.A, H““'f) since the algorithm A(T") can choose to only use context length L’ and ignore the rest. Therefore,
Asymmetric-Regret is a stronger notion than typically used.

2.2  SPECTRAL FILTERING

Spectral filtering is a notable deviation from the standard theory of linear dynamical systems that allows efficient
learning in the presence of arbitrarily long memory (Hazan et al.,2017b). The idea is to project the sequence of inputs
to a small subspace that is constructed using the special structure of discrete linear dynamical systems. The output of
the spectral filtering predictor is represented as

k
U =y—1+ Zi:l Miug—1).09, 2

where u;_1).0 € R% T js a matrix whose columns are the previous inputs u;_1, ..., uo (possibly zero-padded as

necessary), {¢; ?:1 are the T-dimensional spectral filters that can be computed offline given the target sequence length

T, and {Mi}f:1 C Rdouwxdn are the matrices parameterizing the model. These spectral filters are the eigenvectors of
the matrix constructed as the average of outer products of the discrete impulse-response functions as we now detail.

Let g7 = (1 — @)[1,a, a2, ...,aT] be the (weighted) impulse-response vector corresponding to a one dimensional
linear dynamical system with parameter o unfolded to 7" time steps, and consider the symmetric matrix

1
def
Hy & / Horpe] pda. 3)
0

Since Hr is a real PSD matrix, it admits a real spectral decomposition, and the (non-negative) eigenvalues can be
ordered naturally by their value. Let {(c; € R, ¢; € RE) ]L:1 be the eigenvalue-eigenvector pairs of Hr ordered to
satisfy 0y > o9 > ... > o4. The spectral filters ¢, ..., ¢ are exactly those first k eigenvectors corresponding to
the largest eigenvalues. The spectral filtering class is further parameterized by matrices My, ..., M}, € R%uXdn_ The
output at time ¢ is then given by equation equation 2}

The following theorem establishes that the spectral filtering class of predictors approximately contains bounded linear
dynamical systems with positive semi-definite A. The exact constants are left out for simplicity of presentation, but
appear in the original work.

Theorem 4 (Simplified from [Hazan et al.|(2017a)). Given any linear dynamical system parametrized by A, B,C, D
such that A is a PSD matrix with ||A|| < 1, there exists matrices My, ..., My, such that for all T and all sequences
ur.r, ||ugl| < 1, the following holds. Let y=25 be the sequence generated by execution of the LDS via equation and
yfFT be the sequence generated by Spectral Filtering via equation Then for all t € [T),

kS =y ~ e

Theorem 4 establishes that Spectral Filtering can predict long memory sequences since the statements holds even over
marginally stable linear dynamical systems.



3 LEARNING WITH A SHORT CONTEXT—PROVABLE LENGTH GENERALIZATION FOR
LINEAR DYNAMICAL SYSTEMS

In Algorithm[T] we modify the classical online learning algorithm for spectral filtering to use a shorter context window.
To properly define our notion of length generalization, we need to distinguish between context lengths. Thus we
introduce the notation for the loss observed with a context length L: letting §(M, L) denotes the prediction of y; using
M = [M,..., M) and context window size L as in Eq. of Algorithmwe have

def || ~
G(M, L) = [[§(M, L) — ye1*.

Note that this is overloaded notation compared with ¢;(y, y’) which measures the loss of the true y with the predicted
1/’ as used in our definition of regret. To provide a precise statement on length generalization, we present the following

Algorithm 1 Spectral Filtering with Limited Context
1: Input: k > 0,7 > 0, L > 0,7 > 0. Initialize M} € R%«*dn for i € [k] and set M' = [M{,..., M}]. Let ¢y,
be the largest eigenvectors of Hr defined in Eq. with corresponding eigenvalues 7., and let i () denote the
projection to convex set .
2: fort=1,2,....,T do
3:  Compute and predict

Ut = ye—1 + Zle Mitu(t—l):(t—L)(Gz‘l/4¢i)- “)
4:  Observe y;, denote £;(M?, L) = ||jjs — y¢||? and update and project onto the low Frobenius norm ball
MU MY — 5Vl (M)
M = 1 (Mt+1) ’

where K, = {M € RF*dowxdn gt ||| < rforalli € [k]}.
5: end for

performance guarantee. Note that we prove the following for a (A, B, C, I)-LDS rather than (A, B, C, D) which is
without loss of generality since we can consider the input as Duy, . .., Dur.

Theorem 5. Let T € Z > ¢ and q € [0, 1]. Consider a sequence (y1,...,yr) generated by an unknown and noise-
less linear dynamical system defined by matrices (A, B,C,I) as per Eq. Assume the input sequence ug.;_1)
is sufficiently well-conditioned, satisfying ZtT;Ol(T — tugu, > (2\07\)%5 1. Suppose the eigenvalues of A lie

within the range [0,1 - log(T)} U [1— g5 1]. Let k = Q(log(T) -log (T'da)), r > ||B|l||C||, and assume

8T
T > (4klog(T)/|ICINIBID™. Algorithmsatisﬁes:

Regretsymmersic:r (A(T),T57) < O (| BI2|CI2K/ og(T)VT)

The proof of Theorem [3]is in Appendix [B] with a high-level overview at the end of this section. This theorem shows
that the sequence M, ..., M™ constructed by Algorithm even when using a reduced context length of size 7', is
able to achieve regret O(y/T") when compared to the best spectral filter that uses full context length 7'. To gain better
understanding of the needed assumption on the spectrum of A, first suppose that all the eigenvalues of A are bounded
by 1 — 0. Then the extent to which the input u, 4, affects the value of y; is roughly (1 — &), since the hidden
state is multiplied by A to many times. This becomes negligible when ¢, is much larger than 1/ and implies that
us—¢, may be forgotten. This intuition explains why length generalization is possible for the first region of eigenvalues
[0,1 — log(T")/(8T1)]. Indeed, letting 6 = log(T")/8T% and t, = T (which is much bigger than 877/ log(T") for
large enough T') we see that when the spectrum of A is smaller than 1 — §, after ¢, many steps we can forget about the
previous inputs u;—_¢,. The second part of the range — i.e. that the spectrum of A can lie between [1 — 1/ (2T5/ H,1]-
is a special feature of spectral filtering’s ability to efficiently capture long memory effects and is rather technical. The
“bad region” is exactly the range where the eigenvalues aren’t small enough that u;_,, can be forgotten for ¢y > 19,



but also aren’t large enough that spectral filtering is naturally able to capture them. Numerically, the range is very
small for large 7" and reasonable q.

Motivated by the limitations of Theorem [} in order to provide a length generalization that is robust to the spectrum
of A, we introduce a variation on the classical Spectral Filtering algorithm, presented as Algorithm [2] This algorithm
uses the two most previous outputs y;—1 and y;_o when making a prediction ¢ of y;.

This algorithm has a slightly different construction of spectral filters. Indeed, they are the eigenvectors of the following
matrix

def

1
Ny & / Fio il oo, 5)
0

where i, 7 = (1 — a) [1,a,02,...,aT]. Interestingly, just by using one extra autoregressive term, our adapted
algorithm is able to enjoy robust length generalization in the sense that whenever the context window is at least
T'/4+¢ then no extra assumptions on the spectrum of A are necessary to achieve our notion of length generalization.
We state this formally in the following theorem.

Algorithm 2 Spectral Filtering with Limited Context and Two Autogressive Components

1: Input: k> 0,7 > 0, L > 0,7 > 0. Initialize M} € R% % for; € [k] and set M* = [M}, ..., M}]. Let ¢1.,
be the largest eigenvectors of Np_o defined in Eq I 5| with corresponding eigenvalues &1.x, and let mx(-) denote
the projection to convex set /C.

2: fort=1,2,....,T do

3:  Compute and predict

Ut =2y, l_yt2+M1Ut1+M2Ut2+Z Mu(t 3):1-1) (7 60).

4:  Observe y;, denote £;(M?, L) = ||y — y¢||? and update and project onto the low Frobenius norm ball
M MY — Vg by (M)
M = e (Mt+1)

where K, = {M = [My,..., Mg]s.t. ||M;]|| < rforallie€ [k]}.
5: end for

Theorem 6. LetT' € Z > and q € H + W, 1}. Consider a sequence (yi,...,yr) generated by an

unknown and noiseless linear dynamical system defined by matrices (A, B,C,I) as per Eq. l Assume the in-
put sequence ug.;—1) is sufficiently well-conditioned, satisfying Zf:_ol (T — tyuguf = (2|\C}B|) I. Let k =
Q (log(T) -log (Tda)), r > ||B||||C|| and assume T > (4klog?(T)/||C|/| BI)* Algorithm@sansﬁes.

Regreteymmersie:r (AT),T57) < O (I1BIACIPK 1og?(T)VT) .
The proof of Theorem []is in Appendix [C|and we now give a high-level overview.

High-Level Proof Overview. The general proof technique for both Theorem [5| and Theorem [6]is the same. First,
using standard online gradient descent results from Hazan et al.|(2017b) we prove that the iterates M achieve O(\/T )
regret as measured by the context-length restricted loss Zthl £(M, L). That is,
T T
thl ((M* L) < min (,(M, L)+ O(T). (6)

MeK, &~it=1
Next we prove that there is a unique M} which minimizes the loss on the full T-length context and this M. achieves
length generalization in the sense that it achieves small loss even when only allowed to use context length L. That is
T

thl (Mg, L) < ZT—1 O(M7,T) + O(\/T) (7)



We combine Eq.[6]and Eq.[7]to get the final notion of length generalization that

T T T T
S (ML) < min Y 4(M,L)+ONT) <> 6(Mj, L)+ ONT) < > 64(M;,T)+ONT).

MeK, &

The difficult result to prove is Eq.[7] The high level idea is that when y1.; evolves as a noiseless LDS and when the input
Ug:(t—1) 18 sufficiently well-conditioned, then Zthl ¢, (M,T) is strongly convex and the minimizer approximately
recovers a collection of “true” matrices which are generated by the underlying linear dynamical system. The second
key idea is that if an algorithm had access to these “true” matrices then it would be able to achieve small loss even
when restricted to a small context-length L. < T'. The extent to which these recovered matrices can achieve small
loss when restricted to the small context-length depends on the way the algorithm chooses to predict ;. In the case
of Algorithm [T] where y, is predicted based only using only one autoregressive term, even having access to the true
matrices is not enough to accurately predict y;. However, in the case of Algorithm[2] having access to the true matrices
as well as a second autoregressive term allows accurate prediction of y; even when restricted to small context-length
window.

4 EXPERIMENTS

4.1 LINEAR DYNAMICAL SYSTEM

We can empirically verify Theorem|[5|and Theorem [6]in an online sequence prediction task where the data is generated
by a noiseless LDS. We refer to a “bad” region of eigenvalues (1 —log(7')/(877/%), 1 —1/(21°/*)) as Region B,
and we define Region A to hug Region B on both sides as shown in Figure

Region A
|

0] [ 1

Region B

Figure 1: The red region (Region B) represents the interval of eigenvalues for which length generalization is not
guaranteed by Theorem 5] The blue region (Region A) is chosen to hug Region B on both sides (the leftmost point of
Region A is 0.9 - (1 —log(7T")/(877/%)) and the rightmost point is 1). This selection ensures that (1) Region A will
start to contain bad eigenvalues as ¢ decreases from 7/8 and (2) eigenvalues in Region B are bad for ¢ < 7/8.

Theorem [3] predicts that if all the eigenvalues lie outside Region B, then spectral filtering will length generalize from
T7/8 to T. To confirm this, we generate a random LDS of hidden dimension 512 with half of the LDS eigenvalues
uniformly sampled from each component of Region A. The online prediction losses are plotted in Figure[2|for different
choices of context length 7', where T' = 2'4 and k = 24. As expected from the theory, context lengths approaching
T7/8 closely match the performance of the optimal spectral filtering predictor with full context.

Very interestingly, we see that context length 7/2 consistently fails in a qualitatively worse fashion — indeed, some of
the values in Region A are actually “bad” for ¢ = 1/2. This seems to suggest that such eigenvalues can actually cause
instabilities/issues with length generalization and are not limitations of our proof — if true, such a fact could be seen
as a partial converse to Theorem [5] and would justify our use of “bad” to describe these eigenvalues. To check this
conjecture empirically, we run another experiment where we generate a random LDS of hidden dimension 512 with
all eigenvalues in Region B and plot the prediction losses in Figure[3] These results confirm that (some subset of) this
bad region is indeed what throws off the length generalization capability of spectral filtering.

Next we apply our novel Algorithm [2] which uses two autoregressive components. Theorem [6] predicts that this algo-
rithm should be robust to this bad region of eigenvalues and instead achieve length generalazation for any (symmetric,
marginally-stable) LDS. We verify this experimentally in Figure ] - to be as adversarial as we can, this experiment is
run with all eigenvalues sampled from Region B. As predicted by Theorem [0 the second autoregressive component
allows for robust length generalization even with context lengths as small as v/T".
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Figure 2: Prediction losses
L(M,T?) for M' from Algo-
rithm([T|on an LDS with eigenvalues
sampled from Region A, averaged
over random seeds and smoothed.
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Figure 3: Prediction losses
(M, T9) for M' from Algo-
rithm[Tjon an LDS with eigenvalues
sampled from Region B, averaged
over random seeds and smoothed.
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Figure 4: Prediction losses
L(M,T?) for M from Algo-
rithm[2on an LDS with eigenvalues
sampled from Region B, averaged
over random seeds and smoothed.

4.2 INDUCTION HEADS

So far, we have demonstrated length generalization of spectral filtering on linear systems: when trained with a shorter
context length of 79 it is able to compete with methods that have access to the full context 7" (even on marginally-stable
systems that can have arbitrarily large effective memory lengths). This length generalization property is most crucial
in deep learning applications, in which multi-layer models are stacked (with added nonlinearities) to solve non-LDS
sequence prediction tasks.

As an empirical proof-of-concept to demonstrate that STU’s length generalization capability extends to this regime, we
evaluate it on the induction heads synthetic sequence modeling task, which is commonplace in the language modeling
literature (see |Gu & Daol (2023)) and was experimentally shown in [Liu et al.| (2024) to be efficiently solved by a
two-layer STU. In the induction heads task, the model is required to recall one token (sampled uniformly from a
vocabulary) immediately after a special £1ag token; the rest of the sequence consists of the same special blank
token, which the model should learn to ignore.

The STU architecture we use is composed of an embedding layer, two “tensordot” STU layers with MLPs and ReLU
nonlinearities, and an output projection layer (the same as in|Liu et al.|(2024))) with filters of length 7" = 256.

Following prior STU architecture implementations we use no autoregressive components, and so any length gener-
alization observed here comes directly from the filtering mechanism itself. We train these models until convergence
with a tuned Adam optimizer and various context lengths 7'9. The vocabulary size is set to 4.

Accuracies are plotted in Figure [5] for evaluation task lengths increasing up to 7. As we see, vanilla STU models
are able to nontrivially length generalize and occasionally retain good accuracy beyond their training context lengths,
though inconsistently”} Importantly, unlike algorithms that achieve length generalization through architectural modifi-
cation, we simply just train with filters longer than the train context. As such, this method allows for the convolutional
mode during training and inherits all the benefits of STU that are demonstrated in |Liu et al.| (2024). For example,
the nonlinear selection mechanism of |Gu & Dao (2023) allows for extreme length generalization on induction heads
without prior knowledge of the evaluation length, though at a cost to training efficiency, implementation simplicity,
and optimization complexity. We reiterate that our goal is not to navigate such a tradeoff by modifying the STU model
so that it length generalizes on induction heads, but rather to exhibit a provable length generalization capability of the
STU that comes for free from its natural structure.

The large variance in Fi gureis due to bimodailty in the accuracies — often the model generalizes perfectly, though sometimes
it fails to do so. Overcoming this is very plausible (through regularization or optimization considerations), but is a modeling/deep
learning question that ought to be studied in large empirical setups. We use this synthetic task strictly as a proof-of-concept: length
generalization in synthetic tasks can be very sensitive (compare Figures 5 and 6 in Jelassi et al. (2024), for example), and it can
be difficult to know when length generalization on a certain task informs us about real-world applications |Ben-Kish et al.| (2024).
We leave a thorough empirical study on length generalization in language modeling (and comparisons with transformers and other
SSMs) to future work.
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Figure 5: Accuracies for STU models trained on an induction heads task of length 79 and evaluated on sequence
lengths increasing up to 7', averaged over random seeds. Models occasionally generalize all the way up to length 7',
as indicated by the large variance of evaluation accuracies.

5 DISCUSSION

In review, we first introduced the notion of Asymmetric-Regret as a way to describe length generalization through
the lens of online learning and regret minimization in games. We then proved that the class of spectral filtering
predictors naturally enjoys sublinear Asymmetric-Regret thereby exhibiting length generalization without any change
to the algorithm, albeit with some restrictions on the underlying data (i.e. the spectrum of A). We introduced a new
variant of spectral filtering which uses two autoregressive components and achieves length generalization which is
more robust to the assumptions of the underlying data. Next, we used experiments on synthetic data generated by
an LDS to demonstrate the validity and sharpness of our theory and provided proof-of-concept length generalization
experiments on a synthetic nonlinear sequence prediction task.

Our theoretical results and initial empirical findings reveal that some type of length generalization comes naturally
with the spectral filtering algorithm. This result implies that spectral filtering is powerful in its ability to learn the
dynamics of a complicated underlying system with long memory — it naturally handles the issue of what aspects in
a sequence should be memorized for the future and what aspects can be forgotten, whereas many existing methods
are hand engineered depending on the specific task. This adds to the already-exciting list of its useful (and provable)
properties, including: robustness to systems with long memory and large hidden dimension, efficient training via
convolutions, optimization convexity, and the existence of good parameter-efficient approximations. Given recent
successful applications of spectral filtering as the building block for STU models in deep learning
2023}, [Liu et al. [2024), it would be valuable to research how to best take advantage of their length generalization
capacity at scale — we leave this for future work.
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