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ABSTRACT
Euphemisms are indirect words to convey sensitive concepts. For in-
stance, “ice” serves as a euphemism for the target keyword “metham-
phetamine” in illicit transactions. Euphemisms are widely used on
social media and darknet marketplaces to evade moderation and
supervision. Thus, euphemism identification which aims to map
the euphemism to its secret meaning (target keyword) is a cru-
cial task in ensuring social network security. However, this task
poses significant challenges, including resource limitations due
to the unavailable of annotated datasets and linguistic challenges
arising from subtle differences in meaning between target key-
words. Existing methods have employed self-supervised schemes
to automatically construct labeled training data, addressing the
resource limitations. Yet, these methods rely on static embedding
methods that fail to distinguish between literal and euphemistic
senses, leading to confusion between target keywords with similar
meanings. In addition, we observe that different euphemisms in
similar contexts confuse the identification results. To overcome
these obstacles, we propose a feature fusion and individualization
(FFI) method for euphemism identification. First, we reformulate the
task as a cloze task, making it more feasible. Next, we develop a fea-
ture fusion module to capture both dynamic global and static local
features, enhancing discrimination between different euphemisms
in similar contexts. Additionally, we employ a feature individual-
ization module to ensure each target keyword has a unique feature
representation by projecting features into their orthogonal space.
As a result, FFI can effectively identify subtle semantic differences
between similar euphemisms that refer to target keywords with sim-
ilar meanings. Experimental results demonstrate that our method
outperforms state-of-the-art methods and large language models
(GPT3.5, Llama2, mPLUG-Owl, etc.), providing robust support for
its effectiveness.

KEYWORDS
Euphemisms, Euphemism Identification, Social Network Security,
Feature Fusion, Feature Individualization

1 INTRODUCTION
Euphemisms are indirect, mild words or expressions that have long
been used in human communication to conceal secret information
[2]. For example, they can be used to express politeness and avoid
embarrassment when discussing taboo topics [5]. However, in so-
cial media or darknet marketplaces, where cybercrimes such as
drug trafficking [11, 17] and arms trading [9] occur, euphemisms
are often used to cover up illegal transactions and evade supervi-
sion. For instance, the euphemisms “coke” and “ice” in Table 1 were
used as substitutes for target keywords “cocaine” and “metham-
phetamine” in the drug category of Table 2. These euphemisms
can seem innocent and vague, making it challenging to trace illicit

Table 1: Examples of sentences containing euphemisms.

Example sentences (euphemisms are in bold)

1. We had already paid $70 for some shitty weed from a taxi
driver but we were interested in some coke and the cubans.
2. For all vendors of ice, it seems pretty obvious that it is not
as pure as they market it.
3. Back up before I pull my nine on you.

Table 2: Part of the target words.

Category Target keywords

Drug Amphetamine; Cocaine; Ecstasy; Heroin;
Marijuana; Methamphetamine; opium

Weapon Gun; Carbine; Gatling; Rifle; Pistol
Sexuality Breast; Sex; Nipple; Condom; Pornography

transactions. Therefore, identifying the target keyword of a given
euphemism, known as euphemism identification, is essential for im-
proving content moderation and combating underground markets
for social network security. However, euphemisms are continually
evolving, making it difficult to maintain an up-to-date corpus for
training the euphemism identification task. Furthermore, the subtle
distinction in meaning between the target keywords (e.g., cocaine
and marĳuana) adds to the complexity of the task[33].

Existing methods have primarily focused on detecting whether
words are used in a euphemistic sense, with techniques evolving
from conventional natural language processing [15, 19, 33] to deep
learning pre-training models [24, 35, 36]. However, these methods
rely on static word embeddings or sentiment analysis, which can-
not distinguish meanings with similar semantics. Moreover, these
methods can only detect euphemisms but fail to identify them to the
corresponding target keywords. Despite this, current few studies
on euphemism identification only focus on obtaining context infor-
mation of the euphemisms to identify them to the corresponding
target keywords, disregarding subtle semantic distinctions among
the target keywords and failing to address the linguistic challenge
posed by target keywords with similar semantics.

Based on the above challenges and our findings, we explore
two kinds of subtle semantic differences in euphemism identifica-
tion, which can provide additional dimensions to efficiently rec-
ognizing euphemisms. 1) Subtle semantic differences among
euphemisms: euphemisms in the same category typically manifest
in comparable contexts. For instance, as shown in Table 1, Sentence
1 contains both the euphemisms “weed” and “coke”, resulting in
nearly identical contexts for the two euphemisms. Euphemism
“weed” in Sentence 1 and euphemism “ice” in Sentence 3 exhibit
similar semantic contexts concerning drug trafficking. These sim-
ilar contexts of distinct euphemisms may mislead a model into
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learning confusing information for misidentifying the euphemisms.
2) Subtle semantic differences among target keywords: the
semantic differences of some target keywords in the same cate-
gory are subtle. As shown in Table 2, the meanings of the target
keywords are similar, such as “marijuana”, “cocaine” and “heroin”
in the drug category, “gun”, “carbine” and “rifle” in the weapon
category, and “sex” and “pornography” in the sexuality category.
The subtle semantic differences among the target keywords may
lead the optimization of model parameters to fluctuate in different
directions, thus resulting in degrading the model’s performance.

To address these issues, we propose a feature fusion and individ-
ualization method (denoted as “FFI”), which regards the euphemism
identification task as a cloze task, simplifying the euphemism iden-
tification task and making it easier to realize and evaluate in terms
of the task form. The FFI model employs a feature fusion mod-
ule to mitigate the problem of subtle semantic differences among
euphemisms with similar contexts, by extracting discriminative
features with rich semantics, using both dynamic global context
and static local information. Considering the influence of subtle
semantic distinction among target keywords, FFI uses a feature
individualization module to project features into the orthogonal
space, extracting distinct individual features of each target key-
word and eliminating common features. In this way, FFI can ac-
curately differentiate euphemisms in similar contexts referring to
target keywords with similar semantics. Experimental evaluation
on benchmark Drug, Weapon, and Sexuality datasets shows that
our method yields top-k identification accuracies that are 45-55%
higher than the state-of-the-art baseline methods. Additionally, as
the number of training samples increases, FFI boosts performance
83-250% higher than the baseline methods do. Compared with the
recognition accuracy of the large language model GPT3.5, we are 25
percentage points and 4 percentage points higher on the Weapon
and Sexuality datasets respectively, and 2 percentage points lower
on the Drug dataset. Notably, the time consumption and cost of FFI
are one-quarter and one-tenth of GPT3.5 respectively. The main
contributions are as follows:

• To our knowledge, we are the first to convert euphemism
identification into a cloze task and propose a novel frame-
work to recognize euphemisms. The cloze task formally
makes euphemism identification more feasible, requiring
the model to learn context to select the correct option,
which helps the model better understand the meaning of
euphemisms.

• We utilized a feature fusion module to fuse dynamic global
and static local information of euphemisms to obtain fu-
sion features that are discriminative with rich semantics.
Furthermore, we used a feature individualization module
to project target keywords into their respective difference
space, making it easier to distinguish target keywords with
similar semantics.

• Experiments demonstrate the effectiveness of our model,
which significantly outperformed the SOTA models and is
comparable to large language models. As the size of the
training data increased, our model boosted performance
much higher than the current best model did, resulting in
good generalization ability.

2 RELATEDWORK
Although the study on euphemisms in linguistics dates back many
years [3, 8, 27], computational research on euphemisms is a rela-
tively recent area of investigation, primarily focused on euphemism
detection and identification. Euphemism detection refers to detect-
ing words in a euphemistic manner, while euphemism identification
refers to identifying the secret meaning of each euphemism.

2.1 Euphemism Detection
Euphemism detection task has been studied under supervised, semi-
supervised, and unsupervised learning frameworks, using conven-
tional natural language processing techniques, deep learning, pre-
trained models, and other algorithms. Yuan et al. [33] expanded
Word2vec [20, 21] and analyzed word semantic differences in cross-
corpus to detect dark jargons. Magu and Luo [19] obtained can-
didate euphemisms by using word embedding cosine distances
combined with network analysis. Both works rely on static word
embeddings, which do not distinguish different meanings of the
same word. Felt and Riloff [7] used lexical and context sentiment
analysis to classify phrases as euphemistic, dysphemistic, or neutral
based on the work of Thelen and Riloff [29]. Gavidia et al. [10] used
roBERTa1 to detect euphemisms based on the changes of sentiment
scores.

Compared with conventional natural language processing meth-
ods, pre-trained models based on deep learning have made break-
throughs in several tasks. Ke et al. [14] constructed a word-based
pre-training model DC-BERT to detect Chinese jargons via cross-
corpus similarity analysis. Zhu et al. [36] used a masked language
model (MLM) of BERT [6] as a filter to find euphemism candidates.
Zhu and Bhat [35] used SpanBERT2 to rank euphemisms to detect
euphemisms on the basis of Zhu et al. [36].

2.2 Euphemism Identification
To our knowledge, there are few existing works on euphemism
identification. The most relevant work was reported by Zhu et al.
[36], who first proposed euphemism identification task. They devel-
oped an unsupervised algorithm that uses the bag-of-words model
to analyze euphemisms in their sentence-level context, identifying
each euphemism to the corresponding target keyword. The work
by Yuan et al. [33] focused on identifying the hypernyms of eu-
phemisms rather than directly identifying the specific meanings
of them. They identify “horse” as an illicit drug rather than heroin
(drug is the hypernym of heroin).

In terms of the social use of euphemisms, morphs are a kind of
euphemism. The euphemism identification task is related to morph
resolution. Sha et al. [25] ranked the target candidates based on
character-word and radical-character-word embeddings. You et al.
[32] ranked target entities based on cross-document corpus similar-
ity metrics. These approaches focused on Chinese morph resolution,
which are mostly event-based and temporal. Generally, the task
of euphemism identification is also related to the lexical meaning
discovery of unknown words. Ishiwatari et al. [12] extracted both
the local and global features of unknown words and obtained the
description of them. Yi et al. [31] incorporated features such as
1https://huggingface.co/roberta-base
2https://huggingface.co/SpanBERT/spanbert-large-cased
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Masked Sentences: As far as we know he was still smoking [MASK] but that was it.

Candidates: 1. Heroin 2. Ecstasy 3. Marijuana 4. Cocaine … n. Opium

Training / Validation: Mask the target keyword Testing: Mask the Euphemism

Figure 1: Description of euphemism identification. During training: the input is a sentence with the target keyword masked out
and the output is the target keyword. During testing: the input is a sentence with the euphemism masked out and the output is
the target keyword corresponding to the euphemism.

pinyin and radicals to extract semantic information to generate
slang paraphrases. Word sense discovery aims to understand the
meaning of unknown words by generating defined sentences, how-
ever, these approaches do not capture subtle differences between a
set of target keywords with similar semantics.

In summary, the existing research has the following deficiencies.
(1) Related work such as morph resolution [25, 32] and Chinese
slang interpretation [31], proposed joint semantic feature extraction
methods for attributes such as pinyin and radicals, which are unique
attributes in Chinese. In addition, these euphemisms are based on
the time slot and topic similarity for specific news hotspots and
events. (2) Existing research used static word embeddings [12, 33]
and bag-of-words model [36], which does not distinguish different
meanings of the same word or capture the differences between
semantically similar target keywords in the same category (e.g.,
cocaine and heroin in drug category). Therefore, we propose a new
framework based on feature fusion and feature individualization
modules, which can dynamically extract fusion features of sen-
tences and words, obtain discriminative individual features of the
target keywords, and effectively identify euphemisms in the corpus.

3 PROBLEM DESCRIPTION
Given sentences containing euphemisms 𝑆 and a set of target key-
words 𝑇 as input: 𝑠 = [𝑤1, ...,𝑤𝑖 , 𝑒𝑢𝑝ℎ, ...,𝑤𝑚] (where 𝑠 ∈ 𝑆 , 𝑒𝑢𝑝ℎ
is a euphemism), 𝑇 = {𝑡1, ..., 𝑡 𝑗 , ..., 𝑡𝑛}. The task is to find the target
keyword 𝑡 𝑗 that refers to the euphemism 𝑒𝑢𝑝ℎ. Taking the sen-
tences in Table 1 for example, we aim to determine that the value
for euphemism “nine” is the target keyword “gun” and “coke” refers
to “cocaine”.

4 FEATURE FUSION AND
INDIVIDUALIZATION

We convert the euphemism identification task into a cloze task [28],
masking out the euphemism in the sentence and finding the target
keyword that best matches the mask. As illustrated in Figure 1,
“[MASK]” refers to the blank of the sentence, and the goal is to find
the best candidate for the blank, formalized as shown in Formula
(1):

𝑡∗ = argmax 𝑃 (𝑡 𝑗 |𝑠) 𝑠 ∈ 𝑆, 𝑗 ∈ 1, ..., 𝑛 (1)

where 𝑆 is the set of sentences that masked out the euphemisms, 𝑡 𝑗
is the j-th target keyword in the candidate set of a specific category
(Drug, Weapon, or Sexuality), and 𝑡∗ is the target keyword that
maximizes the probability of the blank given the masked sentence
𝑠 .

Inspired by Zhu et al. [36], we use self-supervised learning to
overcome the limitation of the lack of labeled datasets with accurate
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Figure 2: Model framework.

mapping relationships between euphemisms and the target key-
words. In the training and validation phase, we take the sentences
masking the target keywords (e.g., cocaine and heroin) as training
samples, using the corresponding target keywords as labels for
training. During the testing phase, we feed the sentences with the
euphemisms masked into the trained model and finally specify the
masked euphemism into the corresponding target keyword.

4.1 The Overall Framework
We convert the euphemism identification task into a cloze task
and propose a feature fusion and individualization method (FFI)
to recognize euphemisms. The framework of our proposed FFI
is shown in Figure 2, which consists of three parts, namely 1) a
feature fusion module, 2) a feature individualization module, and 3)
a prediction module.

The feature fusion module extracts fusion features of masked
sentences and words by integrating both dynamic global and static
local information to enhance the semantics and make the features
more discriminative. Meanwhile, the feature individualization mod-
ule extracts discriminative individual features for target keywords
to strengthen the difference between the features, thus addressing
the challenge of subtle semantic differences between target key-
words. Finally, the prediction module combines the aforementioned

3
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Figure 3: Orthogonal decomposition process of target key-
word vectors. The target keyword vectors 𝑒 (𝑡𝑖 ) and 𝑒 (𝑡 𝑗 ) are
orthogonally projected with their common feature vector 𝐻𝑐 ,
to obtain the individual feature vectors 𝑢 (𝑡𝑖 ) and 𝑢 (𝑡 𝑗 ) of the
target keywords.

fusion features and individual features to obtain the final features,
using a classifier to complete the cloze task.

4.2 Feature Fusion Module
Euphemisms are usually identified according to their context, how-
ever if only context information is considered, similar contexts of
distinct euphemisms may mislead the model to learn confusing
information, leading to erroneous identification. For instance, the
sentence, “We had already paid $70 for some shitty weed from a
taxi driver but we were interested in some coke and the cubans”,
contains both euphemisms “weed” and “coke”. It is difficult to dis-
tinguish between “weed” and “coke” if only sentence-level context
information is considered.

According to previous research on the evolution of euphemisms
[13] and common sense, the literal meaning of euphemisms is re-
lated to their secret meanings. For example, the literal meaning of
weed and its true meaning of marijuana are both plants. Coke is a
euphemism for cocaine, because the original coke is a drink con-
taining cocaine. Notably, the euphemisms are easily distinguished
in literal sense, such as weed and coke. Inspired by these, we intro-
duce static local features of euphemisms representing their literal
meanings into the dynamic global features of euphemism context,
thus obtaining semantically rich and discriminative fusion features.

Due to Bert’s success in dynamically extracting contextual fea-
tures [6] and GloVe [22] in extracting static features [16], we use
Bert model pre-trained on euphemism corpus to extract dynamic
sentence features and GloVe to extract static word features. Take
the sentence 𝑠 = [𝑤1, ...,𝑤𝑖 , [MASK], ...,𝑤𝑚] (𝑠 ∈ 𝑆 , where 𝑆 is the
set of masked sentences) with the euphemism masked as the input
of BERT model.𝑤𝑖 refers to a token, and the special tokens “[CLS]”
and “[SEP]” are boundary markers used to guide and end the input
sequence.𝑤𝑚𝑎𝑠𝑘 refers to the original masked word. As shown in
formula (2) and (3), ℎ𝑔 (𝑠) ∈ 𝑅𝑑𝑔 and ℎ𝑙 (𝑤𝑚𝑎𝑠𝑘 ) ∈ 𝑅𝑑𝑙 .

ℎ𝑔 (𝑠) = CLS_BERT([CLS]+𝑤1+...+𝑤𝑖+[MASK]+𝑤𝑚+[SEP]) (2)

ℎ𝑙 (𝑤𝑚𝑎𝑠𝑘 ) = GloVe(𝑤𝑚𝑎𝑠𝑘 ) (3)

Then, a simple but effective method is applied to fusion the
dynamic global and static local features, as follows:

𝐻 (𝑠) = 𝜔 𝑓 · (ℎ𝑔 (𝑠);ℎ𝑙 (𝑤𝑚𝑎𝑠𝑘 )) + 𝑏 𝑓 (4)

where 𝜔 𝑓 ∈ 𝑅𝑑𝑔𝑋 (𝑑𝑔+𝑑𝑙 ) , 𝑏 𝑓 ∈ 𝑅𝑑𝑔 are the model parameters, and
(;) means concatenation.

Table 3: Overview of the datasets. Num means categories of
target keywords. Key_Entries means entries containing the
target keywords.
d/w/s_D1 = Drug/Weapon/Sexuality. d_D2 = Drug+Weapon,
w_D2 = Weapon+Sexuality, s_D2 = Sexuality+Drug.
d/w/s_D3 = Drug+Sexuality+Weapon.

Datasets Entries Num Key_Entries
Drug 1271907 33 drug:4566
Weapon 3108988 9 weapon:19003
Sexuality 2894869 12 sexuality:7215
d_D1 1271907 33 drug:4566
d_D2 4380895 33 drug:7015
d_D3 7275764 33 drug:9570
w_D1 3108988 9 weapon:19003
w_D2 6003857 9 weapon:28923
w_D3 7275764 9 weapon:29046
s_D1 2894869 12 sexuality:7215
s_D2 4166766 12 sexuality:7288
s_D3 7275764 12 sexuality:30534

4.3 Feature Individualization Module
Motivated by Qin et al. [23], we hypothesize that there is a common
semantic space between semantically similar target keywords to
display their common features and that each target keyword has
an independent space orthogonal to this space to display their
individual discriminative features. Thus, to alleviate the problem
of subtle semantic differences among target keywords, we employ
a feature individualization module that projects target keyword
features into a purified semantic space orthogonal to the common
semantic space to get individual features for identification.

The projection decomposition process is depicted in Figure 3,
and is explained using two-dimensional feature vectors of two
target keywords for clarity. As observed from Figure 3, when the
target keyword vectors 𝑒 (𝑡𝑖 ) and 𝑒 (𝑡 𝑗 ) are proximate, distinguishing
between the two becomes arduous. By utilizing the orthogonal
projection method, we can strip off the common parts of the vectors
and obtain the individual parts of each vector, denoted by 𝑢 (𝑡𝑖 ) and
𝑢 (𝑡 𝑗 ), thereby augmenting the dissimilarity between them, making
it easier to distinguish them.

Specifically, we encode each target keyword through the pre-
trained Bert to obtain 𝑒 (𝑡 𝑗 ) and take their average encoding as the
common encoding 𝐻𝑐 . Then, we calculate the projection of each
target keyword feature vector 𝑒 (𝑡 𝑗 ) onto the orthogonal direction of
the common feature vector 𝐻𝑐 and finally obtain the discriminative
individual feature 𝑢 (𝑡 𝑗 ).

𝑒 (𝑡 𝑗 ) = CLS_BERT([CLS] + 𝑡 𝑗 + [SEP]) 𝑗 ∈ 1, ..., 𝑛 (5)

𝐻𝑐 =
1
𝑛

𝑛∑︁
𝑗=1

𝑒 (𝑡 𝑗 ) (6)

Proj(𝑎, 𝑏) = 𝑎 · 𝑏
|𝑏 |

𝑏

|𝑏 | (7)

𝑢 (𝑡 𝑗 ) = Proj(𝑒 (𝑡 𝑗 ), (𝑒 (𝑡 𝑗 ) − 𝐻𝑐 )) 𝑗 ∈ 1, ..., 𝑛 (8)
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4.4 Prediction Module
After obtaining the fusion feature𝐻 (𝑠) and individual feature𝑢 (𝑡 𝑗 ),
the cloze task is finally achieved through the classifier. The prob-
ability of obtaining the selected target keyword for a given mask
sentence is calculated by a combination of the fusion feature and
individual feature:

𝑃 (𝑡 𝑗 |𝑠) =
𝑒𝑥𝑝 (𝜔 · (𝑢 (𝑡 𝑗 ) ⊙ 𝐻 (𝑠)) + 𝑏)∑𝑛
𝑗=1 𝑒𝑥𝑝 (𝜔 · (𝑢 (𝑡 𝑗 ) ⊙ 𝐻 (𝑠)) + 𝑏) (9)

where 𝜔 ∈ 𝑅𝑑𝑔 , 𝑏 ∈ 𝑅 are the model parameters and ⊙ is the
element-wise multiplication. The objective of the training is to
minimize the cross entropy between predicted results and true
values:

𝑙𝑜𝑠𝑠 = −
𝑛∑︁
𝑗=1

𝐻𝑔𝑙𝑜𝑔𝑃 (𝑡 𝑗 |𝑠) (10)

where n is the number of target keyword subcategories in a specific
category. In drug, weapon, or sexuality category, target keywords
in the same subcategory hold identical meanings. 𝐻𝑔 is the one-hot
vector of the ground truth.

5 EXPERIMENT
In this section, we evaluate the performance of FFI on the bench-
mark datasets presented by Zhu et al. [36] and a combination of
these datasets and compare it with a set of baseline models.

5.1 Experimental Setup
5.1.1 Datasets. We empirically validated our proposed model on
three separate datasets: Drug, Weapon, and sexuality [36]. In ad-
dition, we added a mixture of these datasets to verify our model
generalization capability. These datasets are sourced from the Red-
dit website3, Gab social networking services4, Online Slang Dictio-
nary5, etc.

An overview of the datasets is presented in Table 3. d_D1, d_D2,
and d_D3 respectively denote Drug, the mixed set of Drug and
Weapon, and the mixed set of the three datasets, in which we aim
to identify euphemisms for drug target keywords in these datasets.
Similarly, to identify weapon euphemisms in w_D1, w_D2, w_D3,
and sexuality euphemisms in s_D1, s_D2, s_D3. There are 33, 9,
and 12 subcategories of target keywords corresponding to datasets
Drug, Weapon, and Sexuality, respectively.

When training the model, the training and validation data must
mask out the target keywords. When testing, the test data must
mask out the euphemisms. Therefore, we require two kinds of
inputs: 1) sentences from the original text corpus that mask out the
target keywords (for training/validation) and sentences that mask
out the euphemisms (for testing), and 2) a list of target keywords
(e.g., heroin, cocaine, etc.). To evaluate our results, we need to rely
on a ground truth list [36] of euphemisms and the corresponding
target keywords, which should contain a one-to-one mapping from
each euphemism to its true meaning. The ground truth list on
Drug was compiled by the U.S. Drug Enforcement Administrator
to provide a practical reference for law enforcement personnel [1].

3https://www.reddit.com/
4https://gab.com/
5https://slangpedia.org/

The ground truth list on Weapon was sourced from the Online
Slang Dictionary6 and the Urban Thesaurus7. The ground truth list
on Sexuality came from the Online Slang Dictionary. Due to the
rapid evolution of the language used on social networks, it cannot
be comprehensive or error-free, but it is the most reliable ground
truth we can get.

Note that the ground truth list does not participate in the whole
training process, but is only used to help evaluate the accuracy of eu-
phemism identification, and no additional resources or supervision
are required throughout the training process.

5.1.2 Training details. To exclude other factors from affecting the
comparison with the baselines, we also trained the models sepa-
rately on each dataset and split the training set and validation set in
an 8:2 ratio of sentences that mask out the target keywords, while
the test set comprised all sentences that mask out the euphemisms.
Firstly, we pre-trained a Bert model based on bert-base-uncased8
for MLM task only to extract dynamic global features (768 dimen-
sions) of masked sentences and used a pretrained GloVe model to
extract static local features (100 dimensions) of words. Then, we
fine-tuned the model for the euphemism identification task. During
pre-training, the maximum length of input sequence was set as
512, the batch size as 64, and the number of iterations as 3. For
model training, the maximum length of input sequence was 128,
and the batch size was 32. The initial learning rate was 5e-5, the
warm-up step was 1000, and the optimizer AdamW [18] is based
on a warm-up linear schedule. All experiments were conducted on
a Linux server of Ubuntu 18.0.4 LTS version with a Tesla-V100 32G
GPU.

5.1.3 Evaluation Metrics. Similar euphemisms refer to the target
keywords with similar semantics makes it difficult to locate the
target keyword of the euphemism precisely. For each euphemism,
we generate a probability distribution for all target keywords. Given
the nature of the output, we evaluate the top-K accuracy (Acc@k)
[30], which measures how often the actual labels appear in the first
k values of the ranked list we generate. To be consistent with the
baselines, we also take the results of Acc@1, Acc@2, and Acc@3
for comparison.

5.2 Results and Analysis
We use four baselines to compare with FFI. These baselines include
the method proposed by Zhu et al. [36] (the SOTA model, denoted
as “SelfEDI”), the Word2vec baseline they created, and the other
two baselines established by us.

• Word2vec: Use Word2vec to obtain word embeddings of
all words, using cosine similarity to select the closest target
keyword.

• SelfEDI: Use a bag-of-words model to extract sentence fea-
tures at the sentence level, and train a multinomial logistic
regression classifier to recognize euphemisms.

• BERT_pre: Use the pre-trained model obtained from a cat-
egory corpus (such as Drug dataset) to extract the sentence

6http://onlineslangdictionary.com/
7http://urbanthesaurus.org/
8https://huggingface.co/bert-base-uncased/
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Table 4: Experimental results of baselines and the proposed FFI.

Model Drug Weapon Sexuality
Acc@1 Acc@2 Acc@3 Acc@1 Acc@2 Acc@3 Acc@1 Acc@2 Acc@3

Word2vec 0.07 0.14 0.21 0.10 0.27 0.40 0.17 0.22 0.42
SelfEDI 0.20 0.31 0.38 0.33 0.51 0.67 0.32 0.55 0.64
BERT_pre 0.21 0.26 0.33 0.35 0.54 0.70 0.36 0.55 0.64
BERT_ft 0.25 0.33 0.40 0.40 0.59 0.72 0.38 0.55 0.65
FFI_fusion 0.27 0.36 0.38 0.40 0.59 0.67 0.39 0.52 0.62
FFI_diff 0.29 0.37 0.40 0.42 0.64 0.72 0.42 0.55 0.65
FFI 0.31 0.39 0.43 0.42 0.65 0.72 0.46 0.57 0.67

S3

A B C

S2

Drug

S1

Weapon Sexuality

Figure 4: A/B/C.Visualization of FFI on Drug/Weapon/Sexuality Datasets. S1 represents the stage before training, while S2 and
S3 represent the stages after training. The orange stars denote the target keyword features, 33 in drug category, 9 in weapon
category, and 12 in sexuality category. The blue dots indicate the fusion features with the target keywords masked in S1 and S2,
and the fusion features with the euphemisms masked in S3, 512 randomly taken in each category of drug, weapon or sexuality.
The red circle in stage S2 of subplot A masks that the fusion features are clustered with the target keyword feature.

features (fixed parameters), and train a multinomial logistic
regression classifier to recognize euphemisms.

• BERT_ft: Use the pre-trained model obtained on a specific
corpus to extract the sentence features (updatable param-
eters), then perform element-wise multiplicative with the

feature vectors, and finally do the fine-tuning to complete
the euphemism identification cloze.

9https://replicate.com/stability-ai/stablelm-tuned-alpha-7b
10https://modelscope.cn/studios/damo/mPLUG-Owl/summary
11https://huggingface.co/models?other=llama-2
12https://platform.openai.com/docs/api-reference/introduction
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Table 5: Experimental results of FFI against the LLMs.
“Cost/S” represents the average time and cost per sentence.
“-” means that the models refuse to answer such questions
involving inappropriate content.

Model Drug Weapon Sexuality Cost/S
StableLM9 0.02 0.03 0.12 2.08S/0.00475$
mPLUG-Owl10 0.02 0.13 0.15 2.35S/0.00541$
Llama211 0.17 - - 18.23S/0.05833$
GPT3.512 0.33 0.17 0.42 1.12S/0.00035$
FFI 0.31 0.42 0.46 0.27S/0.00003$

5.2.1 Comparison with baselines. Table 4 summarizes the euphemism
identification results (the top two rows are taken directly from Zhu
et al. [36]). To be fair, the results of all models are taken from the
parameters that make the results the best. Our FFI achieves the best
performance. Specifically, FFI outperforms the SOTA model (Self-
EDI) by 11%, 9%, and 14% in top1 accuracy value on three datasets,
respectively.

Word2vec showed poor performance as it did not capture the sub-
tle differences among the target keywords. Compared to Word2vec,
BERT_pre, and SelfEDI showed better performance, both extract-
ing sentence semantic information relatively well. The results of
BERT_pre on three datasets are slightly better than those of SelfEDI.
Compared to SelfEDI (using a bag-of-words model to extract sen-
tence features), BERT_pre uses BERT encoding, which preserves
the sequential order of words and considers the semantic connec-
tions between words, resulting in obtaining sentence features with
richer semantics. The results of BERT_ft are better than those of
BERT_pre. The latter is based on a feature approach, using BERT as
a feature extractor, while the former uses a fine-tuning approach,
which is clearly superior to the feature-based approach.

Experimental results suggest that the exploration of alleviating
the problem of subtle semantic differences among euphemisms
referred to target keywords with similar semantics can maximally
exploit the discriminative features of the euphemisms and target
keywords, so as to improve the identification performance.

5.2.2 Comparison with LLMs. With recent advances in large lan-
guage models, series of tasks in natural language processing have
been solved well [34]. To investigate the effectiveness of the LLMs
in euphemism identification, we directly use the current best LLMs
to identify euphemisms, and the results obtained are shown in Table
5. We observe: 1) Our FFI model beats almost all the LLMs; 2) In
the four LLMs, GPT3.5 is the best and most stable for euphemism
identification; 3) Compared with our FFI , the time-consuming of
the LLMs is about 3-8 times that of ours, and the cost is about 10-200
times that of our FFI.

Although the recognition accuracy of GPT3.5 on the Drug dataset
is 2 percentage points higher than that of our FFI, there is still a
lack of understanding of rare euphemisms. We observe that GPT3.5
has a recognition accuracy rate of 100% for common euphemisms,
such as “weed”, “pot” and “coke”, while its recognition accuracy for
rare euphemisms, such as “ice”, is almost 0. Among the correctly
recognized euphemism, the proportion of common euphemism is
57.7%, providing a significant positive impact on the recognition
result. Thus, we deduce that GPT3.5 recognizes euphemisms by
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Figure 5: (a) Cosine similarities and (b) 3D representation
distribution of the target keywords in the drug category be-
fore and after the orthogonal projection is conducted. In (a),
the abscissa represents the cosine similarity values, and the
ordinate represents the corresponding number to abscissa. In
(b), the purple tetrahedron No.6 and No.18 refers to “cocaine”
and “marijuana” respectively.

common sense based on a large amount of corpus, rather than
by the context of euphemisms, as detailed in the supplementary
material. Based on the above analysis, our FFI model is better than
the LLMs in terms of identification results, time, cost, etc.

5.2.3 Visualization. To further substantiate the soundness of the
FFI, We map the distributions of context and target keyword fea-
tures to a two-dimensional coordinate space by t-SNE, as shown in
Figure 4. After using our FFI, across the three datasets, we observed:
1) both the fusion features and target keyword features become
more dispersed and easier to distinguish, and the distance between
them decreases; 2) the fusion features tend to converge on specific
target keywords. These show that our method can differentiate eu-
phemisms with similar contexts and target keywords with similar
semantics, while preserving the euphemism context to match the
corresponding target keywords, further proving the effectiveness
of our method.

5.3 Ablation Studies
To investigate the efficacy of each component of FFI, We conducted
experiments using or removing the feature fusion or feature individ-
ualization module on the three datasets. BERT_ft is the base version
of FFI, using only the BERT backbone to fine-tune the euphemism
identification task. FFI_fusion signifies that feature fusion is added
on the basis of BERT_ft, while FFI_diff indicates that feature indi-
vidualization is added on the basis of BERT_ft.

Experimental results are presented in Table 4. It can be seen that
the FFI_fusion or FFI_diff always obtains a larger improvement
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Figure 6: A.Identification results of drug euphemisms on d_D1, d_D2, and d_D3. B.Identification results of weapon euphemisms
on w_D1, w_D2, and w_D3. C.Identification results of weapon euphemisms on s_D1, s_D2, and s_D3.

than BERT_ft. This is a strong suggestion on the promotional effect
of feature fusion or feature individualization in maximizing the
discrimination of the euphemisms or target keywords. However,
the feature individualization contributes more to the improvement
of top1 identification accuracy than the feature fusion does, with
an increase of 2-3%. The effects of feature fusion and feature indi-
vidualization on the model are analyzed in detail below.

5.3.1 Feature Fusion. As can be seen from Table 4, utilizing the
feature fusion module to obtain fusion features of masked sentences
and words has improved the model’s performance, particularly in
terms of the top1 accuracy. If only sentence-level or word-level
semantic information is used, it is difficult to distinguish the eu-
phemisms with similar contexts. Taking sentence 1 in Table 1 for
example, we get two euphemism sentences: 𝑠1 (“We had already
paid $70 for some shitty [mask] from a taxi driver but we were
interested in some coke and the cubans.”), 𝑠2 (“We had already paid
$70 for some shitty weed from a taxi driver but we were interested
in some [mask] and the cubans.”). The similarity between 𝑠1 and
𝑠2 is 0.9903 before fusion is conducted, and drops to 0.9310 after
fusion, which proves the efficacy of the feature fusion module.

5.3.2 Feature Individualization. Table 4 shows that the orthogonal
projection of feature individualization has significantly improved
themodel’s performance. From the intuitive data, the average cosine
similarity between target keywords before projection is 0.937, and
it drops to -0.022 after projection, as shown in Figure 5a, where
the similarity matrix is shown in Appendix Table 7. Further 3D
representation distribution is shown in Figure 5b. It is apparent
that the dispersion of target keywords in the drug category is more
distinct after conducting orthogonal projection. Taking “marijuana”
and “cocaine” as examples, the cosine similarity value between
“marijuana” and “cocaine” is 0.98404 before projection, but decreases
to 0.27118 after projection. Above all, the orthogonal projection
of feature individualization can alleviate the problem of subtle
semantic differences among target keywords.

5.4 Generalization of FFI
Weaugmented the training data by amalgamating theDrug,Weapon,
and Sexuality datasets to assess the generalization of the model. As
shown in Table 3, d/w/s_D1, d/w/s_D2, and d/w/s_D3 comprise a

growing number of target keywords, implying a gradual increase
in the size of the training data. Figure 6 shows the top1, top2, and
top3 results of identifying euphemisms related to drug, weapon,
and sexuality on the d/w/s_D1, d/w/s_D2, and d/w/s_D3 datasets,
respectively.

In Figure 6, the result curve obtained by FFI clearly lies above
that of SelfEDI. Additionally, the line graph presents an overall
upward trend for both FFI and SelfEDI in the identification task
of the three categories as the training data gradually increases
(from D1_d/w/s, D2_d/w/s to D3_d/w/s), with the top1 recognition
rate showing an absolute upward trend. However, the performance
increase achieved by FFI is 83-250% higher than that of SelfEDI, indi-
cating that our method exhibits a faster performance improvement
as the training data increases.

When identifying the sexuality euphemisms, the top2, and top3
results did not exhibit a consistent upward trend. Upon analysis,
the sexuality data are extremely unbalanced, with the “sex” subcat-
egory accounting for a whopping 72% of the training dataset, while
the remaining subcategories only account for 2.5%. Despite this
imbalance, the top1 accuracy was still as expected and continued
to improve as the amount of training data increased.

Overall, the model demonstrates commendable performance in
terms of generalization.

6 CONCLUSION
We formulate the euphemism identification task as a cloze task
and propose a FFI method for euphemism identification. In FFI, a
feature fusion module is employed to capture both dynamic global
and static local features to enhance discrimination among different
euphemisms in similar contexts. Jointly, a feature individualization
module is used to project features into the orthogonal space, extract-
ing distinct individual features of each target keyword. Therefore,
FFI can effectively differentiate euphemisms in similar contexts
referring to target keywords with similar semantics. Extensive
experiments demonstrate the feasibility and state-of-the-art perfor-
mance of our FFI. Furthermore, the performance of FFI improves
rapidly as the amount of training data increases, indicating its
strong generalization ability.
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modalities prevalent in social media, such as images, videos, or
audio. In social media or underground marketplaces, text frequently
intertwines with diverse modal data. In the future, we will consider
integrating multi-modal data processing to facilitate information
extraction and thus identify euphemisms more effectively.

2) Gap from the training set to test set: Since there is no labeled
dataset for training the euphemism identification problem. During
the training phase, sentences containing the target keywords are
used with the target keywords masked out, while the correspond-
ing target keywords serve as labels. Nevertheless, during testing,
sentences containing euphemisms are used, with the euphemisms
masked out. As a result, the training and test data diverge in terms
of their distribution resulting in a relatively large gap between them,
which can be seen from 4. Although our model has achieved the
current best performance and uses feature fusion aiming to bridge
the gap between training and test data, there remains scope for
further improvement, and this will be the focus of our subsequent
research.

B SIMILARITY METRIC
The feature individualization module employs the orthogonal de-
composition to project the target keywords originally in a dense
space into a sparse space, which leads to a notable reduction in the
similarity values among the target keywords, rendering them more
distinguishable. Table 7 shows part of the similarity values between
target keywords before and after the orthogonal projection. It can
be seen that all the similarity values in the table become smaller
after orthogonal projection, further substantiating the effectiveness
of our method.

C LLMS FOR EUPHEMISM IDENTIFICATION
In this paper, we compared our proposed FFI model to four current
best large language models (LLMs) for euphemism identification
task, namely, GPT-3.5-turbo(GPT3.5 for short), Llama2, mPLUG-
Owl, and StableLM. These LLMs are described in detail below.

C.1 Introduction of LLMs
We briefly introduce the four LLMs from the model type, parameter
number, maximum text input length, cost and other aspects, as
shown in Table 8. GPT3.5 and stableLM are both natural language
processing models, while Llama2 and mPlug-Owl are multimodal
processing models which are more expensive. For details and inter-
faces about the LLMs, see the footnote link address.

C.2 Result Analysis
When using the GPT3.5 and StableLM interfaces to identify eu-
phemisms, we used four content templates, as shown in Table 9.
From Table 9, we observe that the results varies according to the
content templates, and GPT3.5 is relatively stable compared to
StableLM. However, the results are not consistent across different
models and different datasets, indicating the randomness of the
output results of these large language models. For the other multi-
modal processing models, i.e., Llama2 and mPlug-Owl, which are
too expensive to use four templates for testing, so that we only use
Template 1 to test the identification accuracy. Finally, we take the
best result on each dataset and record it to Table 4 in the body part.

It’s obvious that GPT3.5 performs the best among the four LLMs,
and outperforms our proposed FFI by two percentage points on
the Drug dataset. When using Llama2 API interface or web UI to
test the identification accuracy on Weapon or Sexualtiy dataset, it
informs that it is inappropriate to discuss such a topic and refuses
to answer questions, while we can only test on the Drug dataset
via web UI. We present case studies of the LLMs in the following
sections.

C.3 Case studies
Through the analysis of the euphemism identification results of the
four LLMs, we have the following two findings:

1) GPT3.5 performs the best among the four LLMs with strong
understanding of euphemisms. However, it still lacks understand-
ing of the relatively rare euphemisms, and the recognition rate of
commonly used euphemisms is almost 100%. As shown in Figure
7a, it can always idenfy "weed" (a common euphemism) to its true
meaning "marijuana", while having no idea of "ice" in euphemistic
use of "methamphetamine" (Figure 7b).

2) GPT3.5 is relatively stable as the identification results of com-
mon euphemisms are correct while the other LLMs are not. That’s
why the other LLMs perform far worse than GPT3.5 in euphemism
identification. Take the mPLUG-Owl model for example, when we
ask it for the same question about the meaning of the euphemism
in the sentence four times, it gives completely different answers, as
shown in Figure 8.

Table 6: Part of the target keywords in the drug category.

ID Target Keywords
0 acetaminophen and oxycodone combination
1 Alprazolam
2 amphetamine
3 amphetamine and dextroamphetamine combination
4 buprenorphine and naloxone combination
5 clonazepam
6 cocaine
7 crack cocaine
8 ecstasy
9 fentanyl
10 flunitrazepam
11 gamma-hydroxybutyric acid
12 heroin
13 hydrocodone
14 hydromorphone
15 ketamine
16 khat
17 lysergic acid diethylamide
18 marijuana
19 ...

10
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Table 7: The cosine similarity values between part of the target keywords in the drug category before and after orthogonal
projection was conducted. No.6 and No.18 refers to “cocaine” and “marijuana” respectively

Before 0 1 2 3 4 5 6 ...
0 1 0.93579 0.95589 0.88444 0.97922 0.9776 0.98076
1 0.93579 1 0.92202 0.8813 0.92497 0.9166 0.93248
2 0.95589 0.92202 1 0.9534 0.94525 0.949 0.95726
3 0.88444 0.8813 0.9534 1 0.86627 0.88073 0.89448
4 0.97922 0.92497 0.94525 0.86627 1 0.9805 0.96735
5 0.9776 0.9166 0.949 0.88073 0.9805 1 0.9805
6 0.98076 0.93248 0.95726 0.89448 0.96735 0.9805 1
7 0.98765 0.93848 0.95193 0.87878 0.97608 0.97738 0.98511
8 0.97875 0.93468 0.94151 0.86306 0.98797 0.97902 0.96776
9 0.97974 0.91653 0.94617 0.86884 0.98273 0.98362 0.97401 ...
10 0.9358 0.88706 0.95108 0.90685 0.95347 0.95249 0.93447
11 0.98201 0.92359 0.9553 0.88771 0.98497 0.98798 0.9788
12 0.97829 0.92588 0.92293 0.84195 0.96305 0.96913 0.97594
13 0.97452 0.929 0.95682 0.90218 0.98179 0.97925 0.96716
14 0.96879 0.89648 0.94124 0.8636 0.97425 0.98618 0.96475
15 0.90878 0.89057 0.87473 0.80518 0.9192 0.92579 0.91216
16 0.97743 0.92129 0.94097 0.86879 0.97689 0.98363 0.97902
17 0.97467 0.91505 0.93579 0.85561 0.98715 0.98306 0.96582
18 0.97993 0.94131 0.95373 0.89399 0.96473 0.97504 0.98404

After 0 1 2 3 4 5 6 ...
0 1 0.12843 -0.01018 -0.18083 0.22706 -0.12476 0.15831
1 0.12843 1 0.14171 0.19981 -0.01622 -0.36394 0.05465
2 -0.01018 0.14171 1 0.71383 -0.17843 -0.3343 0.00869
3 -0.18083 0.19981 0.71383 1 -0.36669 -0.34613 -0.0358
4 0.22706 -0.01622 -0.17843 -0.36669 1 0.16963 -0.25071
5 -0.12476 -0.36394 -0.3343 -0.34613 0.16963 1 -0.01093
6 0.15831 0.05465 0.00869 -0.0358 -0.25071 -0.01093 1
7 0.43728 0.16219 -0.16536 -0.31368 0.05256 -0.23536 0.29956
8 0.17377 0.13514 -0.30029 -0.44136 0.58551 0.05431 -0.28916
9 0.13658 -0.24153 -0.26348 -0.42359 0.35807 0.17991 -0.13951 ...
10 -0.29124 -0.15924 0.3156 0.30853 0.17083 0.01904 -0.34663
11 0.06264 -0.23275 -0.17149 -0.24227 0.35319 0.229 -0.14951
12 0.38907 0.09866 -0.42432 -0.49374 0.01902 -0.0006 0.30549
13 0.01363 0.03731 0.06633 0.1157 0.3753 0.07143 -0.30645
14 -0.06919 -0.42671 -0.20065 -0.3464 0.20883 0.49628 -0.23968
15 -0.12337 0.14972 -0.23479 -0.22328 0.09846 0.13653 -0.07761
16 -0.04844 -0.2029 -0.48961 -0.49469 0.07171 0.08907 -0.005
17 0.03185 -0.19902 -0.41871 -0.53254 0.56413 0.26113 -0.34295
18 0.10998 0.2262 -0.09469 -0.04879 -0.36916 -0.31779 0.27118
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Table 8: Introductions of the four LLMs. MM = Multi-Modal, T = Trillion, B = Billion.

LLMs Type Parameters Maximum input Cost Institution

GPT3.5 NLP 1.2T 4096 tokens 0.015$/1k tokens OpenAI

StableLM NLP 3B - 7B 4096 tokens 0.0023$/second Stability AI

Llama2 MM 7B - 70B 4096 tokens 1.05$/hour Meta

mPLUG-Owl MM 7B 2048 tokens 0.0023$/second DAMO Academy

Table 9: Content templates and results.

Template
GPT3.5 StableLM

Drug Weapon Sexuality Drug Weapon Sexuality

1. Among the following candidates:{T}, in sentence:{s}, eu-
phemism:{euph} refers to which one.

0.3314 0.1543 0.4041 0.0214 0.0149 0.1184

2. Among the following candidates:{T}, in sentence:{s},
{euph} refers to which one.

0.2971 0.1686 0.3876 0.0160 0.0248 0.1061

3. The true meaning of euphemism:{euph} in "{s}" refers to
which of the following canditates:{T}.

0.3257 0.1564 0.4204 0.0053 0.0299 0.1102

4. The true meaning of "{euph}" in "{s}" refers to which of
the following canditates:{T}.

0.3029 0.1482 0.0106 0.0107 0.0199 0.1020

“T” refers to the fixed target keyword candidate list: {0:acetaminophen and oxycodone combination, 1:alprazolam, 2:am-
phetamine, 3:amphetamine and dextroamphetamine combination, ... }

“s” refers to the test sentence containing euphemisms.

“euph” refers to the euphemism in the test sentence that need to be identified.
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(a) Identification of "weed"

(b) Identification of "ice"

(c) Identification of "porn"

Figure 7: Cases of GPT3.5.

Figure 8: Cases of mPLUG-Owl.
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