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Abstract

Recently, there has been progress in supervised001
funetuning pretrained GPT-2 to build end-to-002
end task-oriented dialog (TOD) systems. How-003
ever, online reinforcement learning of a GPT-004
2 based dialog system (DS), together with a005
end-to-end user simulator (US), has not ever006
been explored. Moreover, a drawback with ex-007
isting GPT-2 based TOD systems is that they008
mostly employ the whole dialog history as in-009
put, which brings inefficiencies in memory and010
compute. In this paper, we first propose Sim-011
plified Generative Architectures (SGA) for DS012
and US respectively, both based on GPT-2 but013
using shortened history. Then, we successfully014
develop Jointly Reinforced US and DS, called015
SGA-JRUD. Our DS with the proposed SGA,016
when only supervised trained, achieves state-017
of-the-art performance on MultiWOZ2.1 and018
is more compute-efficient in both training and019
generation. Extensive experiments on Multi-020
WOZ2.1 further show the superiority of SGA-021
JRUD in both offline and online evaluations.022

1 Introduction023

Task-oriented dialog (TOD) systems, which are024

mainly designed to assist users to accomplish their025

goals, often consist of several modules including di-026

alog state tracking (DST), database querying (DB),027

dialog policy (DP) and natural language generation028

(NLG). The information flow in a task-oriented029

dialog is illustrated in Figure 1. Recent studies030

recast these modules all as conditional generation031

of tokens and integrate them into a single language032

model (LM), which usually uses some pretrained033

language model (LM) such as GPT-2 (Radford034

et al., 2019) as the backbone. Fine-tuning GPT-2035

over annotated dialog datasets such as MultiWOZ036

(Budzianowski et al., 2018) via supervised learning037

(SL) has shown state-of-the-art results (Hosseini-038

Asl et al., 2020; Li et al., 2020; Kulhánek et al.,039

2021; Yang et al., 2021), thanks to the powerful040

generation ability of GPT-2.041

Figure 1: The information flow in a task-oriented dialog.
Square brackets denote special tokens in GPT-2.

However, it has long been recognized that su- 042

pervised learning over annotated dialog datasets 043

alone may not be sufficient to learn a task-oriented 044

dialog agent (Young et al., 2013). Conversations 045

often do not have only a single correct response, 046

multiple responses can be appropriate for the same 047

dialog context (Zhang et al., 2020). Supervised 048

trained agents can become biased by the annota- 049

tions. Reinforcement learning (RL) for an agent 050

aims to goal-directed learning from interaction be- 051

tween the decision-making agent and its environ- 052

ment (Sutton and Barto, 2018) and is a natural 053

choice for learning task-oriented dialog policies, 054

where the user is modeled as the interactive envi- 055

ronment. Offline RL optimizes the policy from the 056

fixed annotated dataset without online environment 057

interaction (Zhou et al., 2017; Jeon and Lee, 2022) 058

but only partially exploits the power of RL. Online 059

RL requires interaction with real humans or user 060

simulators during training. However, building a 061

good user simulator is as challenging as designing 062

a dialog agent, either rule based (Schatzmann et al., 063

2007) or data driven (Gür et al., 2018; Kreyssig 064
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et al., 2018; Tseng et al., 2021). There also have065

been some efforts to jointly optimize end-to-end066

dialog system (DS) and user simulator (US), but067

most are based on traditional architectures of using068

LSTM seq2seq networks (Liu and Lane, 2017b;069

Papangelis et al., 2019; Tseng et al., 2021).070

Inspired by the recent progress of funetuning071

pretrained LMs such as GPT-2 to develop the end-072

to-end trainable DS, in this paper we are firstly073

interested in building a GPT-2 based end-to-end074

trainable US for online RL of DS, which has not075

ever been explored. Further, note that how to de-076

velop jointly optimized GPT-2 based DS and US in077

the RL framework is unclear, which requires new078

design of model architectures. Regarding this, we079

aim to develop Jointly Reinforced User simulator080

and task-oriented Dialog system (JRUD), leverag-081

ing the recent progress of using pretrained LMs082

such as GPT-2 as the backbone.083

To be clear, GPT-2 (Radford et al., 2019) in this084

paper refers to the particular class of causal LM,085

which computes conditional probabilities for next-086

token generation via self-attention based Trans-087

former neural network (Vaswani et al., 2017).088

The basic idea in finetuning pretrained GPT-2 to089

build the dialog agent is to utilize the genera-090

tion ability empowered by the finetuned causal091

LM. Given a particular form of conditional model,092

p(output|input), where input and output are to-093

ken sequences, the GPT-2 LM can be finetuned094

over training samples (input, output) (often re-095

ferred to as training sequences (Hosseini-Asl et al.,096

2020)), and after finetuning, the model can be used097

for generation, i.e., generating output after receiv-098

ing input.099

A limitation of previous methods in GPT-2 based100

DS, e.g., SimpleTOD (Hosseini-Asl et al., 2020),101

SOLOIST (Li et al., 2020), AuGPT (Kulhánek102

et al., 2021) and UBAR (Yang et al., 2021), is that103

the whole history is used as the input at each turn.104

This significantly increases the memory and com-105

putation cost in both training and generation. More-106

over, using the whole history may burden the model107

with redundant information and hurts the training108

efficiency. To address the aforementioned limita-109

tion and to facilitate the development of JRUD,110

we propose Simplified Generative Architectures111

(SGA) for DS and US respectively, both based on112

GPT-2 but using shortened history.113

The main contributions of this work can be sum-114

marised as follows:115

• Our DS with the proposed SGA, called SGA- 116

DS, when only supervised trained, achieves 117

state-of-the-art performance on MultiWOZ2.1 118

(Eric et al., 2020) and is more compute- 119

efficient in both training and generation. 120

• To the best of our knowledge, our US with the 121

proposed SGA, called SGA-US, represents 122

the first GPT-2 based end-to-end trainable US, 123

which could be trained via SL or RL. 124

• Based on the proposed DS and US, we suc- 125

cessfully develop a RL framework, called 126

SGA-JRUD, for building jointly reinforced 127

user simulator and dialog systems, which can 128

be interacted and trained via online RL to 129

significantly improve the performance of the 130

TOD system, as shown in extensive experi- 131

ments on MultiWOZ2.1. 132

2 Related Work 133

End-to-end TOD systems The methodology for 134

building TOD systems is gradually advancing from 135

separate training of individual modules (Mrkšić 136

et al., 2017; Wen et al., 2017a) to the end-to-end 137

(E2E) trainable approach (Wen et al., 2017b; Liu 138

and Lane, 2017a; Lei et al., 2018). Recent studies 139

have exploited the large-scale pre-trained language 140

model such as GPT-2 for building end-to-end TOD 141

systems, e.g., SimpleTOD (Hosseini-Asl et al., 142

2020), SOLOIST (Li et al., 2020), AuGPT (Kul- 143

hánek et al., 2021) and UBAR (Yang et al., 2021). 144

While existing GPT-2 based TOD systems achieve 145

improved performance, these models mostly em- 146

ploy the whole dialog history as input during train- 147

ing and generation, which brings inefficiencies in 148

computation, memory and learning. It is shown in 149

Sec. 4.7 that earlier history beyond the previous 150

turn are in fact weakly attended to in next-token 151

generation. In contrast, the simplified architecture 152

proposed in our SGA-DS only uses the belief state 153

and system response of the previous turn for gener- 154

ating the response in current turn. 155

RL in TOD systems and user simulators Rein- 156

forcement learning, which aims to train an agent 157

towards maximizing long-term cumulative rewards 158

from interactions between the agent and its environ- 159

ment, could be divided in two classes, offline and 160

online (Sutton and Barto, 2018). Both classes have 161

been applied in TOD systems. Offline RL only opti- 162

mizes the dialog agent over fixed collected data and 163
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thus avoids building user simulators (Zhou et al.,164

2017; Zhao et al., 2019; Jeon and Lee, 2022). On-165

line RL, instead, needs to design a user simulator166

(US) and let the dialog agent interact with the user167

simulator (acting as the environment) to generate168

new dialogs, over which the dialog agent can be169

further optimized. A variety of user simulators170

have been studied, either rule based or data driven.171

A typical example of rule based US is the agenda-172

based user simulator (ABUS) (Schatzmann et al.,173

2007). In the data driven US approach, different174

models are proposed to train USs from data us-175

ing different architectures, e.g. GRU seq2seq (Gür176

et al., 2018) LSTM seq2seq (Kreyssig et al., 2018).177

In this paper, motivated by the recent success of178

GPT-2 based DS, we propose a new GPT-2 based179

US and further design its simplified generative ar-180

chitecture.181

Joint training of DS and US There have been182

some studies to jointly optimize end-to-end DS and183

US, but most are based on traditional architectures184

of using LSTM seq2seq networks (Liu and Lane,185

2017b; Papangelis et al., 2019; Tseng et al., 2021).186

Earlier studies use template-based NLG module for187

both DS and US (Liu and Lane, 2017b) and work in188

single domain such DSTC2 (Liu and Lane, 2017b;189

Papangelis et al., 2019). Progress has been made190

to use neural network based generation and work191

in multi-domain (Tseng et al., 2021). Different192

RL algorithms have been attempted such as policy193

gradient and actor-critic in (Liu and Lane, 2017b),194

Q-learning in (Papangelis et al., 2019). This paper195

represents a further advance in designing GPT-2196

based DS and US with new simplified architectures.197

3 Method198

In the following, we first introduce the background,199

then the simplified generative architectures (SGA)200

proposed for dialog system (DS) and user simula-201

tor (US), finally we describe the jointly reinforced202

method.203

3.1 Background204

Notations According to the information flow in205

a task-oriented dialog as illustrated in Figure 1, we206

let gt denote the user goal state, uat the user act,207

ut the user utterance, bt the belief state, dbt the208

database result, at the system act and rt be the209

delexicalized response, respectively, at turn t =210

1, · · · , T , for a dialog of T turns. In this work, all211

these variables are tokenized into token sequences,212

Figure 2: The proposed Simplified Generative Archi-
tectures (SGAs) for DS and US, shown in (a) and (b)
respectively, as compared to SimpleTOD-DS (c) and
UBAR-DS (d). Yellow boxes represent the conditioning
input of the model during generation, and green boxes
the targeting output. The figure also reveals differences
between our SGA models and the other two models.
During supervised training, our SGA models are trained
by maximizing the conditional likelihood of output
given input, while the other two models in fact maxi-
mizes the joint likelihood over both input and output.
Further, our SGA models can be naturally fit into the
RL framework for DS and US respectively, while the
other two models not (See Sec. 3.3 for details).

following recent studies in (Zhang et al., 2020; 213

Yang et al., 2021). ⊕ denotes the concatenation of 214

sequences such as in ut⊕rt. |ut| denotes the length 215

of ut in tokens. {u, r}t is a shorthand for ut, rt, and 216

{u, r}1:t represents {u, r}1, · · · , {u, r}t. 217

Dialog system (DS) The main task for DS is, 218

for each dialog turn t, to generate (or say, pre- 219

dict)1 bt, at and rt, given ut and dialog history 220

u1, r1, · · · , ut−1, rt−1. A recent progress in build- 221

ing DS is that all variables are represented by 222

token sequences, and the workflow of a dialog 223

system (belief state tracking, action and response 224

generation) can be unified into a single sequence 225

generation problem, which can be accomplished 226

by a causal language model (Hosseini-Asl et al., 227

2020; Yang et al., 2021). Particularly, pretrained 228

LM such as GPT-2 is finetuned to yield the condi- 229

tional generation model p(output|input), where 230

input and output are token sequences with appro- 231

1Note that database result dbt is deterministically obtained
by querying database using the predicted bt. We omit dbt in
the discussion for simplicity.
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priate meanings. We can have different designs232

for p(output|input), as long as it can perform233

the required prediction. For example, SimpleTOD234

(Hosseini-Asl et al., 2020) generates according to235

a turn-level model p(bt, at, rt|{u, r}1:t−1, ut), i.e.,236

{u, r}1:t−1, ut are concatenated as the input and237

recursively generate the output, i.e., bt, at, rt, as238

shown in Fig. 2(c). UBAR (Yang et al., 2021)239

generates according to a session-level model, as240

illustrated in Fig. 2(d).241

3.2 Simplified Generative Architecture (SGA)242

A drawback with existing GPT-2 based TOD sys-243

tems is that they mostly employ the whole dialog244

history as input during training and generation, as245

shown in Fig. 2 for the examples of SimpleTOD246

and UBAR. This brings inefficiencies in memory,247

computation and learning. It is shown later in Table248

2 and Figure 3 that the memory cost in training and249

the time for running the DS to complete a dialog250

can be significantly reduced, if we use a shortened251

history as input in the DS model, while achiev-252

ing state-of-the-art result on MultiWOZ2.1. It is253

also shown in (Jeon and Lee, 2022) that the use254

of the whole dialogue history increases the train-255

ing cost. To address the aforementioned drawback256

and to facilitate the development of JRUD, we pro-257

pose Simplified Generative Architectures (SGA)258

for both DS and US, as shown in Fig. 2(a) and259

(b) respectively, both based on GPT-2 but using260

shortened history.261

SGA-DS For DS to predict bt, at and rt at each262

turn t, we propose to use only the belief state bt−1263

and response rt−1 from previous turn along with264

current user utterance ut, instead of using the whole265

dialog history, as the conditioning input. Presum-266

ably, this is reasonable since, by definition, belief267

state bt−1 is generally a summary of dialog history268

up to turn t − 1, which, together with rt−1 and269

ut , should carry enough context information for270

the DS model to make prediction for bt, at and271

rt. Thus, we obtain our conditional model for DS,272

referred to as SGA-DS, which can be expressed as273

pθ(bt, at, rt|bt−1, rt−1, ut) and parameterized by θ.274

In supervised learning, SGA-DS can be finetuned275

from pretrained GPT-2 by maximizing the follow-276

ing conditional likelihood: 277

JDS-SL = log pθ(bt, at, rt|bt−1, rt−1, ut)

=

|bt⊕at⊕rt|∑
i=1

log pθ(ci|bt−1, rt−1, ut, c<i)

(1) 278

where ci denotes the i-th token in bt ⊕ at ⊕ rt. 279

SGA-US In the information flow shown in Fig. 1, 280

user goal state gt and user act uat are introduced 281

for building user simulator. User goal refers to the 282

predefined user task such as booking a cheap hotel, 283

which is directly obtained from the annotation of 284

the dataset; and the goal state represents the uncom- 285

pleted part of the user goal. Both are represented 286

by token sequences in this work. The main task of 287

US is to mimic an user, i.e., given the dialog his- 288

tory, to decide user act, generate user utterance, and 289

update internal goal state to track progress towards 290

satisfying the user goal. 291

In this work, we find that the approach of fine- 292

tuning pretrained GPT-2 for conditional generation 293

can be similarly applied to build US. Particularly, 294

for US to predict uat and ut at each turn t, we 295

propose to use the previous response rt−1 and cur- 296

rent goal state gt, as the conditioning input. The 297

goal state gt is obtained by removing the slot val- 298

ues of previous user act uat−1 from previous goal 299

state gt−1
2. Thus, we obtain the conditional model 300

for US, referred to as SGA-US, which can be ex- 301

pressed as pϕ(uat, ut|rt−1, gt) and parameterized 302

by ϕ. In supervised learning, SGA-US can be fine- 303

tuned from pretrained GPT-2 by maximizing the 304

following conditional likelihood: 305

JUS-SL = log pϕ(uat, ut|rt−1, gt)

=

|uat⊕ut|∑
i=1

log pϕ(c
′
i|rt−1, gt, c

′
<i)

(2) 306

where c′i denotes the i-th token in uat ⊕ ut. 307

3.3 Jointly reinforced US and DS (JRUD) 308

After we design the architectures for DS and US, 309

we can consider joint optimization of the two 310

agents in the online RL framework. The DS agent 311

view the US as the environment and use its condi- 312

tional model pθ(bt, at, rt|bt−1, rt−1, ut) as its pol- 313

icy; Conversely, the US agent view the DS as 314

2(Tseng et al., 2021) adopts a similar goal state update,
but uses binary vector to represent the goal state. Also note
that this goal state update is deterministic, so we omit the
generation of gt in Fig. 2(b) for simplicity.
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the environment and use its conditional model315

pϕ(uat, ut|rt−1, gt) as its policy. Here the policy316

of SGA-DS involves generating not only system317

act at, but also belief state bt and system response318

rt. This is different from some previous studies of319

learning reinforced DS, e.g., (Liu and Lane, 2017b;320

Papangelis et al., 2019; Tseng et al., 2021), which321

only use RL to optimize the selection of system322

acts (but all use traditional architectures). The ac-323

tion space of SGA-DS becomes larger, but thanks324

to the representation power of GPT-2, recursively325

predict (or say, decide about) bt, at and rt in one326

policy yields the best performance in our experi-327

ment. In Sec 4.6.2, we compare different schemes328

for policy definition for the DS agent with more329

discussions.330

After supervised finetuning of DS and US sepa-331

rately, we apply the policy gradient method (Sutton332

et al., 2000) to jointly optimize the two agents.333

We first let the two agents interact with each other334

based on the user goals sampled from training set335

and generate mini-batches of dialogs. Then we336

calculate the reward Rt for each turn, which is de-337

scribed in detail in Sec 4.6.1. The return Ui,t for338

the action of turn t at the i-th step is γ|At|−iRt,339

where γ is the discounting factor and |At| is the340

policy sequence length of turn t. We update the341

two agents with the following policy gradients:342

∇θJDS-RL =

|bt⊕at⊕rt|∑
i=1

Ui,t∇θ log pθ(ci)343

∇ϕJUS-RL =

|uat⊕ut|∑
i=1

Ui,t∇ϕ log pϕ(c
′
i)344

where pθ(ci) and pϕ(ci) are shorthands for345

pθ(ci|bt−1, rt−1, ut, c<i) and pϕ(c
′
i|rt−1, gt, c

′
<i),346

respectively.347

4 Experiments348

4.1 Dataset349

We use MultiWOZ2.1 (Eric et al., 2020) for experi-350

ments. MultiWOZ2.1 is a large-scale English multi-351

domain task-oriented dialog datasets of human-352

human conversations. It contains 10.4k multi-turn353

dialogs, spanning over seven domains. In our ex-354

periments, we removed some inappropriate state355

values and corrected some spelling errors in the356

dataset, which is detailed in Appendix A.357

4.2 Evaluation 358

Plenty of methods have been tested on Multi- 359

WOZ2.0 or MultiWOZ2.1, but may suffer from 360

the inconsistencies in evaluation, which is ana- 361

lyzed in Nekvinda and Dušek (2021). To rig- 362

orously compare our model with others, we use 363

their standardized evaluation scripts, which are now 364

also the scripts adopted in the MultiWOZ website. 365

There are mainly four metrics for offline evaluation 366

(corpus-based evaluation). Inform Rate measures 367

how often the entities provided by the system are 368

correct. Success Rate refers to how often the sys- 369

tem is able to answer all the requested attributes by 370

user. BLEU Score is used to measure the fluency 371

of the generated responses. And the Combined 372

Score is computed as (BLEU + 0.5 * (Inform + 373

Success)). We also use the joint goal accuracy to 374

evaluate DST performance, which is the proportion 375

of dialog turns where all slot values are correctly 376

predicted. Noting that when performing online 377

evaluation, i.e., evaluating the interaction quality 378

of two agents, only Inform and Success can be 379

calculated and the above scripts are no longer ap- 380

plicable, so we calculate Inform and Success rate 381

using the scripts of Tseng et al. (2021). 382

To compare results, we conduct significance test 383

for Success Rate, Inform Rate, and BLEU using 384

matched pairs test (Gillick and Cox, 1989) and 385

report the p-value. 386

4.3 Training Procedure 387

We first train the DS and US separately on training 388

set based on the SL objective described in Eq. 1 389

and Eq. 2. The resulting models are referred to as 390

SGA-DS-SL and SGA-US-SL. Then we conduct 391

RL experiments through the interaction between 392

the two agents. During interaction, we end the 393

dialog according to the following conditions: 1) 394

the number of dialog turns exceeds the threshold 395

(20 in our experiment); 2) the goal state of US is 396

empty; 3) the two agents generate ending intentions 397

such as bye and thank concurrently. 398

To ameliorate the non-stationarity problem when 399

jointly training the two agents (Liu and Lane, 400

2017b), we first fix the DS and optimize the US 401

for 100 training cycles (each cycle contains 128 402

episodes) and obtain the model SGA-US-RL. Then 403

we fix SGA-US-RL and optimize the DS for an- 404

other 100 training cycles and obtain the model 405

SGA-JRUD. In order to show the effect of joint 406

optimization, we fix US and only optimize DS 407
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Model Inform Success BLEU Combined
AuGPT (Kulhánek et al., 2021) 76.6 60.5 16.8 85.4
SOLOIST (Li et al., 2020) 82.3 72.4 13.6 90.9
UBAR (Yang et al., 2021) 83.4 70.3 17.6 94.4
SGA-DS-SL 84.90 71.50 18.14 96.34
SGA-DS-RL 82.30 70.70 19.89 96.39
SGA-JRUD 85.00 74.00 19.11 98.61

Table 1: Offline evaluation results on MultiWOZ2.1.
Above the dashed line are supervised learning (SL) mod-
els and below are RL models. The unbolded results are
cited from the official website of MultiWOZ, which
uses the same evaluation scripts of Nekvinda and Dušek
(2021) as in our experiments.

for 100 cycles and obtain SGA-DS-RL for com-408

parison. Remarkably, to avoid our dialog system409

deviating from natural language, we alternate RL410

updates with supervised learning at a certain ratio411

(Lewis et al., 2017), which is set to be 1:1 in our412

experiments. More implementation details in our413

experiments are available in Appendix B.414

4.4 Supervised Benchmark Results415

We first show the offline evaluation results of differ-416

ent supervised trained DSs, which can be seen in417

Table 1. We evaluate different dialog systems in an418

end-to-end setting, which means that the generated419

belief states and system acts are used in response420

generation, i.e., the variables from the previous421

turn (bt−1 and rt−1) when used as the conditioning422

input are also the generated ones from the model it-423

self. We can see that when only supervised trained,424

SGA-DS-SL achieves the highest combined score425

among all the GPT-2 based supervised DS mod-426

els, which indicates the superiority of our proposed427

SGA in building DS3.428

Moreover, as shown in Figure 3 and Table 7429

in Appendix C.1, SGA-DS-SL is more compute-430

efficient than SimpleTOD and UBAR. Since SGA-431

DS uses shortened history in training sequences,432

the training sequences for SGA-DS-SL are gener-433

ally much shorter than for SimpleTOD and UBAR.434

Consequently, SGA-DS-SL consumes less training435

time and achieves faster generation speed. These436

experiments are all conducted on a single 16GB437

Tesla-P100 GPU.438

4.5 RL Results439

To evaluate the RL experiments, we perform online440

evaluation where we let the two agents interact441

3Comparing SGA-DS-SL and UBAR, the p-values for In-
form, Success and BLEU are 0.286, 0.477, 0.006, respectively.
This shows that SGA-DS-SL achieves equally strong results
as UBAR, not significantly better in all metrics, but being
more compute-efficient, as shown in Figure 3 and Table 7.

Figure 3: The memory costs during training with batch size
4, as a function of the lengths of training sequences. For
SGA-DS-SL, SimpleTOD and UBAR, the means and standard
deviations of the lengths of training sequences are 98±30,
190±112 and 440±220, respectively. The maximum sequence
lengths for the three models are marked in the figure.

DS US Inform Success

SGA-DS-SL
SGA-US-SL 87.0 83.0
SGA-DS-RL 89.0 86.9

SGA-DS-RL
SGA-US-SL 90.0 86.5
SGA-US-RL 93.0 90.1

SGA-JRUD
SGA-US-SL 87.0 84.1
SGA-US-RL 95.0 92.9

Table 2: Online evaluation results between DSs and USs.
Inform and Success rate are obtained by having the user
simulator interacting with the dialog system on 1k user
goals from the test corpus.

with each other for 1k times using the user goals of 442

test set and calculate the inform and success rate 443

of generated dialogs. Following Shi et al. (2019), 444

we show the interaction results between different 445

agents, which are shown in Table 2. 446

In Table 2, the inform and success rate increase 447

significantly after RL. The jointly reinforced DS 448

SGA-JRUD and SGA-US-RL achieve the highest 449

success rate, which is higher than the supervised 450

models (SGA-DS-SL and SGA-US-SL) by almost 451

ten points. The substantial improvement implies 452

that the new data generated during the interaction 453

can really enhance our models. Moreover, we can 454

see that SGA-JRUD obtains a higher success rate 455

than SGA-DS-RL. This result indicates that the 456

benefit of joint learning is that the US can im- 457

prove its policy through the interaction between 458

two agents, so that the DS learns better through 459

the interaction with a better US. The improvement 460

of the US is also reflected in the evaluation result 461

between SGA-DS-RL and SGA-US-RL. The two 462
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Figure 4: Inform and Success rate on the dev set during
joint RL optimization.

models are never been trained together during RL,463

but they achieve pretty high success rate in the464

evaluation.465

In Figure 4, we also plot the learning curves of466

SGA-JRUD. In the first 100 training cycles, we fix467

DS and only optimize US. In the last 100 cycles,468

we fix the trained US and optimize DS only. We469

evaluate the two agents after every training cycle470

on the user goals of dev set. To reduce time cost,471

the dev set contains only 200 user goals randomly472

drawn from the original training and validation set473

before the running of RL. From Figure 4, we can474

see that inform and success rate are both consis-475

tently improved during RL and finally converge to476

an upper bound in the second stage.477

Notably, it is observed in Kottur et al. (2017)478

that the improvement of success rate does not nec-479

essarily mean that the two agents can understand480

the semantic interaction, but may just invent an481

uninterpretable language. To address this concern,482

we conduct offline evaluation to see if our dialog483

system deviates from natural language after RL.484

The results are already included in Table 1. We485

can see that the BLEU scores do not decrease for486

reinforced DS models (SGA-DS-RL, SGA-JRUD).487

This indicates that our reinforced DS models can488

generate interpretable natural language after RL.489

It can be also seen from Table 1, RL further im-490

proves the offline evaluation performance of SGA-491

DS in task completion. As shown in Table 3, the492

jointly reinforced model (SGA-JRUD) significantly493

improves over UBAR (p-value<0.02) and SGA-DS-494

SL (p-value<0.04) in Success Rate.495

SGA-DS-SL vs UBAR SGA-JRUD vs UBAR SGA-JRUD vs SGA-DS-SL

0.477 0.015 0.030

Table 3: Significance test p-values for Success Rate
between different models in offline evaluation.

Reward Inform Success
None 87.0 83.0
Success 95.0 92.9
Synthetic 94.0 91.6
Synthetic-S 89.0 86.4

Table 4: Online evaluation results in different reward settings.
None denotes no RL, Synthetic denotes the synthetic reward,
and Synthetic-S denotes the Sigmoid synthetic reward.

4.6 Analysis and Ablation Study 496

4.6.1 Different reward settings 497

A number of different settings for reward have been 498

studied, as described in the following. 499

1) Success. If a dialog is successful, we set the 500

reward of each turn to 1, otherwise it is set to be 0; 501

2) A turn-level synthetic reward similar to Tseng 502

et al. (2021); Takanobu et al. (2020), which con- 503

sists of requesting reward (+0.1 for each), repeating 504

punishment (-0.5 for each) and global reward (pro- 505

portions of tasks completed) of each agent; 506

3) A Sigmoid synthetic reward obtained by map- 507

ping the synthetic reward to [0,1] interval using 508

Sigmoid function. 509

The above third setting is designed to exclude 510

the influence of the value range of reward because 511

the value range is different between the Success 512

and the synthetic reward. It is found that using the 513

first setting for award (i.e., 0 or 1 for each dialog 514

according to Success) produces the best results in 515

our experiments. All RL results in this paper are 516

based on using this setting of reward, unless here 517

for ablation study. The results of using different 518

reward settings are reported in Table 4. We can see 519

that all reward settings achieve better results than 520

supervised baseline (Reward=None) and setting 521

Success as reward achieves the best result. 522

4.6.2 Different policy schemes for DS 523

The policy in RL refers to the probabilistic map- 524

ping from states to actions. Previous studies of 525

learning reinforced DS, e.g., (Liu and Lane, 2017b; 526

Papangelis et al., 2019; Tseng et al., 2021), mainly 527

employ RL to optimize the DP module, i.e., use 528

system acts for actions. In contrast, the policy of 529

SGA-DS involves generating not only system act 530

at, but also belief state bt and system response rt. 531

To compare policy schemes for reinforced DS, we 532
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Policy
Online Evaluation Offline Evaluation

Inform Success Combined JointGoal
bt ⊕ at ⊕ rt 95.0 92.9 98.61 54.7

at 93.0 90.6 99.23 54.2
at ⊕ rt 92.0 89.9 98.11 54.3

Table 5: The comparison of different optimization objec-
tive. We show both online and offline evaluation results.

(a) UBAR (b) SGA-DS-SL

Figure 5: Average attention weights for predicting the
belief state in the 4-th turn.

conduct two other RL experiments, where the pol-533

icy includes at and at ⊕ rt respectively. We show534

the online and offline evaluation results in Table 5.535

It can be seen from Table 5 that using bt⊕at⊕rt536

for policy achieves the highest online evaluation537

results with large margins. In offline evaluation,538

using bt ⊕ at ⊕ rt is also among the best. Using at539

achieves higher combined score, but the difference540

is not significant (p-value=0.355). We provide two541

points, which may explain the advantage of our542

model in using bt ⊕ at ⊕ rt for RL. First, since543

the DST, DP and NLG modules in GPT-2 based544

DS share the model parameters, parameter adjust545

in one module will affect other modules. Only546

optimizing DP with RL without considering other547

modules may mislead other modules. Using bt ⊕548

at ⊕ rt leads to better overall optimization and549

decision-making. Second, the conflict between550

policy learning and NLG, which was a concern551

in previous studies when using modular or small-552

capacity architectures (Zhao et al., 2019), could be553

relieved, thanks to the high-capacity of GPT-2.554

4.7 Attention Weight Statistics555

In SGA, we propose that bt−1, rt−1 and ut could be556

sufficient for the DS to generate bt, at and rt, and557

the whole dialog history contains redundancy. To558

support this idea, we calculate the average attention559

weights for prediction at a certain turn t which560

point to the variables in previous all turns, using561

the session-level model UBAR (Yang et al., 2021).562

Let t = 4 and we show the means of the attention563

weights in generating b4 in Figure 5(a).564

We can see that in UBAR, belief state b4 mainly 565

attends to current user utterance (u4) and belief 566

states of all previous turns (b1, b2 and b3). Note 567

that belief state is defined as the accumulation of 568

history information, which means that b3 contains 569

almost all the slots and values of b1 and b2. Thus, 570

the attentions to b1 and b2 are redundant, they ap- 571

pear mainly because there are no mechanism to 572

reduce such redundancy in previous models. In Ap- 573

pendix C.3 , we provide an example to show how 574

UBAR attends to previous belief states and we can 575

see that the tokens in b1 and b2 with large attention 576

weights are almost all appeared in b3. If we do 577

not let the model attend to b1 and b2, the model 578

will naturally attend more to b3 and still not miss 579

the information in b1 and b2. This can be indeed 580

seen from the attention weights of our proposed 581

SGA-DS, as shown in Figure 5(b). Different from 582

UBAR, SGA-DS-SL attends more to b3 than to u4 583

when generating b4. In UBAR, the attentions are 584

scattered across b1, b2, b3. We also show the means 585

of attention weights in predicting system act and 586

response in Appendix C.2. As expected, the atten- 587

tions mainly point to the variables of current turn, 588

especially the history variables closely nearby. 589

5 Discussion and Conclusion 590

In this paper, we first propose Simplified Genera- 591

tive Architectures (SGA) for DS and US respec- 592

tively, both based on GPT-2 but using shortened 593

history. Then, we successfully develop Jointly Re- 594

inforced US and DS, called SGA-JRUD. The super- 595

vised trained DS with the proposed SGA achieves 596

state-of-the-art performance on MultiWOZ2.1 and 597

is more compute-efficient in both training and gen- 598

eration. To develop and demonstrate JRUD, exten- 599

sive experiments on MultiWOZ2.1 are conducted 600

with both offline and online evaluations, we study 601

different reward settings, different policy schemes. 602

More discussions are provided in Appendix C.4, 603

C.5, C.6 on exploration of actions, example of im- 604

provement, examples of generated dialogs about 605

our models, respectively. 606

This work represents a new step towards jointly 607

reinforced end-to-end US and DS, but its perfor- 608

mance may be limited by the pretrained GPT-2 609

backbone and the policy gradient algorithm used. 610

Attempting larger backbone and new RL algo- 611

rithms are interesting futher directions. 612

8



References613

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang614
Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-615
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and Ondřej Dušek. 2021. Augpt: Dialogue with659
pre-trained language models and data augmentation.660
arXiv preprint arXiv:2102.05126.661

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,662
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-663
plifying task-oriented dialogue systems with single664
sequence-to-sequence architectures. In 56th Annual665
Meeting of the Association for Computational Lin-666
guistics (ACL).667

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, 668
and Dhruv Batra. 2017. Deal or no deal? end-to- 669
end learning of negotiation dialogues. In Proceed- 670
ings of the 2017 Conference on Empirical Methods 671
in Natural Language Processing, pages 2443–2453, 672
Copenhagen, Denmark. Association for Computa- 673
tional Linguistics. 674

Baolin Peng Chunyuan Li, Jinchao Li, Shahin Shayan- 675
deh, Lars Liden, and Jianfeng Gao. 2020. Soloist: 676
Building task bots at scale with transfer learning and 677
machine teaching. Transactions of the Association 678
for Computational Linguistics (TACL), 2021. 679

Bing Liu and Ian Lane. 2017a. An end-to-end trainable 680
neural network model with belief tracking for task- 681
oriented dialog. Proc. Interspeech 2017, pages 2506– 682
2510. 683

Bing Liu and Ian R. Lane. 2017b. Iterative policy learn- 684
ing in end-to-end trainable task-oriented neural dia- 685
log models. In 2017 IEEE Automatic Speech Recog- 686
nition and Understanding Workshop, ASRU 2017, 687
Okinawa, Japan, December 16-20, 2017, pages 482– 688
489. IEEE. 689

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien 690
Wen, Blaise Thomson, and Steve Young. 2017. Neu- 691
ral belief tracker: Data-driven dialogue state tracking. 692
In Proceedings of the 55th Annual Meeting of the 693
Association for Computational Linguistics (ACL). 694
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Correction Example Number

Belief state
[hotel] stars 4 internet yes name cambridge belfry

24091→ [hotel] stars 4 internet yes
Spelling portugese → portuguese 415

Table 6: Correction of the MultiWOZ2.1.

A Dataset Cleaning801

The details of how we clean up the dataset can802

be seen in Table 6. Specifically, when training803

with delexicalized responses, the belief states of804

some turns become incorrect because they contain805

a redundant slot name and its corresponding value.806

These slots and values are originally from some lex-807

icalized responses in the dataset, but after delexical-808

ization, the corresponding values in the responses809

are replaced with placeholders, which means that810

the TOD system needs to infer many names never811

appeared in the dialog history if we do not correct812

the belief states. The correction method is to sim-813

ply delete some name slots in belief states whose814

values never appeared in user utterances and delexi-815

calized responses of previous turns. This correction816

will not have any bad impact on the TOD system,817

because the system can find the deleted names by818

querying the database with the remaining slot val-819

ues in the belief state. Another change is to correct820

some spelling errors of the word portuguese in821

belief states and user utterances.822

B Implementation Details823

We implement the models with Huggingface Trans-824

formers repository of version 3.5.1. We initial-825

ize SGA-DS and SGA-US with DistilGPT-2 (Sanh826

et al., 2019), a distilled version of GPT-2. During827

supervised pre-training, we use AdamW optimizer828

and a linear scheduler with 20% warm up steps829

and maximum learning rate 1e−4. The minibatch830

base size is set to be 8 with gradient accumulation831

steps of 4. The total epochs are 50 and we monitor832

the performance on validation set and apply early833

stopping (stop when the current best model keeps834

the best for subsequent 4 epochs). We select the835

best model on the validation set then evaluate it on836

test set. During RL, we no longer use scheduler837

and fix the learning rate to 2e−5. The batch size838

is set to be 16 with gradient accumulation steps839

of 12. As described in Sec 4.3, we first optimize840

US for 100 training cycles and select the US with841

best online evaluation result. Then we optimize DS842

for another 100 training cycles with the selected843

US and select the best DS. Thanks to our proposed844

Model Training Time Generation Time

SGA-DS-SL 204min 229s
SimpleTOD 396min 276s
UBAR 369min 352s

Table 7: Time costs of different models. The right
two columns report the training time and the time of
generation on test set respectively.

simplified structure, all the experiments above can 845

be performed on a single 16GB Tesla-P100 GPU. 846

C Analysis and Case Study 847

C.1 Time Costs 848

We use re-implementation of SimpleTOD and 849

UBAR under the same optimizer and scheduler 850

as SGA-DS-SL; The minibatch base sizes and gra- 851

dient accumulation steps are (8,4) for SGA-DS-SL, 852

and (2, 16) for SimpleTOD and UBAR, respec- 853

tively. We monitor the performance on validation 854

set and apply early stopping (stop when the current 855

best model keeps the best for subsequent 4 epochs). 856

857

C.2 Attention Weights 858

We show the statistical results for system act and 859

response in UBAR, which are shown in Figure 6. It 860

can be observed that the two variables almost only 861

attend to the variables of current turn, especially 862

the history variables closely nearby. For instance, 863

system act at most attends to the database result dbt 864

and response rt most attends to the system act at. 865

This is reasonable because TOD systems always 866

make decisions based on what the system finds in 867

the database and generate a response that is highly 868

consistent with the selected action. 869

C.3 Example of UBAR’s Attention 870

We provide an example of a training sequence in 871

Figure 7 to show how the belief state of 4-th turn in 872

UBAR (Yang et al., 2021) attends to belief states 873

and user utterances of the previous three turns. As 874

we can see, each token of belief state in the fourth 875

turn basically gives the same token the maximum 876

attention weight in previous belief states. But the 877

tokens of the first two belief states are included 878

in the third belief state, which indicates that if we 879

constrain the model to only attend to the third belief 880

state, it can also absorb enough information. 881
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(a) Average attention weights for system act

(b) Average attention weights for response

Figure 6: Average attention weights for predicting the
system act and response in UBAR.

C.4 Exploration of Actions882

In order to investigate whether our model has the883

ability to generate richer dialog actions after RL,884

we count the number of actions that have not ap-885

peared in training set during evaluation (unseen886

acts). The statistics can be seen in Table 8. It can887

be seen that the number of both unseen system acts888

and unseen user acts has increased after RL. RL889

does improve the richness of dialog actions to a890

certain extent. However, the total unseen system891

acts in the original test set is 556, much larger than892

the number of generated unseen system acts. This893

means that although the diversity of dialog actions894

has improved, it is not enough and needs further895

study.896

C.5 Example of improvement from RL897

To help understanding the improvement from RL,898

we show some examples in Table 9. We selected899

two dialogs in test set and compare the system900

(a) Attention weights of belief state

(b) Attention weights of user utterance

Figure 7: The heat map of attentions. The vertical axis
represents the belief state of the fourth turn, the horizon-
tal axis represents the belief state or user utterance of
previous turns (b1:3 or u1:3 are merged together).

Model Unseen System Acts Unseen User Acts

SGA-DS-SL 62 6
SGA-JRUD 74 8

Table 8: Statistics on dialog acts.

act and delexicalized response generated by the 901

supervised model SGA-DS-SL and the RL model 902

SGA-JRUD. 903

From the first example, we can see that SGA-DS- 904

SL forgets to inform some important attributes such 905

as address, while SGA-JRUD tends to generate 906

more attributes to accomplish tasks. In the second 907

example, SGA-DS-SL finishes booking when the 908

user has not provided enough information, which 909

leads to a wrong response in the next turn. How- 910

ever, SGA-JRUD learns to ask the user more in- 911

formation when the booking cannot be completed, 912

and to complete the booking once the information 913

is enough. 914

We also provide some dialogs generated dur- 915

ing the interaction between the US and DS agents, 916

which can be seen in Appendix C.6. 917

C.6 Example of Generated Dialogs 918

We provide a dialog sample generated during the 919

interaction between SGA-JRUD and SGA-US-RL 920

in Table 10. We can see that there’s a big differ- 921

ence between the generated dialog and the original 922

dialog, very conducive to model learning. 923
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SNG1086

User
i am looking for some info on an attraction called
kettle’s yard.

Act [attraction] [inform] price area address

Resp
absolutely! the entrance is [price]! it is located
in the [area]. the address is [address]!

Actsup [attraction] [inform] price area
Respsup sure! it is located in the [area] and costs [price].
ActRL [attraction] [inform] price area name type address

RespRL
[name] is a [type] located in the [area] at [address].
the entrance fee is [price].

SNG01797
User i’ll be staying for 3 nights starting on tuesday.
Act [hotel] [request] people
Resp for how many guests please, sir?
Actsup [hotel] [offerbooked] reference

Respsup
booking was successful. reference number is:
[reference].

ActRL [hotel] [request] people
RespRL how many people will be staying?
User 1 guest for 3 nights
Act [hotel] [offerbooked] reference

Resp
booking was successful. reference number is:
[reference].

Actsup [hotel] [request] day
Respsup what day would you like to start your stay?
ActRL [hotel] [offerbooked] reference [general] [reqmore]

RespRL
booking was successful. reference number is:
[reference]. is there anything else i can help you?

Table 9: Two dialog examples (only 1 or 2 turns are
shown) selected from test set. Act and Resp denote the
system act and response from dataset. Act or Resp with
the subscript sup and RL denote they are generated by
SGA-DS-SL and SGA-JRUD.

SNG1076

User
Can you see if there are any entertainment attractions in the
centre of town?

Resp
Unfortunately there are no [type] attractions in the [area]. Is
there a different area of town that would work for you ?

Usergen I am looking for a museum in the centre of town.

Respgen
There are [choice] [type] in the centre of town. Is there a
particular price range you are looking for?

User What about a museum?

Resp
Yes, there are [choice] [type]. I would recommend [name]. It is
at [address] and has [price] entrance. Would that work for you?

Usergen No, but I would like the postcode, address, and phone number.

Respgen
[name] is located at [address], postcode [postcode],
and the phone number is [phone] .

User Yes, that will work great. Can I get their phone number please?

Resp
Certainly. [name]’s phone number is [phone]. Is there anything
else i can help you with today?

Usergen Thank you so much for your help.

Respgen Thank you for using our system today!
User No, that is all i need. Thanks!

Resp You are welcome. Have a great day. Bye.

Usergen
Respgen

Table 10: Interaction case between SGA-JRUD and
SGA-US-RL. The generated dialog ends at the third
turn.
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