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Abstract

Transformers have generally supplanted recurrent neural networks as the
dominant architecture for both natural language processing tasks and for
modelling the effect of predictability on online human language compre-
hension. However, two recently developed recurrent model architectures,
RWKV and Mamba, appear to perform natural language tasks comparably
to or better than transformers of equivalent scale. In this paper, we show
that contemporary recurrent models are now also able to match—and in
some cases, exceed—performance of comparably sized transformers at
modeling online human language comprehension. This suggests that trans-
former language models are not uniquely suited to this task, and opens up
new directions for debates about the extent to which architectural features
of language models make them better or worse models of human language
comprehension.

1 Introduction

The origins of recurrent neural networks lie in attempts to model human cognition, and
specifically the human language system (Jordan, 1986; Elman, 1990). Following improve-
ments such as long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997; Gers
et al., 2000), recurrent neural networks were for a while the dominant architecture not
only for modeling human language comprehension (e.g. Frank et al., 2015), but for natu-
ral language systems in general (see, e.g. Goldberg, 2016). In recent years, they have in
turn been superseded by transformer language models, which empirically tend to show
better performance at both a range of natural language tasks (see, e.g., Radford et al., 2019;
Dai et al., 2019) and at predicting metrics of human language comprehension (e.g. Wilcox
et al., 2020; Merkx & Frank, 2021; Michaelov et al., 2022). Nonetheless, the question of how
recurrent and transformer language models compare as cognitive models of the human lan-
guage system is still an open one. One the one hand, recurrent neural networks inherently
model the process of maintaining a specific informational state and integrating this with
new information as it occurs incrementally. This principle is widely believed to underlie
language comprehension and other real-time processing (Merkx & Frank, 2021; Michaelov
et al., 2021). On the other hand, transformers have been argued to better model cue-based
retrieval accounts of language comprehension (Ryu & Lewis, 2021; Merkx & Frank, 2021),
and their direct access to previous words may allow them to better model human-like lexical
priming effects (Michaelov et al., 2021). In addition, transformers’ superior performance
at predicting metrics of human language comprehension in itself serves as evidence that,
at the very least, the statistical patterns learned by transformer language models capture
something also learned by humans.

As they have increased in scale (number of parameters, number of training tokens, or
both), transformers have been found to improve at natural language tasks (Brown et al.,
2020; Kaplan et al., 2020; Rae et al., 2022; Hoffmann et al., 2022; Chowdhery et al., 2022;
Touvron et al., 2023), as well as at predicting both behavioral (Wilcox et al., 2020; Merkx
& Frank, 2021) and neural (Merkx & Frank, 2021; Michaelov et al., 2022) metrics of online
language comprehension. But in recent years, two wrinkles have emerged. The first is
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evidence that larger models and those trained on more data may actually predict some
behavioral metrics of language comprehension (such as reading time) worse than smaller
models do (Kuribayashi et al., 2021; Oh et al., 2022; Oh & Schuler, 2023a;b; Oh et al., 2024;
Shain et al., 2024). Second, two recently developed recurrent language model architectures
appear to perform natural language tasks at least as well as transformers of equivalent size
and training: RWKV (Peng et al., 2023) and Mamba (Gu & Dao, 2023). Transformers are
therefore no longer the definitively best-performing language model architecture, and it is
no longer the case that we should expect further advances in transformers to necessarily
lead to improved fit to metrics of human language comprehension. Thus the time is ripe to
revisit the question of which language model architecture best predicts human language
comprehension.

To this end, we compare the performance of the Pythia (Biderman et al., 2023), RWKV
(Peng et al., 2023), and Mamba (Gu & Dao, 2023) suites of autoregressive language models
on 12 human language comprehension datasets (Federmeier et al., 2007; Hubbard et al.,
2019; Michaelov et al., 2024; Szewczyk & Federmeier, 2022; Szewczyk et al., 2022; Wlotko
& Federmeier, 2012; Boyce & Levy, 2023; Brothers & Kuperberg, 2021; Futrell et al., 2021;
Kennedy et al., 2003; Luke & Christianson, 2018; Smith & Levy, 2013) covering 5 different
metrics. Since all models were trained on the same dataset and have comparable numbers
of parameters, we are able to measure the effect of architecture on the extent to which a
language model’s predictions correlate with metrics of human language comprehension.

2 Modeling prediction in human language comprehension

Over the years, a wide range of language models have been used to model data from
experiments on human language comprehension, including n-gram models (e.g., McDonald
& Shillcock, 2003; Boston et al., 2008; Demberg & Keller, 2008; Mitchell et al., 2010; Smith &
Levy, 2013; Brothers & Kuperberg, 2021), recurrent neural networks (RNNs; e.g., Frank
& Bod, 2011; Fossum & Levy, 2012; Monsalve et al., 2012; Frank et al., 2015; Goodkind &
Bicknell, 2018; Aurnhammer & Frank, 2019), and most recently, transformers (e.g., Wilcox
et al., 2020; Hao et al., 2020; Merkx & Frank, 2021; Kuribayashi et al., 2021; Szewczyk &
Federmeier, 2022; Michaelov et al., 2022; 2024; Boyce & Levy, 2023; Wilcox et al., 2023a;b; Oh
et al., 2022; 2024; Oh & Schuler, 2023a;b; Shain et al., 2024). Each approach can be evaluated
in terms of how well it performs either as a computational-level model (in the vein of
Marr, 1982) or as a cognitive model. Language models can serve as computational-level
models since they calculate the probability of a word in a given context; and thus, their
predictions can be compared with analogous measures of prediction in humans. Humans
may also be able to predict the probability of words based on the statistics of language,
given evidence that they are sensitive to statistical properties of language such as word
frequency (Van Petten & Kutas, 1990; Van Petten, 1993; Dambacher et al., 2006; Rugg, 1990;
Fischer-Baum et al., 2014; Shain, 2024). This opens a door for thinking of language models
as plausible cognitive models, something further supported by recent work arguing that
language models display linguistic competence (Piantadosi, 2023; Mahowald et al., 2024).

Existing studies vary in where they fall along the computational-to-cognitive model contin-
uum. At the computational end of the scale, a range of studies (Smith & Levy, 2013; Brothers
& Kuperberg, 2021; Meister et al., 2021; Wilcox et al., 2023b; Hoover et al., 2023; Shain et al.,
2024; Michaelov & Bergen, 2022; 2024) have focused on understanding the mathematical
relationship between language model probability and processing difficulty, which does not
necessarily require considering the specific model features. On the other end of the scale,
several researchers have argued that contemporary transformers have a strong structural
resemblance to the human language system (Schrimpf et al., 2021; Hosseini et al., 2024).

Most studies fall somewhere between the two extremes. This is particularly evidenced in
work on the N400, a neural signal that is often considered to index the extent to which a
word has been predicted based on its preceding context (DeLong et al., 2005; Van Petten &
Luka, 2012; DeLong et al., 2014; Kuperberg et al., 2020). Frank & Willems (2017), for example,
explicitly choose to use a model with a modified n-gram architecture to investigate the role
that pure word-level surface-level statistics may have on language comprehension. More
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recently, Michaelov et al. (2024) used GPT-3 to investigate the extent to which prediction
based on language statistics alone could account for several known N400 effects, including
the fact that more semantically plausible words are processed more easily. We can also use
this approach to test the viability of specific hypotheses about the language comprehension
system by comparing language models that instantiate different theories of language com-
prehension. Frank et al. (2015), for example, investigate how well a traditional recurrent
neural network predicts N400 amplitude compared to a model implementing a probabilistic
phrase-structure grammar. They find that the former out-performs the latter, which they
argue suggests that prediction during human language comprehension may rely more on
statistical properties of language than on explicit hierarchical grammatical structure.

In the present study, we focus on the difference between recurrent language models and
transformers. Many accounts theorize that human language comprehension involves
construction of lossy and in some cases incorrect representations of the utterance and its
meaning, due to cognitive resource limitations (Ferreira, 2003; Christiansen & Chater, 2016;
Futrell et al., 2020), and it has been argued that recurrent models are a good computational
models of this (Merkx & Frank, 2021; Michaelov et al., 2021). This is perhaps most clear in
the case of the now-or-never bottleneck account of language comprehension, under which our
limited working memory means that ‘the brain must compress and recode linguistic input
as rapidly as possible’ (Christiansen & Chater, 2016). In this case, the analogy with recurrent
models is clear—a core component of such models is that they can take inputs of any length,
but are limited in that any context must be compressed into a representation with a fixed
size, which is updated with each new word.

This is not the case for transformers, however. While they have fixed (though ever-increasing,
see, e.g., Llama Team, 2024) context windows, they have perfect access to all the represen-
tations of words within these context windows. Thus, their representations of a word’s
context are not incrementally-compressed versions of the input like recurrent models; but
rather, their representations of the context expand with each new word—within their context
window, they have ‘unlimited working memory’ (Merkx & Frank, 2021), which puts them at
odds with accounts such as the now-or-never bottleneck theory of language comprehension.
On the other hand, such seemingly lossless working memory may be more human-like than
it may first appear. As Michaelov et al. (2021) note, humans do maintain specific past words
in working memory, and indeed, there is evidence that reading a given word can lead to that
word being easier to process for up to 45 minutes in some specific contexts (Besson et al.,
1992; for discussion see Rommers & Federmeier, 2018). Furthermore, transformers have
been argued to provide a good computational-level model of cue-based retrieval accounts
of language comprehension (Ryu & Lewis, 2021; Merkx & Frank, 2021). Specifically, under
cue-based retrieval accounts (McElree et al., 2003; Van Dyke & Lewis, 2003; for review see
Lewis et al., 2006; Parker et al., 2017), words are retrieved during language comprehension
based on the features of previous words in the context which are used as cues; and analo-
gously, it has been argued, the features of the representations of the words that transformers
attend to when they predict the next word can be considered to function as cues to which
word should be predicted (Ryu & Lewis, 2021; Merkx & Frank, 2021).

Beyond a priori cognitive plausibility, empirical studies with N400 data have almost univer-
sally shown that transformers out-perform recurrent neural networks, and larger transform-
ers trained on more data (and with lower perplexities) generally perform best at predicting
N400 amplitude (Merkx & Frank, 2021; Michaelov et al., 2022; Michaelov & Bergen, 2022).

Language models have also been used to model reading time, which has also been hypothe-
sized to reflect prediction in language comprehension. However, in this area, the results
have been less straightforward. Smaller models display the same pattern seen with the N400,
where larger language models trained on more data and with lower perplexities perform
better (Goodkind & Bicknell, 2018; Merkx & Frank, 2021; Wilcox et al., 2020; 2023a; Hao
et al., 2020). But past a certain number of parameters or training tokens, their performance
appears to deteriorate (Kuribayashi et al., 2021; Oh et al., 2022; 2024; Oh & Schuler, 2023a;b;
Shain et al., 2024). On the question of whether recurrent neural networks or transformers
best predict reading time, the results have been mixed (Wilcox et al., 2020; Eisape et al.,
2020; Kuribayashi et al., 2021), and have been found to differ depending on which metric of
reading time is investigated (Merkx & Frank, 2021).
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RWKV-4 Pythia Mamba

Name Parameters Name Parameters Name Parameters

169M 169,342,464 160M 162,322,944 130M 129,135,360
430M 430,397,440 410M 405,334,016 370M 371,516,416
- - 1B 1,011,781,632 790M 793,204,224
1.5B 1,515,106,304 1.4B 1,414,647,808 1.4B 1,372,178,432
3B 2,984,627,200 2.8B 2,775,208,960 2.8B 2,768,345,600

Table 1: All the models used in our analysis, displaying the model’s named size and the size
as calculated using PyTorch. Models of comparable size are displayed next to each other.
Further details for each model are provided in the cited papers and their linked repositories.

The advent of new recurrent architectures that are increasingly feasible to train at a large scale
and that can perform as well as or better than transformers—namely, RWKV and Mamba—
is thus important in two ways. First, it allows us to test whether the patterns previously
observed in transformers—that larger and better models predict N400 amplitude better
but past a certain point predict reading time worse—also holds for other architectures with
comparable natural language processing performance. Second, and perhaps more crucially,
it allows us to again evaluate whether, when matched on scale or performance, recurrent or
transformer architectures are better models of online human language comprehension.

3 Method

3.1 Language Model Architectures

The aim of this study is to investigate how well metrics of online human language com-
prehension can be predicted using three types of language model: the Pythia suite of
autoregressive transformers (Biderman et al., 2023); and the recurrent RWKV (Peng et al.,
2023) and Mamba models (Gu & Dao, 2023). All models are trained on the Pile, a 300B token
English-language dataset (Gao et al., 2020). For each architecture, we selected models of
comparable size (i.e., weight class) as shown in Table 1. We discuss each architecture below.

Pythia Pythia (Biderman et al., 2023) is a set of autoregressive transformer models trained
to be comparable across different model sizes, ranging from 70M to 12B parameters. The
architecture and hyperparameters are based on GPT-3 (Brown et al., 2020), with the addition
of some changes based on recent advancements (Dao et al., 2022; Su et al., 2024; Wang &
Komatsuzaki, 2021; Belrose et al., 2023).

RWKV RWKV is a language model architecture described by its creators as a ‘Reinvent[ion
of the] RNN for the Transformer Era’ (Peng et al., 2023). RWKV models combine the
parallelizable training of transformers with unlimited context lengths, as well as several
additional features that make them RNN-like. First, their time-mixing block—which can
mathematically formulated in a similar way to the recurrent states of an RNN (Peng et al.,
2023)—allows the representations of past states to be combined with those of new words.
In addition, RWKV models explicitly have a decay parameter such that tokens earlier in
the context will be weighted less than later tokens during inference, thereby explicitly
introducing something analogous to working memory limitations (Merkx & Frank, 2021).

Mamba Mamba is another recent recurrent model architecture (Gu & Dao, 2023). One
of the key goals of the Mamba architecture is to allow models to optimally compress their
contexts, and especially very long contexts, into a state of fixed size such that they are still
able to predict effectively. Like RWKV, Mamba computational complexity scales linearly
with sequence length while avoiding the quadratic complexity of transformers (Gu & Dao,
2023). This is achieved by using a novel ‘selective scan’ mechanism that filters the input to
select the most important information. Thus, Mamba models intuitively function like the
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Dataset Metric Stimuli N Trials

Federmeier et al. (2007) N400 564 32 7,856
Hubbard et al. (2019) N400 192 32 5,705
Michaelov et al. (2024) N400 500 50 5,526
Szewczyk & Federmeier (2022) N400 600 26 4,822
Szewczyk et al. (2022) N400 672 32 4,939
Wlotko & Federmeier (2012) N400 300 16 4,440
Boyce & Levy (2023) Maze Response Time 9,304 63 56,447
Brothers & Kuperberg (2021) SPR Three-Word RT 648 216 46,092
Futrell et al. (2021) SPR Response Time 9,303 181 1,566,641
Kennedy et al. (2003) Go-Past Duration 38,186 10 195,507
Luke & Christianson (2018) Go-Past Duration 2,399 84 105,570
Smith & Levy (2013) SPR Response Time 6,297 35 119,120

Table 2: A description of each of the datasets, including the metric, the number of stimuli,
the number of experimental participants (N), and the number of trials. See §3.2 for a brief
explanation of each metric, and Appendix A for further details of each dataset.

more recent recurrent neural network variants—crucially, they include a latent state that is
updated with each new input (like recurrent layers), and their selective scan method filters
input (much like gating mechanisms in gated recurrent units or long short-term memory).

3.2 Datasets

In this study, we use language models of each of the three architectures discussed in §3.1 to
model 5 metrics of human language processing from 12 datasets, the details of which are
given in Table 2. These datasets comprise 6 N400 datasets (Federmeier et al., 2007; Hubbard
et al., 2019; Michaelov et al., 2024; Szewczyk & Federmeier, 2022; Szewczyk et al., 2022;
Wlotko & Federmeier, 2012) and 6 reading time datasets. The latter comprise four types of
reading time metric: the interval between when a word is first fixated by a reader and when
they first move onto the next word, as calculated using eye-tracking (Go-Past Duration or
GPD; Kennedy et al., 2003; Luke & Christianson, 2018), the time taken to click to move onto
the next word in a self-paced reading task (Self-Paced Reading Response Time or SPR RT;
Futrell et al., 2021; Smith & Levy, 2013), the total Response Time for a word and the two
following words (to account for spillover effects) in a self-paced reading task (Self-Paced
Reading Three-Word Response Time or 3W-RT; Brothers & Kuperberg, 2021), and the time
taken to respond to each word on the Maze task (Maze Response Time or Maze RT; Boyce
& Levy, 2023). Further details of each metric and dataset are provided in Appendix A.

3.3 Evaluation Procedure

We used the language models discussed in §3.1 to calculate the surprisal of all critical
words in all datasets given their context. For the N400 and the Brothers & Kuperberg (2021)
datasets, this context was made up of the preceding words in the same sentence. In the
remaining datasets (Luke & Christianson, 2018; Boyce & Levy, 2023), we included the whole
preceding passage, comprising multiple sentences. For critical words made up of multiple
tokens, surprisal was calculated as the sum of all the sequential tokens comprising them.

We ran regression analyses for each dataset using linear mixed-effects regression models,
predicting each human language comprehension metric using the surprisal calculated
using each language model, as well as baseline covariates and random effects structures
as described in Appendix A. For each regression, we calculate the Akaike Information
Criterion (AIC; Akaike, 1973), a measure of how well a regression fits the data, with a lower
AIC indicating a better fit. All language models were run in Python (Van Rossum & Drake,
2009) using the transformers (Wolf et al., 2020) library with pytorch (Paszke et al., 2019),
pandas (McKinney, 2010), and numpy (Harris et al., 2020); and analyses were carried out in R
(R Core Team, 2023) using Rstudio (Posit team, 2023) with the tidyverse (Wickham et al.,
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2019), lme4 (Bates et al., 2015), and scales (Wickham et al., 2023) packages. Code and data
are available at https://github.com/jmichaelov/recurrent-vs-transformer-modeling.

4 Results

4.1 N400 Datasets

Scale impacts model performance at a range of tasks, so we consider the differences between
models while accounting for scale. Following previous work (e.g., Oh & Schuler, 2023a),
we consider differences between models when accounting for model size and for model
perplexity. While the two are generally correlated, perplexity can help explain the effect
of model size. Better models might align better with metrics of human language compre-
hension given our own powerful predictive capabilities (Monsalve et al., 2012; Goodkind &
Bicknell, 2018; Michaelov et al., 2022), but by the same token, language models may learn to
predict words too well to model human language comprehension (Oh et al., 2024).

We first consider the results arranged by model size (Figure 1A). Overall, we find that in
most cases, Mamba and RWKV performance is better than that of Pythia, and Mamba is
also better than RWKV. On the Federmeier et al. (2007) data, Mamba outperforms Pythia at
all model sizes. On the Michaelov et al. (2024), Szewczyk & Federmeier (2022), and Wlotko
& Federmeier (2012) datasets, Mamba is better at all but one scale. Lastly, on the Szewczyk
et al. (2022) and Hubbard et al. (2019) datasets, Mamba is better for all but two model
sizes (and roughly equal at an additional one for the latter dataset). On the Federmeier
et al. (2007), Hubbard et al. (2019), and Szewczyk & Federmeier (2022) datasets, RWKV
outperforms Pythia at all but one size. For the other studies, RWKV outperforms Pythia at
all but 2 sizes. For all studies, the best model fit across all model sizes is a recurrent model;
either Mamba or RWKV.

One additional pattern relates to scaling. In contrast to recent work on reading time (e.g.
Oh & Schuler, 2023b) but in line with previous work on the N400 (Merkx & Frank, 2021;

(A) Model performance on N400 data by model size
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(B) Model performance on N400 data by perplexity
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Figure 1: Language model performance at predicting N400 amplitude.
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Michaelov et al., 2022; Michaelov & Bergen, 2022), we see that 4 of the 6 datasets (Federmeier
et al., 2007; Hubbard et al., 2019; Szewczyk & Federmeier, 2022; Wlotko & Federmeier, 2012)
show positive scaling effects—larger models tend to fit the data better.

In order to test how robust these patterns are, we run ordinary least-squares linear models
for each dataset, predicting the AIC of the linear mixed-effects regressions based on language
model scale and model architecture (Pythia, Mamba, or RWKV). After correction for multiple
comparisons (Benjamini & Yekutieli, 2001), we see that model scale is a significant predictor
of AIC, with surprisals calculated from larger models fitting the N400 data from 4 of the 6
datasets (Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk & Federmeier, 2022; Wlotko
& Federmeier, 2012) significantly better than smaller models. Given the low power of our
analysis (only 14 observations per dataset), it is also worth noting that before correction for
multiple comparisons, Mamba models produce surprisals that fit the N400 data significantly
better than Pythia models on the Federmeier et al. (2007) and Wlotko & Federmeier (2012)
datasets. While these latter results are suggestive rather than conclusive, they are consistent
with the patterns observed in Figure 1A. The full results of our statistical analyses are
provided in Table 3.

Next, we consider the results arranged by model perplexity (Figure 1B). Within each archi-
tecture, there is no difference in pattern depending on whether we order language models
by size or perplexity. However, we do see a difference across architectures. In the four
datasets that show positive scaling as a function of model size (larger models predict N400
amplitude better), when arranged by perplexity, Mamba models appear to perform worse
relative to the other model architectures than they do when arranged by model size, while
RWKV models appear to perform better. Conversely, on the dataset where two recurrent
models show negative scaling (Szewczyk et al., 2022), we see the opposite pattern—Mamba
appears to perform better, and RWKV appears to perform worse.

When we run ordinary least-squares linear models predicting AIC based on model perplexity
and architecture, we see a similar effect to that seen for size. After correction for multiple
comparisons, better language models (i.e., those with a lower perplexity) produce surprisals
that better fit the N400 data on half of the datasets (Federmeier et al., 2007; Hubbard et al.,
2019; Wlotko & Federmeier, 2012). The Szewczyk & Federmeier (2022) dataset also shows
this pattern before correction. Full results of our statistical analyses are provided in Table 5.

4.2 Reading Time Datasets

For the behavioral reading data, we again first look at the data arranged by model size
(Figure 2A). The clearest effects are seen on the eye-tracking datasets (Kennedy et al., 2003;
Luke & Christianson, 2018), where Pythia outperforms (or in one case, performs equally as
well as the better of) Mamba and RWKV at all sizes. We also see that Pythia tends to perform
best overall on two of the other datasets (Boyce & Levy, 2023; Futrell et al., 2021), with
either Mamba or RWKV performing better at one or two sizes. The clearest exception to this
pattern is the Brothers & Kuperberg (2021) dataset, where Mamba and RWKV outperform
Pythia at all but one size. We also see a different scaling pattern—unlike the the 5 datasets
(Boyce & Levy, 2023; Futrell et al., 2018; Kennedy et al., 2003; Luke & Christianson, 2018;
Smith & Levy, 2013) that generally show a negative scaling pattern(larger models perform
produce less well-fitting surprisals), the Brothers & Kuperberg (2021) shows the positive
scaling effect seen with the N400 data. The Smith & Levy (2013) results are less clear, both
in terms of differences between models and in terms of overall scaling patterns.

An ordinary least-squares linear model predicting AIC based on number of parameters
and architecture also shows this difference. Even after correction for multiple comparisons,
model size has a significant effect on 4 of the 6 datasets (Boyce & Levy, 2023; Futrell et al.,
2021; Kennedy et al., 2003; Luke & Christianson, 2018; Smith & Levy, 2013; in addition
to the Smith & Levy (2013) dataset before correction for multiple comparisons), with the
surprisal calculated from larger models showing a worse fit to the data. Intriguingly,
in line with the aforementioned observations based on Figure 2A, before correction, the
Brothers & Kuperberg (2021) dataset shows the opposite effect—the same positive scaling
we see on some of the N400 datasets. Returning to the differences between architectures,
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(A) Model performance on reading time data by model size

Kennedy et al. (2003): GPD Luke & Christianson (2018): GPD Smith and Levy (2013): SPR RT

Boyce & Levy (2023): Maze RT Brothers & Kuperberg (2021): 3W−RT Futrell et al. (2021): SPR RT

108 108.5 109 109.5 108 108.5 109 109.5 108 108.5 109 109.5

1849200

1849400

1849600

283080
283090
283100
283110
283120

85880
85890
85900
85910
85920
85930

280950
281000
281050
281100
281150
281200
281250

133400

133600

133800

134000

524200

524400

524600

Number of Parameters

F
it 

to
 R

ea
di

ng
 T

im
e 

(A
IC

)

Model

Pythia

Mamba

RWKV

(B) Model performance on reading time data by perplexity
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Figure 2: Language model performance at predicting 4 reading time metrics (see §3.2).

after correction, surprisals calculated using Mamba fit the Luke & Christianson (2018) and
Kennedy et al. (2003) data significantly worse than Pythia, with this also being true of RWKV
on both datasets before correction. Further details are provided in Table 4.

For the perplexity-ordered data (Figure 2B), the same pattern emerges as for the N400
data—for the dataset where positive scaling is found (Brothers & Kuperberg, 2021), Mamba
models appear to perform relatively worse relative to Pythia than they do when the models
are ordered by size and RWKV models perform relatively better, and for datasets where
negative scaling is found, Mamba models appear to perform relatively better and RWKV
models relatively worse. Again, while we see N400-like positive scaling on the Brothers
& Kuperberg (2021) dataset—with lower-perplexity models showing a better fit to the
data—we see the opposite pattern with the remaining 5.

Further confirmation of the different scaling patterns comes from ordinary least-squares
linear models predicting AIC based on perplexity and architecture. After correction for
multiple comparisons, models with a lower perplexity produce surprisals that are signifi-
cantly better at predicting the Brothers & Kuperberg (2021) data, but significantly worse
at predicting reading time in 4 datasets (Boyce & Levy, 2023; Futrell et al., 2021; Kennedy
et al., 2003; Luke & Christianson, 2018; and again, the Smith & Levy, 2013 dataset before
correction). In this analysis, surprisal values calculated from the Mamba and RWKV models
also show a significantly worse fit to the Kennedy et al. (2003) data, with those from the
RWKV models also showing this on the Luke & Christianson (2018) dataset before correction
for multiple comparisons. The details of all statistical analyses are provided in Table 6.

5 Discussion

To the best of our knowledge, the present study is the first to compare the extent to which
transformers and contemporary recurrent language models can model online human lan-
guage comprehension. Previous work has overwhelmingly found that transformers better
predict the N400 than recurrent neural networks (Merkx & Frank, 2021; Michaelov et al.,
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2021; 2022). We show, by contrast, that on 6 datasets, when comparing models of the same
size and trained on the same data, contemporary recurrent language model architectures
generally out-perform transformers, with surprisal values calculated using Mamba models
tending to provide the best fit to the N400 data. When accounting for model perplexity,
the comparison across architectures is less clear-cut; however, the contemporary recurrent
architectures at least match transformer performance.

The results are more mixed for reading time metrics. On the Kennedy et al. (2003) dataset, for
example, the Pythia models predict go-past duration best at any scale or perplexity; while
on the other hand, the recurrent models predict self-paced reading time on the Brothers &
Kuperberg (2021) dataset best except at the 1.4-1.5B scale. Such mixed results for behavioral
data is perhaps unsurprising given the conflicting results in previous work (Goodkind &
Bicknell, 2018; Merkx & Frank, 2021; Hao et al., 2020; Wilcox et al., 2020; 2023a; Kuribayashi
et al., 2021; Oh et al., 2022; 2024; Oh & Schuler, 2023a;b; Shain et al., 2024).

We also report several interesting scaling results. First, on the whole, scaling patterns are
consistent across architectures. For datasets where larger, lower perplexity models tend to
predict the human metric better (Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk
& Federmeier, 2022; Wlotko & Federmeier, 2012; Brothers & Kuperberg, 2021), this tends
to be true for all model architectures. The same is true for datasets where smaller models
and those with a higher perplexity tend to predict the human metric better (Boyce & Levy,
2023; Futrell et al., 2021; Kennedy et al., 2003; Luke & Christianson, 2018). The Szewczyk
et al. (2022) and Smith & Levy (2013) datasets offer possible exceptions, where different
models appear to show different scaling effects. However, without more models of each
architecture, it is impossible to be certain.

Another surprising result is that contrary to the recent work that finds the same negative
scaling pattern across all reading time datasets (including both self-paced reading and
eye-tracking metrics; Oh & Schuler, 2023b; Oh et al., 2024), here one dataset (Brothers &
Kuperberg, 2021) actually showed positive scaling. One possible explanation for this is that
it is not log-transformed like the other reading time metrics. Another is that it includes
the reading times of the following two words. However, the fact that it is slightly better
predicted by taking the surprisal of the first word rather than that of the combined three
words (see Shain et al., 2024, SI 1) suggests that the metric itself may not differ in this way
as much as may be expected. A more likely explanation for the difference is that unlike
the other behavioral studies which involved the reading of naturalistic stimuli, the stimuli
in the Brothers & Kuperberg (2021) were carefully constructed to have different degrees
of predictability. All the N400 studies use such stimuli, and this may therefore explain
why the Brothers & Kuperberg (2021) results more closely resemble the positively-scaling
N400 results. In any case, the finding highlights the point made by Brothers & Kuperberg
(2021) that the task and stimuli used in such studies should not be overlooked when making
wider claims about the relationship between probability and processing difficulty. It further
suggests that the recent and ostensibly robust findings of negative scaling with behavioral
data (Oh et al., 2022; 2024; Oh & Schuler, 2023a;b) may be limited to a specific type of reading
time study, and that further analyses should be carried out.

Finally, we note the finding that when comparing architectures by model perplexity rather
than model size, there was a consistent pattern in terms of which model best predicted
the data. Specifically, compared to when ordered by model size, when the dataset showed
positive scaling, the performance of Mamba appeared worse relative to other architectures,
and the performance of RWKV appeared better; and when the dataset showed negative
scaling, the reverse was true. Given that at each size, Mamba has a lower perplexity than
Pythia and RWKV has a higher perplexity (Gu & Dao, 2023; Appendix B), this suggests that
a language model’s ability to predict the next word in a sequence does impact the extent to
which it can model online human language comprehension above and beyond model size
and architecture. Specifically, this result suggests that there are scaling effects across model
architectures related to model quality (i.e., performance at next-word prediction). Even
when controlling for number of parameters and training data, on a dataset that exhibits
positive scaling, models that are better at next-word prediction are better at the human
metric; and the converse is true for datasets that exhibit negative scaling.
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5.1 Theoretical implications

Ultimately, the results highlight a number of complicating facts. First, there is no single
universal pattern accounting for the relationship between language model probability
and all metrics of online human language comprehension. Second, general language
modeling performance has an effect on the extent to which language models can predict
such metrics. And third, there are idiosyncratic differences between datasets, metrics, and
model architectures.

Nonetheless, the present study opens up new lines of research. Crucially, in contrast to
previous work, the results show that transformers are not uniquely well-suited to modeling
the N400. They also align with previous research showing the same for some measures of
reading time (Eisape et al., 2020; Kuribayashi et al., 2021; Merkx & Frank, 2021; Oh et al.,
2022). Indeed, in our results, the differences in modeling performance between models of
different architectures at a given scale or perplexity tend to be dwarfed by the differences
within architectures across these dimensions.

In the present study, the performance of transformers and recurrent models is comparable,
and thus our results are not able to evaluate whether there are specific architectural fea-
tures of transformers or the recurrent models that make them better able to model human
language comprehension. As discussed in §2,recurrent models provide a better model of
the role of the working memory bottleneck (Merkx & Frank, 2021; Michaelov et al., 2021),
while transformers better simulate cue-based retrieval models of comprehension (Ryu &
Lewis, 2021; Merkx & Frank, 2021). It is not necessarily straightforward to disentangle the
two. For example, Ryu & Lewis’s argument that transformers are good models of cue-based
retrieval is based on the finding that they display interference effects on agreement (also
known as agreement attraction effects) and show patterns in attention that align with the
theory. But recurrent neural networks have been observed to display such effects (Arehalli
& Linzen, 2020), which could be plausibly explained by lossy compression of the context.
Nonetheless, identifying cases where the behavior of recurrent models differs from that
of transformers qualitatively—rather than quantitatively, as in the present study (with the
possible exception of the Szewczyk et al., 2022 data)—and comparing these to the human
data is likely to be valuable across the computational-to-cognitive model continuum. At
the more purely computational end, it is important to know which type of model to use to
best capture the possible effects of statistics on language comprehension. Further towards
the direction of cognitive modeling, such experiments can help to evaluate which theories
provide more viable explanations of human language comprehension, for example, by
comparing the predictions of the now-or-never bottleneck and cue-based retrieval accounts.

The new generation of recurrent models is in its infancy. As these models continue to
be developed, optimized, and scaled up, the question of whether they or transformers
provide better models of human language comprehension (or at least, show a stronger
degree of correlation to specific metrics of online human language comprehension) is likely
to become clearer. In the meantime, the results presented here suggest that recurrent models
not only match, but in some cases exceed, the performance of contemporary transformers
at modeling human language comprehension, and may provide a valuable way to test
hypotheses about the neurocognitive mechanisms underlying it.

6 Conclusions

We compare how well transformers and two contemporary recurrent language model
architectures—RWKV and Mamba—can predict 5 different metrics of online human lan-
guage comprehension. We find that overall, the recurrent models tend to match the perfor-
mance of transformers at predicting both neural and behavioral human metrics, and that
when specifically comparing across architectures by number of model paramaters, recurrent
models in fact appear to be best at predicting N400 amplitude.
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A Data and Analysis Details

A.1 N400 Amplitude

The N400 is a negative-going component of the event-related brain potential that occurs
roughly 300-500ms after the presentation of a stimulus, peaking at around 400ms (Kutas
& Hillyard, 1980). A well-replicated finding is that the amplitude of the N400 response
to a word is sensitive to the contextual probability of a word, either operationalized as
cloze probability (Kutas & Hillyard, 1984)—the proportion of people to fill in a gap in a
sentence with a given word (Taylor, 1953; 1957)—or when using the predictions of language
models (Frank et al., 2015). Specifically, the amplitude of the N400 response elicited by a
word is large by default, and decreases by the extent to which it is predictable based on the
preceding context.

In this study, we compare how well the Pythia, RWKV, and Mamba models predict N400
amplitude based on the results of 6 experiments (Federmeier et al., 2007; Hubbard et al.,
2019; Michaelov et al., 2024; Szewczyk & Federmeier, 2022; Szewczyk et al., 2022; Wlotko &
Federmeier, 2012). The details of these datasets and how they were analyzed are outlined
below.

Federmeier et al. (2007) measured N400s to low- and high-cloze words in low- and
high-constraint contexts. We use the data from this study as preprocessed by Szewczyk &
Federmeier (2022). In this dataset, N400 amplitude is operationalized as the mean voltage
at four centro-parietal electrodes (MiCe, MiPa, LMCe, RMCe) over the 300-500ms time
window. N400 amplitudes are also not baseline-corrected; instead, the mean amplitude in
the -100-0ms time window is intended to be included as a covariate in analysis. This dataset
contains 7856 trials from 32 participants reading 564 stimuli.

To calculate model fit to the N400 data, we followed as closely as possible the approach used
by Szewczyk & Federmeier (2022), which involved predicting N400 amplitude using a linear
mixed-effects regression with surprisal, baseline amplitude, log-transformed frequency, the
position of the word in the sentence, orthographic neighborhood distance, and concreteness
as fixed effects. We also used the same random effects structure, removing variables until a
structure that would not lead to singular fits for any regression was reached, which included
random slopes of baseline for each subject and experimental item, random slopes of word
position for each subject, and random intercepts of subject and item. We then compared the
fit of regressions using surprisal calculated from each language model.

With the exception of the Michaelov et al. (2024) dataset, our remaining N400 datasets are
the others provided online by Szewczyk & Federmeier (2022), and thus are preprocessed
and analyzed in the same way.

Wlotko & Federmeier (2012) used stimuli from Federmeier et al. (2007) as well as (Wlotko
& Federmeier, 2007), which were selected to cover a wide range of probabilities. This dataset
was made up of 4,440 trials (300 stimuli; 16 experimental participants).

Hubbard et al. (2019) used 192 stimuli from Federmeier et al. (2007). The dataset comprises
of 5,705 trials (32 participants).

Szewczyk et al. (2022) also based their stimuli on those in Federmeier et al. (2007), with
adjectives added before critical words, making them more or less predictable. The dataset is
comprised of 4,939 trials (672 stimuli; 32 participants).

Szewczyk & Federmeier (2022) also release an additional dataset with data from a
previously-unpublished study using stimuli based on Federmeier et al. (2007) and including
data from 4,822 trials (600 stimuli; 26 experimental participants). We refer to this as the
Szewczyk & Federmeier (2022) dataset.
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Michaelov et al. (2024) The stimuli of the Michaelov et al. (2024) dataset differ from the
other datasets in their design. Rather than having two versions of each sentence—the
most likely continuation and an unlikely one—each sentence has four possible endings:
the highest-cloze continuation, a low-cloze but plausible continuation that is semantically
related to this highest-cloze continuation, an equally low-cloze but unrelated continuation,
and an implausible continuation. The two low-cloze completions were matched for cloze
probability and plausibility. There were 125 sentence frames, for a total of 500 sentences.
There were fifty participants, and data from a total of 5,526 trials after cleaning.

The N400 was operationalized as the mean voltage in the 300-500ms time-window at each
of the C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4 centro-parietal electrodes. Unlike the
data released by Szewczyk & Federmeier (2022), the voltage at each electrode was treated
as a separate data point and N400 amplitudes were baselined using the mean amplitude
in the 100ms period before stimulus presentation. Thus this dataset comprises of 49,734
data points. We analyzed these data in the same way as in Michaelov et al. (2024), fitting a
regression that predicted N400 amplitude using Surprisal, log-transformed word frequency,
orthographic neighborhood distance as main effects, and included random intercepts of
experimental subject, sentence context, critical word, and electrode.

A.2 Self-Paced Reading Response Time

Self-Paced Reading is an experimental paradigm in which participants read a text one word
at a time, pressing a button or key to proceed to the next word. The reading time of a
word is the time taken between button presses (i.e., between pressing the button to proceed
to that word and pressing the button to proceed to the next word). Self-Paced Reading
Response Time is generally considered to reflect processing difficulty, with longer reading
times indexing a more difficult word.

Futrell et al. (2021) The Natural Stories Corpus (Futrell et al., 2021) is made up of self-
paced reading times from 181 experimental participants reading 10 texts, each comprising
roughly 1000 words. These texts were constructed by taking publicly available texts and
editing them to contain rare and hard-to-process syntactic constructions. Following Oh
et al. (2024), we excluded reading times for all words that appeared at the beginning or
end of a sentence, all reading times shorter than 100ms or longer than 3000ms, and all data
from participants who answered three or fewer comprehension questions correctly. The
regression used to predict log-transformed reading time also followed that described by Oh
et al. (2024). In addition to language model surprisal surprisal, we included word length,
log-transformed word frequency, and the word’s position in the sentence as predictors, as
well as random slopes of each of these predictors for each subject, and random intercepts of
subject and sentence.

Smith & Levy (2013) This dataset is comprised of self-paced reading times from 35 experi-
mental participants reading 292-902 word passages from the Brown Corpus of American
English (Francis & Kučera, 1964), for a total of 2860-4999 words per subject. We used the
same exclusion criteria as with the Natural Stories data (with the exception of the compre-
hension score, which was not available), and the linear mixed-effects regressions each had
the same structure as those used in analyzing the Natural Stories data.

A.3 Self-Paced Reading Three-Word Response Time

A well-known phenomenon in self-paced reading is that of spillover effects, where the
extent to which a word is difficult to process also impacts the reading time of one or more
following words. One way to account for this is to use the reading time of a given word and
the following two words as a measure of the processing difficulty associated with the word.

Brothers & Kuperberg (2021) In this self-paced reading study, there were 216 sentence
sets, each in a low-, medium-, or high-cloze condition, for a total of 648 stimulus sentences.
Participants were excluded by Brothers & Kuperberg (2021) if they had an average com-
prehension check score of less than 75%. After exclusions, data from 216 of the total 240
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participants were included in the analysis with a total of 46,092 data points. Data were
cleaned and preprocessed by Brothers & Kuperberg (2021). We fit regressions following
the method in the original study, predicting reading time (un-transformed) using a linear
mixed-effects model with a main effect of language model surprisal, random intercepts for
each subject and item, and random slopes of surprisal for each subject and item.

A.4 Maze Task

Like self-paced reading, in the Maze task, participants read a text one word at a time.
However, in the Maze task, participants see pairs of words and can only proceed to the
next word in the text by choosing the correct next word on the screen. If the participant
chooses the incorrect word, they receive feedback and are prompted to choose again. The
time it takes for participants to choose a word is recorded as the reaction time. We look
at the reaction times from a previous study by Boyce & Levy (2023). Dataset and analysis
details are provided below.

Boyce & Levy (2023) In this study, participants completed a Maze task using the stimuli
from the Natural Stories corpus (Futrell et al., 2021), which comprises 10 texts based on
publicly available texts, each approximately 1000 words long. In total, Natural Stories
contains 10,245 words. Boyce & Levy (2023) recruited 100 participants, but participants
were excluded if they did not self-report as native speakers of English. Following Boyce &
Levy (2023) and Shain et al. (2024), we exclude data for all words with a reading time of
less than 100ms or greater than 5000ms, incorrect words, words that were at the start or
end of a sentence, and all data from participants that correctly answered fewer than 80% of
comprehension questions correctly. We construct linear mixed effects regressions predicting
log-transformed reaction time with surprisal, word length, log-transformed word frequency,
and the word’s position in the sentence. We also included random slopes of surprisal, word
length, and word position for each subject, as well as a random intercept of sentence. Our
analysis is based on the preprocessed version of this dataset provided by Shain et al. (2024).

A.5 Go-Past Duration

Go-past duration is an eye-tracking-based metric of reading time. In eye-tracking stud-
ies, participants generally read a text naturalistically. Unlike in the other experimental
paradigms, participants can see the whole text at one time and are able to look at previously
read words. The location of each participant’s gaze is recorded using an eye tracker, which
also records how long participants’ gaze is fixated on a given location. There are many
different possible eye-tracking metrics for a given word that can be calculated (see, e.g.,
Shain et al., 2024), but following recent work analyzing how well different language models
predict eye-tracking data (Oh & Schuler, 2023b;a; Oh et al., 2024), we look at log-transformed
go-past duration, which is defined as the amount of time from when the word was first fix-
ated to when the participant first looked to the right of that word (in left-to-right languages
like English; see Luke & Christianson, 2018; Shain et al., 2024). We use data from the Provo
corpus (Luke & Christianson, 2018). The details of this dataset and how it was analyzed are
provided below.

Luke & Christianson (2018) The Provo Corpus (Luke & Christianson, 2018) is a dataset
consisting of eye-tracking data for 84 participants reading 55 passages (news articles, popular
science magazines, and fiction). Passages averaged 50 words long. In total, the texts
comprised 2,689 words. Participants’ go-past durations were recorded while they read each
text. As with the N400, we use linear mixed-effects regressions to calculate the fit of the
surprisals calculated by each model to the data. Following recent work (Oh et al., 2024), we
exclude from our analysis all words that were not fixated, that followed saccades of longer
than 4 words, and that were at the start or end of sentences or files. Also following Oh et al.
(2024), we constructed a regression to predict log-transformed go-past duration based on
surprisal as well as the following covariates: saccade length (in words), word length (in
characters), word position in the sentence, log-transformed word frequency, and whether
the previous word was fixated. We also included random slopes of all predictors for each
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subject, as well as random intercepts for each subject and sentence. Our analysis is based on
the preprocessed version of this dataset provided by Shain et al. (2024) which was combined
with the full set of stimuli provided by Luke & Christianson (2018).

Kennedy et al. (2003) The Dundee Corpus (Kennedy et al., 2003) is a dataset consisting
of eye-tracking data from 10 participants reading 20 text files, each roughly 2,800 words
in length, for a total of 56,212 words (Kennedy & Pynte, 2005; Kennedy et al., 2013, for
additional details, see). Our analysis approach was the same as for the Provo Corpus (Luke
& Christianson, 2018): exclusion criteria for data were the same (except that, following Oh
et al., 2024, we also exclude words at the start and end of lines and of the screen, which
are not annotated in the Provo Corpus), as was the structure of each linear mixed-effects
regression. Our analysis is based on the preprocessed version of this dataset provided by
Shain et al. (2024).
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B Comparison of model scale and perplexity

In the original Mamba paper, Gu & Dao (2023) report the performance of Mamba models on
a number of benchmarks against comparable language models with different architectures.
In the 1.4-1.5B and 2.8-3B parameter range, Gu & Dao (2023) find that Mamba has a lower
perplexity than Pythia on the Pile (Gao et al., 2020) validation set, and that RWKV has a
higher perplexity. This result suggests that at these scales, the Mamba models are best able
to learn the statistics of language, followed by the Pythia transformers, which are in turn
followed by the RWKV models.

We further replicate this finding for the other model sizes in Figure 3, finding that with the
exception of the smallest models (130-170M parameters) where Pythia and RWKV have the
same perplexity, at every model size, Mamba has the lowest perplexity, followed by Pythia,
followed by RWKV.
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Figure 3: Comparison of the WikiText perplexity of each model of each architecture. Word-
level perplexity of the WikiText-2 test set (Merity et al., 2017) was calculated using the
Language Model Evaluation Harness (Gao et al., 2021).
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C Statistical Analyses

C.1 Fit to N400 data by model size

Dataset Predictor Estimate SE t (10) p p (uncor.)

Federmeier et al. (2007) Intercept 0.3139 0.1737 1.8068 1.0000 0.1009
Mamba -0.5605 0.2459 -2.2797 0.6657 0.0458
RWKV -0.3979 0.2605 -1.5276 1.0000 0.1576
Scale -0.9164 0.1078 -8.4972 0.0003 <0.0001

Hubbard et al. (2019) Intercept 0.3005 0.2758 1.0897 1.0000 0.3014
Mamba -0.7025 0.3904 -1.7997 1.0000 0.1021
RWKV -0.1738 0.4136 -0.4202 1.0000 0.6832
Scale -0.7949 0.1712 -4.6428 0.0267 0.0009

Michaelov et al. (2024) Intercept -0.0591 0.4811 -0.1229 1.0000 0.9046
Mamba -0.1731 0.6809 -0.2543 1.0000 0.8044
RWKV 0.4234 0.7214 0.5869 1.0000 0.5703
Scale -0.2270 0.2987 -0.7599 1.0000 0.4649

Szewczyk & Federmeier (2022) Intercept 0.4910 0.2899 1.6940 1.0000 0.1211
Mamba -0.8209 0.4103 -2.0008 0.9786 0.0733
RWKV -0.6925 0.4347 -1.5932 1.0000 0.1422
Scale -0.7424 0.1800 -4.1257 0.0484 0.0021

Szewczyk et al. (2022) Intercept 0.3879 0.4560 0.8506 1.0000 0.4149
Mamba -0.8438 0.6455 -1.3073 1.0000 0.2204
RWKV -0.3029 0.6838 -0.4429 1.0000 0.6673
Scale 0.2281 0.2831 0.8056 1.0000 0.4392

Wlotko & Federmeier (2012) Intercept 0.3373 0.2122 1.5894 1.0000 0.1431
Mamba -0.7280 0.3004 -2.4237 0.5711 0.0358
RWKV -0.2705 0.3182 -0.8501 1.0000 0.4152
Scale -0.8666 0.1317 -6.5779 0.0026 <0.0001

Table 3: Results of statistical analyses on the N400 datasets based on model size (opera-
tionalized as number of parameters). Because all variables were z-scored before analysis,
the estimate does not directly reflect the difference but is helpful as an indication of effect
direction—a negative estimate indicates a lower AIC, and thus, a better fit to the data. The
estimate for predictors Mamba and RWKV reflects their effect relative to the Pythia models.
Scale is operationalized as the logarithm of the number of parameters. We bold predictors
that are significant after correction for multiple comparisons (Benjamini & Hochberg, 1995).
Given the low power of our study (see §4), we also italicize variables that are significant
before multiple comparisons.
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C.2 Fit to reading time data by model size

Dataset Predictor Estimate SE t (10) p p (uncor.)

Boyce & Levy (2023) Intercept -0.2065 0.1726 -1.1965 1.0000 0.2591
Mamba 0.2558 0.2443 1.0471 1.0000 0.3197
RWKV 0.4031 0.2588 1.5573 1.0000 0.1505
Scale 0.9279 0.1072 8.6588 0.0003 <0.0001

Brothers & Kuperberg (2021) Intercept 0.3774 0.3298 1.1445 1.0000 0.2791
Mamba -0.7448 0.4668 -1.5956 1.0000 0.1417
RWKV -0.3900 0.4945 -0.7887 1.0000 0.4486
Scale -0.7049 0.2047 -3.4425 0.1298 0.0063

Futrell et al. (2021) Intercept -0.2114 0.1511 -1.3997 1.0000 0.1918
Mamba 0.4669 0.2138 2.1841 0.7605 0.0539
RWKV 0.1563 0.2265 0.6902 1.0000 0.5058
Scale 0.9428 0.0938 10.0537 0.0001 <0.0001

Kennedy et al. (2003) Intercept -0.4226 0.1032 -4.0972 0.0484 0.0022
Mamba 0.7710 0.1460 5.2809 0.0110 0.0004
RWKV 0.5155 0.1547 3.3326 0.1441 0.0076
Scale 0.9320 0.0640 14.5533 <0.0001 <0.0001

Luke & Christianson (2018) Intercept -0.4129 0.1328 -3.1089 0.1999 0.0111
Mamba 0.7922 0.1880 4.2141 0.0442 0.0018
RWKV 0.4550 0.1992 2.2845 0.6657 0.0454
Scale 0.9165 0.0825 11.1145 <0.0001 <0.0001

Smith & Levy (2013) Intercept -0.3274 0.3627 -0.9025 1.0000 0.3880
Mamba 0.3384 0.5134 0.6591 1.0000 0.5247
RWKV 0.7229 0.5439 1.3290 1.0000 0.2134
Scale 0.6377 0.2252 2.8318 0.2931 0.0178

Table 4: Results of statistical analyses on the reading time datasets based on model size
(operationalized as number of parameters). Because all variables were z-scored before
analysis, the estimate does not directly reflect the difference but is helpful as an indication
of effect direction—a negative estimate indicates a lower AIC, and thus, a better fit to the
data. The estimate for predictors Mamba and RWKV reflects their effect relative to the
Pythia models. Scale is operationalized as the logarithm of the number of parameters. We
bold predictors that are significant after correction for multiple comparisons (Benjamini &
Hochberg, 1995). Given the low power of our study (see §4), we also italicize variables that
are significant before multiple comparisons.
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C.3 Fit to N400 data by model perplexity

Dataset Predictor Estimate SE t (10) p p (uncor.)

Federmeier et al. (2007) Intercept 0.2441 0.1526 1.5991 1.0000 0.1409
Mamba -0.1333 0.2184 -0.6103 1.0000 0.5553
RWKV -0.6877 0.2309 -2.9784 0.2359 0.0138
Perplexity -0.9651 0.0983 -9.8209 0.0001 <0.0001

Hubbard et al. (2019) Intercept 0.2389 0.2386 1.0013 1.0000 0.3403
Mamba -0.3204 0.3413 -0.9386 1.0000 0.3701
RWKV -0.4356 0.3609 -1.2070 1.0000 0.2552
Perplexity -0.8710 0.1536 -5.6713 0.0068 0.0002

Michaelov et al. (2024) Intercept -0.0739 0.4882 -0.1513 1.0000 0.8828
Mamba -0.0934 0.6985 -0.1336 1.0000 0.8963
RWKV 0.3752 0.7386 0.5080 1.0000 0.6225
Perplexity -0.1624 0.3143 -0.5167 1.0000 0.6166

Szewczyk & Federmeier (2022) Intercept 0.4354 0.2995 1.4538 1.0000 0.1766
Mamba -0.4841 0.4285 -1.1298 1.0000 0.2849
RWKV -0.9188 0.4530 -2.0281 0.9611 0.0700
Perplexity -0.7544 0.1928 -3.9127 0.0623 0.0029

Szewczyk et al. (2022) Intercept 0.4018 0.4657 0.8629 1.0000 0.4084
Mamba -0.9151 0.6663 -1.3735 1.0000 0.1996
RWKV -0.2625 0.7045 -0.3726 1.0000 0.7172
Perplexity 0.1371 0.2998 0.4574 1.0000 0.6572

Wlotko & Federmeier (2012) Intercept 0.2723 0.2288 1.1904 1.0000 0.2614
Mamba -0.3345 0.3273 -1.0221 1.0000 0.3308
RWKV -0.5350 0.3461 -1.5459 1.0000 0.1532
Perplexity -0.8816 0.1473 -5.9859 0.0051 0.0001

Table 5: Results of statistical analyses based on model perplexity. Because all variables were
z-scored before analysis, the estimate does not directly reflect the difference but is helpful
as an indication of effect direction—a negative estimate indicates a lower AIC, and thus,
a better fit to the data. The estimate for predictors Mamba and RWKV reflects their effect
relative to the Pythia models. Perplexity is operationalized as negative log-perplexity in
order to preserve the relationship of the other variables (where negative indicates a better fit).
We bold predictors that are significant after correction for multiple comparisons (Benjamini
& Hochberg, 1995). Given the low power of our study (see §4), we also italicize variables
that are significant before multiple comparisons.
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C.4 Fit to reading time data by model perplexity

Dataset Predictor Estimate SE t (10) p p (uncor.)

Boyce & Levy (2023) Intercept -0.1385 0.2406 -0.5754 1.0000 0.5777
Mamba -0.1504 0.3443 -0.4369 1.0000 0.6715
RWKV 0.6726 0.3640 1.8479 1.0000 0.0944
Perplexity 0.8996 0.1549 5.8072 0.0060 0.0002

Brothers & Kuperberg (2021) Intercept 0.3219 0.2891 1.1134 1.0000 0.2916
Mamba -0.3969 0.4136 -0.9596 1.0000 0.3599
RWKV -0.6304 0.4373 -1.4416 1.0000 0.1800
Perplexity -0.7990 0.1861 -4.2932 0.0410 0.0016

Futrell et al. (2021) Intercept -0.1406 0.1704 -0.8250 1.0000 0.4286
Mamba 0.0371 0.2438 0.1521 1.0000 0.8821
RWKV 0.4457 0.2578 1.7290 1.0000 0.1145
Perplexity 0.9643 0.1097 8.7906 0.0003 <0.0001

Kennedy et al. (2003) Intercept -0.3516 0.0518 -6.7941 0.0021 <0.0001
Mamba 0.3359 0.0740 4.5363 0.0297 0.0011
RWKV 0.8108 0.0783 10.3565 0.0001 <0.0001
Perplexity 0.9833 0.0333 29.5132 <0.0001 <0.0001

Luke & Christianson (2018) Intercept -0.3438 0.143 -2.4040 0.5722 0.0371
Mamba 0.3721 0.2046 1.8182 1.0000 0.0991
RWKV 0.7383 0.2164 3.4126 0.1310 0.0066
Perplexity 0.9441 0.0921 10.2535 0.0001 <0.0001

Smith & Levy (2013) Intercept -0.2781 0.3479 -0.7994 1.0000 0.4427
Mamba 0.0336 0.4978 0.0676 1.0000 0.9475
RWKV 0.9313 0.5263 1.7696 1.0000 0.1072
Perplexity 0.6934 0.2240 3.0960 0.1999 0.0113

Table 6: Results of statistical analyses based on model perplexity. Because all variables were
z-scored before analysis, the estimate does not directly reflect the difference but is helpful
as an indication of effect direction—a negative estimate indicates a lower AIC, and thus,
a better fit to the data. The estimate for predictors Mamba and RWKV reflects their effect
relative to the Pythia models. Perplexity is operationalized as negative log-perplexity in
order to preserve the relationship of the other variables (where negative indicates a better fit).
We bold predictors that are significant after correction for multiple comparisons (Benjamini
& Hochberg, 1995). Given the low power of our study (see §4), we also italicize variables
that are significant before multiple comparisons.
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