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ABSTRACT

Goal-oriented reinforcement learning algorithms are often good at exploration, not
exploitation, while episodic algorithms excel at exploitation, not exploration. As
a result, neither of these approaches alone can lead to a sample-efficient algorithm
in complex environments with high dimensional state space and delayed rewards.
Motivated by these observations and shortcomings, in this paper, we introduce
Regioned Episodic Reinforcement Learning (RERL) that combines the episodic
and goal-oriented learning strengths and leads to a more sample efficient and ef-
fective algorithm. RERL achieves this by decomposing the space into several
sub-space regions and constructing regions that lead to more effective exploration
and high values trajectories. Extensive experiments on various benchmark tasks
show that RERL outperforms existing methods in terms of sample efficiency and
final rewards.

1 INTRODUCTION

Despite its notable success, the application of reinforcement learning (RL) still suffers from sam-
ple efficiency in real-world applications. To achieve human-level performance, episodic RL (Pritzel
et al., 2017; Lee et al., 2019) is proposed to construct episodic memory, enabling the agent to as-
similate new experiences and act upon them rapidly. While episodic algorithms work well for tasks
where it is easy to collect valuable trajectories and easy to design dense reward functions, both of
these requirements become roadblocks when applying to complex environments with sparse reward.
Goal-oriented RL (Andrychowicz et al., 2017; Paul et al., 2019) decomposes the task into several
goal-conditioned tasks, where the intrinsic reward is defined as the success probability of reaching
each goal by the current policy and the ability to guide the agent to finally reach the target state.
These methods intend to explore more unique trajectories and use all trajectories in the training pro-
cedure, which may involve unrelated ones and result in inefficient exploitation. In this paper, we
propose a novel framework that can combine the strengths of episodic and goal-oriented algorithms
and thus can efficiently explore and rapidly exploit high-value trajectories.

The inefficient learning of deep RL has several plausible explanations. In this work, we focus on
addressing these challenges: (C1) Environments with a sparse reward signal can be difficult to learn,
as there may be very few instances where the reward is non-zero. Goal-oriented RL can mitigate this
issue by building intrinsic reward signals (Ren et al., 2019), but suffer from the difficulty of gener-
ating appropriate goals from high-dimensional space. (C2) Training goal-oriented RL models using
all historical trajectories rather than selected ones would involve unrelated trajectories in training.
The training process of goal generation algorithms could be unstable and inefficient (Kumar et al.,
2019), as data distribution shifts when the goal changes. It can be fairly efficient if updates happen
only with highly related trajectories. (C3) Redundant exploration is another issue that limits the
performance as it is inefficient for the agent to explore the same areas repeatedly (Ostrovski et al.,
2017). Instead, it would be much more sensible for agents to learn to divide the task into several
sub-tasks to avoid redundant exploration.

In this paper, we propose Regioned Episodic Reinforcement Learning (RERL), which tackles the
limitations of deep RL listed above and demonstrates dramatic improvements in a wide range of
environments. Our work is, in part, inspired by studies on psychology and cognitive neuroscience
(Lengyel & Dayan, 2008; Manns et al., 2003), which discovers that when we observe an event, we
scan through our corresponding memory storing this kind of events and seek experiences related to
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this one. Our agent regionalizes the historical trajectories into several region-based memories∗. At
each timestep, the region controller will evaluate each region and select one for further exploration
and exploitation. Each memory binds a specific goal and a series of goal-oriented trajectories and
uses a value-based look-up to retrieve highly related and high-quality trajectories when updating the
value function. We adopt hindsight (i.e., the goal state is always generated from visited states in
the memory) and diversity (i.e., goal state should be distant from previous goal states in other mem-
ories) constraints in goal generation for goal reachability and agent exploration. This architecture
conveys several benefits: (1) We can automatically construct region-based memory by goal-oriented
exploration, where trajectories guided by the same goal share one memory (see Section 3.1). (2)
Within each memory, we alleviate the high-dimensional issue (C1) by enforcing that the goal space
is a set of visited states (see Section 3.2). (3) In order to improve efficiency in exploitation (C2), our
architecture stabilizes training using trajectories within the memory instead of randomly selected
transitions (see Section 3.3 for details). (4) Our algorithm takes previous goals in other memories
when generating a goal in current memory. Specifically, we propose the diversity constraint to en-
courage the agent to explore unknown states (see Section 3.2), which aims at improving exploration
efficiency (C3).

The contributions of this paper are as follows: (1) We introduce RERL, a novel framework that
combines the strengths of episodic RL and goal-oriented RL for efficient exploration and exploita-
tion. (2) We propose hindsight and diversity constraints in goal generation, which allows the agents
to construct and update the regioned memories automatically. (3) We evaluate RERL in challeng-
ing robotic environments and show that our method can naturally handle sparse reward environ-
ments without any additional prior knowledge and manually modified reward function. RERL can
be closely incorporated with various policy networks such as deep deterministic policy gradient
(DDPG (Lillicrap et al., 2015)) and proximal policy optimization (PPO (Schulman et al., 2017)).
Further, ablation studies demonstrate that our exploration strategy is robust across a wide set of
hyper-parameters.

2 PRELIMINARIES

In RL (Sutton & Barto, 2018), the goal of an agent is to maximize its expected cumulative reward
by interacting with a given environment. The RL problem can be formulated as a Markov Decision
Process (MDP) by a tuple (S,A,P, r, γ), where S is the state space, A is the action space, P :
S × A → ∆(S) is the state transition probability distribution, r : S × A → [0, 1] is the reward
function, and γ ∈ [0, 1) is the discount factor for future rewards. Our objective is to find a stochastic
policy π : S × A → [0, 1) that maximizes the expected cumulative reward Rt =

∑T
k=0 γ

krt+k
within the MDP, where T is the episode length. In the finite-horizon setting, the state-action value
function Qπ(s, a) = E[Rt|st = s, a] is the expected return for executing action a on state s and
following π afterward. The value function can be defined as

V π(s) := E

[
T∑
k=0

γkrt+k(st, at) | st = s, π

]
, ∀s ∈ S, (1)

where T is the episode length and the goal of the agent is to maximize the expected return of each
state st. Deep Q Network (DQN, (Mnih et al., 2015)) utilizes an off-policy learning strategy, which
samples (st, at, rt, st+1) tuples from a replay buffer for training. It is a typical parametric RL
method and suffers from sample inefficiency due to slow gradient-based updates. The key idea of
episodic RL is to store good past experiences in a tabular-based non-parametric memory and rapidly
latch onto past successful policies when encountering similar states, instead of waiting for many
optimization steps. However, in environments with sparse rewards, there may be very few instances
where the reward is non-zero, making it difficult for an agent to find good past experiences. In
order to address this issue, goal-oriented RL is proposed. In the goal-conditioned setting that we
use here, the policy and the reward are also conditioned on a goal g ∈ G (Schaul et al., 2015). The
distance function d (used to define goal completion and generate sparse reward upon the completion
of goal) may be exposed as a shaped intrinsic reward without any additional domain knowledge:
r(st, at|g) = 1, if d(φ(·|st+1), g) ≤ δ, and r(st, at|g) = −d(φ(·|st+1), g) otherwise, where φ :

∗The common idea our method shares with neuroscience is utilizing highly related information to promote
learning efficiency. The difference is that memories are regioned according to the generated goals in this paper,
and fictions in cognitive neuroscience.
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Algorithm 1 Framework of RERL
1: repeat
2: Select Region together with Region-based

Memory.
3: Generate goals for exploration with Goal-

oriented RL.
4: Interact with the Environment.
5: Store historical trajectories into Memory.
6: Update value estimation for exploitation

with Episodic RL.
7: until Q function Converges.

Policy 
Network

Goal 
Generator

Environment

Action

State

...

Goal

Region-based
Memory Trajectory

Exploration Exploitation

Figure 1: An illustration of RERL where we
propose region-based memory for efficient
exploration and exploitation.

S → G is a known and tractable mapping†. While we expect that cooperation of goal generation
and distance function themselves to lead the agent to the final state (global optimum), in practice,
we need to consider that there exist local optima due to state space structure or transition dynamics
(Trott et al., 2019). Once we can generate appropriate goal g and anti-goal ḡ, we are able to redefine
the intrinsic reward function as:

r(st, at|g, ḡ) :=

{
1 d(φ(·|st+1), g) ≤ δ
min[0,−d(φ(·|st+1), g) + d(φ(·|st+1), ḡ)] otherwise,

(2)

where st+1 ∼ P(·|st, at) denotes the next state; φ : S → G is the extended joint generation for
both goal and anti-goal generations; ḡ ∈ G is the anti-goal and acts as a state that the agent should
avoid, which prevents the policy from getting stuck at the local optimum and enables the agent to
learn to reach the goal location quickly;(Trott et al., 2019) δ is a given threshold indicating whether
the goal is considered to be reached (Plappert et al., 2018). To make use of r(st, at|g, ḡ) in practice,
we require a method to dynamically estimate the local optima that frustrate learning without relying
on domain-expertise or hand-picked estimations.

The idea of the universal value function (Schaul et al., 2015) is to use a universal functional ap-
proximator to represent a large number of value functions. In the goal-oriented scenario, the value
function conditioned on any given goal of g and anti-goal ḡ can be defined as

V π(s, g, ḡ) := Eat∼π(·|st,g,ḡ),st+1∼P(·|st,at)

[
T∑
t=1

γtr(st, at|g, ḡ) | st = s

]
. (3)

Let X : {x | x = (s, g, ḡ)}, denote the joint set over state and goal spaces. Specifically, we define
x∗ ∈ X over initial state s0 ∈ S, initial goal g∗ ∈ G and initial anti-goal ḡ∗ ∈ G. At the start
of every goal-oriented task (Plappert et al., 2018), an initial-terminal states pair will be drawn from
the task distribution. In this paper, we regard the terminal state as the original goal g∗ and set the
original anti-goal ḡ∗ as the initial state to encourage the agent to explore at the beginning. In this
setting, the agent tries to find a policy π that maximizes the expectation of discounted cumulative
reward V π(x∗). From the comparison of Eqs. (1) and (3), one can see that the critical points for
goal-oriented RL are to generate appropriate goals. However, as stated in (Ren et al., 2019), in goal-
oriented RL, the value function V π(x) is optimized with respect to a shifting goal-conditioned task
distribution, which makes learning unstable. This issue requires RL algorithms to rapidly obtain
value estimation under current goal-conditioned tasks, which is the strength of episodic RL. For
convenience, we replace all (s, g, ḡ) tuples with x in the following context.

3 REGIONED EPISODIC REINFORCEMENT LEARNING

†The definition of φ depends on the definitions of state and goal, and varys when encountering the different
environments (Ren et al., 2019). For example, the goal only indicates the designated position of the destination
in the Ant Maze environment (see Figure 4(b)), thus, the mapping is defined as a mapping from a system state
to the position of the destination in this case.
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Figure 2: An illustration for motivation.

The basic idea behind this paper is to ‘divide-and-
conquer’‡ exploration and exploitation problems in
RL. Firstly, we adopt goal-oriented RL to ‘divide’
the state space into several regions, where a specific
goal identifies each region. We then utilize episodic
RL to ‘conquer’, where we store and learn from
highly related and high-quality trajectories in region-
based memories. The overall framework is called
Region Episodic Reinforcement Learning (RERL).

We provide the overall algorithm in Algorithm 1 and
illustration in Figure 1, which combines the strengths of goal-oriented RL and episodic RL to per-
form efficient exploration (illustrated as orange part in Figure 2) and exploitation (illustrated as blue
part in Figure 2). In the following section, we first introduce the definition of regions together with
region-based memories in Section 3.1. In order to automatically obtain regions during exploration,
we generate appropriate goals to guide the agent under hindsight and diversity constraints in Sec-
tion 3.2. Since the goal of any RL agent is to learn a policy that can maximize the expected return,
we show the value estimation update formulation based on region-based memory in Section 3.3.

3.1 CONSTRUCT REGION-BASED MEMORY

Following (Florensa et al., 2017), many previous goal-oriented RL works (Ren et al., 2019; Asadi
et al., 2018) adopt Assumption 1 to guarantees continuous goal-space representation.

Assumption 1. A value function V π(x) has Lipschitz continuity over goal g and anti-goal ḡ, which
can be formulated as

|V π(x)− V π(x′)| ≤ L · d(x, x′), (4)

where L denotes the Lipschitz constant. Considering that this Lipschitz continuity may not hold for
every x ∈ X , we partition the joint set X into several subsets. If d(x, x′) is not too large within each
sub-set, generally speaking, it is reasonable to claim that the bound Eq. (4) holds for most scenarios.
In this paper, we define these sub-spaces as regions. We formulate the definition as follows:

Definition 1. Considering that X satisfies X =
⋃N
i=1 Xi and Xi

⋂Xj = ∅, ∀i, j = 1, 2, . . . , N
and i 6= j, we define each subset Xi as a region, where N is the number of regions.

Region Controller

Region 1

...

...

Key

Region 2

...

Value
Key
Key

Key

Value
Value

Value

Memory

Key
Key
Key

Key

Value
Value
Value

Value

Memory

Figure 3: An illustration for
region-based memory.

An ideal partition strategy should divide state space into several
parts, and each part leads to one meaningful goal (e.g., in the case
of exploring a large house, ideal partition strategy should divide
the house into separated rooms). RL algorithms explore each par-
tition while ignoring other state space, thus significantly reducing
exploration complexity. However, one should note that it is imprac-
tical to find the perfect partition strategy without any task-specific
manual engineering. One possible solution to automatically gener-
ate these regions is to bind each region with a series of goals. In
other words, we can design a region-based goal generation where
at each timestep, we pick up one region and update the goal within
the region. This architecture conveys several advantages: (1) It al-
lows the agent to solve a complex environment through ’divide-and-
conquer’. (2) Goal generation is modified within a sub-space, which can improve the stability.

In order to achieve this, we construct region-based memories based on historical trajectories.
Specifically, for each region-based memory Mn,we have a simple memory module Mn(x) =
(K(x), V π(x)), where x ∈ Xn, K(x) = (φ(·|s), g, ḡ) is the key of the memory and V π(x) is
the value of the memory. As shown in Figure 8, each memory binds a specific region. At each
episode, the region controller selects the region-based memory containing the highest value state
for further exploration and exploitation. The motivation behind this is very intuitive that the agent
always focuses on the region with the highest potential. However, directly adopting this greedy
operation may lead to the phenomena of rich-get-richer (Salganik et al., 2006). Instead, we adopt

‡Different from traditional divide-and-conquer algorithms, we ‘divide and conquer’ the problem with only
one round of problem division instead of using a recursive way.
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Boltzmann softmax to select one region Xn. We use Xn to denote a division of joint set X , which is
conceptual and not accessible. In the practice, we use the trajectories stored inMn instead.

Selected-Mn =
exp(maxm∈Mn

Vm/ι)∑N
i=1 exp(maxm∈Mi

Vm/ι)
, (5)

where ι denotes the temperature hyper-parameter to control the exploration rate, Vm is the value of
the sampled memorym, andN is the number of regions. In practice, we set the initial temperature at
1.0, then gradually reduce the temperature to 0.01 to limit region level exploration. After selecting
a region Xn, the agent will focus on performing efficient exploration and exploitation upon the
historical experience in its associated memory Mn. We here prove that the value optimization
problem in a region-based setting is a relaxed lower bound for the original one through Proposition 1.

Proposition 1. Given the joint set X and several region-based sets (i.e., sub-sets) Xn, where n =
1, 2, . . . , N and N is the number of regions, we have

∀π, max
x∈X

V π(x) ≥ max
x∈{x1,x2...,xN}

V π(x), where xn = arg max
xn∈Xn

V π(xn). (6)

Proof. The proof of Proposition 1 is provided in Appendix C.1.

3.2 EXPLORE WITH GOAL-ORIENTED REINFORCEMENT LEARNING

In this section, we aim to find appropriate goals for exploration. In this paper, we analyze that ap-
propriate goals should have the following three properties, namely (1) high value (close to terminal
state), (2) reachability (appropriate for current policy), and (3) exploratory potential (explore unvis-
ited states). To this end, we search for high-value states, according to Eq. (3), under hindsight and
diversity constraints. Based on Assumption 1, we can easily derive that

∀xn ∈ Xn, x′n ∈ X ′n, V π(xn) ≥ V π(x′n)− L · d(xn, x
′
n). (7)

Jointly considering Eqs. (9) and (7), optimizing cumulative rewards in Eq. (3) can be relaxed into
the following surrogate problem:

max
π,x∈{x1,x2,...,xN}

V π(x), where xn = arg max
xn∈Xn

{V π(xn)−L ·d(xn, x
∗)}, n = 1, 2, 3, . . . , N, (8)

Note that this new objective function is intuitive. Instead of directly optimizing with x∗, which is
likely to be hard, we hope to find a collection of surrogate sets x ∈ X , which benefit the exploration,
ease the optimization, and are close to or converge towards x∗. However, as stated in (Ren et al.,
2019), the joint optimization of π and x is non-trivial due to high-dimensional observation and
shifting distribution during optimization. In order to find appropriate states for goal generation
and make the system stable, we then introduce two constraints, namely hindsight constraint for
reachability and diversity constraint for exploratory potential.

Hindsight Constraint. In order to guarantee goal reachability and improve learning stability, we
adopt the idea of hindsight goals (Andrychowicz et al., 2017), which means G ⊆ S. We first enforce
X on a finite set of Z particles that can only be from those already achieved states from trajectories
{τ} in the current memoryMk, which means that the support of X should be base onMn.

DeepQ Network (DQN, (Mnih et al., 2015)) parameterizes the action-value function by deep neural
networks Qθ(s, a) using Q-learning (Watkins & Dayan, 1992) to learn which action is the best to
take at the timestep t. According to Eq. (8), one can see that we are aiming to find high-value states
with similar goal-conditioned tasks. Based on the components of region-based memories, we rank
and select top-Z trajectories {τz}Zz=1, where τz = {szt } corresponding to goal-oriented task xz , to
maximize

∑Z
z=1 w(xz, τz), where w(xz, τz) is defined as

w(xz, τz) := α d(xz, x
∗) + min

st∈τz

(
‖φ(·|st)− g∗‖ −

1

L
V π(xz)

)
, (9)

where the first term is to measure the goal-conditioned task similarity with the key in the memory,
and the second term is to select high-value states, and α is the hyperparameter to balance these two
terms.
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Diversity Constraint. In order to encourage the agent to explore unvisited states and avoid the
overlapping among the regions, we adopt the diversity constraint in goal generation. Then, we can
re-formulate Eq. (9) as

w(xz, τz) := α d(xz, x
∗) + min

st∈τz

‖φ(·|st)− g∗‖ −
1

L
V π(xz)−

1

β

1

N

∑
j∈−n

(‖φ(·|st)− gj‖)

 ,

(10)
where β adjusts the weight of the diversity constraint, and −n denotes the set of index except n.
The motivation behind this is that considering that goals in goal-oriented RL indicate the direction
for exploration, the generated goal is expected to be different from historical goals in other regions.
Therefore, the formulation of our goal generation can be easily derived from Eq. (10), which can be
formulated as

g = φ

· | arg min
st∈τz

(‖φ(·|st)− g∗‖ −
1

L
V π(xz)−

1

β

1

N

∑
j∈−n

(‖φ(·|st)− gj‖))

 , (11)

where τz is obtained through maximizing
∑Z
z=1 w(xz, τz), where w(xz, τz) is defined according to

Eq. (10). For the anti-goal generation, we directly assign the visited state with the average value in
the region as the anti-goal. The original motivation for the anti-goal setting is to avoid local optima,
which and can be further described as a reward shaping technique (Trott et al., 2019). An illustrated
example of the goal generation is shown in Appendix B.1.

3.3 EXPLOIT WITH EPISODIC REINFORCEMENT LEARNING

Similar to previous episodic RL algorithms (Lin et al., 2018; Zhu et al., 2019), we adopt region-based
memories to maintain the historically highest values V π(xt) for each joint state-goal distribution and
action pair. When encountering a new state, the agent will look up and update the corresponding
memory according to the following equation:

V π(xt)←
{

max (V π(xt), Rt) , if xt satisfies Mn(xt) ∈Mn

Rt, otherwise
. (12)

When the goal is changing (g → g′), the agent is required to conduct goal relabeling, similar to
(Andrychowicz et al., 2017). That is, the agent needs to firstly update the key (K(x) → K(x′)),
then re-calculate the reward (Rt → R′t) and update the value according to Eq. (12). Note that RERL
enables the agent to rapidly assimilate new experiences to improve sample efficiency by looking up
the region-based memory. Furthermore, slowly changing goal-conditioned tasks guarantees stability
by restricting goal updating within each region. Based on the up-to-date region-based memories,
our algorithm can be adapted to various RL training algorithms. We give a proof of convergence
in Appendix C.2, our algorithm can converge to a unique optimal point when using Q-learning for
value learning.

Overall Algorithm. We provide the overall algorithm in Algorithm 2 in Appendix 2. We also pro-
vide some other views, including curriculum learning and maximum entropy reinforcement learning,
to better understand how RERL works. Please refer to Appendix B.2 and B.3 for details.

4 EXPERIMENTS

In this section, we perform an experimental evaluation of the proposed method of learning from
trajectories and compare it with other state-of-the-art methods. We also perform an ablation study

(a) Free Ant Locomotion (b) MazeAnt Locomotion (c) Multi-Path Point Mass (d) N-dimension Point Mass

Figure 4: In (a)-(c), the red areas are goals reachable by the orange agent. In (d) any point within
the blue frame is a feasible goal (purple balls) and the rest are unfeasible (black triangles).
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(a) Free Ant Locomotion (b) MazeAnt Locomotion (c) Multi-Path PointMass

(d) 3-dimension PointMass
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Figure 5: Learning curves of RERL, HGG, HER, SR, AutoGG, EMDQN and POINT on various
environments, where the solid curves depict the mean, the shaded areas indicate the standard devia-
tion, and dashed horizontal lines show the asymptotic performance. Several curves are omitted due
to page limitations. A full version is deferred to Appendix E.1.

of different settings of our framework. In this section, we provide the experimental results to answer
the following questions:

1. Can our RERL approach obtain better convergence in various environments?
2. Can our goal generation enhance the RL method to achieve asymptotic performance with higher

efficiency?
3. Can our RERL tackle a complex multi-path goal distribution?
4. Can our RERL scale to higher-dimensional goal-spaces?
5. Do our generated goals really encourage exploration?

To answer the first two questions, we demonstrate our method in two challenging robotic locomotion
tasks (see Figure 5(a)(b)). To answer the third question, we train an ant agent to reach any position
within a multi-path maze (see Figure 5(c)). To answer the fourth question, we investigate how our
method performs with the dimension of goal-space in an environment (see Figure 5(d) for the 3D
case). To answer the final question, we conduct a visualization study (see Figure 6) on generated
goals. Specifically, we conduct extensive experiments with existing approaches:

• HER: Andrychowicz et al. (2017) introduced Hindsight Experience Replay , which constructs
imaginary goals in a simple heuristic way to tackle the sparse reward issue.

• HGG: Ren et al. (2019) proposed a Hindsight Goal Generation incorporating with DDPG (Lilli-
crap et al., 2015) that generates valuable hindsight goals to guide the agent.

• AutoGG: Florensa et al. (2017) leveraged Least-Squares GAN (Mao et al., 2018) to mimic the
set of Goals of Intermediate Difficulty as an automatic goal generator.

• SR: Trott et al. (2019) proposed a novel framework named Sibling Rivalry accompanied by PPO
Schulman et al. (2017) for learning from sibling trajectories with self-balancing reward.

• POINT: Jinnai et al. (2019) proposed to extend covering options to large state spaces, automati-
cally discovering task-agnostic options that encourage exploration.

• EMDQN: Lin et al. (2018) leverages episodic memory to supervise an agent during training.

Note that RERL can be closely incorporated with policy networks such as A2C (Mnih et al., 2016),
DDPG (Lillicrap et al., 2015), TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017), Soft-
AC (Haarnoja et al., 2018), etc. The detailed description of experiment settings and implementation
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details can be found in Appendix D.1 and D.3. In this paper, we implement HGG+DDPG and
SR+PPO, as initially proposed.

Ant Locomotion. We test RERL in two challenging environments of a complex robotic agent
navigating either a free space (Free Ant, Figure. 4(a)) or a U-shaped maze (Maze Ant, Figure. 4(b)).
Duan et al. (2016) described the task of trying to reach the other end of the U-turn, and they show
that standard RL methods are unable to solve it. We further extend the task to evaluate whether the
agent is able to reach any given position (ε-balls depicted in red) within the maze for Maze Ant or
within the target square for Free Ant. As showed in Figure 5(a)(b), the performance of our approach
exceeds that of the baselines above.

Multi-Path Point-Mass Maze. We show that RERL is efficient at tracking clearly multi-path dis-
tributions of goals. To this end, we introduce a new maze environment with multiple paths, as
illustrated in Figure 4(c). As in the experiment above, our task is to learn a policy that can reach any
feasible center of the mass (x, y) corresponding to ε-balls in state space, like the one depicted in red.
As shown in Figure 5(c), our approach obtains better performance even in a multi-path environment
where goal distribution is naturally more complex than previous environments (see Appendix E.2
for demonstration).

N -dimensional Point-Mass Maze. We use an N -dimensional Point-Mass to demonstrate the per-
formance of our method as the state space dimension increases. As shown in Figure 5(d), our
approach outperforms strong baselines in the high-dimensional experiment.

Atari Game Pong We evaluate RERL in Atari Game, where several episodic RL algorithms (Ba-
dia et al., 2020; Lin et al., 2018) have achieved good performance. In the previous goal-oriented
environments such as Maze, both state and goal have physical meaning (e.g., location in the maze).
Therefore, it is easy for us to define the distance between two states, which denotes the physical
distance in the maze. However, in the Atari Game environment, both state and goal are the image.
Hence, the distance here has no physical meaning, which implies that directly attending the goal-
oriented setting will result in bad performance. In order to verify the analysis above, we directly use
the extrinsic reward from environment (denoted as RERL+PPO+NOGoal), and then gradually (i.e.,
5%, 20%, 50%) add the intrinsic reward in the reward function (denoted as RERL+PPO+Goal5,
ERL+PPO+Goal20, ERL+PPO+Goal50, respectively). We present the result in Figure 5(i). Results
show that the goal-oriented setting of RERL is not suitable for the environment like Atari Game.
Also, in the Atari Game environment, there are less sparse rewards than the Ant Maze environ-
ment. Therefore, simple episodic RL algorithm such as EMDQN can obtain better performance
than RERL.

More experimental results of environments above can be found in Appendix E.1.
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Figure 6: Each grid cell in U-maze is colored according to the expected return success rate when
fixing its center as the target state.

Visualization Study on Generated Goals. In order to investigate whether the generated goals,
served as curriculum in curriculum learning, truly guide the agent to the target state and are at an
appropriate difficulty level, we show the distribution of generated goals at different training stages.
Results in Figure 6 show that the generated goals are approaching as the training proceeds, and
at an appropriate success rate level, where the hindsight constraint helps the agent aim at feasible
positions while our diversity constraint encourages the agent to approach the target state. More
results of visualization study can be found in Appendix E.2.

Comparison with Explicit Curriculum Learning. Since our method can be seen as an explicit
curriculum learning for exploration in Appendix B.2, we also compare our method with another
recently proposed automatic curriculum learning method for goal-oriented RL. (see Appendix E.3

8
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for the detailed experiment). The result in Figure 5(e) indicates that RERL substantially outperforms
this explicit curriculum learning approach even with GOID.

Impact of Goal Generation. To further investigate the performance gain from RERL, we design
the ablation study on goal generation. We incorporate the goal generator with various RL algorithms
and evaluate their performance in the Maze Ant Locomotion environment. Results in Figure 5(f)
illustrate that RERL significantly helps the RL method obtain effective and stable performance.

Impact of Hyper-parameter Selection. Also, we study the effect of hyper-parameter selection
here, i.e., Lipschitz constant L, number of regions N , number of trajectories Z, diversity weight α
and hindsight weight β. We conduct the experiments on the Maze Ant Locomotion environment and
report the results in Figure 5(g) and (h). Refer to Appendix E.4 for detailed information.

5 RELATED WORK

Goal-oriented Reinforcement Learning. Goal-oriented RL allows an agent to learn a goal-
conditioned policy, which takes the current state and goal state as the input and predicts a sequence
of actions to reach the goal (Florensa et al., 2018; Paul et al., 2019). Recent attempts (Andrychow-
icz et al., 2017; Ren et al., 2019; Pong et al., 2018) combine off-policy RL algorithms with goal-
relabelling to efficiently generate appropriate goals from the visited states and guarantee goal reach-
ability using a hindsight constraint. In this paper, we divide the state space into several regions.
Within each region, our algorithm learns a goal-conditioned policy to reach the generated goal.
While most previous methods (Wu et al., 2018; Drummond, 2002) perform goal-oriented RL on
top of the explored trajectories, our method utilizes a diversity constraint in the goal generation
procedure to enhance exploration and automatically structure region-based memory.

Episodic Reinforcement Learning. Episode RL is proposed by cognitive studies of episodic mem-
ory (Sutherland & Rudy, 1989; Marr et al., 1991; Lengyel & Dayan, 2008) in human decision
making (Gilboa & Schmeidler, 1995). Recent works have investigated integrating episodic memory
with deepQ networks (DQNs) in non-parametric (Blundell et al., 2016) and parametric (Pritzel et al.,
2017) ways. In order to fully utilize the episodic memory, value propagation methods (Hansen et al.,
2018; Zhu et al., 2019) have been proposed to obtain trajectory-centric value estimates. A common
theme in recent work is finding similar historical trajectories to estimate the value function. While
most methods use look-up operations (Pritzel et al., 2017) or graph structure (Zhu et al., 2019), our
algorithm explicitly divides trajectories sharing the same goal into one region.

Hierarchical Reinforcement Learning. Hierarchical RL learns a set of primitive tasks that together
help an agent learn the complex task. There are mainly two lines of work. One class of algorithms
(Shang et al., 2019; Nachum et al., 2018; Bacon et al., 2017; Frans et al., 2018; Vezhnevets et al.,
2017) jointly learn a low-level policy together with a high-level policy, where the lower-level policy
interacts directly with the environment to achieve each task, while the higher-level policy instructs
the lower-level policy via high-level actions or goals to sequence these tasks into the complex task.
The other class of methods (Drummond, 2002; Fox et al., 2017; Şimşek et al., 2005) focuses on
discovering sub-tasks or sub-goals that are easy to reach in a short time and can guide the agent
to the terminal state. Recently, several option-discovery approaches (Jinnai et al., 2019; Machado
et al., 2017; Bagaria & Konidaris, 2019; Konidaris & Barto, 2009) are proposed to find a set of
options to reduce the environment’s cover time. Different from these works, the idea of our work is
similar to curriculum learning where the sub-tasks are geting harder during the training procedure.
As stated by (Nachum et al., 2018), while jointly learning high-level and low-level policies can be
unstable, we sidestep the problem by constraining goal generation to be within a specific region
under a hindsight constraint.

6 CONCLUSION

In this paper, we present a framework that incorporates episodic RL with goal-oriented RL to im-
prove the efficiency of exploration and exploitation. RERL does not require any additional reward
engineering or domain expertise. For future work, it would be interesting to further investigate to in-
corporate our work with representation learning to obtain a better representation of the environment
and imitation learning to enhance the learning efficiency with expert knowledge.
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A ALGORITHM

Algorithm 2 Regioned Episodic Reinforcement Learning (RERL)

1: Initialize π, g∗ as terminal state, ḡ∗ as inital state
2: Initialize region-based memories {Mn}Nn=1 by random sample
3: for episode = 1, 2, . . . , E do
4: Select region n according to Eq. (5)
5: Collect Z trajectories {τz}Zz=1 for each Mn that maximize

∑Z
z=1 w(xz, τz) according to

Eq. (10)
6: Construct intermediate goal g according to Eq. (11), ḡ for eachMn with s of average value

7: for t = 1, 2, . . . , T do
8: at ← π(a|s, g, ḡ)
9: st+1 ∼ P(·|st, at)

10: rt ← r(s, g, ḡ) according to Eq. (2)
11: Mn ←Mn ∪ {Mn(st, g, ḡ}
12: UpdateMn according to Eq. (12)
13: Sample a minibatch b fromMn

14: Update policy π on minibatch b using DDPG or PPO
15: end for
16: end for

The overall description of our algorithm is shown in Algorithm 2. In the initialization procedure, we
set the terminal state as the initial goal and initial state as the initial anti-goal, and sample trajectories
into each memory. At each episode e, the agent selects one region that is most promising to lead
to the terminal state in line 4. We construct a goal based on the historical trajectories in line 5.
We take previous goals in other memories into consideration in the goal generation in line 6. From
line 8 to line 12, the agent interacts with environment and update the memory. Our work focuses on
how to build an efficient exploration and exploitation mechanism that is naturally complementary
with policy networks such as deep deterministic policy gradient (DDPG (Lillicrap et al., 2015)) and
proximal policy optimization (PPO (Schulman et al., 2017)) in line 14.

B DICUSSIONS

B.1 EXAMPLE FOR GOAL GENERATION

goal

target 
state

region 1

region 2

1 trajectory at
memory 1
(region 1)

2 trajectory at
memory 2
(region 2)

1a

2a

anti-goal

1b

2b

1c

2c

Figure 7: An illustration of exploration strategy.

Previous works (Florensa et al., 2018; Vezhn-
evets et al., 2017) adopt a goal generator to con-
struct immediate intrinsic rewards according to
the previous states. However, they often suf-
fer a lot from balancing the efficiency of explo-
ration and exploitation and stability in training.
In the first episode, the agent explores two tra-
jectories in different directions, with the closest
one τ1a to the target state labeled as the goal
g1 and the farthest one τ1b as the anti-goal ḡ1.
In the second episode, the agent evaluates the
highest value of states in the regions and selects
one according to Eq. (5). The agent does explo-
ration under the guided by g1 (illustrated as sun
icon in blue region) and ḡ1 (illustrated as moon
icon in blue region). If the agent selects the re-
gion 2, following the similar procedures, the agent will explore the region guided by g2 (illustrated
as sun icon in green region) and ḡ2 (illustrated as moon icon in green region). Note that goal g will
direct the exploration. Hence, in the goal generation, we take the historical goals in the other regions
into consideration by the diversity constraint. However, for the anti-goal generation, there is no need
to consider other region data as described in Section 3.
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B.2 RELATIONSHIP TO CURRICULUM LEARNING

In order to better understand why our method can work in complex environments and can excel other
traditional methods more intuitively, we further investigate the relationship between our algorithm
from Eq. (3) and empirical utility maximization formulation proposed in (Hacohen & Weinshall,
2019). We provide theoretical analysis that under some assumptions, optimizing our objection func-
tion can be similar to optimizing a curriculum algorithm under additional constraints.

Following Section 2, we formulated reinforcement learning problem as a Markov Decision Process
(MDP) by a tuple (S,A,P, r, γ), where S is the state space, A is the action space, P : S × A →
∆(S) is the state transition probability distribution, r : S × A → [0, 1] is the reward function, and
γ ∈ [0, 1) is the discount factor for future rewards. The utility function is defined as the expected
sum of the immediate and long-time utility Uπ(s) under the policy π : S×A → [0, 1), and discount
factor γ ∈ [0, 1), which can be formulated as:

Uπ(s) := Es0=s,at∼π(·|st),st+1∼P(·|st,at)

[
T∑
t=0

γtr(st, at)

]
, (1)

where T is the episode length. We can utilize Uπ(s) to represent the long-time reward (i.e.,
episode reward). In order to formulate the short-time reward, similarly, we define Uπ(st) by
Uπ(st) := γtr(st, at). In a similar manner with the Empirical Risk Minimization (ERM) frame-
work, we choose to maximize the average utility, which is defined as follows:

π∗ = arg max
π

U(π), where U(π) := E(Uπ) =
1

T

T∑
t=1

Uπ(st) (2)

Hindsight Constraint. We define the scoring function, i.e., pacing function in curriculum learning
(Bengio et al., 2009) with φ : S → G × G which is a known and tractable mapping. φ effectively
provides a Bayesian prior g ∈ G for data sampling, namely, exploration, where g denotes goal and
G denotes goal space. Based on the analysis above, we can formulate Eq. (1) as

Ug(π) = Eg[Uπ] =
1

T

T∑
t=1

Uπ(st) · φ(·|st), (3)

where φ(·|st) denotes the induced prior probability conditioned on st. In order to guarantee the
convergence, φ(·|st) should always be a non-increasing function of the difficulty level of st. In
our algorithm, we define the goal space G as a set of visited states in state space S (i.e., hindsight
constraint in Section 3), which guarantees each goal/anti-goal is sampled from previous states. This
proves the following result:
Proposition 1. The difference between the expected utility function with and without prior g (i.e.,
Ug(π) and U(π)) is the covariance between utility function Uπ(s) and goal generation φ(·|s).

Proof. The proof of Proposition 1 can be found in Appendix C.3.

Diversity Constraint. However, one should be noted that goal g here is sampled from previous
states, which guarantees the reachability of the goal but also limits potential exploration. To address
this issue, we adopt diversity measure Hregion(π) to encourage the exploration between different
region (diversity constraint in Section 3 is a simple implementation). Combining the aforementioned
hindsight and diversity constraints, we define our objective as

π∗ = arg max
π

Ug(π), under hindsight and diversity constraints. (4)

which can be easily derive as equivalence to Eq. (6).
Proposition 2. The modified optimization landscape induced by curriculum learning has the same
global optimum π∗ as the original problem.

Proof. The proof of Proposition 2 can be found in Appendix C.4.

According to the analysis, we can conclude that our algorithm can be regarded as a novel curriculum
learning approach in a goal-oriented setting, which can be proved to have the same global optimum
as the original problem. In Section 4, we conduct experiments to prove that the goals are generated
at different levels as the curriculum to guide the agent in curriculum learning.
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B.3 RELATIONSHIP WITH MAXIMUM ENTROPY RL

In this section, we consider multi-goal RL as goal-oriented policy learning (Schaul et al., 2015; Plap-
pert et al., 2018). We further discuss the motivation behind these two constraints, namely hindsight
and diversity constraints, and the relationships between our work and inverse maximum entropy
reinforcement learning.

Preliminaries. We begin with some notations and previous motivations in maximum entropy re-
inforcement learning (Eysenbach et al., 2020). The likelihood of a trajectory τ := {st}Tt=1 under
policy π can be formulated as L(s) = P(s0) ·∏t P(st+1|st, at)π(at|st). In the goal-oriented RL,
we can re-write it as

L(s, g) = P(s0) ·
∏
t

P(st+1|st, at)π(at|st, g), (5)

where the initial state is sampled as s0 ∼ P(s0) and subsequent states are governed by a dynamic
distribution st+1 ∼ P(st+1|st, at). As we discuss in Appendix B.2, goal-oriented RL can be re-
garded as regular RL with prior knowledge g generated by mapping function φ based s. Hence, the
target joint distribution over goals and states is

Ltarget(s, g) =
φ(·|s)
Z(g)

· P(s0)
∏
t

P(st+1|st, at)er(st,gt,ḡt). (6)

where Ltarget(s, g) be the joint distribution over state s ∈ S , goal g ∈ G; and Z(g) is the factor of
normalization.

Diversity Constraint. We can express the multi-goals RL objective as the reverse KL divergence
between the joint state-goal distributions:

max
π
−H(s, g) = max

π
−DKL(L(s, g)‖Ltarget(s, g)) (7)

where the joint distribution of likelihood L and prior information g of a trajectory τ is defined as
L(s, g) := L(s|g) · φ(·|s). Then, we can rewrite Eq. (7) as maximizing the expected (entropy-
regularized) reward of a goal-conditioned policy L(s|g):

Eg∼φ(·|s), s∼L(·|g)

[(
T∑
t=1

r(st, at|g)− log π(st, at|g)

)
− log Z(g)

]
. (8)

Hindsight Constraint. Since the distribution over goals g is fixed, we can ignore the log Z(g) term
for optimization. A less common but more intriguing choice is to factor L(s, g) = φ(·|s) · B(s),
where B(τ) is represented non-parametrically as a distribution over previously-observed states.
Therefore, φ(·|s) is formulated as a hindsight relabeling distribution. In this implementation, we
sample goals from previous states in the region-based memory to present B(s).

C PROOFS

C.1 PROOF OF PROPOSITION 1

Proposition 3. Given the joint set X and several region-based sets (i.e., sub-sets) Xn, where n =
1, 2, . . . , N and N is the number of regions, we have

∀π, max
x∈X

V (x) ≥ max
x∈{x1,x2...,xN}

V (x), where xn = arg max
xn∈Xn

V (xn). (9)

In this section, we provide the proof of Proposition 1. The motivation of Proposition 1 is to find a
relaxed lower bound of V (x), x ∈ X based on the definition of the region.

15



Under review as a conference paper at ICLR 2021

Proof. By Eq. (3), ∀π we have

max
x∈X

V (x) = max
x∈X

Es∈S;g,ḡ∈G,P

[
T∑
t=1

γtr(st, at|g, ḡ)

]

≥ max
x∈{x1,x2,...,xN}

{max
x1∈X1

Es∈S1;g,ḡ∈G1,P

[
T∑
t=1

γtr(st, at, st+1)

]
, . . . ,

. . . , max
xN∈XN

Es∈SN ;g,ḡ∈GN ,P

[
T∑
t=1

γtr(st, at, st+1)

]
}

≥ max
x∈{x1,x2,...,xN}

V π(x), where xi = arg max
xi∈Xi

V (xn), n = 1, 2, 3, . . . , N.

(10)

The intuition behind the proposition is easy to understand. Since we have partitioned the joint set
X into several region-based sets (i.e., sub-sets) {Xn}Nn=1. We effectively avoid the agent switch-
ing among regions, meanwhile removing these trajectories out of the original candidate trajectory
family.

C.2 PROOF OF PROPOSITION 4

Proposition 4. Denote the Bellman backup operator inQ learning with goal as B : R|S|×|A|×|G| →
R|S|×|A|×|G| and a mappingQ : S×A×G→ R|S|×|A|×|G| with |S| <∞ and |A| <∞. Repeated
applications of the operator B for our goal-oriented state-action value estimate Q̂ converges to a
unique optimal value Q̂∗.

Proof. The proof of Proposition 4 is done in two main steps. The first step is to show that our goal
g ∈ G can converge to the terminal state. In the second step, we prove that given goal g, our goal-
oriented approach can converge to a unique optimal value Q∗. In other words, we need to prove that
g → g∗ in the first step and Q→ Q∗ in the second step.

Step I. Our algorithm aims to find the high-value previous states for goal generation. At the begin-
ning of the task, the terminal state will be regarded as the final goal since it has the highest value.
Hence, the terminal state, if it has been visited once, will be assigned as the goal. Assume that
the agent can conduct plenty of exploration. Then, we can say that the generated goal g will keep
approaching the terminal state g∗.

Step II. Note that the proof of convergence for our goal-oriented RL is quite similar to Q-learning
(Bellman, 1966; Bertsekas et al., 1995; Sutton & Barto, 2018). The differences between our ap-
proach and Q-learning are that Q-value Q(s, a, g, ḡ) is also conditioned on goal g and anti-goal ḡ.
As introduced in Section 3, anti-goal ḡ works like a reward shaping technique, which is proposed to
avoid local optima (Trott et al., 2019). Hence, we omit ḡ in the following proof. We provide detailed
proof as follows:

We can obtain goal g ∈ G approaching the terminal state from Step I. Based on that, our estimated
goal-conditioned action-value function Q̂ can be defined as

BQ̂(s, a, g) = R(s, a, g) + γ ·max
a′∈A

∑
s′∈S

P (s′|s, a) · Q̂(s′, a′, g). (11)

For any action-value function estimates Q̂1, Q̂2, we study that

|BQ̂1(s, a, g)− BQ̂2(s, a, g)|
= γ · |max

a′∈A

∑
s′∈S

P (s′|s, a) · Q̂1(s′, a′, g)−max
a′∈A

∑
s′∈S

P (s′|s, a) · Q̂2(s′, a′, g)|

≤ γ ·max
a′∈A

|
∑
s′∈S

P (s′|s, a) · Q̂1(s′, a′, g)−
∑
s′∈S

P (s′|s, a) · Q̂2(s′, a′, g)|

= γ ·max
a′∈A

∑
s′∈S

P (s′|s, a) · |Q̂1(s′, a′, g)− Q̂2(s′, a′, g)|

≤ γ · max
s∈S,a∈A

|Q̂1(s, a, g)− Q̂2(s, a, g)|

(12)

16



Under review as a conference paper at ICLR 2021

Combining Step I and II, we can conclude that our goal-conditioned estimated state-action value Q̂
can converge to a unique optimal value Q∗ leading to the terminal state g∗.

C.3 PROOF OF PROPOSITION 1
In this section, we provide proof of Proposition 1. From Eq. (3), Ug(π) is a function of π which is
determined by the correlation between Uπ(s) and φ(g) (i.e., φ(·|s)). We can rewrite Eq. (3) as

Ug(π) =
1

T
{
T∑
t=1

(Uπ(st)− E[Uπ])(φ(gt)− E[φ]) + T · E[Uπ]E[φ]}

=
1

T
{Cov[Uπ, φ] + T · E[Uπ]E[φ]}

=
1

T
{U(π) + Cov[Uπ, φ]}

(13)

This derivation can be found in Appendix C.6. We can find that curriculum learning changes the
landscape of the optimization function over the policy π from U(π) to Ug(π). Intuitively, the above
equation also suggests that if the induced goal g, which defines a latent variable over the goal space
G, is positively correlated with the optimal utility Uπ∗(s), and more so than with any other Uπ(s),
then the gradients in the direction of the optimal policy π in the new optimization landscape may be
overall steeper.

Hence, this is necessary to design task-related goals. However, it is infeasible to obtain appropriate
goals through handcrafted design and manual generation. In this paper, we introduce hindsight and
diversity constraints to help the agent learn from achieved task-related information (previous states)
and unknown task-related information (unexplored states) respectively.

C.4 PROOF OF PROPOSITION 2
In this section, we provide proof of Proposition 2. In order to prove that the modified optimization
function in the state-space-related parameter space π has the property that the global maximum at π∗
is more pronounced, we derive the objective function based on Proposition 1. We can assume that
optimal policy π∗ maximizes the covariance between φ(g) (i.e., φ(·|s)) and utility Uπ(s), namely

arg max
π

U(π) = arg max
π

Cov[Uπ, φ] = π∗ (14)

The proof of the assumption can be found in Appendix C.3. We introduce Lemma 1 here, the proof
of which can be found in Appendix C.5.

Lemma 1. (Florensa et al. (2017)) For any curriculum satisfying Eq. (14):

1. π∗ = arg maxπ U(π) = arg maxπ U(π∗)
2. Ug(π∗)− Ug(π) ≥ U(π∗)− U(π), ∀π

Lemma 1 has proposed two claims. The first one presents that the problem of maximizing the co-
variance between φ(g) and utility Uπ(s) shares the same optimal solution with the original problem.
In addition, the modified optimization function in the original parameter space without goal g has
the property that the global maximum with goal g is more pronounced.

C.5 PROOF OF LEMMA 1
In this section, we provide the proof of Lemma 1. Claim 1 in Lemma 1 can be derived directly from
Eq. (14), while for the claim 2, we have

Proof.
Ug(π∗)− Ug(π) = Ug(π∗)− U(π)− Cov[Uπ, g]

≥ Ug(π∗)− U(π)− Cov[Uπ∗ , g]

= U(π∗)− U(π)

(15)
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C.6 DETAILED DERIVATION OF EQ. (13)

In this section, we provide the detailed derivation of Eq. (13). We begin from the formulation of
Ug(π) in Eq. (13) and try to obtain that in Eq. (3).
Proof.

Ug(π) =
1

T
{
T∑
t=1

(Uπ(st)− E[Uπ])(φ(gi)− E[φ]) + T · E[Uπ]E[φ]}

=
1

T
{
T∑
t=1

(Uπ(st)φ(gt))−
T∑
t=1

(Uπ(st)E[φ])−
T∑
t=1

(φ(gt)E[Uπ]) + T · E[Uπ]E[φ] + T · E[Uπ]E[φ]}

=
1

T
{
T∑
t=1

(Uπ(st)φ(gt))− T · E[Uπ]E[φ]−
T∑
t=1

(φ(gt)E[Uπ]) + T · E[Uπ]E[φ] + T · E[Uπ]E[φ]}

=
1

T

T∑
t=1

(Uπ(st)φ(gt)) +
1

T
{T · E[Uπ]E[φ]−

T∑
t=1

(φ(gt)) · E[Uπ]}

(16)
Since E[φ] := 1

T

∑T
t=1(φ(gt)), we have

Ug(π) =
1

T

T∑
t=1

(Uπ(st)φ(gt)) +
1

T
{T · E[Uπ]E[φ]− T · E[Uπ]E[φ]}

=
1

T

T∑
t=1

Uπ(st)φ(gt)

(17)

D EXPERIMENT

D.1 MODIFIED ENVIRONMENTS

Figure 8: An illustration for
Maze Ant Locomotion envi-
ronment.

Ant Locomotion. In this part, we introduce two environments
based on Ant Locomotion, namely Free Ant and Ant Maze. The
ant is a quadruped with 8 actuated joint, 2 for each leg. The en-
vironment is implemented in Mujoco. Besides the coordinates of
the center of mass, the joint angles and joint velocities are also con-
tained in the observation of the agent. Considering the high degrees
of freedom, navigation in this quite complex task requires motor
coordination. More details can be found in Duan et al. (2016), and
the only difference is that in our goal-oriented version of Ant, we
extend the observation with the goals. The reward is still a sparse
indicator function being 1 only when the center of mass (x, y) of
the Ant is within ε = 0.5 positions corresponding to ε-balls in state
space. For the Free Ant experiments, the objective is to reach any
position in the square [−5, 5]2. Therefore the goal space is 2 di-
mensional, the state-space is 41 dimensional, and the action space
is 8 dimensional. As for the Ant Maze environment, the agent is
constrained to move within the maze environment, U-maze in this
case, and the size of all the blocks in the maze is 8× 8. The maze consists of a totally 18 blocks.

Multi-Path Point Maze. All the experiment setting is similar to the Ant Maze environment. We
replace the Ant agent with a Point-Mass and change the maze into a multi-path one. The action of
the Point-Mass is a velocity vector, namely, in the 2 dimension.

N -dimensional Point-Mass Maze. In the N -dimensional Point-Mass maze experiment, the agent
can only move within a small subset of the state space. In the two-dimensional case, the set of
feasible states corresponds to the [−5, 5]× [−1, 1] rectangle, making up 20% of the full space. For
N > 2, the feasible space is the Cartesian product of this 2D strip with [−ε, ε]N−2, where ε = 0.3.
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(a) Free Ant Locomotion (b) MazeAnt Locomotion (c) Multi-Path PointMass

(e) 3-dimension PointMass
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Figure 9: Learning curves of RERL, HGG, HER, SR and AutoGG on various environments, where
the solid curves depict the mean, the shaded areas indicate the standard deviation, and dashed hori-
zontal lines show the asymptotic performance.

In this higher-dimensional environment, our agent receives a reward of 1 when it moves within
εN = 0.3

√
N√
2

of the goal state, to account for the increase in average L2 distance between points
in higher dimensions. In these experiments, the full state-space of the N -dimensional Point Mass is
the hypercube [−5, 5]N .

D.2 EVALUATION DETAILS

We adopt HGG (Ren et al., 2019) incorporating with DDPG (Lillicrap et al., 2015), SR (Trott et al.,
2019) accompanying with PPO (Schulman et al., 2017) as these models are originally proposed. All
curves presented in this paper are plotted from 12 runs with random task initializations and seeds.
Following the regular procedure in goal-oriented RL, an episode is considered successful if and only
if the agent obtain 1 as the reward according to Eq. (2) where δ stays the same for all the approaches.
However, in the practice, we conduct reward as the r(st, at|g, ḡ) = min[0,−d(φ(gt+1|st+1), g) +
d(φ(ḡt+1|st+1), ḡ)] to accelerate the training process.

D.3 IMPLEMENTATION DETAILS

Almost all hyper-parameters using DDPG (Lillicrap et al., 2015), TRPO (Schulman et al., 2015),
PPO (Schulman et al., 2017), Soft-AC (Haarnoja et al., 2018) are kept the same as benchmark
results. Specifically, we list our hyper-parameters as here. number of MPI workers: 1; buffer size:
104 trajectories; number of regions N : 5 in agent level; batch size: 256, number of trajectories
Z: 50, Lipschitz constant L: 5; learning rate: 10−5 in the network level; discount factor: 0.99;
interpolation factor in Polyak averaging (if there is): 0.995; scale of additive Gaussian noise: 0.2;
probability of HER (Andrychowicz et al., 2017) experience replay: 0.8.

E RESULTS

E.1 ADDITIONAL EVALUATION ON STANDARD TASKS

In this section, we provide additional results on comparisons between RERL and various baselines.

In order to answer the first two questions, we demonstrate our method in two challenging robotic
locomotion tasks, where the goals are the (x, y) position of the center of mass of a dynamically
complex quadruped agent. In the first example, the agent has no constraints, and in the second one,
the agent is inside a U-maze (see Section 4 for details). Results in Figure 9(a)(b) demonstrate that
the performance of our approach exceeds that of the strong baselines mentioned in Section 4. To
answer the third question, we train an ant agent to reach any position within a multi-path maze. As
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shown in Figure 9(c), our approach obtains better performance even in the multi-path environment
where goal distribution is naturally more complex than previous environments. To answer the fourth
question, we investigate how our method performs with the dimension of goal-space in an envi-
ronment where the goal space grows in dimension within the feasible region, e.g., 2D and 3D. As
shown in Figure 9(d), our approach outperforms strong baselines in both low- and high-dimensional
environments.

E.2 ADDITIONAL RESULTS ON VISUALIZATION OF GENERATED GOALS

To answer the final question, we conduct a visualization study on generated goals to investigate
whether goals can encourage the agent to the target state, and anti-goals can prevent the agent from
the local optima. The visualization of goals can also represent the effect of diversity and hindsight
constraints through exploration and reachability of generated goals.

start state

goal

anti-goal

target state

(a) iteration=50 (b) iteration=150 (c) iteration=400

Figure 10: Generated goals and anti-goals visualized as the blue and green points respectively.

Results in Figure 10 show that the hindsight constraint helps the agent aim at feasible positions
while our diversity constraint encourages the agent to approach the target state. Specifically, from

1 and 2 , one can note that the agent is pulled by its goal and pushed by its anti-goal and goals
from the other regions. Hence, once a region is leading to a wrong direction, it also can encourage
exploration via diversity constraint.

start state

target state

normalized
episode
average
return

(a) iteration=50 (b) iteration=150 (c) iteration=400

Figure 11: Each grid cell in U-maze is colored according to the expected return success rate when
fixing its center as the target state.

As illustrated in Figure 11, the generated goals are approaching as the training proceeds, and at an
appropriate success rate level, which is accorded with the curriculum in the curriculum learning (see
Appendix B.2 for details).

start state

goal
anti-goal

target state

(a) iteration=5 (b) iteration=15 (c) iteration=40

Figure 12: Generated goals and anti-goals visualized as the blue and green points respectively.

Results showed in Figure 13 and 12 are similar with that in Figure 11 and 10 respectively, which
actually can confirm the analysis above.
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start state

target state

(a) iteration=5 (b) iteration=15 (c) iteration=40

normalized
episode
average
return

Figure 13: Each grid cell in Multi-path maze is colored according to the expected return success rate
when fixing its center as the target state.

E.3 EXPERIMENT ON THE COMPARISON WITH EXPLICIT CURRICULUM LEARNING

In (Florensa et al., 2017), GOID is defined as a goal set as GOID(π) = {g : α ≤ f(π, g) ≤ 1− α}
where f(π, g) represents the average success rate in a small region closed by goal g. In order to
construct the GOID set, we follow its definition and sample generated goals from GOID(π) via
rejection sampling.

(a) Hyper-parameter L (b) Hyper-parameter N (c) Hyper-parameter Z
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(d) Hyper-parameter 𝛼 (e) Hyper-parameter 𝛽
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Figure 14: Learning curves of ablation study on parameters: L, N , Z, α and β, where the solid
curves depict the mean, the shaded areas indicate the standard deviation, and dashed horizontal lines
show the asymptotic performance.

E.4 ADDITIONAL RESULTS ON ABLATION STUDY

In this section, we set up a set of ablation tests on several hyper-parameters used in the RERL. The
selection of Lipschitz constant L is task-dependent since it is highly related to the scale of the value
function and goal distance. For the robotics tasks tested in this paper (i.e., Ant Maze Locomotion), as
showed in Figure 14(a), we find that the performance of RERL is reasonable as long as L is not too
small. Similar to L, the selection of the number of regions N is also theoretically task-specific. We
test a few choices on Ant Maze Locomotion and find a range of N that works well. As Figure 14(b)
illustrates, it appears that the RERL is reasonable as long asN is not too large. As for the number of
trajectories Z, we plot the curve on different Z in Figure 14(c) and find that for the simple tasks, the
choice of Z is not critical. Parameters α and β together define the trade-off between value function,
diversity, and hindsight constraints. Results in Figure 14(d)(e) show that the choice of α and β is
indeed robust.
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