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Abstract—Anomaly detection on dynamic graphs aims to
identify entities that exhibit abnormal behaviours compared to
the standard patterns observed in the graphs and their temporal
information. It has attracted increasing attention due to its appli-
cations in various domains, such as finance, network security, and
social networks. However, existing methods face two significant
challenges: (1) dynamic structure capture challenge: how to
capture graph structure with complex temporal information
effectively, and (2) negative sampling challenge: how to construct
high-quality negative samples for unsupervised learning. To
address these challenges, we propose a Generative Anomaly
Detection on Dynamic Graphs (GADY). GADY is a continuous
dynamic graph model that can capture fine-grained temporal
information to tackle the dynamic structure capture challenge,
overcoming the limitations of existing discrete methods. Specifi-
cally, we propose to use Prioritization Temporal Aggregation and
Status Features to boost the dynamic graph encoder for anomaly
detection. For the second challenge, we introduce a novel use of
Generative Adversarial Networks to generate negative subgraphs.
In addition, auxiliary loss functions were introduced in the
generator training objective, ensuring the generated samples’
diversity and quality simultaneously. Extensive experiments show
that our proposed GADY significantly outperforms the state-
of-the-art method on three real-world datasets. Supplementary
experiments further validate the effectiveness of our model design
and the necessity of each component.

I. INTRODUCTION

Anomaly detection on dynamic graphs has become an
essential task given its numerous applications, such as social
media spammer detection [Ye and Akoglu(2015)], fraudulent
transaction detection [Dou et al.(2020)], and network intru-
sion detection [Shone et al.(2018)]. Capturing anomalies on
dynamic graphs can assist us in better understanding and cap-
turing the evolution of social networks [Ye and Akoglu(2015)],
financial transactions [Dou et al.(2020)], and disease diagnosis
[Khan et al.(2021)] with fine-grained time information.

Nowadays, many studies in this area still capture dynamic
graph patterns using discrete-time dynamic methods [Zheng
et al.(2019a)], [Cai et al.(2021)], [Liu et al.(2021)]. They
usually divide the entire temporal graph into several snapshots
and conduct anomaly detection based on static Graph Neural
Networks and Recurrent Neural Networks(RNNs). However,
these methods fall short of time information loss, which
is unavoidable when dividing the entire graph into several
snapshots, and this is because they have to delete repeated
edges in the same snapshot to apply static GNN methods.
Also, the time differences between edges in the same snapshot

are often ignored, resulting in time information loss; further
discussion about this time information loss can be found
in the appendix (https://anonymous.4open.science/r/GADY).
Due to the limitation of discrete-time dynamic methods and
sparsity labelled data, SAD [Tian et al.(2023)] tries to detect
node anomalies using continuous-time dynamic methods in
a semi-supervised task setting and get a boost in detection
performance.

However, although some datasets contain a few labelled
data, these data are only limited to node labels [Tian
et al.(2023)], [Huang et al.(2023)], and real labelled edges
are still tough to obtain. It should be noted that the label
of node anomaly cannot be simply transformed into edge
anomaly. For example, an anomalous node does not imply that
all interactions involving this node are anomalies because even
an anomalous node may still have many normal interactions
to disguise itself, which further strengthens the difficulty of
obtaining real labels. In brief, most dynamic graph datasets
still have no labelled edge data. Therefore, edge anomaly
detection on dynamic graphs is still mainly carried out in
unsupervised mode.

Although significant research progress has been made in
anomaly detection on dynamic graphs, there is potential for
further advancements in two key aspects: dynamic structure
capture methods, focusing on capturing dynamic graph struc-
tures with complex time information, and negative sampling
methods, aiming to construct high-quality and diverse negative
samples for unsupervised learning given a fact that most of the
dynamic graph datasets still have no labelled edges data.

For the dynamic structure capture challenge, anomaly de-
tection task usually requires that construction is powerful
enough to capture potential anomaly patterns under complex
dynamic graph structures. This is because the most effective
models so far are usually encoder-decoder architectures [Liu
et al.(2021)], [Tian et al.(2023)], and a high-quality embedding
generated from the encoder is crucial for the decoder to get
anomaly scores.

In this field, strGNN [Cai et al.(2021)] extracted h-hop
closed subgraphs centred on edges and then used GCN and
GRU to model the structural information on snapshots and
the correlation between snapshots. Taddy [Liu et al.(2021)]
uses a transformer to process diffusion-based spatial encoding,
distance-based spatial encoding, and relative time encoding
and then obtain edge representation through the pooling layer,



thus obtaining the anomaly score. These two models adopt
different discrete-time dynamic methods to capture dynamic
graph patterns but achieve limited detecting performance due
to time information loss. SAD [Tian et al.(2023)] proposes
using TGAT [Xu et al.(2020)] as its encoder that can capture
fine-grained dynamic graph patterns. Combined with a semi-
supervised learning setting, SAD obviously achieves better
detection results on anomaly node detection. However, its
encoder is still limited for two reasons. First, its encoder
struggles to prioritize edges at different times effectively.
Moreover, it does not consider the recent advancements in
static Graph Neural Networks regarding graph expressiveness
based on the WL-test, which highlights that injective aggre-
gation functions can significantly improve model performance
[Xu et al.(2019)]. Therefore, a more powerful model for edge
anomaly detection on dynamic graphs is expected in this field.

As mentioned above, research on edge anomaly detection
on dynamic graphs also faces the negative sampling challenge:
the inability to construct excellent negative samples for unsu-
pervised learning. Besides, for the moment, the tremendous
difficulty of acquiring real labelled data blocks the possible
supervised or semi-supervised training methods. Research
about unsupervised anomaly detection is still meaningful in
promoting the development of edge anomaly detection on
dynamic graphs. To conduct unsupervised learning on anomaly
detection on dynamic graphs, StrGNN [Cai et al.(2021)]
propose a context-dependent negative sampling method to
construct negative samples by rules for unsupervised learning
artificially. Specifically, for each edge, they randomly keep
the head node or tail node and replace the unselected node
with another irrelevant node, thus generating a negative sample
for training. This straightforward negative sampling method
shows some effectiveness. Still, it cannot ensure the diversity
and quality of negative samples and cannot perfectly satisfy
the requirements of anomaly detection on dynamic graphs.
Ideally, the generated negative samples will enable the model
to learn challenging and diverse anomaly patterns efficiently
during the training phase, and this can help the model cope
with real-world anomalies.

Based on the above challenges, we propose GADY: Unsu-
pervised Generative Anomaly Detection on Dynamic Graphs.
Specifically, we propose using a more powerful dynamic
graph encoder for anomaly detection. We propose to use
a prioritization temporal aggregation to prioritize different
events, thus strengthening the capturing of complex time infor-
mation, and use status features to boost the encoder’s ability,
thus enhancing the expressiveness of the model. Besides, we
propose to utilize an anomaly generator to acquire high-quality
and diverse synthetic anomalous edges for capturing potential
anomaly patterns hidden in complex dynamic graphs. We de-
sign the loss function of the generator to guide the generation
process of synthetic anomalous edges and the discriminator’s
loss function to help it comprehensively consider normal and
abnormal edge detection results.

We follow the evaluation settings proposed by [Liu
et al.(2021)] for a fair comparison. Experimental results show

that our proposed GADY outperforms the current state of
the art significantly on three benchmarks, demonstrating the
superiority of our design choice. We also investigate the
potential of current continuous dynamic graphs for anomaly
detection. Detailed supplementary experiments on the GAN
module and generator design also validate the necessity of the
anomaly generator and the other components in GADY.

In summary, our main contributions are as follows:
• We propose GADY, an end-to-end unsupervised anomaly

detection method, which has designed a loss function
for the generator to generate high-quality and diverse
anomalous dynamic edges and another loss function for
the Discriminator to consider normal and abnormal edges
comprehensively.

• We identify the drawbacks of the existing dynamic graph
encoder and propose a more robust dynamic graph en-
coder for anomaly detection to capture potential anomaly
patterns hidden in complex dynamic graph information.

• Extensive experiments on three datasets show that our
model has achieved a maximum improvement of 14.6%
in anomaly detection compared with existing methods
and achieved extraordinary performance in all anomaly
proportions of all datasets. Extensive supplementary ex-
periments again demonstrate the necessity of the anomaly
generator and the superiority of model settings.

II. RELATED WORK

A. Anomaly Detection on Dynamic Graph

In recent years, anomaly detection has focused on us-
ing deep learning methods to model the entire process [Jin
et al.(2021)], [Zhao et al.(2021)], [Tariq et al.(2022)], [Zhou
et al.(2021)], [Han and Yuan(2021)], [Guo et al.(2022)].
The processing methods of dynamic graphs can be divided
into discrete processing methods and continuous processing
methods. Many methods have been proposed using discrete
methods in recent years to solve this task, such as Addgraph
[Zheng et al.(2019a)] using GCN to extract graph structure
information on slices and then using GRU-attention modules
to construct long and short-term relationships between slices.
StrGNN [Cai et al.(2021)] extracted h-hop closed subgraphs
centred on edges and then used GCN and GRU to model
the structural information on snapshots and the correlation
between snapshots, respectively. TADDY [Liu et al.(2021)]
uses a transformer to process diffusion-based spatial encoding,
distance-based spatial encoding, and relative time encoding
and then obtain edge representation through the pooling layer,
thus obtaining the anomaly score. Continuous methods can be
more helpful for anomaly detection with their strong modelling
capabilities and sufficient time information. Recently, SAD
[Tian et al.(2023)] proposed using continuous dynamic meth-
ods to detect anomalies using the semi-supervised method,
which is different from our work.

B. Generative Adversarial Network

Nowadays, much research about applications of GAN on
anomaly detection focuses on Computer Vision. For exam-



ple, AnoGAN [Schlegl et al.(2017)] can capture the latent
distribution of normal data through training. Because the
behaviour patterns of abnormal and normal data are different,
after processing by AnoGAN, the residual between original
input and output is usually much larger than normal images,
thus detecting anomalies in the image. Fence-GAN [Ngo
et al.(2019)] improves the model training effect by defining
different loss functions to locate the generated samples at the
edge of the normal sample distribution.

There is also some research focused on the applications
of GAN on anomaly detection on static graphs. For example,
OCAN [Zheng et al.(2019b)] uses LSTM-Autoencoder to learn
the representation of normal users and then modifies the
generator to generate abnormal data complementary to normal
data and obtain a better discriminator after training. However,
to the best of our knowledge, we are the first pioneering GAN
application on anomaly detection on dynamic graphs.

III. PRELIMINARIES

A. Notations and Problem Definition

This section formally introduces the anomaly detection
problem in dynamic graphs.

1) Notations: [Continuous-time dynamic graphs]
Continuous-time dynamic graphs are important for modelling
relational data in the real world. This kind of graph can
be represented as G = (V, E), where V = {v1, v2, . . . , vm}
is the set of nodes involved in all dynamic events, and
E denotes a sequence of dynamic events. Typically, let
E = {e(ui, vi, ti) : i ∈ [0, n], ui ∈ V, vi ∈ V} be an event
sequence that consists of the temporal network, and n is
the number of events, with an event e(ui, vi, ti) indicating
an edge happens from source node ui to destination node
vi at time ti. Obviously, omitting nodes that do not interact
at all, we can use the E to gain all the information of G.
Therefore, we will directly use G = {e(ui, vi, ti) : i ∈ [0, n]}
to represent the whole G in the following text. Financial
transactions can be modelled as a continuous-time dynamic
graph. For instance, source node ui and destination node vi
are different users, and an edge (ui, vi, ti) represents that a
user ui transfers money to another user vi at time ti. A set of
fund transfer records constitutes a continuous-time dynamic
graph.

2) Problem Definition: In real applications, it is usually
hard to get labelled data due to the unacceptable cost and the
high variability of real edge labels. The goal of our work is
to detect anomalies when actual labelled data is unavailable.
To evaluate the performance of GADY, we usually inject syn-
thetic anomalies into the test dataset and train the model with
normal data and abnormal data generated by other negative
sampling methods. Our task is defined as follows:

[Unsupervised anomaly detection on dynamic graphs] Con-
sider a continuous-time dynamic graph G = {e(ui, vi, ti) : i ∈
[0, n]}, where e(ui, vi, ti) = (ui, vi, ti) and n is the number of
events. Let Gtrain ⊆ G be a subgraph of G used for training.
Gtest = G−Gtrain is a subgraph of G used for testing. The
unsupervised anomaly detection on dynamic graphs problem

aims to learn a model from Gtrain and use the model to get
anomaly scores for each edge.

IV. METHODOLOGY

A. Overall Framework

Given a dynamic graph G = {e(ui, vi, ti) : i ∈ [0, n]}. Our
goal is to get anomaly scores of different edges. To achieve this
goal, we design GADY and show its structure in Figure 1. Our
model has two parts: an anomaly generator and an anomaly
discriminator. The anomaly discriminator is composed of two
parts: an anomaly encoder and an anomaly detector. The
anomaly generator inputs positive edges and their surrounding
graphs. After concatenating with noise zi ∈ (−1, 1), the
inputs are sent to neural networks to output fake edges with
their fake surrounding graphs. These generated anomalous
subgraphs will be used to train the anomaly discriminator.
The anomaly encoder in the anomaly discriminator inputs the
normal edges and anomalous edges and outputs source node
embedding and destination node embedding for each edge.
The anomaly detector in the anomaly discriminator inputs
source and destination node embeddings of edges and outputs
anomaly scores for these edges. These scores can be used for
further judgment.

B. Anomaly Generator

1) Framework Design: The purpose of the anomaly gener-
ator is to generate high-quality and diverse negative samples.
For the high quality of negative samples, our definition is to
be as similar as possible to real samples but different from
them. Such negative samples can make the discriminator work
hard to distinguish true and false samples during training.
For the diversity of samples, our definition is to have as
many abnormal patterns as possible so that the model can
learn to see more kinds of abnormalities during the training
process, thereby improving the detection ability of the model.
The whole generator part is designed following these two
principles.

The standard input of our generator is the concatenation
of source node embeddings, timestamps, neighbour embed-
dings, edge features and edge timestamps. After concatenating
inputs with random noise, the generator generates final out-
puts through a Multilayer Perceptron. Besides, because graph
neural networks usually have several layers, the generator
also takes embedding from the last layer as input to monitor
the aggregation process fully. Through our experiment, we
found that different types of input noise are suitable for
different datasets. In our model, we use Gaussian noise for
its superiority. Moreover, generating anomalous samples on
dynamic graphs still needs reconstruction due to the different
data scales of different outputs.

Based on the above considerations, we define the model as
follows:

Neg = R(tanh(f(srcemb, ts, neiemb, edgfea, edgts, zi))),
(1)
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Fig. 1. The architecture of GADY network includes two parts. The first part is the anomaly generator, which generates negative samples through normal
data and random noise, reconstructs the generated samples according to their scales and inputs them into the encoder part with the normal samples. The
second part is the discriminator, which contains the encoder and decoder. After getting the samples, the encoder obtains the edge embedding by continuously
aggregating the head and tail nodes’ time neighbours’ information according to Prioritization Temporal Aggregation (PT-agg). Finally, the embedding of the
edge is fed into the decoder. The decoder obtains the anomaly score of the edge through the representation of the head node and the tail node, finally judging
how possible the target edge is anomalous.

where f is defined as a five-layer multilayer perceptions,
srcemb represents source node embedding, ts represents
timestamps, neiemb represents neighbor embeddings, and zi
is the noise. tanh() is an activation function reconstructing
the output to [0, 1], and R is a function reconstructing the
output embedding of tanh() to the correct scale. Neg denotes
the results of the anomaly generator, which consist of negative
source node features, negative neighbour embeddings, negative
edge features, and negative edge timestamps. After the process
of multilayer perceptions, the inputs are reconstructed into
outputs. After that, we reconstruct the generator’s output to
different original data scales and get the final anomaly scores
through the discriminator’s encoding-decoding process.

2) Generator Loss Function: The design of the loss func-
tion usually affects the training goal of the model. In order
to ensure that the anomaly generator can generate anomalous
edges with high quality and diversity, we propose a new loss
function with two parts for anomaly detection. For the anomaly
detection task, 1 denotes anomaly, and 0 denotes normal. The
traditional generator loss function is shown as follows:

LG = −Ez∼pz(z)[log(1−D(G(z)))]. (2)

D() represents the Discriminator, G() represents the Genera-
tor, z is the input noise, pz(z) is the distribution of z, and E is
the expected value. This loss function means that the generator
aims to generate anomalous edges that are totally similar
to normal edges, which usually misdirect the discriminator,
thus harming detecting performance. Ideally, the anomalous
edges should be similar to normal edges for boosting the
discriminator’s ability but not totally equal to normal edges
in case of misleading discriminator [Xia et al.(2022)]. This
is because generated anomalous edges are just normal edges
if there are no differences between them. To get such high-

quality anomalous edges, we propose a quality evaluation part
to judge its quality:

LQ =
1

N

N∑
i=1

log(1− |0.1−D(Neg)|), (3)

where D(Neg) denotes the anomaly scores of generated
anomalous edges and N is the number of edges. 0.1 deter-
mines the expected anomaly scores from the discriminator.
The value of 0.1 means that the anomaly generator hopes that
the generated anomalous edges get scores of 0.1 through the
discrimination of the discriminator, which assists the generator
in generating anomalous edges similar to normal edges but not
totally equal to them. Any deviation from this target will lead
to punishment.

Another important criterion for the generated anomalous
edges is diversity. A high diversity of generated samples can
assist the discriminator in learning different anomaly patterns,
subsequently boosting discrimination performance. We design
the diversity evaluation part to achieve this purpose:

LD =
1

1
nm

n∑
k=1

(
m∑
q=1

(CLkq))
. (4)

In this part, CLkq refers to the coefficient of variation on the
q-th dimension of K-th outputs of the generator dimension.
These values evaluate the diversity of the different dimensions
of the generator’s outputs. In our model, these dimensions are
source node features, neighbour embeddings, edge features,
and edge timestamps dimensions. We measure the diversity
of the fake samples through the mean values of all generator



outputs on different dimensions. And CLkq can be formulated
as follows:

CLkq =

1
N

N∑
i=1

(||Negikq − µkq||2)

µkq
, (5)

where µkq is the mean value of q-th dimension of K-th
outputs, Negikq) is the i-th value of q-th dimension of K-
th Negative outputs. Finally, to comprehensively assess the
quality and diversity of generated samples, the loss function
is defined as follows:

LG = LQ + LD, (6)

The ultimate loss function can be represented as follows:

LG(G,D, zi) =
1

N

N∑
i=1

log(1− |0.1−D(Neg)|)

+
1

1
nm

n∑
k=1

(
m∑
q=1

(CLkq))
.

(7)

C. Anomaly Discriminator

The purpose of the discriminator is to generate anomaly
scores of normal and abnormal edges. This requires it to
capture complex continuous dynamic graph structures. Nowa-
days, the encoder-decoder structure is a powerful framework.
Our model design follows this architecture and defines two
modules: anomaly encoder and anomaly decoder. The anomaly
encoder gets inputs from generated anomalous edges and
normal edges and outputs node embedding. The anomaly
decoder generates anomaly scores based on node embeddings.
The two modules are defined as follows.

1) Anomaly Encoder: The performance of anomaly detec-
tion models usually heavily depends on the encoding ability
of their encoder, which needs to capture potential anomaly
patterns under complex dynamic graph structures. However,
many existing methods of anomaly detection on dynamic
graphs still adopt discrete-time dynamic graph methods, which
inevitably result in time information loss. Therefore, we fol-
low the continuous-time dynamic graphs settings for better
performance.

Besides, existing methods of anomaly detection on dynamic
graphs with continuous-time dynamic methods usually pass
information from recent events with priority based on re-
cency. However, they don’t effectively prioritize these events,
leading to sub-optimal results. Recently, some works [Maron
et al.(2019)], [Morris et al.(2019)] began to explore the ex-
pressive power of graph neural networks. Weisfeiler-Leman
test (WL-test) test has been used to evaluate the limitations
of graph neural networks in recent years. However, existing
anomaly detection methods on dynamic graphs do not consider
the expressive power limitations of their encoder. To boost
the power of the anomaly encoder, we propose to use the
status features to break WL test limitations, which are seldom
considered in previous methods. Therefore, we propose to use

a new prioritization aggregation function to enhance model
ability.

(a) Prioritization Temporal Aggregation. Existing works
utilize poor prioritization aggregation function, thus weaken-
ing the ability to capture time information [Tian et al.(2023)].
We propose to use a decay coefficient to map the priorities of
different events.

The aggregation process can be defined as follows:

h̃(l)
u (t) =

∑
(v,e,t′)∈Nei(u,t)

agg(concat(h(l−1)
v (t), e))α−β(∆t),

(8)
where h denotes the hidden embedding, Nei(u, t) denotes the
neighbor of u before time t. α and β are hyper-parameters,
l is the aggregation layer and e is edge feature. Then we get
embeddings h

(l)
u (t) through the hidden embedding at layer l-1

h
(l−1)
u and the aggregated embedding h̃

(l)
u (t).

h(l)
u (t) = Updl(concat(h(l−1)

u (t), h̃(l)
u (t))). (9)

In our model, we instantiate functions agg() and Upd() as
multilayer perceptions(MLP).

(b) Status Features. To boost the model construction
ability, we first calculate how many temporal paths there are
between two nodes and consider this as a status feature in
the message-passing process. For an edge (u, v, t), the status
features can be computed through the following process:

Formally, let ν
(t+)
i record the nodes that needed to be

updated after an interaction i involved tightly after t. It needs
to be updated after each interaction through the following
equation:

ν(t
+)

u = ν(t
+)

v = ν(t)v ∪ ν(t)u , (10)

where t+ refers to the time tightly after time t. Then let
s
(t)
(i→j) ∈ Nd denote the status feature of node i relative to node
j at time t. It is initialized through the following equation:

s
(0)
i→j =

{
[1, 0, · · · , 0]T , if i = j

[0, 0, · · · , 0]T , if i ̸= j
, (11)

where s
(t)
i→j [k] refers to how many temporal walks we can get

from i to j in k steps. Then, we can recursively update it
through the following formulas:

s
(t+)
i→v = Ps

(t)
i→u + s

(t)
i→v ∀i ∈ ν(t)u (12)

s
(t+)
j→u = Ps

(t)
j→v + s

(t)
j→u ∀j ∈ ν(t)v (13)

where P is a propagation d×d matrix initialized by padding a
(d-1)-dim unit matrix with zeros on its top row and rightmost
column. Ps

(t+)
i→u compute number of temporal walks from

neighbor u and s
(t+)
i→v is the direct temporal walks from i to

v. By looping through the above process, we can finally get
the number of temporal walks of one node relative to other
nodes.

(c) Overall Process. The overall process of the anomaly
encoder is shown as follows:



Before the model starts training, we first calculate how many
temporal paths between two nodes and consider this as a status
feature in the message-passing process.

In the encoding process, we use the following process to
get the edge embedding of the target edge.

E(e(u, v, t)) = concat(emb(u, t), emb(v, t)), (14)

embk(u, t) =
∑

j∈Neiku([0,t])

h(Sj(t), v(j, t), E(u, j, t), s
(t)
j→u),

(15)
where h is an aggregation function defined in injective tempo-
ral aggregations. Sj(t) are memory of j. E(u, j, t) and v(j, t)
are the attributes of edges and nodes, which can be set to
zero if missing. s(t)j→u denotes the status feature from j to u at
time t. By recursively aggregating the information of k-layers
of neighbours, we can finally get the node embeddings.

To keep updating memory [Rossi et al.(2020)], we use
the following process: For each interaction (u, v, t), we find
temporal neighbours for head and tail and get their messages.
Then, we use a mem() function to construct recent messages
and update the memory.

The following formula can define this process for node u:

megj(t) = concat(Sj(t
−), Si(t

−),∆t, evi(t)), i ∈ Neiv,
(16)

megu(t) = agg(megj(tj), · · · ,megj(tj)), j ∈ Neiu, (17)

where agg() function is instantiated as mean message(average
all messages) and t− refers to the time tightly before time t.
After getting the ultimate message, we update the memory
with the mem() function.

Su(t) = mem(megu(t), Su(t
−)), (18)

mem() function is instantialized with a Gated Recurrent
Unit(GRU) and Su(t) is the memory of u at time t.

2) Anomaly Detector: The anomaly detector aims to get
anomaly scores given two node embeddings of an edge.
Although this part can be designed to be very complex, for
simplicity, we define the model as follows: first, given two
node embeddings n embeddingu and n embeddingv , we
concatenate them to get embedding of the edge between them
e embeddinguv .

e embeddinguv = concat(n embeddingu, n embeddingv).
(19)

Then, we use a 2-layer Linear with Relu activation function
to get ultimate anomaly scores.

Score = Linear(ReLU(Linear(e embeddinguv)).sigmoid(),
(20)

where .sigmoid() is a normalization function that normalizes
the output to [0,1].

3) Discriminator loss function: The loss function of the
discriminator usually needs to be evaluated comprehensively
in terms of detecting performance. That means the loss design

Algorithm 1 Training process of GADY

1: Preprocess: calculate the positional features s(t)(i→j) of each
node i relative to another node j.

2: repeat
3: Input normal data to generator G and get fake samples

4: Input true and fake samples to Discriminator D
5: For each interaction (u, v, t)
6: For each layer l :
7: Aggregate messages from temporal neighbours
8: Get embeddings of the two nodes u and v
9: Concatenate to get the edge embedding E(e(u, v, t))

10: Decode to get judgement D(e(u, v, t))
11: Update the memory
12: Pass back LG and LD

13: until End

should fairly evaluate the normal and anomalous data. Thus,
we determine the loss function as follows:

LD(Negi, xi, D) =
1

N

N∑
i=1

[log(D(Negi))

− log(1−D(xi))],

(21)

where Negi is the i-th generated negative sample, xi is the
normal sample, and D is the Discriminator. In this equation,
we fairly evaluate normal and abnormal edges to get a fair
evaluation of the discriminator on the anomaly detection task.

D. Training process

In the training process, the generator receives noise and
outputs the generated pseudo edges. Secondly, the pseudo and
actual edges are inputted into the encoder for encoding to
obtain the edges embedding. Thirdly, the edge embeddings are
decoded into the anomaly scores to determine how possible
this edge is anomalous. Finally, the loss function of the
generator LG and the loss of the discriminator LD are passed
back to update parameters. This process can be found in
Algorithm 1.

V. EXPERIMENTS

A. Experiment Settings

1) Evaluation Protocol: AUC (Area Under Curve) is a
metric for evaluating the performance of binary classification
models. It takes account of the evaluation ability of both
positive and negative classes and is widely used to assess
the performance of anomaly detection models. However, due
to the sparsity of anomaly instances, the AUC results often
primarily rely on normal data detection performance, limiting
the difference among different methods. To further explore the
effect of our Anomaly Generator module, we introduce another
metric AP(Average Precision), which is shown in V-C.

AP (Average Precision) is a metric for evaluating the
performance of object detection models on a single class.
It was introduced to deal with imbalanced data [He and



TABLE I
COMPARISON RESULTS OF AUC AND AP METRIC BETWEEN DIFFERENT METHODS INJECTING DIFFERENT ABNORMAL RATIOS ON DIFFERENT DATASETS,
WHERE THE BEST PERFORMANCE IS SHOWN IN BOLD AND THE SECOND BEST PERFORMANCE IS MARKED WITH UNDERLINE. 1%, 5%, AND 10% REFER

TO ANOMALY RATIOS, RESPECTIVELY.

Method
UCI Bitcoin-OTC Email-DNC

1% 5% 10% 1% 5% 10% 1% 5% 10%

NODE2VEC 0.7371 0.7433 0.6960 0.7364 0.7081 0.6508 0.7391 0.7284 0.7103
SPECTRAL CLUSTERING 0.6324 0.6104 0.5794 0.5949 0.5823 0.5591 0.8096 0.7857 0.7759
DEEPWALK 0.7514 0.7391 0.6979 0.7080 0.6881 0.6396 0.7481 0.7303 0.7197

NETWALK 0.7758 0.7647 0.7226 0.7785 0.7694 0.7534 0.8105 0.8371 0.8305

TGN 0.8771 8667 0.8539 0.9411 0.9284 0.9196 0.9677 0.9474 0.9326

ADDGRAPH 0.8083 0.8090 0.7688 0.8341 0.8470 0.8369 0.8393 0.8627 0.8773
STRGNN 0.8179 0.8252 0.7959 0.9012 0.8775 0.8836 0.8775 0.9103 0.908
TADDY 0.8912 0.8398 0.837 0.9455 0.934 0.9425 0.9348 0.9257 0.921

GADY 0.9505 0.9585 0.9481 0.9691 0.9743 0.9771 0.9779 0.9822 0.9815

Garcia(2009)]. This metric is based on the area under the
Precision-Recall (PR) curve, which shows the precision and
recall of the model at different thresholds. Unlike AUC,
AP comprehensively considers the accuracy and recall rate,
which reflect whether the model can find all the anomalies
and whether the anomalies found are correct. Thus, it can
only focus on the anomaly detection performance without the
interface of abundant normal data. Therefore, we believe that
the AP metric can comprehensively measure the detection
ability of the anomaly detection model better, which is seldom
considered in the previous works [Yu et al.(2018)], [Zheng
et al.(2019a)], [Cai et al.(2021)], [Liu et al.(2021)]. In the
exploration of the GAN effects part, we use this metric to
further explore the performance of our model.

2) Datasets: To test the performance of our model, we eval-
uated our framework on three datasets1: UCI Message [Opsahl
and Panzarasa(2009)], Email-DNC [Rossi and Ahmed(2015)],
and Bitcoin-OTC [Kumar et al.(2018)]. The detailed informa-
tion of these datasets is as follows:

• UCI Message [Opsahl and Panzarasa(2009)] is a social
network collected from a forum of the University of Cali-
fornia, Irvine. It has 1,899 nodes and 13,838 edges, where
each node represents a student and an edge represents a
message sent.

• Email-DNC [Rossi and Ahmed(2015)] is an email net-
work from the 2016 Democratic National Committee
email leak. It has 1,866 nodes and 39264 edges, where
each node represents a person in the Democratic Party,
and an edge represents an email sent from one person to
another.

• Bitcoin-OTC [Kumar et al.(2018)] is a network of who
trusts whom among users who trade on the Bitcoin
platform. It has 5,881 nodes, and 35,588 edges where
nodes are users and edges are ratings between users.

3) Baselines: We selected four classes of models as
our baselines: 1. Traditional non-deep learning methods

1https://drive.google.com/drive/folders/15AmNpT2QTYjtDG7nD1WsIHQMgYAsUYxL?
usp=sharing

Node2vec [Grover and Leskovec(2016)] Spectral Clustering
[Von Luxburg(2007)] DeepWalk [Perozzi et al.(2014)]; 2.
Methods using a combination of deep and traditional learning
NetWalk [Yu et al.(2018)]; 3. Contrast dynamic graph meth-
ods Temporal Graph Networks(TGN) [Rossi et al.(2020)]; 4.
Anomaly detection using deep learning methods AddGraph
[Zheng et al.(2019a)] StrGNN [Cai et al.(2021)] TADDY [Liu
et al.(2021)]. A detailed introduction to baselines can be found
in the appendix (https://anonymous.4open.science/r/GADY).

4) Experiment Pipeline: For unsupervised anomaly detec-
tion on dynamic graphs, existing methods inject different ratios
of anomalies into the test dataset. The ratios are usually set to
1%, 5%, and 10% for simulating different ratios of anomalies
that might be encountered in the real world. We follow this
setup for the convenience of comparing. In the training dataset,
models are trained with other negative sampling methods
(different from the method used in test set construction). For
the discrete-time anomaly detection methods, they divide the
original dynamic graph into different slices [Cai et al.(2021)],
[Liu et al.(2021)] for further modelling. Although this process
may have the information loss described in the introduction
section, we attribute this to the flaws in these models them-
selves, not to the unfairness of the experiment setup.

5) Experiment Setup: In order to evaluate the performance
of our model for anomaly detection and make a fair compari-
son between baselines, we follow the test set built method in
TADDY [Liu et al.(2021)]. Specifically, we perform spectral
clustering on the whole graph, randomly select nodes belong-
ing to different categories, and remove node pairs duplicated
with the original dataset. Then, we randomly generate times-
tamps for node pairs within the time range of the test set, and
finally, we add the generated pseudo-edges to the test set and
sort them by time.

In our experiments, number of layers is set to 2, and the
training ratio is set to 0.5, which is used in TADDY [Liu
et al.(2021)]. Hyper-parameter α is set to 2, and β is set
to 0.00001. Three hyper-parameters are selected based on
experiment results. Further detailed implementation details

https://drive.google.com/drive/folders/15AmNpT2QTYjtDG7nD1WsIHQMgYAsUYxL?usp=sharing
https://drive.google.com/drive/folders/15AmNpT2QTYjtDG7nD1WsIHQMgYAsUYxL?usp=sharing


and hyper-parameter selecting strategies can be found in the
appendix (https://anonymous.4open.science/r/GADY).

Finally, we implement our method using PyTorch 1.12.1
[Paszke et al.(2019)]. All experiments are performed on a
Linux server with a 2.30GHz Intel(R) Xeon(R) Silver 4316
CPU and NVIDIA Tesla-V100S GPU with 32GB memory.

B. Main Results
We tested our model on three datasets and set the injected

anomaly ratio to 1%, 5%, and 10%, respectively. The exper-
imental results are shown in Table I. From the experimental
results, we summarize the following conclusions:

• Our model has excellent results, and the use of the GAN
module can significantly improve the ability of the model
to detect anomalies. Our model outperforms state-of-the-
art methods by 13.7% at most on the UCI dataset with
an anomaly ratio of 10%, achieving SOTA on three real-
world datasets.

• The outstanding results show the effectiveness of ap-
plying a powerful anomaly encoder to capture potential
anomaly patterns hidden in complex dynamic graph in-
formation.

• Our model performance is insensitive to anomaly ratios.
From the table, it can be found that other models are
more sensitive to abnormal injection ratios. However,
our method remains highly effective regardless of the
anomaly ratio. This will allow our model to have a
broader range of applicability to different anomaly ratios.

C. GAN Ablation Study
We conduct experiments to explore the effects of the GAN

module. Specifically, we compare GADY with GADY w/o
GAN in all datasets with three different anomaly ratios. We
implement GADY w/o GAN using the negative sampling
methods from StrGNN [Cai et al.(2021)] that is the same as
TADDY [Liu et al.(2021)] and the anomaly discriminator from
GADY. The results are shown in Figure 2
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Fig. 2. Comparison between GADY and GADY w/o GAN.

The results show that GADY wins in most datasets except in
the BitOTC dataset with a 5% anomaly rate and demonstrates
the superior performance of GADY and its broad applicability.
Results on the AP metric further widen the performance gap,
which not only illustrates the effectiveness of the AP metric in
measuring anomaly detection performance but also proves the
excellent effect of GADY on anomaly detection. Therefore, we
conclude that the GAN module is necessary for GADY model
and can assist the model in improving detecting anomalies.

D. Encoder Ablation Study

We conduct experiments to explore the effects of the GAN
module. Specifically, we compare GADY with GADY without
Prioritization Temporal Aggregation (w/o agg) and GADY
without Status Features (w/o stat) in all datasets with three
different anomaly ratios. We implement GADY w/o agg and
GADY w/o stat by abandoning the decay coefficient and status
features. The results are shown in Figure 3.
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Fig. 3. Comparison between GADY and GADY w/o agg and GADY w/o
stat.

The results show that GADY wins in almost all datasets on
both the AUC and the AP metric. This experiment shows the
importance of Prioritization Temporal Aggregation and Status
Features parts, further validating our model design.

E. Performance of Generated Negative Edges

This experiment examines the generator’s performance in
generating anomalous samples. Specifically, we select the
anomalous edges embedding obtained from the anomaly en-
coder in different batches in the second epoch and visualize
the data distribution results as shown in Figure 4.

batch 0

fake
real

batch 80

fake
real

batch 150

fake
real

Fig. 4. Comparison of negative sample distributions generated in different
periods in the second epoch. It can be seen that with the model’s training, the
generated negative samples gradually gather evenly near the real samples,
proving that our generator can generate diverse and high-quality negative
samples.

From the results, we find that with the continuous training of
the model, the generated samples are gathered at the boundary
of the real samples, which proves the high quality of the
samples generated by the generator. The generated samples
are evenly distributed around the real samples, demonstrating
the diversity of samples generated by the generator. These
results further demonstrate the effectiveness of our generator
loss function design. This loss function successfully helps the
generator output high-quality and diverse anomalous edges.



The high quality can be observed through the fact that fake
samples are close to the real samples. The diversity can be
observed through the fact that fake samples are around the
real samples.

F. Time complexity analysis

In the comparison of time complexity, we conducted a
comparative experiment, and the results are shown in Figure 5.
The result shows that GADY is slower than TADDY overall,
and the running time of each epoch is getting shorter due to
the preprocessing time. However, the overall time cost is still
within an acceptable range. It is worth mentioning that if the
model of the encoder part is replaced with a lighter structure,
the time overhead will be much lower while maintaining
superior performance. The specific time complexity will be
highly dependent on the model selected by the encoder part.
Further time complexity analysis and performance analysis
of the lighter structure model can be found in the appendix
(https://anonymous.4open.science/r/GADY).
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Fig. 5. Comparison of running time per epoch between GADY and TADDY.

VI. CONCLUSION AND DISCUSSION

In this paper, we discovered the shortcomings of existing
anomaly detection on dynamic graph methods and proposed a
novel continuous dynamic graph encoder for anomaly detec-
tion task. On this basis, we explored using the GAN model to
generate high-quality and diverse negative samples. The final
experimental results prove the excellent performance of the
GADY in anomaly detection and its broad applicability. Sup-
plementary experiments on the GAN ablation study, Encoder
ablation study, visualization of generated samples, and time
complexity analysis further prove the superiority of GADY and
the validity of GADY settings. Besides, the current popular
diffusion model shows its ability to surpass GANs, and we
save the application of diffusion models to generate exceptions
for future work.
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