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ABSTRACT

The self-attention mechanism, at the heart of the Transformer model, is able to
effectively model pairwise interactions between tokens. However, numerous recent
works have shown that it is unable to perform basic tasks involving detecting
triples of correlated tokens, or compositional tasks where multiple input tokens
need to be referenced to generate a result. Some higher-dimensional alternatives to
self-attention have been proposed to address this, including higher-order attention
(Sanford et al., 2023) and Strassen attention (Kozachinskiy et al., 2025), which
can perform some of these polyadic tasks in exchange for slower, superquadratic
running times.
In this work, we define a vast class of generalizations of self-attention, which we
call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-
order (tensor) computations as well as arbitrary relationship structures between
the input tokens, and they include the aforementioned alternatives as special cases.
We then systematically study their computational complexity and representational
strength, including giving new algorithms and matching complexity-theoretic
lower bounds on the time complexity of computing the attention matrix exactly
as well as approximately, and tightly determining which polyadic tasks they can
each perform. Our results give interesting trade-offs between different desiderata
for these mechanisms, including a tight relationship between how expressive a
mechanism is, and how large the coefficients in the model may be so that the
mechanism can be approximated in almost-linear time.
Notably, we give a new attention mechanism which can be computed exactly in
quadratic time, and which can perform function composition for any fixed number
of functions. Prior mechanisms, even for just composing two functions, could only
be computed in superquadratic time, and our new lower bounds show that faster
algorithms for them are not possible.

1 INTRODUCTION

The transformer architecture, introduced by Vaswani et al. (2017), has the self-attention mechanism at
its heart, which is used to capture pair-wise correlations in large language models. Since its inception,
it has been used in a variety of large language model (LLM) architectures, including BERT (Devlin
et al., 2019), GPT series (Radford et al., 2018; Brown et al., 2020; OpenAI, 2023), Claude (Anthropic,
2024), Llama (Grattafiori et al., 2024), and o1 (OpenAI, 2024). Its success has led to its prominent
use in nearly every area of modern deep learning.

Transformers consist of three main components within each block: an input Multilayer Perceptron
(MLP) layer, followed by a self-attention mechanism, then finally an output MLP layer Vaswani
et al. (2017). The self-attention mechanism is a function from Rn×d → Rn×d which computes and
combines weighted pairwise correlations between tokens in its input, and is key to the success of the
Transformer model.

Self-attention (Vaswani et al., 2017). For a matrix M and index i, we write Mi to denote the ith
row of M . Given a query matrix Q ∈ Rn×d, key matrix K ∈ Rn×d and value matrix V ∈ Rn×d for
a specific input, the output of the self-attention function is given by the matrix Att ∈ Rn×d, whose
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ith row is:

Atti =

∑
j∈[n] exp(

1
d ⟨Qi,Kj⟩) Vj∑

j∈[n] exp(⟨Qi,Kj⟩)
.

Despite the widespread use of self-attention in Transformers, there are limits to its expressive
power, which is intuitively limited to capturing pairwise correlations between tokens. In particular,
researchers have defined a number of basic tasks such as iterated function composition, Match3,
Parity, Majority, and Dyck-1 which require higher order relationships than pairwise correlations
and provably cannot be solved by simple self-attention networks (Sanford et al., 2024b; Peng et al.,
2024; Hahn, 2020). Empirical studies have also confirmed this intuition, showing poor performance
by simple Transformers on benchmark datasets like multiplication, logical puzzles and dynamic
programming Dziri et al. (2023), memorized mappings (Zhang et al., 2025) and other datasets like
SCAN (Lake & Baroni, 2018), PCFG (Hupkes et al., 2020), CLUTRR (Sinha et al., 2019), CoGS
(Kim & Linzen, 2020), GFQ (Keysers et al., 2020), and CREPE (Ma et al., 2023).

In this paper, we focus especially on a type of task called function composition. As a simple example,
the language model may be given the query "If Sam lives in Toronto, Peter lives in Paris, Toronto is
in Canada, and Paris is in France, which country does Sam live in?", and the model is expected to
reply "Canada". This is a composition of two functions: the first maps people to cities, and the second
maps cities to countries. Several works including (Peng et al., 2024; Dziri et al., 2023; Lu et al.,
2023) have shown, both theoretically and experimentally, that simple language models are unable to
perform these tasks. In order to overcome these representational limitations, several stronger attention
mechanisms have been proposed, notably higher-order tensor attention and Strassen attention which
we define next.

Tensor-attention. Clift et al. (2020) came up with a tensor generalization of self-attention, called 2-
simplical attention, which Sanford et al. (2024b) also studied as the higher-order tensor attention (that
we will call 3-tensor attention) for a query matrix Q(1) ∈ Rn×d, key matrices Q(2), Q(3) ∈ Rn×d

and value matrices V (2), V (3) ∈ Rn×d. The output is given by the matrix Att(T ) ∈ Rn×d, whose ith
row is given by:

Att
(T )
i =

∑
ℓ1,ℓ2∈[n] exp(

1
d ⟨Q

(1)
i , Q

(2)
ℓ2

, Q
(3)
ℓ3

⟩) V (2)
ℓ2

⊙ V
(3)
ℓ3∑

ℓ1,ℓ2∈[n] exp(
1
d ⟨Q

(1)
i , Q

(2)
ℓ2

, Q
(3)
ℓ3

⟩)
.

Here ⊙ denotes the element-wise product (also called Hadamard product), and for three vectors
a, b, c ∈ Rd, we define ⟨a, b, c⟩ =

∑d
ℓ=1 a[ℓ]b[ℓ]c[ℓ].

Sanford et al. (2024b) showed that one 3-tensor attention head can solve more complicated tasks
like Match3, which requires finding a triple of correlated tokens. They also defined a natural
generalization to t-tensor attention, which can solve Match-t for t ≥ 3.

Strassen-attention. Later, Kozachinskiy et al. (2025) gave a more efficient attention mechanism
that can also perform Match3 and several other tasks difficult for self-attention. (As we will discuss
shortly, 3-tensor attention can have prohibitive computational complexity, and Strassen-attention was
defined as a step toward addressing this.) This attention mechanism is again defined over a query
matrix Q(1) ∈ Rn×d, key matrices Q(2), Q(3) ∈ Rn×d and value matrices V (2), V (3) ∈ Rn×d. The
output matrix is Att(S) ∈ Rn×d, where the ith row, for i ∈ [n], is given by:

Att
(T )
i =

∑
ℓ2,ℓ3∈[n] exp(

1
d ⟨Q

(1)
i , Q

(2)
ℓ2

⟩+ ⟨Q(2)
ℓ2

, Q
(3)
ℓ3

⟩+ ⟨Q(3)
ℓ3

, Q
(1)
i ⟩) V (2)

ℓ2
⊙ V

(3)
ℓ3∑

ℓ2,ℓ3∈[n] exp(
1
d ⟨Q

(1)
i , Q

(2)
ℓ2

⟩+ ⟨Q(2)
ℓ2

, Q
(3)
ℓ3

⟩+ ⟨Q(3)
ℓ3

, Q
(1)
i ⟩)

.

Quite recently, 3-tensor attention has been implemented and performances studied by Roy et al.
(2025). We refer the reader to Section B in which we survey other attention mechanisms and the
landscape of results known about them in more detail.

1.1 RUNNING TIME CONSIDERATIONS

A natural trade-off arises in these proposed attention mechanisms: as the attention mechanism
becomes more general to give more representational power, the required running time increases too.
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This can often be prohibitive: the quadratic running time of self-attention is already a computational
bottleneck which is mitigated in practice only by extensive hardware; a superquadratic running time
may not be practical even with such hardware speedups.

We compare here the running times of various attention mechanisms as a function of n, the number of
input tokens, where the embedding dimension is d = O(log n); see running times in Table 1 below.

Exact Algorithms. The best algorithms for self-attention take time n2+o(1), matching the straightfor-
ward algorithm. For tensor attention, the best algorithm is also the straightforward algorithm, which
for t-tensor attention (t ≥ 3) runs in superquadratic time nt+o(1).

The straightforward algorithm for Strassen attention, just following its definition, takes time n3+o(1).
However, Kozachinskiy et al. (2025) give a faster algorithm for Strassen attention with running
time O(nω), where ω ≤ 2.3714 is the exponent of matrix multiplication (Alman et al., 2025), i.e.,
the constant such that n × n matrices can be multiplied in time O(nω). This faster algorithm is
still truly superquadratic, and moreover, we note that the aforementioned bound on ω comes from
a highly theoretical algorithm, and typically either ω ≈ 2.81 from Strassen’s algorithm (Strassen,
1969), or even ω = 3 from the straightforward matrix multiplication algorithm, are used in practice.
(Kozachinskiy et al. (2025) named it after Strassen’s matrix multiplication algorithm to emphasize
this faster algorithm.)

It is natural to wonder whether even faster algorithms are possible, and particularly whether tensor
attention or Strassen attention could be computed in quadratic time. In fact, these known running
times are known to be optimal under standard complexity-theoretic assumptions, so these algorithms
cannot be improved. For self-attention and tensor attention, this was shown in prior work (Alman &
Song, 2023; 2024); for Strassen attention, we prove this here in Theorem 3.6 below.

Approximation Algorithms. In most cases, a sufficiently accurate approximation of self-attention
suffices, and this can sometimes be computed much faster. Alman & Song (2023) shows that as
long as the entries of the query and key matrices are bounded (and all have magnitude at most
B = o(

√
log n)) we can compute an entry-wise approximation of the self-attention matrix in almost

linear time, n1+o(1). 1 Alman & Song (2024) similarly showed how to compute an entry-wise
approximation of tensor attention Att(T ) in n1+o(1) time, with a smaller bound on B. These prior
works have also shown matching lower bounds, showing that these bounds B are tight: if the weights
are even slightly larger, than the straightforward exact running times discussed above are unavoidable.
(These lower bounds use standard assumptions from fine-grained complexity theory; see Section 4
for more details.) Many different lines of experimental work studied Transformers with reasonable
precision guarantees (Zafrir et al., 2019; Sun et al., 2019; Katharopoulos et al., 2020; Dettmers et al.,
2022; Xiao et al., 2023; Dettmers et al., 2022; Perez et al., 2023; Roy et al., 2021; Han et al., 2024).

Mechanism Exact cc Apx cc Bound

Self-attention n2+o(1) n1+o(1) o(
√
log n)

t-Tensor n3+o(1) n(1+o(1)) o((log n)1/t)
Strassen nω+o(1) n(1+o(1)) o(

√
log n)

Tree (new) n2+o(1) n(1+o(1)) o(
√
log n)

Poly (new) nt+o(1) n(1+o(1)) o((log n)1/k)

Table 1: This summarizes the running times of both exact
and approximate algorithms for these attention variants. For
entry-wise approximation (Apx cc), the bound B is the max-
imum absolute value of the matrix entries such that we can
entry-wise approximate the output matrix in near-linear time;
the attention polynomial is in t variables and has degree k.
Alman & Song (2023; 2024) proved bounds for self-attention
and tensor-attention, while we prove the rest.

In this paper, we build on this line of
work and give the first fast approxi-
mation algorithm for Strassen atten-
tion. We show that, if all the weights
are bounded by B = o(

√
log n), then

one can approximate Strassen atten-
tion in almost linear time n1+o(1), and
if the weights are larger, then the ex-
act running time of nω−o(1) cannot
be avoided (again using fine-grained
complexity assumptions). This lower
bound fits within a new, much more
general lower bound on different gen-
eralizations of attention which we will
state in Theorem 3.6 later. In partic-
ular, although the statement appears
similar to prior work, proving this
requires substantial new techniques,
since prior techniques focused on proving cubic lower bounds, but Strassen attention actually has a

1An entry-wise approximation outputs a matrix where each entry is at most 1
poly(n)

far from the exact value.
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subcubic (but superquadratic) time algorithm based on matrix multiplication; see Section 4 for more
details.

1.2 POLY-ATTENTION IS ALL YOU NEED

In this work we introduce a more general class of attention mechanisms called poly-attention that
generalizes and improves upon these previous attention mechanisms. An instantiation of poly-
attention is given by a base polynomial, h, over t variables, degree k and sparsity s. We will precisely
define poly-attention shortly, and show that it includes self-attention, tensor attention, and Strassen
attention as special cases.

Our main results include complete and exhaustive analyses of the running times one can achieve
to compute or approximate different poly-attentions, as well as the expressive power of each one.
Using these, we identify new, specific instantiations of poly-attention which are simultaneously
more expressive and easier to compute than prior replacements to self-attention. One may also use
our results to identify attention mechanisms of interest which achieve a desired trade-off between
expressiveness and computational complexity.

Tree-attention. We particularly highlight a subclass of our poly-attention mechanisms that we call
tree-attention, which loosely speaking is characterized by a subclass of degree-2 base polynomials
h that possesses a tree-like property. We find that all tree-attention mechanisms can be computed
in quadratic time, matching the running time of standard self-attention. Furthermore, we show that
tree-attention can solve r-fold function composition for any constant t.

This is a substantial improvement on prior attention mechanisms. Self-attention cannot even solve
2-fold function composition. Meanwhile, 3-tensor attention and Strassen attention, which can solve
2-fold function composition, require superquadratic time, and furthermore, they cannot solve 3-fold
function composition. Our new tree-attention can solve r-fold function composition for all r and can
be computed in quadratic time (Theorem 3.4).

We give a more detailed analysis of tree-attention, including tight exact and approximation algo-
rithms, in Section 3.2, (Theorem 3.5). We posit tree-attention as the best of all worlds in terms of
representational strength and time complexity. In addition to strictly improving on prior attention
mechanism, we will see that the runtime of tree-attention matches the best possible runtimes in both
the exact and approximate versions. We envision two types of users/applications:

• if quadratic running time can be tolerated then use the exact algorithm for tree-attention

• if a faster, almost linear running time is needed, then the user should find the largest bound
B on the weights which can be tolerated by their hardware and architecture, and then apply
the most expressive tree-attention which can be approximated quickly for that B (we will
explore the trade-off in Section 3.2).

We emphasize that our exact and approximate algorithms for tree-attention only use straightforward
matrix multiplication algorithms, and do not rely on bounds on ω or other impractical fast matrix
multiplication algorithms. See Section 5 for an experimental validation.

Full characterization of poly-attention. Beyond tree-attention, we give a full characterization of
the running time needed to compute poly-attention as a function of the underlying properties of the
base polynomial, h. We find that these mechanisms often require cubic or more time to compute
exactly, but nonetheless have fast approximation algorithms when B (the bound on the weights) is
small enough, and meanwhile can perform very complex tasks.

2 THE POLY-ATTENTION MECHANISM

In this section, we define the general class of poly-attention mechanisms. They will be described by a
special class of multi-linear polynomials, which we will call attention polynomials.

Definition 2.1 (Attention polynomial). We call a polynomial h(x1, . . . , xt) an attention polynomial
of degree k if it is multi-linear, it has coefficients only in {0, 1}, and all its monomials have degree at
least 2 and at most k.
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Attention polynomials will be a central concept in this article. We will use them to concisely denote
combinations of inner products of vectors. Given vectors Y1, . . . , Yt ∈ Rd, consider a multi-linear
monomial of an attention polynomial, m, of degree k containing variables xj1 , . . . , xjk , where
1 ≤ j1 < . . . < jk ≤ t. We denote m(Y1, . . . , Yt) := ⟨Yj1 , Yj2 , . . . , Yjk⟩, which is an inner product
of order k. Then, given an attention polynomial h(x1, . . . , xt) containing s monomials m1, . . . ,ms,
we define h(Y1, . . . , Yt) :=

∑
i∈[s] mi(Y1, . . . , Yt).

Now, we describe our new class of poly-attention mechanisms, of order t, using an attention polyno-
mial h(x1, . . . , xt) of degree k having s monomials (typically think of t, k, s as small constants).

Definition 2.2 (Poly-attention). For an attention polynomial h(x1, . . . , xt) having s monomials
of degree at most k, we define the poly-attention function from Rn×d to Rn×d, which depends
on h and has, as its parameters, query-key weights WQ(1) , . . . ,WQ(t) ∈ Rd×d and value weights
WV (2) , . . . ,WV (t) ∈ Rd×d.

For an input X ∈ Rn×d, the query-key matrices are denoted as Q(1) := XWQ(1) , . . . , Q(t) :=

XWQ(t) and the value matrices as V (2) := XWV (2) , . . . , V (t) := XWV (t) .

The output of the poly-attention function will be given by the matrix

Att(h)(Q(1), . . . , Q(t), V (1), . . . , V (t)) ∈ Rn×d,

where the ℓ1-th row is defined as:

Att
(h)
ℓ1

=

∑
ℓ2,...,ℓt∈[n] exp

Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(k)
ℓk

)
ä
V

(2)
ℓ2

⊙ V
(3)
ℓ3

⊙ . . .⊙ V
(t)
ℓt∑

ℓ2,...,ℓt∈[n] exp
Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(k)
ℓk

)
ä . (1)

We will often drop the Q(i)’s and V (j)’s from the notation Att(h) when it doesn’t lead to ambiguity.

Here, Q(1) will be the query matrix as used in the usual self-attention mechanisms, and Q(2), . . . , Q(t)

will be the key matrices, as the index of the row of Q(1) corresponds to the row of the output of
poly-attention, and correlations are considered with respect to that. However, since we use all the
variables (and hence, the matrices) in a symmetric sense, we denote both the query and the key
matrices using Q(j) for ease of notation.

Lemma 2.3. Poly-attention captures all the previous higher-order self-attention techniques. In
particular, (i) self-attention is poly-attention with the base polynomial h(x1, x2) = x1x2; (ii) t-
tensor attention is poly-attention with h(x1, . . . , xt) = x1 . . . xt; and (iii) Strassen-attention is
poly-attention with h(x1, x2, x3) = x1x2 + x2x3 + x3x1.

3 BEYOND SELF-ATTENTION: THE POWER OF POLY-ATTENTION

In this section, we study the strength and limitations of the poly-attention scheme. We begin in
Section 3.1 by studying an illustrative example. Thereafter, we will consider tree-attention and
poly-attention in full generality.

3.1 AN EXAMPLE: FUNCTION COMPOSITION

Mechanism 2-fold 3-fold
Self-attention No No
3-Tensor Yes No
Strassen Yes No
Tree (new) Yes Yes
Poly (new) Yes Yes

Table 2: Compositionality results show-
ing support for function composition.
Peng et al. (2024) prove impossibil-
ity bounds for self-attention, Kozachin-
skiy et al. (2025) simulate 2-fold with
Strassen-attention, while we prove the
rest.

To demonstrate the power of poly-attention, we analyze
a special case when h(x1, x2, x3) = x1x2 + x2x3. We
show that this specific poly-attention can efficiently solve
important tasks faster than any other previous attention
mechanisms.

To demonstrate the strength of this polynomial h, we de-
fine the function composition problem demonstrated ear-
lier. Mathematically, the 2-fold function composition prob-
lem is: given two functions f1, f2 : [n] → [n] and x ∈ [n],
output f2(f1(x)). To express this problem for an attention
mechanism, the input is X ∈ R(2n+1)×d, where Xi for
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i ∈ [n] contains an encoding of f1(i), Xj for j ∈ [n + 1, 2n] contains an encoding f2(j − n) and
X2n+1 contains an encoding of x; and our goal is to output the value of f2(f1(x)) in the (2n+ 1)-th
entry of the output.

Peng et al. (2024) proved that self-attention cannot simulate 2-fold function composition, and even
that almost n self-attention heads are needed in order to solve it. Since self-attention needs quadratic
time to compute, it would take cubic time to compute n heads. All prior mechanisms that solve
this, including 3-tensor attention and Strassen-attention, require superquadratic time. This leads
to our punchline: poly-attention for this very simple polynomial h2 can simulate 2-fold function
composition in just quadratic time!

Theorem 3.1. Let h2(x1, x2, x3) = x1x2 + x2x3. Poly-attention for h2 can simulate function
composition using only one head. Furthermore, Att(h2) can be computed in O(n2) time.

We will tightly characterize what weights are needed for efficient approximation of all poly-attentions;
in the case of Att(h2), we find:

Theorem 3.2. Given the polynomial h2(x1, x2, x3) = x1x2 + x2x3, where the entries of the query-
key matrices are in [−B,B]:

1. If B = o(
√
log n), we can compute an entry-wise (1/poly(n))-approximation of Att(h2) in

time n1+o(1).

2. If B = Ω(
√
log n), then every algorithm for computing an entry-wise (1/poly(n))-

approximation of Att(h2) requires time Ω(n2), unless SETH is false.

We consider next 3-fold function composition, in which the input is three functions, f1, f2, f3 :
[n] → [n] and x ∈ [n], and we want to compute f3(f2(f1(x))). To our knowledge, no prior attention
mechanisms could perform 3-fold function composition. In particular, although Strassen-attention
and 3-tensor attention were designed to solve problems like 2-fold function composition, we prove
that they cannot compute 3-fold function composition when the precision is bounded:

Theorem 3.3. Strassen-attention and 3-tensor attention, require at least H > n1−o(1) heads to
simulate 3-fold function composition when the precision is bounded.

However, we prove that poly-attention can indeed simulate 3-fold composition, and even more
generally r-fold composition for any constant r, and still be evaluated in quadratic time!

Theorem 3.4. For any integer r ≥ 2, define the polynomial hr(x1, . . . , xr) = x1x2 + x2x3 + . . .+
xrxr+1. Then, poly-attention for hr can simulate r-fold function composition, and Att(hr) can be
computed exactly in time O(r3n2) (input dimension here is O(rn), not n).

In fact, we give a general characterization of which polynomials h can be used in Att(h) to perform
r-fold function composition. For example, we will also prove that poly-attention for hr−1 can not
simulate r-fold function composition.

3.2 TREE-ATTENTION: POLYNOMIALS LEADING TO EFFICIENT POLY-ATTENTION

x1

x2 x3 x4

x5 x6
x7

Figure 1: Graphical representation for the tree
polynomial h(x1, . . . , x7) = x1x2 + x1x3 +
x1x4 + x2x5 + x2x6 + x4x7

We saw in the previous section that instances of poly-
attention which can be computed in quadratic time
can have great representational strength. A natural
question arises: what is the class of attention polyno-
mials that can be exactly computed in only n2+o(1)

time? Could there be even stronger ones? We answer
this by giving a complete characterization. We first
define a few notations to describe them.

For an attention polynomial h(x1, . . . , xt) of degree
2, we say that a simple graph G is the graphical rep-
resentation of h, if G contains t vertices v1, . . . , vt,
where vertex vi corresponds to the variable xi, and
there exists an edge between vi and vj if and only if xixj is a monomial present in h. If the graphical
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representation of h is a tree or a forest, we say that h is a tree polynomial, and poly-attention for a
tree polynomial will be called tree-attention.

Our main result about tree-attention shows that it can be computed just as efficiently as self-attention,
both for exact algorithms (where it can be computed in quadratic time) and approximate algorithms
(which has the same bound B = o(

√
log n) as in self-attention, which is also the largest bound for

any poly-attention):

Theorem 3.5. Given a tree polynomial h, where the entries of the query-key matrices are in [−B,B]:

1. The output of tree-attention, Att(h), can be exactly computed in n2+o(1) time.

2. If B = o(
√
logn), entry-wise approximation of Att(h) can be computed in n1+o(1) time.

3. If B = Ω(
√
log n), under standard complexity assumptions, entry-wise approximation of

Att(h) requires Ω(n2) time.

Tree polynomials include the polynomials hr from Theorem 3.4 which can compute function composi-
tion. More generally, the poly-attention for a tree polynomial, where the tree has depth q, can simulate
(q − 1)-fold function composition, as well as a variety of tree generalizations. (Function composition
can be naturally seen as corresponding to the path graph, which is the graphical representation of hr.)

We show next that, for any attention polynomial which is not a tree polynomial (either because it has
degree more than 2, or because its graphical representation contains a cycle), its poly-attention requires
superquadratic time to compute. Thus, as promised, tree-attentions form a complete characterization
of quadratic-time poly-attentions.

3.3 COMPUTATIONAL COMPLEXITY OF NON-TREE POLY-ATTENTION

Next, we give a complete characterization of the computational complexity (both exact and approxi-
mate) for poly-attention for all attention polynomials h.

Theorem 3.6. Given poly-attention for an attention polynomial h(x1, . . . , xt) of degree k and
sparsity s which is not a tree polynomial, where the query-key matrices have entries in [−B,B]:

1. If B = o((log n)1/k), entry-wise 1
poly(n) -approximation of Att(h) can be computed in

almost-linear time.

2. If B = Ω((logn)1/k), entry-wise 1
poly(n) -approximation of Att(h) requires super-quadratic

time, assuming standard complexity assumptions.

Prior work gave this characterization for specific polynomials h (Alman & Song (2023) for the usual
self-attention (i.e., h(x1, x2) = x1x2), followed by Alman & Song (2024) for t-tensor attention i.e.,
h(x1, . . . , xt) = x1 · · ·xt). We discuss in Section 4 below a number of technical hurdles which we
overcome to generalize their results to all attention polynomials and prove Theorem 3.6.

Notably, for many polynomials such as h(x1, x2, x3) = x1x2 + x2x3 + x1x3 (corresponding to
Strassen attention), there is a subcubic algorithm which uses fast matrix multiplication, so prior
approaches, which can only prove cubic (or above) lower bounds, cannot apply. In fact, we generalize
the Strassen attention algorithm (Kozachinskiy et al., 2025), and prove that for any degree-2 attention
polynomial h whose graphical representation contains exactly one cycle, there is an exact algorithm
for Att(h) running in subcubic time O(nω), and that this cannot be improved.

3.4 REPRESENTATIONAL STRENGTH OF POLY-ATTENTION

We have discussed function composition at length, but poly-attention is also able to perform a variety
of other basic expressive problems. As an example, Match3 has been highlighted by prior work
(Sanford et al., 2024a; Kozachinskiy et al., 2025) as a problem which requires detecting correlated
triples of tokens. We define here a generalization called polynomial root-finding which can be solved
by poly-attention.
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The problem is defined in terms of a fixed polynomial p(x1, . . . , xn) (which, unlike an attention
polynomial, may have degree 1 monomials, and may not be multi-linear). In the problem, given as
input a set S containing n integers, and the goal is to find y1, . . . , yt ∈ S such that p(y1, . . . , yt) = 0.

Match3 is a special case of root-finding, corresponding to the simple polynomial p(x1, x2, x3) =
x1 + x2 + x3. Circuit evaluation for constant sized circuits, and other related problems can also be
captured by polynomial root-finding by using arithmetization. We prove that for any polynomial p,
one can solve polynomial root-finding using poly-attention:

Theorem 3.7. For every polynomial p(x1, . . . , xt), there is an attention polynomial h(x1, . . . , xt)
such that a Transformer using two heads of poly-attention for h can solve polynomial root-finding.

Finding the attention polynomial h for a given polynomial p using our approach is straightforward
but requires some details; it could be performed by a user who would like to answer query patterns
corresponding to polynomial root-finding for a particular p.

3.5 IMPLICATIONS OF POLY-ATTENTION

As we have seen, tree-attention can solve many problems which self-attention cannot, and still it
can be computed in quadratic time. Since self-attention requires quadratic time anyway, we suggest
replacing it with tree-attention instead, as this will only lead to a constant factor increase in the
time-complexity. One can select an appropriate tree-polynomial to use depending on the relationships
between the data that the model intends to process.

When we move to more general poly-attention, for any attention polynomial h which is not a tree
polynomial, we have shown in Theorem 3.6 that (without a small bound on the model weights) poly-
attention provably requires super-quadratic time. Thus, there is a trade-off between expressiveness
(most straightforwardly represented by the degree and order of the polynomial h, although it could
also take into account which tasks like polynomial root-finding can be performed), and running
time (depending on how bounded the entries must be). Model designers therefore have a choice,
potentially depending on the hardware available to them, the desired running time, and the logical
structures they expect to see in their data and queries.

It would be exciting, in future work, to further study the expressive power of tree-attentions, and find
more examples of complicated tasks with tree-like logical structures that it can solve. As an example,
Peng et al. (2024) proposed some more problems like relationship composition, spatial composition
and temporal composition which current language models cannot solve; it would be interesting to see
how well tree-attention performs on these problems.

4 TECHNIQUE OVERVIEW

Representational strength. Our representational strength results include both constructions (e.g.,
showing that tree-attention can perform r-fold function composition) and lower bounds (e.g., showing
that Strassen-attention and 3-tensor attention cannot perform 3-fold function composition).

Our constructions use a generalization of the “sum of squares” approach of Kozachinskiy et al. (2025):
If one can design a simple polynomial c which checks possible outputs of function composition, so
that it outputs 0 on correct outputs and large values on incorrect values, then the softmax underlying
attention can detect 0s and thus solve the problem. An interesting algebraic challenge arises of
expressing c in terms of the monomials available in an attention polynomial h.

Our lower bounds make use of communication complexity theory, similar to many other representa-
tional lower bounds in the literature. We show that if function-composition can be simulated by these
mechanisms, then there is a resulting, very efficient communication protocol for a problem called
myopic pointer jumping. Results from Chakrabarti (2007); Kozachinskiy et al. (2025) showing that
myopic pointer jumping cannot be solved with small communication can then be applied.

Fast approximation algorithms. For obtaining entry-wise approximation algorithms for poly-
attention, we use low-rank decomposition methods based on the polynomial method, which were
first applied in the context of Gaussian kernel density estimation (see Aggarwal & Alman (2022);
Alman & Guan (2024)). In this approach, one critically approximates the exponential function (part
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of softmax) with a low-degree single-variable polynomial. The bound B on the weights then naturally
comes into play: the smaller the interval one must approximate the exponential on, the lower degree
polynomial one may use.

A similar approach has been used to design approximation algorithms for other variants on attention
Alman & Song (2023; 2024; 2025), although a number of intricacies arise in this general setting. For
instance (recalling that t is the number of variables in the attention polynomial h, and k is the degree),
directly applying the approach of Alman & Song (2024) would yield an approximation algorithm
whenever B = o((logn)1/t), but our algorithm works even for the much larger bound o((log n)1/k).
This is a significant improvement for t > k– in tree-attention, one could choose t = 20 but k = 2.

Lower bounds. Our running time lower bounds, where we show that different poly-attention
mechanisms cannot be computed in quadratic time (for big enough bounds B on the weights), make
use of tools from fine-grained complexity theory. In particular, as in the previous works of Alman &
Song (2023; 2024; 2025) on the fine-grained complexity of attention mechanisms, we use a popular
conjecture called the Strong Exponential Time Hypothesis (SETH) to obtain conditional hardness
results. First introduced in Impagliazzo & Paturi (2001), SETH is a strengthening of the P ̸= NP
conjecture (so, proving SETH would imply P ̸= NP), and is perhaps the most widely used conjecture
in fine-grained complexity.

Notably, the way SETH has been used in prior work results in cubic (or higher) lower bounds, and
makes it difficult to prove lower bounds for running time Ω(nω) from the matrix multiplication
exponent ω < 3. Indeed, for such a lower bound, our starting assumption must itself use matrix
multiplication in some way!

In order to prove our lower bound against Strassen attention and other poly-attention mechanisms
with O(nω) running times, we therefore use a different conjecture, the Max-2SAT conjecture (see
Alman & Vassilevska Williams (2020) and its uses in El Halaby (2016); Jansen & Włodarczyk (2024);
Bringmann & Slusallek (2021); Lincoln et al. (2018)), which roughly asserts that our current best
algorithm for the Max-2SAT problem cannot be substantially improved. We ultimately show that
a faster algorithm for Strassen attention could be used to design a faster algorithm for Max-2SAT,
refuting the conjecture. Our proof of this makes use of the distributed PCP framework (Abboud et al.,
2017) for reducing variants of SAT to other problems through multi-party interactive communication
protocols (Aaronson & Wigderson, 2009; Rubinstein, 2018).

5 EXPERIMENTAL VALIDATION

Figure 2: Accuracy per epoch for learn-
ing f1(f2(0)) for sequence length 25,
on a single layer of tree-attention, one
layer self-attention and two layer self-
attention.

We have proved that tree-attention can be computed in
the same O(n2) time as self-attention, and can simulate
function composition (whereas self-attention cannot). We
complement this with a simple experiment to demonstrate
empirical learnability and efficiency. We compare the
following models: (i) a model with one head and one layer
of tree-attention; (ii) a model with one head and two layers
of self-attention; and (iii) a model with one head and one
layer of self-attention. We train all three in the same way to
solve function composition. As expected (proved by Peng
et al. (2024)), one head and one layer of self-attention is
not able to learn function composition, but we find that the
other two are. Furthermore, we find that our tree-attention
model learns function composition in many fewer training
epochs. Lastly, our empirical evaluation of inference time
validates that tree-attention takes roughly similar time as
self-attention. See Figure 2 for a summary, and Section H
for further details.
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6 ETHICS STATEMENT

We affirm that all aspects of this research comply with the ICLR Code of Ethics. This paper does not
involve human subjects, personally identifiable data, or sensitive applications, and we do not foresee
direct ethical risks.

7 REPRODUCIBILITY STATEMENT

The paper contains theoretical results to categorize higher-order self-attention mechanism, and provide
a fundamental framework for future work. All these results, including theorems and algorithms, have
complete proofs, presented in the appendix. A roadmap to the proofs has been provided in Section
A.1 for the reader.

The code which produces the experimental results described in Sections 5 and H can be found in the
supplementary materials.
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A PRELIMINARIES

A.1 ROADMAP

In the rest of this paper, we prove all the results that we have stated in the main version. After
describing some relevant notations and conjectures that we will use, we prove the results in two
parts. First we prove the computational complexities of the poly-attention mechanism, followed by

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

proofs of representational strengths. The proofs of computational complexities use two subdivisions–
an upper bound where we show that if the entries of the query-key matrices are bounded, then we
can compute an entry-wise approximation in near-linear time, and a lower bound where we show
that if the entries of the query-key matrices are large, then assuming certain fine-grained complexity
conjectures, computing entry-wise approximations are difficult. As a warm-up, we start with upper
and lower bounds for Strassen-attention (Section C), based on which, we proceed to prove the same
for general poly-attention in Section E. In order to completely characterize time complexities for
poly-attention, we also give quadratic time algorithms for tree-attentions in Section D.

The proofs of the results stated in the main paper are given as follows:

• For Theorem 3.1, poly-attention can simulate function-composition has been proved in
Theorem F.6 for t0 = 2, and the time complexity of O(n2) has been proved in Theorem
D.2.

• Theorem 3.2 Part 1 has been proved in Theorem E.2, and Theorem 3.2 Part 2 has been
proved in Theorem E.3 Part 1.

• Theorem 3.3 has been proved in Theorem F.3 and Corollary F.4.
• Theorem 3.4 has been proved in Theorem F.6.
• Theorem 3.5 Part 1 has been proved in Theorem D.2, Theorem 3.5 Part 2 has been proved in

Theorem E.2, and Theorem 3.5 Part 3 has been proved in Theorem E.3.
• Theorem 3.6 Part 1 has been proved in Theorem E.2 and Theorem 3.6 Part 2 has been proved

in Theorem E.3.
• Theorem 3.7 has been proved in Theorem G.1.

A.2 NOTATION AND BACKGROUND

Throughout this article, for a natural number n we denote [n] as the set {1, 2, . . . , n}, [i : j] as the
set of integers {i, i+ 1, . . . , j} for i < j, and [i, j] as the set of real numbers between i and j. Given
a matrix M ∈ Rn×m, for i ∈ [n], j ∈ [m], we denote [M ]i,j , and more loosely Mi,j , as the (i, j)-th
entry of the matrix, Mi as the i-th row as a m-dimensional vector, and M:,j as the j-th column as the
transpose of a n-dimensional vector. M(i1:j1,i2:j2) will also denote the submatrix of M having rows
[i1 : j1] and columns [i2 : j2].

For two matrices A,B ∈ Rn×m, we define A
B as the entry-wise division, i.e., [AB ]i,j =

Ai,j

Bi,j
. Given a

vector X ∈ Rn×1, by diag(X), we denote the n× n diagonal matrix such that [diag(X)]i,i = X[i]
for all i ∈ [n]. Some other operators on matrices are defined as follows.
Definition A.1 (Hadamard product ⊙). Given to matrices A,B ∈ Rn×m, we denote the Hadamard
product, denoted by A⊙B ∈ Rn×m, as the entrywise product

[A⊙B]i,j = Ai,j ·Bi,j ,

for i ∈ [n], j ∈ m.
Definition A.2 (Row-wise Kronecker product ⊘). For matrices A ∈ Rn×d, B ∈ Rm×d, we denote
the row-wise Kronecker product as A⊘B ∈ Rnm×d, where

[A⊘B](i−1)m+j = Ai ⊙Bj ,

for i ∈ [n], j ∈ [m].

Definition A.3 (Entry-wise approximation). Given a matrix M ∈ Rn×d, we say that M̂ is an
entry-wise γ-approximation of M if for all i ∈ [n], j ∈ [d], we have

|M̂i,j −Mi,j | < γ.

Throughout this paper, we will choose γ = 1/poly(n).
Definition A.4 (Entry-wise function). Given a function f : R → R and a matrix M ∈ Rn×m, we
define the matrix [M ]f as the n× n matrix such that the the (i, j)-th element is

[M ]fi,j = f(Mi,j).
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We will use [M ]e as the entrywise exponentiation function, i.e., [M ]ei,j = eMi,j . For a real number c,
M/c will also refer to the matrix obtained by dividing each entry of M by c.

The coefficient of matrix multiplication, ω, roughly refers to the exponent of n such that two n× n
matrices can be multiplied in time O(nω) for large enough n. There is a series of works trying
to improve this coefficient Alman & Williams (2024); Duan et al. (2023); Williams et al. (2024);
Fawzi et al. (2022); Alman et al. (2025), with the fastest being Alman et al. (2025) that achieves
ω = 2.371339. However, these matrix multiplications require n to be quite large and the hidden
constants are enormous, which does not make implementations feasible. There is an algorithm by
Strassen Strassen (1969) which is more practicable and achieves ω ≈ 2.8, but in most cases, only the
naive matrix multiplication algorithm is used as GPUs work better on them.

We will use some more concepts to define the ideas in this article. Given an integer t, we define the
symmetric group of order r,

(
[t]
r

)
, as the set of tuples:Ç

[t]

r

å
= {(j1, j2, . . . , jr) | 1 ≤ j1 < j2 < . . . < jr ≤ t}.

Note that |
(
[t]
r

)
| =

(
t
r

)
. Based on this, an elementary symmetric polynomial of degree r having t

variables is defined as ∑
1≤j1<j2<...<jr≤t

xj1xj2 . . . xjr .

Definition A.5 (Variable separability). We say that a polynomial h(x1, . . . , xt) is variable separable
if there exists a maximum integer r and non-zero attention polynomials g1(x1, x̄1), . . . , gr(x1, x̄r),
where x̄1, . . . , x̄r are disjoint subsets of the variables, such that h(x1, x2, . . . , xn) = g1(x1, x̄1) +
. . .+ gr(x1, x̄r).

We denote each of the polynomials gi(x1, x̄i) as branches.

Note that this definition of variable separability differs slightly from the folklore usage as here we
allow f and g to share at most one variable, x1.

In this paper, for a given polynomial h, we are interested in computing the entry-wise approximation
of Att(h). For this, we define the following version of computing poly-attention approximately.

Definition A.6 (Entry-wise Approximate Poly-Attention Computation APAC(h)(n, d,Γ, γ)). Let h
be an attention polynomial in t variables of degree k having sparsity s. Given query-key matrices
Q(1), . . . , Q(t) ∈ [−Γ,Γ]n×d and value matrices V (2), . . . , V (t) ∈ Rn×d, we want to output a matrix

Âtt(h) ∈ Rn×d such that for all i ∈ [n], j ∈ [d],

|[Âtt(h)]i,j − [Att(h)(Q(1), . . . , Q(t), V (2), . . . , V (t))]i,j | ≤ γ.

A.3 CONJECTURED HARD PROBLEMS

We define some commonly known problems in fine-grained complexity and state conjectures which
will be used to show conditional hardness of generalized attention computations. First, we start by
defining a few central problems in fine-grained complexity.

Definition A.7 (kIP problem). Given sets of vectors A1, . . . , Ak ⊆ {0, 1}d, each of size n, and a
target inner product m ∈ [d], the problem of kIP asks if there exists a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak

such that ⟨a1, a2, . . . , ak⟩ = m.

For k = 2 and m = 0, it is the famous orthogonal vectors problem, which we will abbreviate 2OV or
just the OV problem, and for k = 2 and arbitrary m, we will abbreviate the problem as IP.

Definition A.8 (kSAT). In the kSAT problem for k ≥ 2, given as input a k-CNF formula ϕ,
determine whether or not ϕ has a satisfying assignment.

Definition A.9 (Max-kSAT). In the Max-kSATn,m problem for k ≥ 2, given as input a k-CNF
formula ϕ in n variables and m clauses, determine the maximum number of clauses in ϕ that can be
simultaneously satisfied by a Boolean assignment to the underlying variables.
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Based on these definitions, we are now ready to describe some popular conjectures in fine-grained
complexity that we will use to prove our (conditional) hardness results.
Hypothesis 1 (SETH Impagliazzo & Paturi (2001)). For every δ > 0, there exists k ≥ 3 such that
kSAT can not be solved in time O(2(1−δ)n).

The current fastest known algorithm for kSAT uses the reduction to OV with dimension d = c logn.
The best known time complexity of OV is n2−1/O(log c) given by Abboud et al. (2014a); Chan &
Williams (2016).

Since kSAT is a special case of Max-kSAT, SETH implies that Max-kSAT also cannot be solved
in time Ω(2(1−δ)n) for every δ > 0. The next hypothesis Alman & Vassilevska Williams (2020)
strengthens this further to sparse instances of Max-kSAT.
Hypothesis 2 (Sparse Max-kSAT Hypothesis). For every k ≥ 3 and every δ > 0, there exists c > 0
such that Max-kSATn,cn cannot be solved in time O(2(1−δ)n).

The fastest known algorithm for sparse instances of Max-kSATn,cn for k ≥ 3 takes time
2n(1−1/Õ(c

1/3)) Alman et al. (2016); therefore the above hypothesis is consistent with the state-
of-the-art algorithms. In contrast to the special case of Max-kSAT for k = 2, the hypothesis is false.
The best algorithm for Max-2SAT Williams (2005; 2007) runs in time 2ωn/3poly(n), where ω is the
matrix multiplication exponent. The following Max-2SAT hypothesis states that William’s algorithm
Williams (2005) is essentially optimal when k = 2.
Hypothesis 3 (Max2SAT hypothesis). For every δ > 0, there exists a c > 0 such that Max-2SATn,cn

cannot be solved in time O(2n(ω/3−δ)), where ω is the matrix multiplication exponent.

The following theorem gives a reduction from kSAT to kIP, thus proving the hardness of kIP under
SETH.
Theorem A.10 (Williams (2005); Abboud et al. (2014b); Backurs & Indyk (2015); Abboud et al.
(2015)). Assuming SETH, for every k and δ > 0, there exists c > 0 such that kIPn,c logn cannot be
solved in time O(n(1−δ)k),

B RELATED WORKS

The most similar prior works on attention mechanisms which are more expressive than self-attention
are Sanford et al. (2024b) and Kozachinskiy et al. (2025), which we have already discussed in detail.
There is another attention mechanism, triangular attention, introduced by Bergen et al. (2021), whose
design was inspired by logic programming, and which was shown to perform better than self-attention
on certain compositional tasks. However, Kozachinskiy et al. (2025) proved that it cannot perform
function composition.

As we have discussed, the self-attention mechanism (Vaswani et al., 2017) is at the center of all
large language models because of its expressivity in real-life applications, but the quadratic time
complexity for computing its output is sometimes already prohibitively expensive. One extensive line
of work has introduced faster heuristic algorithms, which work well on many inputs. These have
used different approximation techniques, including sparsity assumptions, norm bounds, and kernel
density estimation (Zandieh et al., 2023; Han et al., 2024; Kitaev et al., 2020; Choromanski et al.,
2021; Pagliardini et al., 2023; Child et al., 2019; Wang et al., 2020; Daras et al., 2020; Katharopoulos
et al., 2020; Chen et al., 2021; 2022; Qin et al., 2022; Liu et al., 2023b; He et al., 2021; Kacham et al.,
2024; Dao et al., 2022; Dao, 2024; Roy et al., 2021; Sun et al., 2021; Ding et al., 2023; Han et al.,
2023; Zaheer et al., 2020; Dass et al., 2023).

Other alternatives have been considered which completely replace attention with different mechanisms.
A simple example is Hardmax attention, in which the softmax is replaced by a (hard) max, but training
Hardmax attention Transformer models appears difficult as we do not know an efficient way to perform
gradient descent. The power of hardmax has been explored in Alcalde et al. (2024); Pérez et al.
(2021); Kajitsuka & Sato (2024). Instead of computing the output of self-attention faster, some
other alternatives to Transformers have been proposed that completely replace attention with other
mechanisms; examples include Synthesizer (Tay et al., 2021), routing Transformers (Roy et al.,
2021), and Mamba (Gu & Dao, 2024). These alternatives can typically be computed much faster than
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attention (often in almost linear time by definition), but in exchange appear to have weaker expressive
power (Alman & Yu, 2025). This paper continues a long line of work on understanding the power
and limitations of Transformers, and finding more expressive alternative models.

Some papers have studied the circuit complexity of Transformers (Chiang, 2024; Merrill & Sabharwal,
2023a; Merrill et al., 2022b; Chen et al., 2024; Merrill & Sabharwal, 2023b; Merrill et al., 2022a;
Chiang et al., 2023). Other works on the representational strength of Transformers focus on their
relationship with other models of computation. For example, a line of work has studied the ability
of Transformers to approximate other models of computation (Pérez et al., 2021; Wei et al., 2022a;
Malach, 2023; Liu et al., 2023a; Hao et al., 2022). On the other hand, there are many more tasks,
beyond those discussed here, which are difficult to solve by a Transformer, including compositional
reasoning (Dekker et al., 2022; Zerroug et al., 2022; Marcus, 2018; Kozachinskiy, 2024; Sanford
et al., 2024a; Peng et al., 2024).

Another approach to overcoming the limitations of Transformers is to augment them in other ways.
An important example is chain-of-thought (Wei et al., 2022b). Merrill & Sabharwal (2024) studied
the space and time complexity of chain-of-thought, and Peng et al. (2024) studied how this relates to
function composition.

C WARM-UP: STRASSEN-ATTENTION UPPER AND LOWER BOUNDS

As a warm-up, we describe the polynomial method and show Max-2SAT-based hardness results on
Strassen-attention. Since Strassen-attention is only a special case of poly-attention, we will later
move on to show similar algorithms and lower bounds on poly-attention in Section E.

C.1 ALGORITHM FOR STRASSEN-ATTENTION

In this section, we give a near-linear algorithm for computing an entry-wise approximation of the
output matrix of Strassen-attention, when the entries of the query-key matrices are bounded. We will
use the polynomial method, which has been used in entry-wise approximations of other attention
mechanisms as well, like in self-attention Alman & Song (2023), tensor-attention Alman & Song
(2024), RoPE based attention Alman & Song (2025).

Our goal is to compute the n×d matrix Att(S), the output of Strassen-attention, for query-key matrices
Q(1), Q(2), Q(3) ∈ [−Γ,Γ]n×d and value matrices V (1), V (2) ∈ Rn×d. Using the expression of
Strassen-attention Kozachinskiy et al. (2025), it can also be written as

Att
(S)
i,ℓ =

[ 1dQ
(1)(Q(2))T ]e(i,1:n)D

1,ℓ[ 1dQ
(2)(Q(3))T ]eD2,ℓ[ 1dQ

(3)(Q(1))T ]e(1:n,i)

[ 1dQ
(1)(Q(2))T ]e(i,1:n)[

1
dQ

(2)(Q(3))T ]e[ 1dQ
(3)(Q(1))T ]e(1:n,i)1n

, (2)

for all i ∈ [n], ℓ ∈ [d], where D1,ℓ = diag(V
(1)
(1:n,ℓ)) and D2,ℓ = diag(V

(2)
(1:n,ℓ)).

We will compute the entry-wise approximations of the numerator and the denominator terms of
Equation 2 separately. The main idea is to use a low rank entry-wise approximations for each of
[ 1dQ

(1)(Q(2))T ]e, [ 1dQ
(2)(Q(3))T ]e, [ 1dQ

(3)(Q(1))T ]e, and multiply the low rank matrices together–
something that can be done more efficiently. In order to obtain the low rank approximations, we will
use the following lemma from Aggarwal & Alman (2022).

Lemma C.1 (Aggarwal & Alman (2022)). Let Γ > 1, ε ∈ (0, 0.1). There exists a polynomial
P (x) ∈ R[x] of degree t := Θ

Ä
max

¶
log(1/ε)

log(log(1/ε)/Γ) ,Γ
©ä

such that for all a ∈ [−Γ,Γ], we have
|P (a)− ea| < εea. Furthermore, P can be computed in poly(t) time and its coefficients are rational
numbers.

Using the previous lemma, we obtain the low rank matrix approximations as a corollary.

Lemma C.2 (Low rank approximation Alman & Song (2023; 2024)). Let ε = 1/poly(n), d =
O(logn), r = no(1), and B = o(logn). Given matrices P,Q ∈ [−Γ,Γ]n×d, we can compute
matrices U,W ∈ Rn×r in time O(n1+o(1)) such that UWT entry-wise ε-approximates PQT ; that
is: |[UWT ]i,j − [PQT ]ei,j | < ε[PQT ]ei,j .
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This is an instance of the Gaussian KDE which has widely been used in LLMs and machine learning
algorithms Zandieh et al. (2023); Backurs et al. (2018); Katharopoulos et al. (2020); Alman et al.
(2020); Aggarwal & Alman (2022); Alman & Song (2023; 2024).

We will show that we can compute ∀i ∈ [n], γ-approximations of denominator in Equation 2 in
time O(n1+o(1)), and fixing any ℓ ∈ [d], we can compute γ-approximations of the numerator in time
O(n1+o(1)), ∀i ∈ [n], where γ = 1/poly(n). Once we find the values of the denominator and the

numerator, we perform a division, to compute the γ-approximation Âtt(S)
i,ℓ, which takes a total

time of O(n1+o(1) + d.n1+o(1) + nd) = O(n1+o(1)). Using this as the central idea, we prove the
following result. Since Strassen-attention is a special case of poly-attention with the polynomial
hS(x1, x2, x3) = x1x2 + x2x3 + x3x1, we state the following result:

Theorem C.3. There is an algorithm that solves APAC(hS)(n, d = O(logn),Γ = o(
√
log n), γ =

1/poly(n)) with query-key matrices Q(1), Q(2), Q(3) ∈ [−Γ,Γ]n×d, and value matrices V (2), V (t) ∈
Rn×d in time O(n1+o(1)).

The algorithm is summed up as follows.

Algorithm 1 Algorithm to compute entry-wise approximation of Att(S)

Input: A number Γ = o(
√
log n), query-key matrices Q(1), Q(2), Q(3) ∈ [−Γ,Γ]n×d, value matri-

ces V (1), V (2) ∈ Rn×d, an approximation parameter γ = 1/poly(n).

Output: Entry-wise γ-approximation Âtt(S) of Att(S).
1: Initialize Âtt(S) := 0n×d.
2: Compute the low-rank γ-approximations U1(W 1)T of [ 1dQ

(1)(Q(2))T ]e, U2(W 2)T

of [ 1dQ
(2)(Q(3))T ]e and U3(W 3)T of [ 1dQ

(3)(Q(1))T ]e using Lemma C.2, where
U1,W 1, U2,W 2, U3,W 3 ∈ Rn×r for r = no(1). ▷ O(n1+o(1)r) time.

3: D1,ℓ := diag(V
(1)
(1:n,ℓ)), D

2,ℓ := diag(V
(2)
(1:n,ℓ)). ▷ O(n) time.

4: Compute Ũ2 := D1,ℓU2, W̃ 2 := D2,ℓW 2 ∈ Rn×r. ▷ O(nr) time.
5: Compute A := (W 1)TU2︸ ︷︷ ︸

r×r

(W 2)TU3︸ ︷︷ ︸
r×r

and B := (W 1)T Ũ2︸ ︷︷ ︸
r×r

(W̃ 2)TU3︸ ︷︷ ︸
r×r

. ▷ O(nr2) times.

6: for i ∈ [n], ℓ ∈ [d] do
7: Compute the Θ(γ)-approximation of the denominator (Equation 2) as

Ri := U1
(i,1:r)A(W 3

(i,1:r))
T ∈ R.

▷ O(r2) time.
8: Compute the Θ(γ)-approximation of the numerator (Equation 2) as

P ℓ
i := U1

(i,1:r)B(W 3
(i,1:r))

T ∈ R.

▷ O(r2) time.
9: Compute the ℓ-th row of the entry-wise Θ(γ)a-approximation of Att(S) as

Âtt(S)[i, ℓ] :=
P ℓ
i

Qi
.

▷ O(1) time.
10: end for
11: Return Âtt(S).

Before proving the correctness of this algorithm, we first show that the entries of the exponentiated
matrices are bounded, which is necessary for applying Lemma C.2.
Lemma C.4 (Bounded entries). The entries of [ 1dQ

(1)(Q(2))T ]e, [ 1dQ
(2)(Q(3))T ]e, [ 1dQ

(3)(Q(1))T ]e

are bounded as

e−Γ2

≤ [
1

d
Q(1)(Q(2))T ]ei,j , [

1

d
Q(2)(Q(3))T ]ei,j , [

1

d
Q(3)(Q(1))T ]ei,j ≤ eΓ

2

,
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for all i, j ∈ [n].

Proof. Without loss of generality, we prove the upper bound only for X and the rest follows similarly.
Since each entry of Q(1), Q(2), Q(3) are in [−Γ,Γ], the value of [Q(1)(Q(2))T ]i,j is

[Q(1)(Q(2))T ]i,j = ⟨Q(1)
i , Q

(2)
j ⟩ =

∑
ℓ∈[d]

Q
(1)
i,ℓ Q

(2)
j,ℓ ,

=⇒ − Γ2 ≤ ⟨Q(1)
i , Q

(2)
j ⟩/d ≤ Γ2 (Since −Γ ≤ Q

(1)
i,ℓ , Q

(2)
j,ℓ ≤ Γ).

Therefore, e−Γ2 ≤ [ 1dQ
(1)(Q(2))T ]ei,j ≤ eΓ

2

for all i, j ∈ [n], and we can similarly bound
[ 1dQ

(2)(Q(3))T ]e, [ 1dQ
(3)(Q(1))T ]e.

Now, we prove Theorem C.3, which is also the correctness of Algorithm 1.

Proof of Theorem C.3. First, we compute the low-rank approximations of
[ 1dQ

(1)(Q(2))T ]e, [ 1dQ
(2)(Q(3))T ]e, [ 1dQ

(3)(Q(1))T ]e using Lemma C.2 (Step 2 of Algorithm
1). However, in order for Lemma C.2 to succeed in Step 2 of Algorithm 1, we need the entries of the
exponentiated matrices to be bounded, which is true due to Lemma C.4.

We compute the Strassen-attention matrix in two steps, first computing the denominator, and then the
numerator in Equation 2 to compute the entire self-attention matrix.

Computing the denominator. This has been described in Step 7 of Algorithm 1, and we now
prove its correctness. Since the entries of [ 1dQ

(1)(Q(2))T ]e, [ 1dQ
(2)(Q(3))T ]e, [ 1dQ

(3)(Q(1))T ]e

are bounded, we can apply Lemma C.2 to find their low rank approximations. Let the low-rank
approximations of [ 1dQ

(1)(Q(2))T ]e, [ 1dQ
(2)(Q(3))T ]e, [ 1dQ

(3)(Q(1))T ]e be U1(W 1)T , U2(W 2)T

and U3(W 3)T respectively, with entry-wise error ε for ε = 1/poly(n), where each of U i,W i ∈ Rn×r.
Namely, for all i, j, k ∈ [n],∣∣∣∣[ 1dQ(1)(Q(2))T ]ei,j − [U1(W 1)T ]i,j

∣∣∣∣ < ε[
1

d
Q(1)(Q(2))T ]ei,j < γ,∣∣∣∣[ 1dQ(2)(Q(3))T ]ej,k − [U2(W 2)T ]j,k

∣∣∣∣ < ε[
1

d
Q(2)(Q(3))T ]ej,k < γ,∣∣∣∣[ 1dQ(3)(Q(1))T ]ek,i − [U3(W 3)T ]k,i

∣∣∣∣ < ε[
1

d
Q(3)(Q(1))T ]ek,i < γ.

(3)

where γ = εeΓ
2

. When we choose ε as the inverse of a large enough polynomial such that εeΓ
2

=
1

poly(n) , we have γ = 1/poly(n) (note that Γ = O(
√
log n)). Now, we claim that

[U1(W 1)TU2(W 2)TU3(W 3)T ]i,i

is an approximation of [[ 1dQ
(1)(Q(2))T ]e[ 1dQ

(2)(Q(3))T ]e[ 1dQ
(3)(Q(1))T ]e]i,i. For ease of notation,

let us denote X = [ 1dQ
(1)(Q(2))T ]e, Y = [ 1dQ

(2)(Q(3))T ]e, Z = [ 1dQ
(3)(Q(1))T ]e. Now,

|[XY Z]i,i − [U1(W 1)TU2(W 2)TU3(W 3)T ]i,i|

=

∣∣∣∣Å[XY Z]i,i − [U1(W 1)TY Z]i,i

ã
+

Å
[U1(W 1)TY Z]i,i − [U1(W 1)TU2(W 2)TZ]i,i

ã
+

Å
[U1(W 1)TU2(W 2)TZ]i,i − [U1(W 1)TU2(W 2)TU3(W 3)T ]i,i

ã∣∣∣∣
≤
∣∣∣∣[XY Z]i,i − [U1(W 1)TY Z]i,i

∣∣∣∣+ ∣∣∣∣[U1(W 1)TY Z]i,i − [U1(W 1)TU2(W 2)TZ]i,i

∣∣∣∣
+

∣∣∣∣[U1(W 1)TU2(W 2)TZ]i,i − [U1(W 1)TU2(W 2)TU3(W 3)T ]i,i

∣∣∣∣,

(4)

where the last inequality follows from triangle inequality.
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Now, using Equation 3 in each of the three terms, we can show that this is bounded above by O(γ).

The computation of [U1(W 1)TU2(W 2)TU3(W 3)T ]i,i for i ∈ [n] from Algorithm 1, takes
O(n1+o(1)) time for r = no(1) (which is true for the choice of d = O(log n), B = o(

√
log n), γ =

1/poly(n) using the parameters of Lemma C.2).

Computing the numerator. An entry-wise γ-approximation of the numerator of the Strassen-
attention matrix Att(S) ∈ Rn×d (Equation 2) has been computed in Step 8 of Algorithm 1. Here,
essentially, we compute each entry [XD1,ℓY D2,ℓZ]i,i, for all i ∈ [n] by fixing ℓ ∈ [d] at a time.

We again make use of the low rank decompositions of X,Y, Z as above (Equation 3). Note that the
value of each element of Att(S) is given as

Att
(S)
i,ℓ = [XD1,ℓY D2,ℓZ]i,i.

We claim that [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T ]i,i is an O(γ)-approximation of
[XD1,ℓY D2,ℓZ]i,i. Indeed, we have

|[XD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T ]i,i|

=

∣∣∣∣Å[XD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓY D2,ℓZ]i,i

ã
+

Å
[U1(W 1)TD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i

ã
+

Å
[U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T ]i,i

ã∣∣∣∣
≤
∣∣∣∣[XD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓY D2,ℓZ]i,i

∣∣∣∣
+

∣∣∣∣[U1(W 1)TD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i

∣∣∣∣
+

∣∣∣∣[U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T ]i,i

∣∣∣∣,

(5)

which again follows from the triangle inequality, and each term can be shown to be upper bounded by
O(γ) using Equation 3.

Wrapping up. An approximation of the (i, ℓ)-th element, Att
(S)
i,ℓ , is obtained by approximating the

value of [XD1,ℓY D2,ℓZ]i,i and then dividing by the approximate value of [XY Z]i,i. Using

P ℓ
i = U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T ,

Ri = U1
i

(
(W 1)TU2(W 2)TU3

)
(W 3

i )
T ,

we have
|[XD1,ℓY D2,ℓZ]i,i − P ℓ

i | ≤ O(γ),

and,
|[XY Z]i,i −Ri|∞ ≤ O(γ),

for i ∈ [n], ℓ ∈ [d].

Therefore, the error is given by

|[XY Z]−1
i,i [XD1,ℓY D2,ℓZ]i,i −R−1

i P ℓ
i | ≤ |[XY Z]−1

i,i [XD1,ℓY D2,ℓZ]i,i − [XY Z]−1
i,i P

ℓ
i |

+ |[XY Z]−1
i,i P

ℓ
i −R−1

i P ℓ
i | (Triangle inequality)

≤ O(γ),
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which follows from Equations 4, 5, repeated applications of triangle inequalities, and the fact that ε is
an inverse polynomial in n, and,

|[XD1,ℓY D2,ℓZ]i,i| =
∣∣∣∣ ∑
j,k∈[n]

Xi,jV
1
j,ℓYj,kV

2
k,ℓZk,i

∣∣∣∣ < e3Γ
2

||V 1||∞||V 2||∞,

∣∣∣∣ 1

[XY Z]i,i

∣∣∣∣ = ∣∣∣∣ 1∑
j,k∈[n] Xi,jYj,kZk,i

∣∣∣∣ < e3Γ
2

,

for all i ∈ [n], ℓ ∈ [d] since the entries of Q(1), Q(2), Q(3) are in [−Γ,Γ] (Lemma C.4). For
d = O(log n), Γ = o(

√
log n) and ||V (1)||∞, ||V (2)||∞ = poly(n), we can choose γ0 = 1/poly(n)

for a large enough polynomial such that∣∣∣∣P ℓ
i

Ri
−Att

(S)
i,ℓ

∣∣∣∣ < γ0,

where γ0 = O(γ) = 1/poly(n), which is our required approximation parameter.

As described in Algorithm 1 we compute this γ-approximation for all i ∈ [n] in time O(n1+o(1)),
and repeating this over all ℓ ∈ [d] requires O(n1+o(1)d) = O(n1+o(1)) time since d = O(logn).
This proves Theorem C.3.

C.2 HARDNESS OF STRASSEN-ATTENTION

Now, we introduce the techniques that will be used to prove lower bounds in this paper. We establish
the hardness of Strassen-attention in the high weight case, assuming the Max-2SAT conjecture
(Hypothesis 3). Our reduction will proceed in three steps. First, we use a reduction from Alman
& Vassilevska Williams (2020) that establishes the hardness of IP∆ (Definition C.5) assuming Hy-
pothesis 3 (hardness of Max-2SAT). Second, we prove the hardness of ε-Gap-IP∆ (an approximate
version of IP∆ defined in Definition C.6) from the hardness of IP∆, in Section C.2.1. Lastly, we
prove the hardness of Strassen-attention from the hardness of ε-Gap-IP∆ in Section C.2.2.

We begin by defining the problems IP∆ and ε-Gap-IP∆.
Definition C.5 (IP∆). Given three sets of vectors A1, A2, A3 ⊆ {0, 1}d, |A1| =
|A2| = |A3| = n, and target inner products, m12,m23,m31 ∈ {0, . . . , d}, the problem
IP∆n,d(A

1, A2, A3,m12,m23,m31) asks whether there exist vectors a1 ∈ A1, a2 ∈ A2, a3 ∈ A3

such that, simultaneously, ⟨a1, a2⟩ = m12, ⟨a2, a3⟩ = m23, ⟨a3, a1⟩ = m31.
Definition C.6 (ε-Gap-IP∆). Let ε > 0. Given three sets of vectors A1, A2, A3 ⊆ {0, 1}d, with
|A1| = |A2| = |A3| = n, a target inner product m ∈ {0, . . . , d}, and the promise that for every
a1 ∈ A1, a2 ∈ A2, a3 ∈ A3,

• either ⟨a1, a2⟩ ≤ (1− ε)m or ⟨a1, a2⟩ = m,

• and, either ⟨a2, a3⟩ ≤ (1− ε)m or ⟨a2, a3⟩ = m,

• and, either ⟨a3, a1⟩ ≤ (1− ε)m or ⟨a3, a1⟩ = m,

the problem ε-Gap-IP∆n,d(A
1, A2, A3,m) is to decide if there exist vectors a1 ∈ A1, a2 ∈ A2, a3 ∈

A3 such that: ⟨a1, a2⟩ = ⟨a2, a3⟩ = ⟨a3, a1⟩ = m.

For IP∆ and ε-Gap-IP∆, we will drop the parameters m, d when they are clear from context. Note
that even though IP∆ might have different inner products for all three pairs, for ε-Gap-IP∆, the
three inner products being equal suffices as the reduction for proving its hardness accommodates this
property, and for proving hardness of approximating the output of Strassen-attention, we need them
to be equal.

As mentioned above, the first step uses a result due to Alman & Vassilevska Williams (2020) which
proved that IP∆ is at least as hard as Max-2SAT:
Lemma C.7 (Alman & Vassilevska Williams (2020)). Assuming the Max-2SAT conjecture (Hy-
pothesis 3), for every δ > 0 there exists c > 0 such that IP∆n,c logn cannot be solved in time
O(nω−δ).
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C.2.1 CONDITIONAL HARDNESS OF ε-GAP-IP∆

In this subsection we prove the following theorem, establishing hardness of ε-Gap-IP∆ assuming
hardness of IP∆.
Theorem C.8. For every δ, ε > 0, there exists c, c′ > 0 such that if ε-Gap-IP∆n,c logn can be solved
in time Õ(n(ω−δ)), then IP∆n,c′ logn can be solved in time Õ(n(ω−δ/2)).

Building on Aaronson & Wigderson (2009), Rubinstein Rubinstein (2018) gave a reduction from the
IP problem to the gap version, ε-Gap-IP. That is, they proved a similar reduction to what we want,
but where IP and ε-Gap-IP take as input two sets A1, A2 instead of three sets. Chen & Williams
(2019); Abboud & Ron-Zewi (2025) further improved their reduction; for our reductions, we will use
and build upon the proof given by Abboud & Ron-Zewi (2025).

The following lemma was proven in Abboud & Ron-Zewi (2025) (see the proofs of Lemma 4.1 and
Claim 4.3 in their paper).
Lemma C.9 (Abboud & Ron-Zewi (2025)). For all n, d = O(log n), there exists d′ = O(d),
q = no(1), m′ = O(logn), such that for every instance of IPn,d given by sets of vectors A,B and
a target inner product m ∈ {0, . . . , d}, there is a set of q instances {(Ãi, B̃i,m′) | i ∈ [q]} of
ε-Gap-IPn,d′ computable in O(n1+o(1)) time, where ε ∈ (0, 1) is a constant such that:

1. (Yes case) If there exists (a, b) ∈ A×B such that ⟨a, b⟩ = m, then there exists i ∈ [q] such
that (Ãi, B̃i,m′) is a yes instance of ε-Gap-IPn,d′ .

2. (No case) If for every pair (a, b) ∈ A×B, ⟨a, b⟩ ̸= m, then for all i ∈ [q], (Ãi, B̃i,m′) is
a no instance of ε-Gap-IPn,d′ .

Proof of Theorem C.8. We start with an instance of IP∆n,d=O(logn), given by a target inner product
m, and matrices A,B,C each of dimension n × d, where the rows of A correspond to a set of n
vectors, and similarly for B and C.

For the pair (A,B), we apply Lemma C.9 to create a set of q instances of ε-Gap-IPn,d′ , each with
target inner product m′:

(ÃAB , B̃AB) = {(Ãi
AB , B̃

i
AB , ) | i ∈ [q]}.

Similarly we apply the Lemma to the pair (B,C) to get ε-Gap-IP instances

(B̃BC , C̃BC) = {(B̃i
BC , C̃

i
BC) | i ∈ [q]}

and to the pair (A,C) to get instances

(ÃAC , C̃AC) = {(Ãi
AC , C̃

i
AC) | i ∈ [q]}.

By Lemma C.9, the following properties are satisfied by (ÃAB , B̃AB):

(1) For all i ∈ [q], the instance (Ãi
AB , B̃

i
AB ,m

′) satisfies the gap property. That is, for every
aiAB ∈ Ãi

AB , biAB ∈ B̃i
AB , ⟨aiAB , b

i
AB⟩ is either equal to m′ or is at most (1− ε)m′.

(2) Correctness of the reduction:

(2b) If there exists (a, b) ∈ A × B such that ⟨a, b⟩ = m, then there exists i ∈ [q], and
vectors aiAB ∈ Ãi

AB , b
i
AB ∈ B̃i

AB such that ⟨aiAB , b
i
AB⟩ = m′.

(2c) If for every (a, b) ∈ A × B, ⟨a, b⟩ ̸= m, then for all i ∈ [q], and for all vectors
aiAB ∈ Ãi

AB , b
i
AB ∈ B̃i

AB , we have ⟨aiAB , b
i
AB⟩ ≤ (1− ε)m′.

By the same argument, the above two properties are also satisfied by (B̃BC , C̃BC) and (ÃAC , C̃AC).

Equipped with the above pairs of 3-dimensional tensors, we are now ready to describe our reduction
from the instance (A,B,C,m) of IP∆n,d to a set of q3 instances of ε-Gap-IP∆n,O(logn), denoted
by:
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(A,B, C) = {(Ai,j,k,Bi,j,k, Ci,j,k) | i, j, k ∈ [q]}

For each i, j, k ∈ [q], we define Ai,j,k to consist of the following set of length 3d′ vectors:

Ai,j,k = {aiAB 0d akAC | aiAB ∈ Ãi
AB , a

k
AC ∈ Ãk

AC}

Similarly we define Bi,j,k and Ci,j,k:

Bi,j,k = {biAB bjBC 0d | biAB ∈ B̃i
AB , b

j
BC ∈ B̃j

BC}

Ci,j,k = {0d cjBC ckAC | cjBC ∈ C̃j
BC , c

k
AC ∈ C̃k

AC}

Gap Property First, we prove that every instance (Ai,j,k,Bi,j,k, Ci,j,k) satisfies the gap property.
Consider a generic triple (ai,j,k, bi,j,k, ci,j,k) ∈ Ai,j,k × Bi,j,k × Ci,j,k, where

ai,j,k = aiAB0
d′
akAC ,

bi,j,k = biABb
j
BC0

d′
,

ci,j,k = 0d
′
cjBCc

k
AC .

Since ⟨ai,j,k, bi,j,k⟩ = ⟨aiAB , b
i
AB⟩, we can apply property (1) to (ÃAB , B̃AB) to infer that this inner

product is either m′ or at most (1− ε)m′. By a similar argument we can show that ⟨bi,j,k, ci,j,k⟩ and
⟨ai,j,k, ci,j,k⟩ are either m′ or at most (1− ε)m′. This completes the proof of the gap property.

Proof of Correctness. We first consider the yes case, when there exists (a, b, c) ∈ A×B × C such
that ⟨a, b⟩ = ⟨b, c⟩ = ⟨a, c⟩ = m. Applying property (2a) above, we have:

1. There exists i ∈ [q], aiAB ∈ Ãi
AB , biAB ∈ B̃i

AB such that ⟨aiAB , b
i
AB⟩ = m′.

2. There exists j ∈ [q], bjBC ∈ B̃j
BC , ckBC ∈ C̃j

BC such that ⟨bjBC , c
j
BC⟩ = m′.

3. There exists k ∈ [q], akAC ∈ Ãk
AC , ckAC ∈ C̃k

AC such that ⟨akAC , c
k
AC⟩ = m′.

Now consider the corresponding vectors ai,j,k ∈ Ai,j,k, bi,j,k ∈ Bi,j,k, and ci,j,k in Ci,j,k defined as:

ai,j,k = aiAB0
d′
akAC

bi,j,k = biABb
j
BC0

d′

ci,j,k = 0d
′
cjBCc

k
AC

By inspection together with the above three properties (1, 2, 3), we have

⟨ai,j,k, bi,j,k⟩ = ⟨bi,j,k, ci,j,k⟩ = ⟨ai,j,k, ci,j,k⟩ = m′,

thus completing the "yes" case of correctness.

In the no case, suppose for all (a, b, c) ∈ A×B × C, either ⟨a, b⟩ ̸= m or ⟨b, c⟩ ̸= m or ⟨a, c⟩ ̸= m.
We want to show that for all i, j, k ∈ [q] and for all (ai,j,k, bi,j,k, ci,j,k) ∈ Ai,j,k × Bi,j,k × Ci,j,k, at
least one of the following holds: (i) ⟨ai,j,k, bi,j,k⟩ ≤ (1− ε)m′ or (ii) ⟨bi,j,k, ci,j,k⟩ ≤ (1− ε)m′ or
(iii) ⟨ai,j,k, ci,j,k⟩ ≤ (1− ε)m′.

Fix i, j, k ∈ [q] and consider a generic triple (ai,j,k, bi,j,k, ci,j,k) in Ai,j,k × Bi,j,k × Ci,j,k, where

ai,j,k = aiAB0
d′
akAB ,

bi,j,k = biABb
j
BC0

d′
,

ci,j,k = 0dcjBCc
k
BC
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Consider first the case where ⟨a, b⟩ ̸= m. Then by applying property (2b) to (ÃAB , B̃AB) we have
⟨aiAB , b

i
AB⟩ ≤ (1− ε)m′, and therefore ⟨ai,j,k, bi,j,k⟩ ≤ (1− ε)m′, so case (i) above holds.

Similarly in the second case where ⟨b, c⟩ ̸= m, applying property (2b) (B̃BC , C̃BC) it follows that
⟨bi,j,k, ci,j,k⟩ ≤ (1− ε)m′, so case (ii) holds. For the last case where ⟨a, c⟩ ̸= m we can similarly
use (2b) to show that (iii) holds.

This completes the proof of correctness of the reduction.

Time complexity. Assume we are able to solve ε-Gap-IP∆ in time nω−δ for a constant δ > 0.
Then we can solve all q3 instances (Ai,j,k,Bi,j,k, Ci,j,k) of ε-Gap-IP∆ in time q3nω−δ. Since
q = no(1), q3 < nδ/2 for n sufficiently large, and thus the runtime of the (Turing) reduction from
IP∆ to Gap-IP∆ is at most nω−δ/2. This completes the proof of Theorem C.8.

C.2.2 HARDNESS OF APPROXIMATING STRASSEN-ATTENTION

In this subsection, we prove the following theorem which is the last step of our reduction for proving
the lower bound. The following theorem gives an efficient reduction from ε-Gap-IP∆ to Strassen-
attention when the weights are large. We again use the fact that Strassen-attention is poly-attention
for the polynomial hS(x1, x2, x3) = x1x2 + x2x3 + x3x1.
Theorem C.10 (Hardness of Strassen-attention). For every constant ε > 0, every δ ∈
(0, 0.01), every c,M > 0, there exist constants Ca > 0 and Cb > 0 such that if
APAC(hS)(2n, 2c log n,Γ = Cb

√
log n, γ = n−Ca) (Definition A.6) with query-key matrices

Q(1), . . . , Q(t) ∈ [−Γ,Γ]2n×2c logn, value matrices V (2), . . . , V (t) ∈ R2n×2c logn can be solved
in time O(nω−δ), then ε-Gap-IP∆n,c logn (Definition C.6) with target inner product m = M log n

can also be solved in O(nω−δ) time.

Proof. We start with an instance of ε-Gap-IP∆n,d=c logn, defined by sets A,B,C ⊆ {0, 1}d, and
target inner product m = M logn for a constant M , satisfying the promise given by the definition of
ε-Gap-IP∆ (e.g., for every pair of vectors from different sets, their inner product is either equal to m
or at most (1− ε)m). From this instance we now want to create an instance of Strassen attention,
given by matrices Q(1), Q(2).Q(3), V (1), V (2).

Now, for a positive real number B = ω(1) that we will fix later, similar to Alman & Song (2023;
2024), we construct the matrices Q(1), Q(2), Q(3) ∈ Rñ×d̃ for ñ = 2n, d̃ = 2d as:

Q(1) = B



a1 1d
...

...
an 1d
0d 1d
...

...
0d 1d


2n×2d

, Q(2) = B



b1 0d
...

...
bn 0d
0d 1d
...

...
0d 1d


2n×2d

, Q(3) = B



c1 0d
...

...
cn 0d
0d 1d
...

...
0d 1d


2n×2d

.

We also define V (1), V (2) ∈ Rñ×d̃ whose first columns are

V
(1)
(1:2n,1) =

ï
1Tn
0Tn

ò
, V

(1)
(1:2n,1) =

ï
1Tn
0Tn

ò
,

and the remaining entries are zeros.

Correctness of the construction. We have defined the matrices Q(1), Q(2), Q(3) underlying
Strassen-attention so that, for any i, j, k ∈ [n] we will have ⟨Q(1)

i , Q
(2)
j ⟩ + ⟨Q(2)

j , Q
(3)
k ⟩ +

⟨Q(3)
k , Q

(1)
i ⟩ = B2(⟨ai, bj⟩ + ⟨bj , ck⟩ + ⟨ck, ai⟩), and the bottom half of the matrices,

Q
(1)
(n+1:2n), Q

(2)
(n+1:2n), Q

(3)
(n+1:2n), will act as a normalizing terms when we compute the softmax.

As before, computing the output of the Strassen-attention works in two steps: for all i ∈ [ñ],
we first calculate the value of the denominator [XY Z]i,i, where X = [ 1

d̃
Q(1)(Q(2))T ]e, Y =

28
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[ 1
d̃
Q(2)(Q(3))T ]e and Z = [ 1

d̃
Q(3)(Q(1))T ]e. The normalizing term will allow us to give similar

upper and lower bounds on this. Next, we will compute the numerator, [XD1,ℓY D2,ℓZ]i,i, for all
ℓ ∈ [d̃], where D1,ℓ = diag(V

(1)
1:2n,ℓ) and D2,ℓ = diag(V

(2)
1:2n,ℓ). Our approach is to show that if there

exists some i ∈ [n] such that for some j, k ∈ [n], we have ⟨ai, bj⟩ = M logn, ⟨bj , ck⟩ = M logn
and ⟨ck, ai⟩ = M log n, then we will be able to find such an i using the entry-wise approximation of
one Strassen-attention head. Thus, further improvements to the entry-wise approximation algorithm
would imply an algorithm for solving ε-Gap-IP∆ in time nω−Ω(1) time.

Bounds on the denominator. We analyze the denominator term and give upper
and lower bounds on [XY Z]i,i. For computing this value, we find the value of∑

j,k∈[ñ] exp (
1
d̃
(⟨Q(1)

i , Q
(2)
j ⟩+ ⟨Q(2)

j , Q
(3)
k ⟩+ ⟨Q(3)

k , Q
(1)
i ⟩)). We only care about the first

n rows of the attention matrix as this is where the existence of an IP∆ will be noticed. For i ∈ [n],
this is equivalent to computing

[XY Z]i,i =
∑

j,k∈[n]

e(⟨ai,bj⟩+⟨bj ,ck⟩+⟨ck,ai⟩)B2/d̃ +
∑

j∈[n+1:2n],k∈[n]

e(d+0+⟨ck,ai⟩)B2/d̃

+
∑

j∈[n],k∈[n+1:2n]

e(⟨ai,bj⟩+0+d)B2/d̃ +
∑

j,k∈[n+1:2n]

e(d+d+d)B2/d̃.
(6)

Using the gap property that the inner products of any pairs of ai, bj , ck are either less than (1 −
ε)M logn or exactly equal to M logn, and denoting λ := M logn

d̃
where d̃ = 2c logn, from the

previous equation, we get

[XY Z]i,i ≥
∑

j,k∈[n]

e3(1−ε)λB2

+
∑

j∈[n+1:2n],k∈[n]

e(1+(1−ε)λ)B2

+
∑

j∈[n],k∈[n+1:2n]

e((1−ε)λ+1)B2

+
∑

j,k∈[n+1:2n]

e3B
2/2

≥ n2e3(1−ε)λB2

+ 2n2e(1+(1−ε)λ)B2

+ n2e3B
2/2 ≥ n2e3B

2/2

We also have λ < 1/2 since M < c. Now, an upper bound of [XY Z]i,i can also be computed using
⟨ai, bj⟩, ⟨bj , ck⟩, ⟨ck, ai⟩ ≤ M log n and Equation 6 as,

[XY Z]i,i ≤
∑

j,k∈[n]

e3λB
2

+
∑

j∈[n+1:2n],k∈[n]

e(1+λ)B2

+
∑

j∈[n],k∈[n+1:2n]

e(1+λ)B2

+
∑

j,k∈[n+1:2n]

e3B
2/2,

≤ n2e3λB
2

+ 2n2e(1+λ)B2

+ n2e3B
2/2 ≤ 2n2e3B

2/2,

for large enough B when λ is constant.

Bounds on the numerator. We analyze bounds on [XD1,1Y D2,1Z]i,i when a positive certificate
of IP∆ contains ai versus when it does not.

Case 1: IP∆ present at i. In this case, we have

[XD1,1Y D2,1Z]i,i =
∑

j,k∈[ñ]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃V

(1)
j,1 V

(1)
k,2

=
∑

j,k∈[n]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃ (Using values of V (1), V (2)),

=
∑

j,k∈[n]

e(⟨ai,bj⟩+⟨bj ,ck⟩+⟨ck,ai⟩)B2/d̃ > e3λB
2

+ (n2 − 1)e3(1−ε)λB2

> e3λB
2

,

since we have some j, k ∈ [n] such that ⟨ai, bj⟩ = ⟨bj , ck⟩ = ⟨ck, ai⟩ = m.

Therefore,

[XD1,1Y D2,1Z]i,i
[XY Z]i,i

>
e3λB

2

2n2e3B2/2
. (7)
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Case 2: IP∆ not present in i. Here, we have all ⟨ai, bj⟩ + ⟨bj , ck⟩ + ⟨ck, ai⟩ ≤ (2M + (1 −
ε)M) logn for all j, k since otherwise it will contain a IP∆. Therefore,

[XD1,1Y D2,1Z]i,i =
∑

j,k∈[ñ]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃V

(1)
j,1 V

(2)
k,2

=
∑

j,k∈[n]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃,

=
∑

j,k∈[n]

e(⟨ai,bj⟩+⟨bj ,ck⟩+⟨ck,ai⟩)B2/d̃ ≤
∑

j,k∈[n]

e(3−ε)λB2

≤ n2e(3−ε)λB2

.

which implies

[XD1,1Y D2,1Z]i,i
[XY Z]i,i

<
e(3−ε)λB2

e3B2/2
. (8)

Wrapping up. Let ui be the value of the approximation of the i-th entry of the first row of the
Strassen-attention matrix, i.e., ∣∣∣∣ui −

[XD1,1Y D2,1Z]i,i
[XY Z]i,i

∣∣∣∣ ≤ γ.

We will show that ui is a distinguisher between the yes and no instances of IP∆; in particular for
appropriate settings of the parameters we will see that the value of ui in Case 1 (the yes case) is
always greater than the value of ui in Case 2 (the no case).

In Case 1, using Equations 7, we have

ui >
[XD1,1Y D2,1Z]i,i

[XY Z]i,i
− γ >

e3λB
2

2n2e3B2/2
− γ,

and in Case 2, using Equation 8, we have

ui <
[XD1,1Y D2,1Z]i,i

[XY Z]i,i
+ γ <

e(3−ε)λB2

e3B2/2
− γ.

Thus it suffices to verify the following inequality:

e(3−ε)λB2

e3B2/2
+ γ <

e3λB
2

2n2e3B2/2
− γ,

which is indeed satisfied for γ < 1
n2+Ω(1) and eελB

2

> n2. Therefore, B2 = Ω(logn) suffices.

Therefore, we have reduced Gap-IP∆ to APAC(hS) where Γ = B = Ω(
√
logn), completing the

proof of the lemma.

Therefore, if APAC(hS) could be solved in O(nω−δ) time, then that would imply that IP∆ could be
solved in O(nω−Ω(δ)) time (Theorem C.8), which in turn would imply Max-2SAT could be solved in
2(ω/3−Ω(δ))n time (Lemma C.7), which can not be true for an absolute constant δ > 0 (Hypothesis 3).

D PROOFS OF SECTION 3.2: TREE-ATTENTION

In this section, we prove the first part of Theorem 3.5 by giving an algorithm to exactly compute
the output of tree-attention. The second and third parts are computational complexities of special
subcases of poly-attention, which has been proved in Section E.

Before giving an algorithm for the exact computation complexity of tree-attention, we show a property
of branchings in the graphical representation. This happens when the underlying polynomial for the
poly-attention is a variable separable polynomial.
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Lemma D.1 (Variable separability). If h(x1, . . . , xt) = f(x1, . . . , xi) + g(x1, xi+1, . . . , xt) for
some i ∈ [t − 1] and some polynomials f, g of minimum possible degrees, i.e., h is variable
separable (Definition A.5), then we have Att(h) = Att(f) ⊙ Att(g) and also the entrywise-
approximation Âtt(h) = Âtt(f) ⊙ Âtt(g). If the (entrywise-approximations of) outputs of poly-
attention, Att(f) and Att(g), can be computed in time T f (n) and T g(n) respectively, then computing
the (entrywise-approximation of) output of poly-attention for h, Att(h), can be performed in time
O(max{T f (n), T g(n)}+ nd).

Proof. For all j ∈ [n], k ∈ [d], we have,

Att
(f)
j,k ·Att

(g)
j,k

=

∑
ℓ2,...,ℓi

exp( 1df(Q
(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
))V

(2)
ℓ2,k

. . . V
(i)
ℓi,k∑

ℓ2,...,ℓi
exp( 1df(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
))

×
∑

ℓi+1,...,ℓt
exp( 1dg(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))V

(i+1)
ℓi+1,k

. . . V
(t)
ℓt,k∑

ℓi+1,...,ℓt
exp( 1dg(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))

=

∑
ℓ2,...,ℓt

exp
Ä
1
d (f(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
) + g(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))
ä
V

(2)
ℓ2,k

. . . V
(t)
ℓt,k∑

ℓ2,...,ℓt
exp
Ä
1
d (f(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
) + g(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))
ä

=

∑
ℓ2,...,ℓt

exp( 1dh(Q
(1)
j , Q

(2)
ℓ2

, . . . , Q
(t)
ℓt
))V

(2)
ℓ2,k

. . . V
(t)
ℓi,k∑

ℓ2,...,ℓt
exp( 1dh(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(t)
ℓt
))

= Att
(h)
j,k .

(9)

This implies Att(f)⊙Att(g) = Att(h), and if we obtain entrywise approximations Âtt(f) and Âtt(g)

respectively with error γ = 1
poly(n) , then Âtt(f) ⊙ Âtt(g) will be an entrywise approximation of

Att(h) with error γ0 = O(γ) = 1
poly(n) as well.

Note that the polynomials might not even contain the variable x1, in which case we all the rows of
the output of the corresponding poly-attention matrix will be the same.

Now, we prove that Att(h), where h is a tree polynomial, can be computed in O(n2) time.

Theorem D.2. If h is a tree polynomial (graphical representation of h is a tree or a forest), then we
can compute Att(h) exactly in Õ(n2) time.

Proof. Algorithm 2 gives a procedure for computing the output of tree-attention given query-key and
value matrices as inputs. Indeed, if there were multiple forests, we could have computed the output
of tree-attention for each of them separately, and composed them together using Lemma D.1.

Overview. We start with a tree rooted at v1, and compute poly-attention on each of the subtrees
(polynomials corresponding to the subtrees) where the query variable2 is the root of the subtree.
The main idea to compute this is, whenever we have a branching, we compute each of the subtrees
separately, and compose them together using Hadamard product of Lemma D.1.

In Algorithm 2, we fix each of the columns ℓ ∈ [d] (Step 2), and compute Att
(h)
(1:n,ℓ), one at a time.

The computation of proceeds as computing the numerator and the denominator terms separately, from
the graphical representation Gh (as in Equation 1). In this recursive formulation, we employ compute
the values in a DFS fashion, first, we fix the root of the tree given by variable x1 (vertex v1 in the
graph), having the corresponding query-key matrix Q(1), and proceed to computing the output of the
poly-attention mechanism for its subtree polynomial.

2Query variable refers to the variable of the highest priority in the polynomial (priority of monomials and
variables has been defined in Definition E.1). It is usually the variable x1, and the indices of the corresponding
query-key matrix in the softmax computation correspond to the rows of Att(h) (see Equation 1).
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Algorithm 2 Algorithm to compute tree attention Att(h)

Input: A polynomial h(x1, . . . , xt) whose graphical representation is a tree, query-key matrices
Q(1), . . . , Q(t) ∈ Rn×d and value matrices V (2), . . . , V (t) ∈ Rn×d.

Output: Att(h) ∈ Rn×d

1: Construct G as the graphical representation of h, with vertices v1, . . . , vt.
2: for ℓ ∈ [d] do
3: Let p be the number of children of v1.
4: for all child node vji of v1, i ∈ [p] do
5: if vji is not a leaf then
6: Let gi(xji , x̄

i) be the polynomial of the subtree rooted at vji .

7: Compute Att
(gi(xji

,x̄i))

(1:n,ℓ) recursively, where vji is the query variable, by computing
the numerator term and the denominator term separately. Let the numerator term be
P (gi(xji

,x̄i)) ∈ Rn×1 and the denominator term be R(gi(xji
,x̄i)) ∈ Rn×1.

8: Define the numerator

P (x1xji
+gi(xji

,x̄i)) := [Q(1)(Q(ji))T ]eDV (ji)

P (gi(xji
,x̄i)),

and the denominator,

R(x1xji
+gi(xji

,x̄i)) := [Q(1)(Q(ji))T ]eR(gi(xji
,x̄i)),

where DV (ji)

= diag(V
(ji)
(1:n,ℓ)) ∈ Rn×n.

9: Compute

Att
(x1xji

+gi(xji
,x̄i))

(1:n,ℓ) :=
P (x1xji

+gi(xji
,x̄i))

R(x1xji
+gi(xji

,x̄i))
.

10: else
11: Here, gi(xji , x̄

i) = 0 since there is no tree rooted at vji .
12: Define the numerator

P (x1xji
) := [Q(1)(Q(ji))T ]eV

(ji)
(1:n,ℓ),

and the denominator,

R(x1xji
) := [Q(1)(Q(ji))T ]e1n×1.

13: Compute

Att
(x1xji

)

(1:n,ℓ) :=
P (x1xji

)

R(x1xji
)
.

14: end if
15: end for
16: For composing the branches together, compute the final numerator

P (h) := P (xjxj1
+g1(xj1

,x̄1)) ⊙ . . .⊙ P (xjxjp+gp(xjp ,x̄
p)),

and the final denominator,

R(h) := R(xjxj1+g1(xj1 ,x̄
1)) ⊙ . . .⊙R(xjxjp+gp(xjp ,x̄

p)),

where h = xjxj1 + g1(xj1 , x̄
1) + . . .+ xjxjp + gp(xjp , x̄

p) (by definition).
17: Define

Att
(h)
(1:n,ℓ) :=

P (h)

R(h)
.

18: end for
19: return Att(h).
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Each branch. Without loss of generality, consider the root variable v1, and for each branch from
v1, consider an edge given by (v1, vji), i.e., v1—vji , for i ∈ [p], where p is the number of branches.
When vji is a leaf, we compute the poly-attention Att(x1xji

), and recursively pass it up the tree. The
denominator and numerator of Att(x1xji

) are defined in Step 12 of Algorithm 2 – two vectors in
Rn×1 which can be computed in O(n2) time and then their ratio is the poly-attention output for this
branch (Step 13).

Next, when vji is not a leaf, i.e., the tree proceeds as v1—vji—, let us assume the polynomial
whose subtree rooted at vji is given by gi(xji , x̄

i) and that we have already computed Att(gi(xji
,x̄i))

(the numerator and the denominator are separately given to us as P (gi(xji
,x̄i)), R(gi(xji

,x̄i)) ∈ Rn×1

respectively). By x̄i, we simply denote the subset of variables other than xji that the subtree consists
of. The output of tree-attention of the subtree rooted at v1 is essentially Att(x1xji

+gi(xji
,x̄i)). For this,

the numerator and the denominator can be computed as in Step 8 – both of these computations take

O(n2) time. The final value of Att
(x1xji

+gi(xji
,x̄i))

(1:n,ℓ) is given by Step 9, and we pass the numerator
and denominator vectors up the tree recursively.

Along a branching. For conglomerating the branches, let us say that the children nodes of v1
are vj1 , . . . , vjp , where the polynomials corresponding to their subtrees are g1(xj1 , x̄

1), . . . , gp
(xjp , x̄

p) (x̄1, . . . , x̄p are disjoint subsets of variables which are precisely the ones present in each
of the p subtrees, respectively). We also assume that we have recursively computed the ℓ-th

columns of the poly-attention outputs Att
(g1(xj1

,x̄1))

(1:n,ℓ) , . . . , Att
(gp(xjp ,x̄

p))

(1:n,ℓ) , in terms of the numera-

tors P (g1(xj1
,x̄1)), . . . , P (gp(xjp ,x̄

p)), and denominators R(g1(xj1
,x̄1)), . . . , R(gp(xjp ,x̄

p)) respectively.
Now, the poly-attention output for the polynomial having the subtree rooted at v1, which is

h(x1, x̄1, . . . , x̄p) := x1xj1 + gj1(xj1 , x̄
1) + . . .+ x1xjp + gjp(xjp , x̄

p),

is computed in Steps 16-17, and the correctness of this computation follows from Lemma D.1.

Time complexity. We show a quadratic time-complexity for Algorithm 2. Let us assume that
recursively in a branch, the numerator and the denominator of Att(gi(xji

,x̄)) can be computed in
Õ(n2) time (Step 7). From this, extending the output matrix of poly-attention to the current vertex
(Steps 8-9, 12-13, followed by 16-17) each require Õ(n2) time. The number of these sub-tree
attention computations required is at most the size of the tree, O(s), which is a constant. Therefore,
this gives a DFS-style procedure to compute the Att

(h)
(1:n,ℓ) in time Õ(n2) since the graph is of

constant size, and repeating for all ℓ ∈ [d], we will be able to find the entire matrix Att(h).

E PROOFS OF SECTION 3.3: COMPUTATIONAL COMPLEXITIES OF
POLY-ATTENTION

Throughout this paper, we will compute the numerator and the denominator in Equation 1 separately,
where the numerator term is

∑
ℓ2,...,ℓt∈[n] exp

Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(k)
ℓk

⟩
ä
V

(2)
ℓ2

⊙ V
(3)
ℓ3

⊙ . . .⊙ V
(t)
ℓt

, and

the denominator term is
∑

ℓ2,...,ℓt∈[n] exp
Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(k)
ℓk

⟩
ä

.

We also define a monomial ordering, which will help us proceed with the proofs of these theorems.
Definition E.1 (Monomial ordering). A monomial m1 is said to be higher preference than another
monomial m2 if either of the following holds:

• deg(m1) > deg(m2), or

• deg(m1) = deg(m2) and m1 comes lexicographically before m2, i.e., if i is the smallest
index such that xi is present in exactly one of the monomials, then the monomial in which xi

is present has higher preference.

We will order the monomials of h according to this order, and mi will denote the i-th monomial.
Note that this definition can also be used with variables, where a variable xi has a higher preference
than xj if and only if i < j.
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The polynomial method Alman & Song (2023; 2024; 2025) can again be applied to poly-attention, by
reducing APAC(h) to the computation the output of a larger t-tensor attention, where the query-key
vectors in tensor attention are of dimension n× (sd). However, the bound on the variables in this
case of computing poly-attention will be o((log n)1/k) in contrast to that of tensor attention being
o((log n)1/t) Alman & Song (2024).

For proving Theorem 3.6, we show the two parts, upper and lower bounds, separately. For upper
bounds, we give a polynomial method algorithm if the entries of the query-key matrices are bounded
(Theorem E.2), and if the entries are large, we give hardness results for entry-wise approximation
conditioned on fine-grained complexity conjectures (Theorem E.3).
Theorem E.2 (Polynomial method on poly-attention). Given an attention polynomial h(x1, . . . , xt)
of degree k having s monomials, where t, k, s are constants, there is an algorithm that
solves APAC(h)(n, d = O(logn),Γ = o((logn)1/k), γ = 1/poly(n)) with query-key matrices
Q(1), . . . , Q(t) ∈ [−Γ,Γ]n×d, and value matrices V (2), . . . , V (t) ∈ Rn×d in time O(n1+o(1)).
Theorem E.3 (Lower bound for poly-attention). Given an attention polynomial h(x1, . . . , xt) of
degree k having s monomials, where t, k, s are constants, we are interested in computing an entry-
wise γ-approximation Att(h) having query-key matrices Q(1), . . . , Q(t) ∈ [−Γ,Γ]n×d, and value
matrices V (2), . . . , V (t) ∈ Rn×d, for d = O(log n), γ = 1/poly(n). Then, depending on the structure
of h,

1. If k ≥ 2, then assuming SETH (Hypothesis 1), an entry-wise approximation of Att(h) can
not be computed in time O(nk−Ω(1)) when Γ = Ω((logn)1/k).

2. If h contains an elementary symmetric polynomial
(
[t0]
k

)
for some t0 ≤ t, then assuming the

Max-kSAT conjecture (Hypothesis 2), an entry-wise approximation of Att(h) can not be
computed in time O(nk0−Ω(1)) when Γ = Ω((log n)1/k).

3. If k = 2 and h is not a tree polynomial, then assuming the Max-2SAT conjecture (Hypothesis
3), an entry-wise approximation of Att(h) can not be computed in time O(nω−Ω(1)) when
Γ = Ω((logn)1/2).

E.1 POLYNOMIAL METHOD FOR POLY-ATTENTION

In this section, we prove Theorem E.2. We start with the polynomial h as defined in Theorem
E.2, and reduce the problem of computing an entry-wise approximation of Att(h) ∈ Rn×d to that
of Att(T ) ∈ Rn×(sd), by constructing query-key matrices K(1), . . . ,K(t) ∈ Rn×(sd) and value
matrices W (1), . . . ,W (t) ∈ Rn×(sd), such that the row-softmax matrix of

1

d
K(1)

Ä
K(2) ⊘K(3) ⊘ . . .⊘K(t)

äT
,

is same as the softmax matrix of Att(h), and Att(h) is exactly equal to Att
(T )
(1:n,1:d) using these inputs,

and the remaining entries of Att(T ) are zeros.

Defining K(j). We define K(j) ∈ Rn×(sd), for all j ∈ [t], by dividing the columns into s blocks,
each having d columns. These blocks are defined as, for j ∈ [t]:

• the i-th block, for i ∈ [s], contains the matrix Q(j) if the i-th monomial of h contains the
variable xj ,

• otherwise, the i-th block, for i ∈ [s], contains the all ones matrix 1n×d.

Roughly, the query-key matrices can be seen as:

K(j) =



d

1 . . . 1
...

...
1 . . . 1︸ ︷︷ ︸
xj not in m1

d

Q
(j)
1,1 . . . Q

(j)
1,d

...
...

Q
(j)
n,1 . . . Q

(j)
n,d︸ ︷︷ ︸

xj is in m2

d

1 . . . 1
...

...
1 . . . 1︸ ︷︷ ︸
xj not in m3

. . .


n×(sd)

.
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Using these definitions, it can be verified that for this choice of K(j)’s, we have

⟨K(1)
ℓ1

,K
(2)
ℓ2

, . . . ,K
(t)
ℓt

⟩ =
∑
i∈[s]

⟨K(1)
ℓ1,(i−1)d+1:id,K

(2)
ℓ2,(i−1)d+1:id, . . . ,K

(t)
ℓt,(i−1)d+1:id⟩ (10)

=
∑
i∈[s]

⟨Q(j1)
ℓj1

, . . . , Q
(jki

)

ℓjki

⟩, (11)

where the monomials of h are defined as before (Definition 2.2).

Defining W (j). The value matrices for the t-tensor attention operation will be the same as that of
poly-attention. In order to match the embedding dimensions of the query-key matrices and the value
matrices of the t-tensor attention operation (as was used in Alman & Song (2024)), we can simply
consider the new n× (sd) dimensional value matrices, W (j)’s to contain the corresponding n× d
dimensional value matrices V (t) in the first d-columns, and all the remaining entries of W (j) contain
zero. More specifically,

W (j) =
[
V (j) 0n×d . . . 0n×d

]
n×(sd)

. (12)

Now, in Equation 1, note that the poly-attention output can be written as

D−1AW (2) ⊘ . . .⊘W (t),

where A ∈ Rn×nt−1

is defined as

A = [
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T ]e,

and D is the n× n diagonal matrix

D = diag

Ü
[
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T ]e 1n×1 ⊘ . . .⊘ 1n×1︸ ︷︷ ︸

(t− 1) times

ê
.

This is precisely the form of a t-tensor attention mechanism. Next, in order to use the polynomial
method on this matrix, we need the entries to be bounded.
Lemma E.4 (Bounded entries). Given Q(j) ∈ [−Γ,Γ]n×d and h defined as above, we have

e−sΓk

≤ exp

Å
1

d
h(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
)

ã
≤ esΓ

k

,

for all ℓ1, . . . , ℓt ∈ [n]. For Γ = o( 1s (log n)
1/k) = o((log n)1/k), the entries

exp
Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
)
ä

are sub-polynomial in n.

Proof. Since h is a degree k polynomial with constant coefficients, for each monomial mi of h,
1
dmi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
) in in the range of [−Γk,Γk]. There are s monomials and the total value is

bounded inside the interval [−sΓk, sΓk], which gives the required result after exponentiation.

For completing the algorithm, we use results which follow from the proofs in (Alman & Song, 2024,
Apx. E).
Theorem E.5 (Alman & Song (2024)). Given matrices K(1), . . . ,K(t) ∈ [−Γ,Γ]n×d and value
matrices W (2), . . . ,W (t) ∈ Rn×d, we can compute an entry-wise γ-approximation, for γ = 1/poly(n),
of the following:

1. A matrix Âtt ∈ Rn×d which is the entry-wise γ-approximation of the numerator matrix of
tensor attention output

Att = [
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T ]eW (2) ⊘ . . .⊘W (t),

that is, for all i ∈ [n], j ∈ [d],

|Âtti,j −Atti,j | < γ.
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2. A diagonal matrix D̂ ∈ Rn×n which is an entry-wise approximation of the diagonal matrix
D ∈ Rn×n given by

D = diag

Å
[
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T ]e1n×1 ⊘ . . .⊘ 1n×1

ã
,

that is, for all i ∈ [n],
|D̂i,i −Di,i| < γ.

Here, when the condition max
¶

log(1/γ)
log(log(1/γ)/Λ) ,Λ

©
= o(log n) is met (where Λ = || 1dK

(1)(K(2) ⊘
. . . ⊘ K(t))T ||∞), the time complexity for finding the matrices Âtt, D̂, and hence an entry-wise
2γ-approximation of D−1Att, is n1+o(1).

Using Lemma E.4, the value of Λ in Theorem E.5 is O(Γk), and for the choice of Γ = o((logn)
1
k ),

the quantity max
¶

log(1/γ)
log(log(1/γ)/Λ) ,Λ

©
is indeed o(log n), which gives our required almost-linear

complexity for computing Att(h).

Summing up, the algorithm for computing entry-wise approximation of Att(h) is given as the
following algorithm.

Algorithm 3 Algorithm to compute an entry-wise approximation of Att(h)

Input: An attention polynomial h(x1, . . . , xt) of degree k, matrices
Q(1), . . . , Q(t), V (2), . . . , V (t) ∈ Rn×d, γ = 1

poly(n)

Output: Entry-wise γ-approximation Âtt(h) ∈ Rn×d of Att(h) ∈ Rn×d.
1: Using Q(1), . . . , Q(t) and h, compute K(1), . . . ,K(t) ∈ Rn×(sd) (Equation 10). ▷ O(nd) time.
2: Compute W (2), . . . ,W (t) ∈ Rn×(sd) from V (2), . . . , V (t) (Equation 12). ▷ O(nd) time.
3: Compute entry-wise γ-approximation Âtt ∈ Rn×(sd) of

Att = [
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T ]eW (2) ⊘ . . .⊘W (t),

using Theorem E.2, Step 1. ▷ O(n1+o(1)d) time.
4: Compute entry-wise γ-approximation D̂ ∈ Rn×n of

D = diag

Å
[
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T ]e1n×1 ⊘ . . .⊘ 1n×1

ã
,

which is a diagonal matrix, using Theorem E.2, Step 2. ▷ O(n1+o(1)d) time.
5: Return D̂−1Âtt(1:n,1:d). ▷ O(nd) time.

This proves Theorem E.2.

E.2 TIME LOWER BOUNDS FOR POLY-ATTENTION

We complete the main complexity result of this paper, either we can compute an entry-wise ap-
proximation of poly-attention in near-linear time, when the entries of the query-key matrices are
bounded; or we require at least super-quadratic time, unless the polynomial for poly-attention is a
tree polynomial.

Our proofs for showing the hardness of entry-wise approximation of Att(h) consists of two reductions:
(1) first we reduce from each of kIP, HypergraphIP, and IP∆ (which have popularly known hardness
conjectures of SETH, Max-2SAT, Max-kSAT respectively) to no(1) instances of their respective gap
versions, and (2) secondly, we reduce each of those gap versions to an entry-wise approximation of
poly-attention. These subcases and the starting complexity assumptions will be based on the structure
of h provided, as categorized in Theorem E.3.
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For proving Step 1, when we prove the first case, we get hard instances of ε-Gap-kIP assuming
SETH (Theorem E.7). For the second case, we assume Max-kSAT is true, reduce Max-kSAT using
a known reduction (Lemma E.10) to no(1) instances of HypergraphIP, and further reduce each of
those instances to no(1) instances of ε-Gap-HypergraphIP (Corollary E.12). For the third case,
we start with Max-2SAT and reduce that to no(1) instances of IP∆ (Lemma C.7), and then to no(1)

instances of ε-Gap-IP∆ (Theorem C.8).

We complete the reductions for Step 2 in each of the following subsections.

E.2.1 TIME LOWER BOUNDS BASED ON DEGREE OF POLYNOMIAL USING SETH

In this section, we prove the first part of Theorem E.3. We first start with an instance of kIP, which is
SETH-hard, reduce it to ε-Gap-kIP (Definition E.6) using some previous works Rubinstein (2018);
Alman & Song (2024), and then using the instances of ε-Gap-kIP, create query-key matrices for
Att(h) such that an entry-wise γ-approximation of Att(h) would solve the instance of ε-Gap-kIP.
Definition E.6 (ε-Gap-kIP). For every ε ∈ (0, 1) and positive integers k ≥ 2, given sets of vectors
A1, . . . , Ak ⊆ {0, 1}d with |A1| = . . . = |Ak| = n, a target inner product m ∈ {0, . . . , d}, and the
promise that for any a1 ∈ A1, . . . , ak ∈ Ak,

• either ⟨a1, . . . , ak⟩ = m,

• or, ⟨a1, . . . , ak⟩ ≤ (1− ε)m,

the problem of ε-Gap-kIPn,d is to decide if there exist vectors a1 ∈ A1, . . . , ak ∈ Ak such that
⟨a1, . . . , ak⟩ = m.

Using Rubinstein (2018)-like techniques, conditional hardness of ε-Gap-kIP can be obtained.
Theorem E.7 (Alman & Song (2024); Rubinstein (2018)). For every δ > 0 and every constant
ε ∈ (0, 1), there exists a constant c > 0, such that ε-Gap-kIPn,c logn for any target inner product
m ∈ {0, . . . , c log n}, cannot be solved in time O(n(1−δ)k), unless SETH is false.

Due to this result, we start with an instance of ε-Gap-kIP and reduce that to an entry-wise approxi-
mation of Att(h). If the entry-wise approximation of Att(h) can be computed in n(1−δ)k time for a
constant δ > 0, then ε-Gap-kIP can be solved in Õ(n(1−δ)k) time, which would refute SETH.

Lemma E.8 (ε-Gap-kIP to APAC(h)). For every constant ε > 0, every δ ∈ (0, 0.01), every
c,M > 0, given an attention polynomial h(x1, . . . , xt) of degree k ≥ 2 having s monomials, where
t, k, s are constants, there exist constants Ca > 0 and Cb > 0 such that if APAC(h)(2n, (s +
1)c logn,Γ = Cb(logn)

1/k, γ = n−Ca) (Definition A.6) with query-key matrices Q(1), . . . , Q(t) ∈
[−Γ,Γ]2n×(s+1)c logn and value matrices V (2), . . . , V (t) ∈ R2n×(s+1)c logn can be solved in time
O(nk−δ), then ε-Gap-kIPn,c logn (Definition E.6) with target inner product m = M log n can also
be solved in O(nk−δ) time for any constant M .

Proof. Let us start with an instance of ε-Gap-kIPn,d=c logn that we want to solve, with k sets of
vectors A1, . . . , Ak ⊆ {0, 1}d, consisting of n vectors each. The vectors are {ai1, . . . , ain} := Ai and
the target inner product is m = M log n, for a constant M , with the promise of the gap condition for
an approximation factor ε. We also assume that there does not exist an all one’s vector in Ai for each
i ∈ [k], as that would violate the gap-property (as m needs to be smaller than d for hardness).

Using this instance of deciding ε-Gap-kIP, we reduce it to computing an entry-wise approximation of
Att(h), with query-key matrices Q(1), . . . , Q(t) ∈ [−Γ,Γ]ñ×d̃, and value matrices V (2), . . . , V (t) ∈
Rñ×d̃, for ñ = 2n, d̃ = (s+ 1)d = (s+ 1)c log n, and a Γ that we will choose later.

Let us assume that the highest preference monomial of h, a monomial of degree k, is given by
xr1 . . . xrk , where r1 has the index of the highest preference that may or may not be 1.

We will construct the query-key matrices such that each matrix Q(rj) will contain vectors from Aj

for j ≤ k, zeros otherwise. Having the monomials ordered according to descending order of the
monomial ordering (Definition E.1), each of these Q(rj)’s will consist of blocks of columns which
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correspond to monomials– the i-th column block, containing d columns from (i− 1)d+ 1 to i.d, for
i ∈ [s], will correspond to the monomial mi, and the last column block will be a normalizing block.
The idea of the reduction is that only the degree k term xr1 . . . xrk of h will contribute to computing
the final inner product, the terms which are subsets of this degree k term will cancel each other out,
and all the other terms will be zero, thereby not contributing anything to h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
).

More specifically, we want,

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Λ⟨a1ℓr1 , . . . , a

k
ℓrk

⟩,

for ℓr1 , . . . , ℓrk ∈ [n], and some scaling factor Λ which we will see later.

Construction of matrices. Let us now define each block of Q(j), j ∈ [t], which will have 2n rows
and (s+ 1)d columns. We will define them by defining each of the column-blocks using a scaling
factor B = ω(1). Considering the set T = {r1, . . . , rk}, we define:

1. For Q(j)’s, if j ̸∈ T , we just make the entire matrix zero 02n×(s+1)d.

2. We now fix j ∈ [k] and define Q(rj) (i.e., some value of rj ∈ T ). We define first column
block of Q(rj) as:

Q
(rj)

(1:2n,1:d) = B



aj1
aj2
...
ajn
0d

0d

...
0d


2n×d

.

For column blocks i ∈ [s], if the monomial mi does not divide xr1 . . . xrk , we just make
that block all zeros

Q
(rj)

(1:2n,(i−1)d+1:i.d) = 02n×d.

3. If monomial i ∈ [s] does indeed divide xr1 . . . xrk , consider j1 as the index of the highest
preference variable present in mi = xrj1

. . . xrjki
, for j1, . . . , jki ∈ [k], ki < k. Let si be

the negation of the integer which is the number of occurrences of this monomial mi along
with coefficients, in each of the monomials ordered higher than i and that divides xr1 . . . xrk
(these are the only non-zero monomials).

More specifically, si is the sum defined by adding:

• −1 from the monomial m1.

• −sℓ whenever 1 < ℓ < i, the monomial mℓ divides m1, the monomial mi divides mℓ,
and the highest preference variable of mℓ is also present in mi.

• −1 whenever 1 < ℓ < i, the monomial mℓ divides m1 and mi divides mℓ, but the
highest preference variable of mℓ is not present in mi.

• 0 in all other cases.

If xrj is not present in monomial i, we simply set

Q
(rj)

(1:2n,(i−1)d+1:i.d) := 02n×d,
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otherwise:

Q
(rj1 )

(1:2n,(i−1)d+1:i.d) = B



sia
j1
1

sia
j1
2
...

sia
j1
n

0d

0d

...
0d


2n×d

,

where xrj1
is the highest preference variable in mi, and

Q
(rj)

(1:2n,(i−1)d+1:i.d) = B



aj1
aj2
...
ajn
0d

0d

...
0d


2n×d

,

for all other j’s such that xrj is present in monomial i.

4. The last column block for Q(r1) is the all ones matrix 1n×d with a scaling factor, i.e.,

Q
(r1)
(1:2n,s.d+1:(s+1)d) = B · 12n×d,

and for j ∈ [2 : k], it is the matrix

Q
(rj)

(1:2n,s.d+1:(s+1)d) =

ï
0n×d

1n×d

ò
2n×d

.

Roughly, the query-key matrices can be seen as:

Q(r1) = B



d

a11
...
a1n
0d

...
0d︸︷︷︸

xr1
not in m1

d

0d

...

0d︸︷︷︸
m2 does not divide m1

d

s3 · a11
...

s3 · a1n
0d

...
0d︸ ︷︷ ︸

m3 divides m1

. . .

d

1d

...

1d


n×((s+1)d)

,

and for all other j ∈ [2 : k],

Q(rj) = B



d

aj1
...
ajn
0d

...
0d︸︷︷︸

xr1 not in m1

d

0d

...

0d︸︷︷︸
m2 does not divide m1

d

s3 · aj1
...

s3 · ajn
0d

...
0d︸ ︷︷ ︸

m3 divides m1

. . .

d

0d

...
0d

1d

...
1d


n×((s+1)d)

.
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For the value matrices V (j) ∈ R(2n)×(s+1)d, j ∈ T\{1}, we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

0T
n

ò
,

and for j ∈ [2 : t]\T , we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

1T
n

ò
.

All the other columns are completely zero 0T
2n.

Correctness of construction. We now show that for ℓ1, . . . , ℓt ∈ [n], h(Q(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
) =

Bk⟨a1ℓr1 , . . . , a
k
ℓrk

⟩. By definition, m1 = xr1 . . . xrk , and it is easy to note that

m1(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Bk⟨a1ℓr1 , . . . , a

k
ℓrk

⟩. For all the other degree k terms, the inner products

from their corresponding blocks are all zeros as we had defined Q(j) as all zeros matrix for all j ̸∈ T .

We want to show that for all other i’s, mi(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = 0. When we compute

mi(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
), the î-th column blocks for î < i have some contributions to the inner

product mi if and only if mi divides mî (otherwise mi(Q
(1)

ℓ1,(̂i−1)d+1:̂i.d
, . . . , Q

(t)

ℓt,(̂i−1)d+1:̂i.d])

is zero), and no î has a contribution for î > i due to the correctness of the mono-
mial ordering. Now, from the choice of si as above, it follows that mi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
) =∑i

î=1 mi(Q
(1)

ℓ1,(̂i−1)d+1:̂i.d
, . . . , Q

(t)

ℓt,(̂i−1)d+1:̂i.d
) = 0.

For bounding the values of si’s, we use induction to prove |si| < si. The base case is obviously
true. For the induction step, assuming |si| < si, for the (i+ 1)-th monomial, si+1 needs to cancel
the contribution to the inner product corresponding to mi+1 from each monomial mî which is
divisible by mi+1. The contribution is at most |sî| < sî (from the induction hypothesis), and hence
|si+1| <

∑
î : mi+1|mî

|sî| <
∑

î : mi+1|mî
sî < i.si < si+1. Therefore, we have |si| < ss, which

implies Γ = O(ssB), and from the definitions, we obviously have Γ ≥ B as well. Since, s = O(1),
we have Γ = Θ(B).

Further, these query-key and value matrices can be computed in O(n1+o(1)) time.

Approximation yields gap property. We assume an entry-wise approximation of the self-attention
matrix, and the goal is to compute two values, the numerator and the denominator, for computing the
softmax. The numerator, for ℓ1 ∈ [2n], is given by

P̄ℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
V

(2)
ℓ2

⊙ . . .⊙ V
(t)
ℓt

,

and the denominator by

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
.

The ℓ1-th row of the Att(h) will be P̄ℓ1

Rℓ1
, and we want to find an entry-wise approximation. Since

in our choice of the value matrices, the first coordinate of P̄ℓ1 is the only non-zero one, and its
summation is only upto the top half of the value matrices, ℓj ∈ [n], for j ∈ [2 : k]. The only non-zero
part of the numerator, that we care about, is therefore given by

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
.

If we have an entry-wise γ-approximation of Att(h), let xℓ1-th be the approximation for the (ℓ1, 1)
entry of Att(h). By definition, we have

|xℓ1 −
Pℓ1

Rℓ1

| < γ. (13)
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Bounds on denominator. Consider the summation
∑

ℓ2,...,ℓt∈[2n] exp
Ä
1
d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)
ä

.
Define λ as the factor such that when only the r1, . . . , rk coordinates are B.1d and the remaining are
zeros, i.e.,

h(0d, B.1d, . . . , B.1d︸ ︷︷ ︸
k

,0d, . . . ,0d) = λdBk.

It is easy to see that λ = 1 + o(1), since the evaluation of h at these values will give a Bk from the
first monomial, and the other s− 1 monomials will give at most (s− 1)Bk−1 = o(Bk).

For the choice of Q(j)’s, we have

Rℓ1 >
∑

ℓi∈[n+1:2n] : i∈T
ℓj∈[2n] : j ̸∈T

exp(
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
))

>
∑

ℓ2,...,ℓt∈[n:2n]

exp(λdBk/d̃) = nt−1e(B
k λ

s+1 ),

since all the Q(rj)
ℓrj

’s, for j ∈ [k], have the zeros in the last column-block and 1d along with the scaling

factor B, which makes all the monomials of h give inner product dBk.

For the upper bound on Rℓ1 , we have to use the maximum possible value of h(Q(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
),

irrespective of whether ℓj’s are in [n] or [n+ 1 : 2n]. Let us consider a choice of ℓ2, . . . , ℓt ∈ [2n].
If all the ℓrj ’s, for j ∈ T\{1}, are in [n+1 : 2n], then the value of h(Q(1)

ℓ1
, Q

(2)
ℓ2

, . . . , Q
(t)
ℓt
) obtained

will be be λdBk. Otherwise, there are some (but not all) ℓj’s in [n] for j ∈ [2 : k], where the
monomial of degree < k containing only those variables will be at most ssdBk−1, and the maximum
value will be obtained from the first term, which can be at most Bk⟨a1ℓr1 , . . . , a

k
ℓrk

⟩ = (d − 1)Bk.

Thus, in this case, the maximum value of h(Q(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
) would be (d− 1 + o(1))Bk which

is still less than λdBk.

Therefore,

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
≤

∑
ℓ2,...,ℓt∈[2n]

exp

Ç
λdBk

d̃

å
= 2t−1nt−1e(B

k λ
s+1 ).

Therefore,

nt−1e(B
k λ

s+1 ) < Rℓ1 < 2t−1nt−1e(B
k λ

s+1 ). (14)

Bounds on numerator. Now, we will show that if a vector tuple exists with the proper target inner
product (a positive certificate for γ-Gap-kIP), then Pℓ1 is so large that xℓ1 (Equation 13) is larger
than a fixed threshold. Here, we first show a lower bound on Pℓ1 . Otherwise, we will show that xℓ1 is
small since every inner product will be scaled down by a gap due to the approximation promise.

Consider ℓ1 ∈ [n] when there exists ℓ0r1 , . . . , ℓ
0
rk

∈ [n] such that the inner product ⟨a1ℓ0r1 , . . . , a
k
ℓ0rk

⟩ =
M logn (it is quite possible that r1 = 1, in which case we will only consider ℓ1 = ℓ01). Then, we
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have

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
>

∑
ℓi=ℓ0i : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
= (2n)t−k−1 exp

Å
1

d̃
Bk⟨a1ℓ0r1 , a

2
ℓ0r2

, . . . , atℓ0rt
⟩
ã

= (2n)t−k−1 exp

Å
Bk M

(s+ 1)c

ã
,

where the second equality follows from the construction of the Q(j)’s. Using the upper bound of Rℓ1
in Equation 14, we get,

Pℓ1

Rℓ1

>
(2n)t−k−1e(B

k M
(s+1)c )

(2n)t−1e(B
k λ

s+1 )
=

e
Ä
Bk(M

c
−λ)/(s+1)

ä
(2n)k−1

.

Using xℓ1 >
Pℓ1

Rℓ1
− γ (Equation 13), we get

xℓ1 >
e
Ä
Bk(M

c
−λ)/(s+1)

ä
(2n)k−1

− γ. (15)

Now, for finding an upper bound on xℓ1 when an exact inner product tuple does not exist, we use

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈[T ]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
= (2n)t−k−1

∑
ℓi∈[n] : i∈T

exp

Å
1

d̃
Bk⟨a1ℓr1 , a

2
ℓr2

, . . . , akℓrk
⟩
ã
,

using the construction of Q(rj)’s. Now, using the gap property of inner products in our instance of
ε-Gap-kIP, we have

Pℓ1 = (2n)t−k−1
∑

ℓi∈[n] : i∈T

exp

Å
1

d̃
Bk⟨a1ℓ1 , a

2
ℓ2 , . . . , a

k
ℓk
⟩
ã

< (2n)t−k−1
∑

ℓi∈[n] : i∈T

exp

Ç
Bk

d̃
(1− ε)M log n

å
=⇒ Pℓ1 < 2t−k−1nt−1e((1−ε)Bk M

(s+1)c ).

Finally, using the lower bound of Rℓ1 (Equation 14), we get

Pℓ1

Rℓ1

<
2t−k−1nt−1e((1−ε)Bk M

(s+1)c )

nt−1e(B
k λ

s+1 )
= 2t−k−1e

(
Bk( (1−ε)M

c
−λ)/(s+1)

)
,

and the bound on xℓ1 from Equation 13 implies,

xℓ1 <
Pℓ1

Rℓ1

+ γ < 2t−k−1e

(
Bk( (1−ε)M

c
−λ)/(s+1)

)
+ γ. (16)

Wrapping up. In order to differentiate between the cases, we must have the lower bound of xℓ1
when a positive instance for ε-Gap-kIP tuple exists, Equation 15, must be greater than the upper
bound when such an instance does not exist, Equation 16:

1

e(εB
k M

(s+1)c )

2t−k−1

e
Ä
Bk(λ−M

c )/(s+1)

ä + γ <
1

(2n)k−1e
Ä
Bk(λ−M

c )/(s+1)

ä − γ,
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which is true for the choice of γ ≤ n−Ca and B > Cb(logn)
1/k, for large enough constants

Ca, Cb > 0. This would make e(εB
k M

c ) large enough and γ small enough, such that the inequality
will be valid.

Now, since s is constant, the maximum absolute value of the entries of the query-key matrices are
Ω(B) = Ω((logn)1/k), which proves our result. Therefore, if we can find an algorithm for finding an
entry-wise γ-approximation of Att(h) for APAC(h) with these parameters, that runs in time nk−Ω(1),
then SETH will be refuted (Theorem E.7).

E.2.2 TIME LOWER BOUNDS BASED ON SUBSTRUCTURE OF POLYNOMIAL USING MAX-kSAT
CONJECTURE

In the second part of Theorem E.3, we prove a stronger lower bound when the monomials of
h contains an elementary symmetric polynomial of degree k in t0 variables where k < t0 ≤ t.
The underlying conjecture for this lower bound is the Max-kSAT. We first start with a problem
called HypergraphIP (Definition E.9), which is at least as hard as Max-kSAT, show that its gap
version, ε-Gap-HypergraphIP (Definition E.11), is also at least as hard as HypergraphIP using
Rubinstein (2018); Abboud & Ron-Zewi (2025), and finally show that computing an entry-wise
γ-approximation of Att(h) efficiently would solve ε-Gap-HypergraphIP faster, thereby refuting
Max-kSAT conjecture.

Definition E.9 (HypergraphIPn,d
t,k ). For positive integers t, k, given t sets of vectors A1, . . . , At ∈

{0, 1}d with |A1| = . . . = |At| = n, and target inner products m1, . . . ,m(tr)
, the problem

HypergraphIPn,d
t,k is to decide if there exist vectors a1 ∈ A1, . . . , at ∈ At such that for all sub-

sets S ∈
(
[t]
k

)
, we have ⟨aS[1], . . . , aS[k]⟩ = mS , where mS is the target inner product corresponding

to the given k-sized subset among the
(
t
k

)
choices.

We will drop n, d from the superscript and not include the target inner products as the parameters to
make the problem definitions less cumbersome. This problem again has a hardness result, as follows.
Lemma E.10 ((Alman & Vassilevska Williams, 2020, Theorem 23)). Assuming the Max-kSAT
conjecture (Hypothesis 2), for every δ > 0 and every positive integer t, k, there exists a constant
c > 0 and target inner products m1, . . . ,m(tr)

∈ {0, . . . , d} such that HypergraphIPn,c logn
t,k cannot

be solved in time O(n(1−δ)t).

We can again reduce HypergraphIP to its gap version Gap-HypergraphIP to show that this problem
is hard as well.
Definition E.11 (ε-Gap-HypergraphIPn,d

t,k ). For every ε ∈ (0, 1) and positive integers t, k, given
t sets of vectors A1, . . . , At ∈ {0, 1}d with |A1| = . . . = |At| = n, and target inner product
m ∈ {0, . . . , d}, along with the promise that for every a1 ∈ A1, . . . , at ∈ At and ∀S ∈

(
[t]
k

)
,

• either, ⟨aS[1], . . . , aS[k]⟩ = m,

• or, ⟨aS[1], . . . , aS[k]⟩ ≤ (1− ε)m,

the problem ε-Gap-HypergraphIPn,d
t,k is to decide if there exist vectors a1 ∈ A1, . . . , at ∈ At such

that ∀S ∈
(
[t]
k

)
, we have ⟨aS[1], . . . , aS[k]⟩ = m.

Again, similar to Gap-IP∆, for Gap-HypergraphIP, we consider the target inner products to be the
same for all the subsets of inner products, since the Rubinstein (2018)-like reduction accommodates
this, and we need this condition for reducing Gap-HypergraphIP to entry-wise approximation of
Att(h).

The hardness of ε-Gap-HypergraphIP follows from a proof very similar to Theorem C.8, given by
the following corollary.
Corollary E.12. For positive integers t, k with k ≥ 3, and every δ > 0, assuming the Max-kSAT
conjecture, there exists a constant c and target inner product m ∈ {0, . . . , c log n}, the problem
ε-Gap-HypergraphIPn,c logn

t,k cannot be solved in time O(n(1−δ)t).
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Proof. We can again use the reductions of Lemma C.9. We start with an instance of HypergraphIPn,d
t,k

having sets of vectors A1, . . . , At ⊆ {0, 1}d containing n vectors each, and reduce that to no(1) in-
stances of ε-Gap-HypergraphIPn,d̃

t,k having sets of vectors B1, . . . , Bk ⊆ {0, 1}d̃ for d̃ = Θ(logn),
where each Bi contains n vectors.

The proof goes as– for each k-tuple (j1, . . . , jk) ∈
(
[t]
k

)
, we reduce Aj1 , . . . , Ajk , an instance of

kIP, to no(1) instances of ε-Gap-kIP of dimension d0 (using methods of Alman & Song (2024);
Rubinstein (2018); Abboud & Ron-Zewi (2025)). Then, we combine each of the ε-Gap-kIP instances
for all (j1, . . . , jk) ∈

(
[t]
k

)
by creating

(
t
k

)
column blocks, each of dimension d0, as done in the proof

of Theorem C.8, where the block corresponding to (j1, . . . , jk) will contain vectors obtained from
the above reduction, and the rest will be zero. The hardness result also holds true when the target
inner product for every subset of B1, . . . , Bk are equal.

Now, to show hardness of computing an entry-wise γ-approximation of Att(h) where h satisfies the
conditions of Part 2 of Theorem E.3, we reduce ε-Gap-HypergraphIPt0,r

(which we know is at
least as hard as Max-kSAT), to an entry-wise approximation of Att(h). Armed with Corollary E.12,
we are now ready to prove the following lemma which completes the second part of Theorem E.3.

Lemma E.13 (ε-Gap-HypergraphIP to APAC(h)). For every constant ε > 0, every δ ∈
(0, 0.01), every c,M > 0, given an attention polynomial h(x1, . . . , xt) of degree k ≥ 3 hav-
ing s monomials, such that the set of monomials of h contains as a subset all the monomi-
als of the elementary symmetric polynomial in t0 < t variables of degree k, where t, k, s, t0
are constants, there exist constants Ca > 0 and Cb > 0 such that if APAC(h)(2n, (s +
1)c logn,Γ = Cb(logn)

1/k, γ = n−Ca) (Definition A.6) with query-key matrices Q(1), . . . , Q(t) ∈
[−Γ,Γ]2n×(s+1)c logn and value matrices V (2), . . . , V (t) ∈ R2n×(s+1)c logn can be solved in
time O(nt0−δ), then ε-Gap-HypergraphIPn,c logn

t0,k
(Definition E.11) with target inner product

m = M log n can also be solved in O(nt0−δ) time for any constant M .

Proof. First, we consider that the subset of the monomials of h, which constitute a symmetric
polynomial in t0 variables of degree k, is given by the set of subset of variables xr1 , . . . , xrt0

. Let us
denote T := {r1, . . . , rt0} ⊆ [t].

Let us start instance of ε-Gap-HypergraphIPn,d=c logn
t0,k

with t0 sets of vectors be A1, . . . , At0 ⊆
{0, 1}d, having n vectors each, and the target inner product being m = M log n with a promise of
gap given with a constant approximation factor of ε. More specifically, we want to check if there
exists ℓr1 , . . . , ℓrt0 ∈ [n] such that for all (j1, . . . , jk) ∈

(
[t0]
k

)
, we have ⟨aj1ℓj1 , . . . , a

j1
ℓjk

⟩ = m, i.e.,∑
j1,...,jk∈([t0]

k )

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩ =
Ç
t0
k

å
m =: m0,

where m0 = M0 log n. We also have the promise that for every other tuple ℓr1 , . . . , ℓrt0 ∈ [n] where
HypergraphIPt0,k property is not satisfied,∑

j1,...,jk∈([t0]
k )

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩ <
ÇÇ

t0
k

å
− 1

å
m+ (1− ε)m =: (1− ε0)m0,

for another constant ε0 = ε/(t0k ).

Constructing the matrices. Now, we define the matrices Q(j)’s, such that

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Λ

∑
j1,...,jk∈([t0]

k )

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩,

for a scaling factor Λ, in a construction quite similar to the proof of Lemma E.8. The query-key
matrices will be Q(1), . . . , Q(t) ∈ [−Γ,Γ]ñ×d̃, for ñ = 2n, d̃ = (s+ 1)d, defined as follows using a
scaling value B = ω(1) which we will choose later:
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1. For Q(j)’s, if j ̸∈ T , we just make the entire matrix zero 02n×(s+1)d.

2. For some i ∈ [s], if mi is equal to some xrj1
. . . xrjk

for j1, . . . , jk ∈
(
[t0]
k

)
, we define that

block as:

Q
(rjℓ )

(1:2n,(i−1)d+1:i.d) = B



ajℓ1
ajℓ2
...
ajℓn
0d

0d

...
0d


2n×d

,

for all ℓ ∈ [k], and
Q

(j)
(1:2n,(i−1)d+1:i.d) = 02n×d,

for all other j ∈ [t]\{rj1 , . . . , rjk}.

3. However, if for i ∈ [s], monomial i has degree ≤ k − 1, let this be equal to xrj1
. . . xrjki

,
where j1, . . . , jki

∈ [t0], ki < k is the degree (note that if the variables are anything outside
T , we have defined the corresponding query-key matrices to be zeros anyway). Let si be the
integer which is the negation of the number of occurrences of this monomials in each of the
monomials ordered higher preference than i.

As before, si is the sum defined by adding:

• −1 whenever ℓ < i and mℓ is of degree k.
• −sℓ whenever ℓ < i, the monomial mℓ is of degree ≤ k, mi divides mℓ, and the

highest preference variable of mℓ is also present in mi.
• −1 whenever ℓ < i, the monomial mℓ is of degree ≤ k and mi divides mℓ, but the

highest preference variable of mℓ is also present in mi.
• 0 in all other cases.

If xrj is not present in monomial i, we just set

Q
(rj)

(1:2n,(i−1)d+1:i.d) := 02n×d,

otherwise:

Q
(rj1 )

(1:2n,(i−1)d+1:i.d) = B



sia
j1
1

sia
j1
2
...

sia
j1
n

0d

0d

...
0d


2n×d

,

where xrj1
is the highest preference variable of mi, and

Q
(rj)

(1:2n,(i−1)d+1:i.d) = B



aj1
aj2
...
ajn
0d

0d

...
0d


2n×d

,

for all other j’s such that xrj is present in monomial i.
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4. The last column block for Q(r1) is the all ones matrix 1n×d with a scaling factor, i.e.,

Q
(r1)
(1:2n,s.d+1:(s+1)d) = B · 12n×d,

and for j ∈ {2, . . . , t0}, it is the all zeros matrix

Q
(rj)

(1:2n,s.d+1:(s+1)d) =

ï
0n×d

1n×d

ò
2n×d

.

For the value matrices V (j) ∈ R(2n)×(s+1)d, j ∈ T\{1}, we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

0T
n

ò
,

and for j ∈ [2 : t]\T , we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

1T
n

ò
,

with every other columns 0T
2n.

Correctness of construction. Again, similar to the proof of Lemma E.8, we can prove that this
construction does indeed give

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Bk

∑
j1,...,jr∈Sr

t0

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩,

and the entries of the query-key matrices are in [−Γ,Γ] for B < Γ < O(ssB).

Also, these query-key and value matrices can be computed in O(n1+o(1)) time.

Approximation yields gap property. As before, let us assume there exists an entry-wise approxi-
mation xℓ1 of the (ℓ1, 1)-th element of Att(h) such that

|xℓ1 −
Pℓ1

Rℓ1

| < γ,

where
Pℓ1 =

∑
ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

and the (ℓ1, 1)-th element of Att(h) is Pℓ1

Rℓ1
.

Bounds on Pℓ1 , Rℓ1 . Similar to before, we can prove

nt−1e

(
λBk

(s+1)

)
< Rℓ1 < 2t−1nt−1e

(
λBk

(s+1)

)
,

where λ = 1 + o(1). For the numerator, we can show that when a positive certificate of
ε-Gap-HypergraphIP does exist (if r1 ̸= 1, then this holds for all ℓ1’s, otherwise, there will
be a fixed ℓ1 such that a1ℓ1 is included in the positive certificate),

Pℓ1 > (2n)t−k−1e(B
k M0

(s+1)c ),

which implies

xℓ1 >
Pℓ1

Rℓ1

− γ >
e

(
Bk(M0

c
−λ)/(s+1)

)
(2n)k−1

− γ. (17)

Otherwise, if no positive certificate of ε-Gap-HypergraphIP exists when r1 ̸= 1, or when r1 = 1,
the positive certificate, if exists, does not contain the vector a1ℓ1 , then

Pℓ1 < 2t−k−1nt−1e((1−ε0)B
k M0

(s+1)c ),

and therefore,

xℓ1 <
Pℓ1

Qℓ1

+ γ < e

(
Bk
Å
(1−ε0)M0

c
−λ

ã
/(s+1)

)
+ γ. (18)
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Wrapping up. In order to maintain a gap between the cases of an HypergraphIP existing, we
require the lower bound (Equation 18) must be less than the upper bound (Equation 17)

1

e(ε0B
k M0

(s+1)c )

2t−k−1

e

(
Bk(λ−M0

c )/(s+1)

) + γ <
1

(2n)k−1e

(
Bk(λ−M0

c )/(s+1)

) − γ.

Now, there exist large enough constants Ca, Cb > 0 such that this inequality is satisfied for γ ≤ n−Ca

and B ≥ Cb(log n)
1/k.

This proves that any algorithm for an entry-wise γ-approximation of Att(h) having maximum value
of the entries Γ = Ω((log n)1/k) requires time Ω(nt0), assuming the Max-kSAT conjecture, since
if APAC(h) could be solved in O(nt0−δ) time, then that would imply Max-kSAT could be solved
in 2(1−Ω(δ))n time (Corollary E.12), something that can not be true for an absolute constant δ > 0
(Hypothesis 2).

Remark 1. In Lemma E.13, for computing APAC(h), when h is in t variables, of degree k and
contains as a subpolynomial an elementary symmetric polynomial in t0 = t variables and degree k,
the time-complexity is lower bounded by Ω(nt). This is the strongest time complexity lower bound we
can achieve, as the trivial algorithm for summing over the indices of all the query-key matrix also
requires O(nt) time and we say that this is the best we can hope for!

E.2.3 TIME LOWER BOUNDS FOR DEGREE 2 POLYNOMIALS USING MAX-2SAT CONJECTURE

In this section, we prove the final part of Theorem E.3, where we show a lower bound for a certain
subcase of h when the degree is 2. For the remaining degree 2 cases, we have already shown in
Sections 3.2 and D that they can be computed in O(n2) time, which is essentially tight from Part 1 of
Theorem E.3.

Unlike using SETH which proves lower bounds which are integer powers of n, in order to prove
lower bounds of the form nω , we use the Max-2SAT conjecture (Hypothesis 3) by giving a reduction
from ε-Gap-IP∆ (Theorem C.8) to entry-wise approximation of Att(h).

The reductions work as, we first use the reduction of Max-2SAT to IP∆, then reduction of IP∆
to a new problem IP-DIR-rCYC using Alman & Vassilevska Williams (2020), which then is re-
duced to its gap version containing no(1) instances of ε-Gap-IP-DIR-rCYC. Finally, we reduce
ε-Gap-IP-DIR-rCYC to computing an entry-wise approximation of Att(h).

For these sets of reductions, we first define the new problem of IP-DIR-rCYC, which was introduced
in Alman & Vassilevska Williams (2020).
Definition E.14 (IP-DIR-rCYC). For a positive integer r, given r sets of vectors A1, . . . , Ar ⊆
{0, 1}d with |A1| = . . . = |Ar| = n, and target inner products m1, . . . ,mr ∈ {0, . . . , d}, the
problem IP-DIR-rCYCn,d is to decide if there exist vectors a1 ∈ A1, . . . , ar ∈ Ar such that
simultaneously ⟨a1, a2⟩ = m1, ⟨a2, a3⟩ = m2, . . . , ⟨ar−1, ar⟩ = mr−1, ⟨ar, a1⟩ = mr.

Naturally, to prove hardness of entry-wise approximation of poly-attention, we will again require the
hardness of the gap version of this problem, ε-Gap-IP-DIR-rCYC.
Definition E.15 (ε-Gap-IP-DIR-rCYC). For every ε > 0 and positive integer r, given r sets of
vectors A1, . . . , Ar ∈ {0, 1}d with |A1| = . . . = |Ar| = n, and a target inner product m ∈
{0, . . . , d} along with the promise that for all i ∈ [r], for all vectors ai ∈ Ai, and ai+1 mod r ∈
Ai+1 mod r,

• either ⟨ai, a(i+1) mod r⟩ = m,

• or ⟨ai, a(i+1) mod r⟩ ≤ (1− ε)m,

the problem of ε-Gap-IP-DIR-rCYCn,d is to decide if there exist vectors a1 ∈ A1, . . . , ar ∈ Ar

such that simultaneously ⟨a1, a2⟩ = ⟨a2, a3⟩ = . . . = ⟨ar−1, ar⟩ = ⟨ar, a1⟩ = m.

Now, we know that IP-DIR-rCYC is at least as hard as IP∆, which in turn is at least as hard as
Max-2SAT (Lemma C.7), given by the following lemma. An OV version of this lemma was proved
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in (Alman & Vassilevska Williams, 2020, Lemma 21), i.e., when the target inner products are
zero, by reducing OV∆ to OV-DIR-rCYC, but all the proofs work similarly for reducing IP∆ to
IP-DIR-rCYC as well.

Lemma E.16 (IP∆ to IP-DIR-rCYC Alman & Vassilevska Williams (2020)). For every δ > 0 and
positive integer r ≥ 3, if IP-DIR-rCYCn,d, can be computed in O(nω−δ) time, then IP∆n,d can
also be computed in time O(nω−δ).

Again, the ε-Gap-IP-DIR-rCYC is at least as hard as IP-DIR-rCYC using proofs very similar to
Theorem C.8.

Corollary E.17. For every δ > 0, positive integer r ≥ 3 and every constant ε > 0, assuming the
Max2SAT conjecture, there exists a constant c > 0 and target inner product m ∈ {0, . . . , d}, such
that ε-Gap-IP-DIR-rCYCn,c logn cannot be solved in time O(nω−δ) .

Proof. We prove the hardness of ε-Gap-IP-DIR-kCYC by starting with a hard instance of
IP-DIR-rCYC containing sets vectors A1, . . . , Ar ⊆ {0, 1}d, where n = |Ai| and d = c log n.

Following the technique of the proof of Theorem C.8, we consider Ai, Ai+1 mod r for each i ∈ [r]
as a 2IP instance, and reduce it to no(1) many instances of ε-GapIP having two sets n vectors of
dimension d0. For the final instance of ε-Gap-IP-DIR-rCYC, we create vectors having r blocks,
each block having the dimension d0. The ((i − 1) mod r)-th block and the i-th block in the final
instances of the reduction will contain vectors from each of the instances of ε-GapIP obtained from
the instances of 2IP from A(i+1) mod r, Ai and Ai, A(i+1) mod r respectively, while the other blocks
will be zero, exactly similar to the proof of Theorem C.8. This hardness result is also true when all
the target inner products are the same.

Therefore, for proving the hardness of the entry-wise approximation of poly-attention based on
Max-2SAT conjecture, it is sufficient to start with a hard instance of ε-Gap-IP-DIR-rCYC. Further,
we prove the lower bound for poly-attention for all polynomials that are not tree polynomials (since
we already know that tree polynomials have exact computational complexity O(n2)). If a polynomial
is not a tree polynomial, the graphical representation must contain at least one cycle.

Lemma E.18 (ε-Gap-IP-DIR-rCYC to APAC(h)). For every constant ε > 0, every δ ∈
(0, 0.01), every c,M > 0, given an attention polynomial h(x1, . . . , xt) of degree 2 having
s monomials, such that its graphical representation contains a cycle of size r, where t, s, r

are constants, there exist constants Ca > 0 and Cb > 0 such that if APAC(h)(2n, (r +
1)c logn,Γ = Cb

√
log n, γ = n−Ca) (Definition A.6) with query-key matrices Q(1), . . . , Q(t) ∈

[−Γ,Γ]2n×(s+1)c logn and value matrices V (2), . . . , V (t) ∈ R2n×(s+1)c logn can be solved in
time O(nω−δ), then ε-Gap-IP-DIR-rCYCn,c logn (Definition E.15) with target inner product
m = M log n can also be solved in O(nω−δ) time for any constant M .

Proof. In our final part of Theorem E.3, we reduce Max-2SAT to entry-wise approximate com-
putation of poly-attention. We start with an instance of ε-Gap-IP-DIR-rCYCn,d=c logn, since
we know that this is at least as hard as Max-2SAT (Theorem E.17, Lemma E.16), consisting
of sets of vectors A1, . . . , Ar ⊆ {0, 1}d, where Ai for all i ∈ [t] has n vectors {ai1, . . . , ain}
each. The target inner product is M logn, and the constant approximation factor is ε for the
gap condition. This is equivalent to checking if there exists a1j1 ∈ A1, a2j2 ∈ A2, . . . , arjr ∈ Ar

such that ⟨a1j1 , a
2
j2
⟩ + ⟨a2j2 , a

3
j3
⟩ + · · · + ⟨ar−1

jr−1
, arjr ⟩ + ⟨ar−1

jr−1
, a1j1⟩ = M0 log n, or, due to the

promise, if ⟨a1j1 , a
2
j2
⟩ + ⟨a2j2 , a

3
j3
⟩ + · · · + ⟨ar−1

jr−1
, arjr ⟩ + ⟨ar−1

jr−1
, a1j1⟩ ≤ (1 − ε0)M0 log n, where

M0 = Θ(M), ε0 = Θ(ε).

For the graph G of the polynomial, we consider a vertex vt0 where the cycle of length r starts. If
there are multiple cycles, we consider any one.

Let the cycle be of length r be given by (vt0 , vt0+1), (vt0+1, vt0+2), . . . , (vt0+r−1, vt0), without
loss of generality. When we construct the matrices Q(j)’s, the idea is to construct the instance of
ε-Gap-IP-DIR-rCYC from vt0 (i.e., from Q(t0)), and make every other query-key matrix corre-
sponding to variables outside the cycle to be zero.
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Similar to as before, we construct query-key matrices such that for all ℓ1, . . . , ℓt ∈ [n],

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Λ(⟨a1ℓt0 , a

2
ℓt0+1

⟩+ . . .+ ⟨ar−1
ℓt0+r−1

, arℓt0+r
⟩+ ⟨arℓt0+r

, a1ℓt0 ⟩), (19)

for a scaling factor Λ.

Constructing the matrices. We form the matrices Q(1), . . . , Q(t) ∈ [−Γ,Γ]ñ×d̃, ñ = 2n, d̃ =
(r + 1)d as follows, using a scaling factor B = ω(1):

1. For Q(j)’s, if j < t0 or j > r + t0 − 1, we just make the entire matrix zero 02n×(r+1)d.

2. For defining Q(t0), we define the first column block (starting of the cycle) as,

Q
(t0)
(1:2n,1:d) = B



a11
a12
...
a1n
0d

0d

...
0d


2n×d

,

the r-th column block (end of the cycle) as,

Q
(t0)
(1:2n,(r−1)d+1:r.d) = B



a11
a12
...
a1n
0d

0d

...
0d


2n×d

,

the final block that balances the inner product as

Q
(t0)
(1:2n,r.d+1:(r+1)d) = B12n×d,

and all the other remaining blocks as 02n×d.

3. Now, for the matrices inside the cycle, i.e., j ∈ [t0 + 1, t0 + r − 1], we define Q(j) as
follows. For i = j − 1, j (which is the traversal inside the cycle from vj−1 to vj , and vj to
vj−1 respectively), we define that block as,

Q
(j)
(1:2n,(i−1)d+1:i.d) = B



a
j−(t0−1)
1

a
j−(t0−1)
2

...

a
j−(t0−1)
n

0d

0d

...
0d


2n×d

,

the final block as,

Q
(j)
(1:2n,r.d+1:(r+1)d) =

ï
0n×d

1n×d

ò
2n×d

,

and all other blocks as 02n×d.
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For the value matrices V (j) ∈ R(2n)×(r+1)d, j ∈ [t0, t0 + r − 1], we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

0T
n

ò
,

and for all other j’s, we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

1T
n

ò
,

with every other columns 0T
2n.

Correctness of construction. We prove that indeed Equation 19 is satisfied when ℓ1, . . . , ℓt ∈ [n].
When we consider h, all the monomials containing variables xj for j < t0 or j > t0 + r − 1 vanish
since Q(j)’s are zero. Whenever we have a monomial of the form xjxj+1, j ∈ [t0, t0 + r − 1], it
survives and gives ⟨aj−t0+1

ℓ(j−t0+1)
, a

(j−t0+2) mod r
ℓ((j−t0+2) mod r)

⟩.

These query-key and value matrices can be computed in O(n1+o(1)) time.

Approximation yields gap property. We again consider the entry-wise approximation of Att
(h)
ℓ1,1

as xℓ1 , and we have

|xℓ1 −
Pℓ1

Rℓ1

| < γ,

for

Pℓ1 =
∑

ℓ2,...,ℓt∈[n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

when the (ℓ1, 1)-th element of Att(h) is Pℓ1

Rℓ1
.

Bounds on Pℓ1 , Rℓ1 . For the lower bound on Rℓ1 , using a calculation exactly similar to that of the
proof of Lemma E.8 gives us

nt0−1e

(
rB2

(r+1)

)
< Rℓ1 < 2t0−1nt0−1e

(
rB2

(r+1)

)
When a positive certificate for the given ε-Gap-IP-DIR-rCYC exists, we will have some
ℓ0t0 , ℓ

0
t0+1, . . . , ℓ

0
t0+r−1 ∈ [n] for which ⟨a1

ℓ0t0
, a2

ℓ0t0+1
⟩+ . . .+ ⟨ar−1

ℓ0t0+r−1
, ar

ℓ0t0+r
⟩+ ⟨ar

ℓ0t0+r
, a1

ℓ0t0
⟩ =

M0 log n. This would give

Pℓ1 > (2n)t0−r−1e(
M0

(r+1)c
B2),

which implies

xℓ1 >
Pℓ1

Rℓ1

− γ >
e

(
B2(M0

c
−r)/(r+1)

)
(2n)r

− γ. (20)

Otherwise, if no positive certificate for IP-Dir-rCYCLE exists, then

Pℓ1 < 2t0−r−1nt0−1e((1−ε0)B
2 M0

(r+1)c ),

and therefore,

xℓ1 <
Pℓ1

Rℓ1

+ γ < 2t0−r−1e

(
B2
Å
(1−ε0)M0

c
−r

ã
/(r+1)

)
+ γ. (21)

Note that if a positive instance of ε-Gap-IP-DIR-rCYC exists, then xℓ1 is the greater than the
lower bound (it is greater for all ℓ1 if t0 ̸= 1, otherwise we choose only that ℓ1 for which the
ε-Gap-IP-DIR-rCYC instance contains a1ℓ1 ), otherwise always lesser than the lower bound.
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Wrapping up. In order to maintain a gap between the cases of a positive instance of
ε-Gap-IP-DIR-rCYC existing, we require the lower bound (Equation 21) must be less than the
upper bound (Equation 20)

1

e(ε0B
2 M0

(r+1)c )

2t0−r−1

e

(
B2(r−M0

c )/(r+1)

) + γ <
1

(2n)re

(
B2(r−M0

c )/(r+1)

) − γ.

Now, there exist large enough constants Ca, Cb > 0 such that this inequality is satisfied for γ ≤ n−Ca

and B ≥ Cb

√
log n.

This proves that any algorithm for an entry-wise γ-approximation of Att(h) having maximum value
of the entries Γ = B = Ω(

√
log n) requires time Ω(nω), assuming the Max-2SAT conjecture, since

if APAC(h) could be solved in O(nω−δ) time, then that would imply that would imply Max-2SAT
could be solved in 2(ω/3−Ω(δ))n time (Corollary E.12), which can not be true for an absolute constant
δ > 0 (Hypothesis 3).

F PROOFS OF SECTION 3.1: FUNCTION COMPOSITION

In this section, we describe a poly-attention mechanism whose one attention head can simulate t-fold
function composition. In order to study the representational powers, it is important to also consider
the number of bits stored for each entry for the matrices, denoted as precision, p. Since the entries
are usually considered to be polynomial in n, it is safe to assume p = no(1). Furthermore, as usual,
we consider the embedding dimension d = O(log n).

Before showing the representational strength of poly-attention, we first show that Strassen-attention
and 3-tensor attention cannot simulate 3-fold function composition. For this limitation result, we
require a communication lower bound proved in a previous work of Chakrabarti (2007) on myopic
pointer jumping.
Definition F.1 (Myopic pointer jumping). For every t ≥ 2, myopic pointer jumping can be seen as
similar to function composition, where we are interested in computing t-fold function composition, for
inputs as functions f1, . . . , ft : [n] → [n] and a value x ∈ [n]. There are t players and a coordinator
C, such that:

• Player 1 has as inputs x and f2,

• Player i for i ∈ [2 : t− 1] have inputs x and f1, . . . , fi−1, fi+1,

• Player t has inputs x and f1, . . . , ft−1.

The Players i ∈ [t] can only send messages to C, and the goal of the protocol is for C to compute the
value of ft(ft−1 . . . f1(x)).

Now, the lower bound due to Chakrabarti (2007) for myopic pointer jumping is given as below.
Lemma F.2 ((Chakrabarti, 2007, Theorem 1)). To solve the myopic pointer jumping problem, the
players need to send at least Ω(n/t) bits to C in order for C to compute ft(ft−1 . . . f1(x))).

We want to study the representational strengths and limitations in terms of function composition.
We say that an attention mechanism simulates t-fold function composition, if, given the input
X ∈ R(tn+1)×d containing descriptions of f1, . . . , ft and an x ∈ [n] , the attention mechanism is
able to output the value of ft(ft−1 . . . f1(x)). As before, the input function fi will be given as the
i-th block of X , in X((i−1)n+1:i.n) for all i ∈ [t], and x will be given in Xtn+1, and we want the
attention mechanism to output the value of ft(ft−1 . . . f1(x) in the (tn+ 1)-th entry of the output.

The first limitation result, Strassen-attention can not simulate 3-fold function composition is given by:

Theorem F.3. One layer of Strassen-attention requires at least H > n1−o(1) heads to simulate 3-fold
function composition.

Proof. Let us consider an instance of 3-fold function composition where, given f1, f2, f3 : [n] → [n],
and x ∈ [n], we want to compute f3(f2(f1(x))). As usual, the input X contains N = 3n+ 1 rows
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of embedding dimension d = O(log n), where X(1:n) corresponds to the values of f1(1), . . . , f1(n),
X(n+1:2n) corresponds to the values of f2(1), . . . , f2(n), X(2n+1:3n) corresponds to the values of
f3(1), . . . , f3(n) and finally X3n+1 corresponds to x.

The main idea for proving this lower bound is by assuming that Strassen-attention can simulate
3-fold function composition using H heads. We are given the query-key and value matrices for
H Strassen-attention heads such that the output of mechanism contains the value of f3(f2(f1(x))).
Using these, we define a communication problem which will use computations required for outputting
the matrix Att(S), that gives the value of f3(f2(f1(x))). Next, we will use existing lower bounds
(Lemma F.2) to contradict this statement, which would give a lower bound on the minimum number
of heads of Strassen-attention required to compute f3(f2(f1(x))).

We now define the communication problem to capture this setting. Consider 3 players with inputs,

• Player 1 has x, f2,

• Player 2 has x, f1, f3,

• Player 3 has x, f1, f2,

and a coordinator C. The communication channel is such that only the 3 players can send messages
to the coordinator. The communication complexity is the total number of bits sent by the players to
the coordinator such that the coordinator can compute the value of f3(f2(f1(x))).

As defined before, this communication setting is an instance of myopic pointer jumping for t = 3,
and the lower bound from Lemma F.2 implies that at least Ω(n) bits are need to be communicated.

Now, let us assume that there exists a Strassen-attention mechanism that computes 3-fold function
composition using H heads, where we will denote the index of the head as a superscript u ∈ [H].
The weight matrices for query-key are WQ(1)

u,WQ(2)
u,WQ(3)

u ∈ Rd×d and the value weights are
WV (2)

u,WV (3)
u ∈ Rd×d for the attention head u ∈ [H]. Let the precision of the values be p. These

matrices and the functions computed by the first and last MLP layers are known to all the 3 players
and the coordinator. Assuming that Strassen-attention can simulate 3-fold function composition, we
devise a communication protocol for the above problem using the value of Att(S) to obtain lower
bounds on H using a proof inspired by works of Peng et al. (2024); Sanford et al. (2024b).

The output matrix of the u-th head of Strassen-attention, Att(S)u, for u ∈ [H], is given as

Att
(S)
N

u =

∑
j,k∈[N ] r

N
j,k

u(Xj WV (2))u ⊙ (Xk WV (3)
u)∑

j,k∈[N ] r
N
j,k

u
, (22)

where we have N = 3n+ 1, which is the row of Att(S) where we want the value of f3(f2(f1(x))),
and

rNj,k
u = exp

(1
d
(X3n+1 WQ(1)

u(WQ(2)
u)TXT

j +Xj WQ(2)
u(WQ(3)

u)TXT
k

+Xk WQ(3)
u(WQ(1)

u)TXT
3n+1)

)
,

for all heads u ∈ [H]. The players have parts of X , i.e., for f1 they have X(1:n), for f2 they have
X(n+1:2n), for f3 they have X(2n+1:3n) and for x they have X3n+1.

The communication protocol proceeds as follows, where the player sends the values for each Strassen-
attention head u ∈ [H]:

1. Player 1 sends L̂1
u and L̂′

1
u, where L̂1

u is an O(p log log n)-bit approximation of the binary
expression of L1

u, and L̂′
1
u is an O(p log log n)-bit approximation of the binary expression

of L′
1
u, where

L1
u :=

∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n+1:2n]}

rNj,k
u,
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and

L′
1
u :=

1

L1
u

Å ∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n+1:2n]}

rNj,k
u(XjWV (2)

u)⊙ (XkWV (3)
u)

ã
,

for all u ∈ [H], to C.

2. Player 2 sends L̂2
u and L̂′

2
u, where L̂2

u is an O(p log log n)-bit approximation of the binary
expression of L2

u, and L̂′
2
u is an O(p log log n)-bit approximation of the binary expression

of L′
2
u, where

L2
u :=

∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n],[2n+1:3n]}
(S1,S2)̸=({3n+1},{3n+1})

rNj,k
u,

and

L′
2
u :=

1

L2
u

Å ∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n],[2n+1:3n]}
(S1,S2)̸=({3n+1},{3n+1})

rNj,k
u(XjWV (2)

u)⊙ (XkWV (3)
u)

ã
,

for all u ∈ [H], to C.

3. Player 3 sends L̂3
u and L̂′

3
u, where L̂3

u is an O(p log log n)-bit approximation of the binary
expression of L3

u, and L̂′
3
u is an O(p log log n)-bit approximation of the binary expression

of L′
3
u, where

L3
u :=

∑
j∈S1,k∈S2

S1,S2∈{[n],[n+1:2n]}
S1 ̸=S2

rNj,k
u,

and

L′
3
u :=

1

L3
u

Å ∑
j∈S1,k∈S2

S1,S2∈{[n],[n+1:2n]}
S1 ̸=S2

rNj,k
u(XjWV (2)

u)⊙ (XkWV (3)
u)

ã
,

for all u ∈ [H], to C.

4. C computes ∑
i∈[3] L̂

′
i
u.L̂i

u∑
i∈[3] L̂i

u
∈ Rd, (23)

as the N -th row of the Att(S)u matrix.

Note that Equation 23 is the correct value of the approximation of Att
(S)
N

u, for all u ∈ [H], since the
values of LN

u, L′
N
u are simply the partial sums, all of which amount to Equation 22 with the given

bounds on each of the summations. Sanford et al. (2024b) showed that using O(p log logn) bits of
precision is sufficient in this approximation, and this gives us the correct value of f3(f2(f1(x))) upto
p bits of precision. The number of bits communicated is equal to O(dpH log log n), and using the
lower bound from Lemma F.2, we must have dpH > Ω(n/(log logn)). Since we usually choose
d = O(log n), p = no(1), we must have, the number of heads, H > n1−o(1).

Corollary F.4. One layer of 3-tensor attention requires at least n1−o(1) heads to simulate 3-fold
function composition.

Proof. The proof is very similar to that of Theorem F.3, where again we have 3 players and a
coordinator in a myopic pointer jumping instance. Using the construction of 3-tensor attention, we
can again infer that the communication complexity will be O(dpH log logN), which needs to be
greater than Ω(n) from Lemma F.2. This gives our result.
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In fact, we can show a stronger result.

Theorem F.5. If h can be written as a variable separable polynomial, where each branch (see
Definition A.5) has ≤ t0 variables, then one layer of poly-attention for h requires at least H > n1−o(1)

heads to solve t0-fold function composition.

Proof. We use the same proof as of Theorem F.3, by constructing a communication protocol for
t0-fold function composition if poly-attention for h can solve it, and using the lower bound result of
Lemma F.2. The input X contains N = t0n+ 1 tokens, and we want the output to be in the last row
of Att(h)u for each head u ∈ [H].

We define a communication problem again as that of myopic pointer jumping, with t0 players and
a coordinator C who wants to compute ft0(ft0−1 . . . f1(x)) (Definition F.1). Since t0 is constant,
Lemma F.2 states that this requires Ω(n) bits of communication.

Now, we develop a communication protocol for function composition using the Att(h)u matrices,
∀u ∈ [H], which will have a communication complexity of O(Hdp log logN). In computing the
output of the poly-attention mechanism at the last row of Att(h)u, we have the numerator term as∑

ℓ2,...,ℓt0∈[N ]

exp(h(Q
(1)
N

u, Q
(2)
ℓ2

u, . . . , Q
(t0)
ℓt0

u))V
(2)
ℓ2

u ⊙ . . .⊙ V
(t0)
ℓt0

u,

and the denominator term as ∑
ℓ2,...,ℓt0∈[N ]

exp(h(Q
(1)
N

u, Q
(2)
ℓ2

u, . . . , Q
(t0)
ℓt0

u)).

If the polynomial h is variable separable and has r branches, where each branch is given by the
polynomial gi(x1, x̄i) having ≤ t0 variables each, i.e., h(x1, . . . , xt) =

∑
i∈[r] gi(x1, x̄i), then

players devise a protocol to separately compute the (t0n+1)-th row of Att(gi) for all i ∈ [r]. Similar
to the proof of Theorem F.3, the summation of ℓ2, . . . , ℓt0 ∈ [N ] will be broken down to partial
summations, which correspond to computations performed from the inputs of each player.

In computing the poly-attention output of each branch (both numerator and denominator as in
the proof of Theorem F.3), let the corresponding variables of that branch be xr1 , . . . , xrt0

. Now,
Player 1 would send the summations of ℓr1 , . . . , ℓrt0 ∈ [n + 1 : 2n] ∪ {t0n + 1}, Player 2 would
send the summations over ℓr1 , . . . , ℓrt0 ∈ [n] ∪ [2n + 1 : 3n] ∪ {t0n + 1} except the tuples that
have already been sent, and so on until Player i would send the summations over ℓr1 , . . . , ℓrt0 ∈
[(i− 1)n+1]∪ [i.n+1 : (i+1)n]∪ {t0n+1} except the tuples that have already been sent. Since
there are t0 − 1 variables that are not fixed (ℓ1 is fixed to N ) and all the t0 players with their given
inputs completely cover the summation required in the softmax computation of Att(h).

In this way, the players can communicate O(Hdp log logN) bits as before to compute the value of
Att(gi)uN for all i ∈ [r] and u ∈ [H], and given the poly-attention outputs for all these branching
polynomials, the coordinator can compute the value of Att(h) using Lemma D.1.

Therefore, with a total of O(Hdp log logN) bits (since the number of branches, r, of the polynomial
h is constant), the coordinator will be able to solve t0-fold function composition. By Lemma F.2,
Hdp log logN ≥ Ω(n), and considering d = O(logn), p = no(1), we require H > n1−o(1).

Next we prove that a certain class of tree-attention, given by polynomials of the form
ht(x1, . . . , xt+1) = x1x2 + x2x3 + . . . + xtxt+1 can simulate t-fold function composition. This
proves Theorem 3.4, which is also the generalization of Theorem 3.1.

Theorem F.6. For every integer t ≥ 2, poly-attention for the polynomial

ht(x1, . . . , xt) = x1x2 + x2x3 + . . .+ xtxt+1

can simulate t-fold function composition using one poly-attention head.

Proof. For solving the problem of t-fold function composition, we consider the t functions f1, . . . , ft :
[n] → [n]. The input (before the first MLP layer) is a sequence of numbers ϕ(1), . . . , ϕ(tn+1) ∈ [n],
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such that for ℓ ∈ [n], j ∈ [t], we have ϕ(ℓ+ (j − 1)t) = fj(ℓ), and finally ϕ(3n+ 1) = x. Our task
is to compute the value of ft(ft−1 . . . f1(x)), and we give a construction of the MLPs, the query-key
weights and the value weights of poly-attention for ht, such that this Transformer layer can compute
the same using only one head. We adopt the construction of Kozachinskiy et al. (2025) due to its
simplicity, and use it to define the parameters of poly-attention.

We define the first MLP layer such that its output, i.e., the positional encoding of the i-th entry of the
input to poly-attention, is given by:

Xi =
[
1 i i2 ϕ(i) (ϕ(i))2 03k−5

]
1×3k

,

for i ∈ [tn + 1]. Here, a precision of p = Θ(log n) can be used. Next, we construct the weight
matrices WQ(1) , . . . ,WQ(t) .

Our goal is to create a them such that

ht(Q
(1)
ℓ1

, . . . , Q
(t+1)
ℓt+1

) = −A2 log n

Å
(ϕ(ℓ1)− ℓ2)

2 + (ℓ3 − n− ϕ(ℓ2))
2

+ (ℓ4 − 2n− ϕ(ℓ3))
2 + . . .+ (ℓt+1 − (t− 1)n− ϕ(ℓt))

2

ã
,

(24)

for a constant A > 1. For ℓ1 = tn+ 1, this is maximized when

ℓ2 = ϕ(ℓ1) = ϕ(tn+ 1) = x,

ℓ3 = n+ ϕ(ℓ2) = n+ ϕ(x) = n+ f1(x) = f2(f1(x)),

...

ℓt+1 = (t− 1)n+ ϕ(ℓt−1) = (t− 1)n+ ft−1(ft−2 . . . f1(x)) = ft(ft−1 . . . f1(x)),

which is precisely our required value.

For constructing Q(j) ∈ Rn×3t for j ∈ [t+ 1], with such properties, we can define each row as:

1. for i = 1:

Q
(1)
ℓ = A

√
log n

ϕ(ℓ)
2

ϕ(ℓ)
1

0T
3t−3


T

3k×1

,

2. for j ≥ 2:

Q
(j)
ℓ = A

√
log n



03(j−2)

−1
2(ℓ− (j − 2)n)
−(ℓ− (j − 2)n)2

ϕ(ℓ)2

ϕ(ℓ)
1

0T
3(t−j)



T

3k×1

,

for all ℓ ∈ [n].

Note that, for any j ∈ [t],

⟨Q(j)
ℓj

, Q
(j+1)
ℓj+1

⟩ = −A2 log n(ℓj+1 − n− ϕ(ℓj))
2,

which is consistent with Equation 24. While computing the softmax entries for ℓ1 = tn + 1, the
value of ht(Q

(1)
tn+1, Q

(2)
ℓ2

, . . . , Q
(t+1)
ℓt+1

) for all ℓ2, . . . , ℓt+1 that do not maximize this value, will be a
factor of n−A less than the maximum value. Since while computing softmax, we take a sum over all
ℓ2, . . . , ℓt+1 ∈ [tn+ 1], as long as we choose A > Ω(

√
t), the maximum value will be obtained in

the correct setting of ℓj’s.
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For outputting the value, we set the first column of all the V (j)’s, j ∈ [2 : t], as ones, and the rest as
zeros; and for V (t+1), we define the first column as V (t+1)

ℓ,1 = ℓ, for all ℓ ∈ [tn+ 1], and the rest as

zeros. The error in the final output will be nt−A2

, and as long as this is less than the number of bits
of precision, we have the correct output.

As we will see, even though poly-attention for ht will be able to solve t-fold function composition,
the previous theorem, Theorem F.5, shows that not only poly-attention for ht−1 can not simulate
t-fold function composition, but neither can the poly-attention for the polynomial h(x1, . . . , xt+2) =
x1x2 + x2x3 + . . . xt−1xt + x1xt+1xt+2, which is a polynomial in t+ 2 variables!

Remark 2. From Theorem F.6, we saw that poly-attention for h2(x1, x2, x3) = x1x2 + x2x3 can
simulate 3-fold function composition just as Strassen-attention. Again, Strassen-attention is poly-
attention for the polynomial h(x1, x2, x3) = x1x2 + x2x3 + x3x1, which is just one monomial
different from h2. However, even though they might seem similar, the cost of this one monomial is
huge– Att(h2) can be computed in Õ(n2) time, while computing Att(S) requires at least Ω(nω) time.

G PROOFS OF SECTION 3.4: POLYNOMIAL ROOT-FINDING

In this final section of the proofs, we prove the strong characterization of representational strength
of poly-attention introduced in Section 3.4. We show this by giving a construction of the weight
matrices of a poly-attention mechanism which solves polynomial root-finding (Theorem 3.7).

In this problem of polynomial root-finding, for a fixed polynomial p(x1, . . . , xt) and given as
input a set S ⊆ Rn, we are interested in finding if there are elements y1, . . . , yt ∈ S such that
p(y1, . . . , yt) = 0. For the output, if y01 , . . . , y

0
t is a root of p and S[j] = y01 , then in the row j of the

output, we want to output an encoding of that root.

Theorem G.1 (Polynomial root-finding). For a polynomial p(x1, . . . , xt) of degree k0, and given
an input S ⊆ Rn, for any integers k, s if a polynomial h(x1, . . . , xt) of degree k and sparsity s is
such that all the monomials of the polynomial p2 divide at least some degree k monomial of h, then
poly-attention for h with 2 attention heads can perform polynomial root-finding for p with the input.

Proof. We give a construction of the MLP layers, query-key weights and the value weights such that
the Transformer can find a root of the polynomial from St, and output it. First, given S, considering
s0 as the sparsity of p2, we set the embedding dimension as d = s0.s. For the input X ∈ Rn×(s0.s),
let the embedding of Xi after the first MLP layer be

Xi =
[
1 yi y2i . . . y2k0

i 0s0.s−2k0−1

]
1×(s0.s)

,

where we require s0.s > 2k0 + 1.

Construction of first head. Now, our goal is to define the weight matrices such that after computing
the query-key matrices Q(1), . . . , Q(t), the value of h(Q(1)

ℓ1
, . . . , Q

(t)
ℓt
) will yield −n2p(yℓ1 , . . . , yℓt)

2

where yi = S[i], and ℓ1, . . . , ℓt ∈ [n].

Choose a h(x1, . . . , xt) of degree k (where k is a number greater than the maximum number of
variables in each monomial of p2), and is of any sparsity s (satisfying s0.s > 2k0), where each
monomial of p2 divides at least some degree k monomial of h. We assign each of these monomials
of p2 to exactly one degree k monomial mi of h for i ∈ [s], and we associate a set Ti which stores all
the monomials of p2 that are assigned to this monomial mi of h.

Now, define Q(1), . . . , Q(t) ∈ Rn×(s0.s), where each column block is of size s0, as:

1. For the i-th column block, where for each column j ∈ [s0] of the block, we consider the
exponents of the variables of p such that h(Q(1)

ℓ1
, . . . , Q

(t)
ℓt
) will give evaluations of the j-th

monomial of −p2 at (yℓ1 , . . . , yℓt), for all ℓ1, . . . , ℓt ∈ [n]. For these values of i, j, we will
simply denote these terms as the monomial corresponding to this column (i− 1)s0 + j.
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(a) If the j-th monomial of p2, for j ∈ [s0], consists of kj variables, and is in Ti for some

i ∈ [s], let Cjx
dr1
r1 . . . x

drkj
rkj

be this monomial where xr1 is the highest preference
variable. Then, we define the j-th column of the i-th column block of Q(r1) as

Q
(r1)
1:n,(i−1)s0+j := n

−Cjy
dr1
1

...

−Cjy
dr1
n

 ,

and for 1 < q ≤ kj ,

Q
(rq)

1:n,(i−1)s0+j := n

y
drq

1
...

y
drq
n

 .

For all r ∈ [t] such that xr is a variable of mi and the j-th monomial of p2 does not
contain xr but is present in Ti, we define

Q
(r)
1:n,(i−1)s0+j := n.1n,

and otherwise, if xr is not present in mi

Q
(r)
1:n,(i−1)s0+j := 0n.

(b) If the j-th monomial of p2, for j ∈ [s0], is not in Ti, then we define

Q
(r)
(1:n,(i−1)s0+j) = 0n,

for all r ∈ [t].

2. Fixing an i such that mi is of degree ≤ k, we define the query-key matrices as before, to
cancel out the terms which were defined in the degree k. Each degree k term had s0 terms
which could lead to non-zero values, and now for the block i, corresponding to the monomial
i, the r-th column in that block will cancel out the j-th columns of each block obtained from
the degree k-terms, for j ∈ [s0].

Let sji be the integer which is the number of occurrences of j-th monomial of p2 while com-
puting the monomial containing variables x1, . . . , xt corresponding to mi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
),

when we consider each of the monomials mℓ ordered higher preference than i, (i.e., ℓ < i),
and is divisible by mi.

As before, sji is the sum defined by adding:

• −Cj whenever ℓ < i, mi divides mℓ, degree of mℓ is exactly k, and the highest priority
variable of mℓ is present in mi.

• −sjℓ whenever ℓ < i, mi divides mℓ, degree of mℓ is less than k, and the highest
priority variable of mℓ is also present in mi.

• −1 otherwise when the above conditions are not met but mℓ divides mi.
• 0 in all other cases.

For every j ∈ [s0], if xr is not present in monomial j of p2 for r ∈ [t], we just set

Q
(r)
(1:n,(i−1)s0+j) := 0n,

otherwise, for the highest preference xr1 variable of the j-th monomial of p2, we define:

Q
(r1)
(1:n,(i−1)s0+j) = n


sjiy

dr1
1

sjiy
dr1
2
...

siy
dr1
n


n×s0.s

,
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and for all other r such that xr divides this monomial,

Q
(r)
(1:n,(i−1)s0+j) = n


ydr
1

ydr
2
...

ydr
n


n×s0.s

.

Notice that in these constructions, we have only used linear combinations of yqr ’s for r ∈ [t] and
q ∈ [2k0]. Therefore, weight matrices WQ(r) ∈ R(s0.s)×(s0.s) exist for every fixed polynomial p such
that 

1 y11 . . . y2k0
1 0 . . . 0

1 y12 . . . y2k0
2 0 . . . 0

...
...

...
1 y1n . . . y2k0

n 0 . . . 0


T

︸ ︷︷ ︸
s0.s

WQ(r)

yield the required Q(r)’s. For defining the value matrices, for the first t coordinates, the r-th coordinate
of V (r), r ∈ [2 : t] stores the corresponding value of xr, and all the other entries are of the coordinates
in [2 : t]\{r} are one, and the first coordinate is zero. More specifically, we define

V (r) =


0 1 . . . 1 y1 1 . . . 1 0 . . . 0
0 1 . . . 1 y2 1 . . . 1 0 . . . 0
...

...
...

0 1 . . . 1 yn 1 . . . 1 0 . . . 0

 ,

where the r-th column has the values of the yi’s.

Using the construction defined above, we have h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = −nkp2(yℓ1 , . . . , yℓt) since the

degree k monomials of h are what contribute to −p2(yℓ1 , . . . , yℓt) from the corresponding column
blocks. Inside each of these column blocks corresponding to degree k monomials of h, the j-th
column for j ∈ [s0] gives the value of the j-th monomial of −p2 at (yℓ1 , . . . , yℓt). Due to our
construction, all the values of mi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
) are zeros when mi’s are of degree < k, which

finally gives us the required result.

Now, for each fixed ℓ1, the value of h(Q(1)
ℓ1

, . . . , Q
(t)
ℓt
) = −p2(yℓ1 , . . . , yℓt) which is maximized

for some indices ℓ02, . . . , ℓ
0
t , is at least en

2

factor larger than all the other values in the summation∑
ℓ2,...,ℓt∈[n] e

h(Q
(1)
ℓ1

,...,Q
(t)
ℓt

). With the given construction of V (r)’s, the values of yℓ02 , . . . , yℓ0t for

which −p2(yℓ1 , ∗) is maximized, will be present in the first t coordinates of the output Att
(h)
ℓi

.

Construction of second head. Finally, we need to verify that if there exists some ℓ01 such that the
values of x2, . . . , xt encoded in Att

(h)

ℓ01
indeed is a root of the polynomial. For this, we need the value

of yℓ1’s for each of the ℓ1-th coordinate, and we incorporate this by using a second attention-head,
whose output matrix contains the vector [y1 . . . yn]

T in the first column and all zeros elsewhere.

Therefore, when we add the two attention heads, the ℓ1-th row will contain the values of (yℓ1 , . . . , yℓt)
which maximizes the value of −p2(yℓ1 , ∗). Finally, we can check using the output MLP layer if
indeed the value is a root of the polynomial.

H EXPERIMENTAL DETAILS

In this section, we explain the experimental setup behind Figure 2. We train transformers that use
self-attention for one and two layers, as well as a one layer tree-attention for the attention polynomial
h(x1, x2, x3) = x1x2 + x2x3. (This is the polynomial from Theorem 3.1 above.) We infer from the
experimental findings that tree-attention is better– it is faster, more learnable and uses less space
compared to its representational counterpart, the two layer self-attention.
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First, we explain the details behind Figure 2, which shows that despite having less trainable parameters
than two layer self-attention tree-attention is more learnable. Note that two layer self-attention requires
two query matrices, two key matrices, and two MLP layers, while tree-attention requires only three
query-key matrices and one MLP layer.

Next, we show that the time to compute tree-attention is comparable to the runtime to compute
two-layer self-attention.

Problem set-up. We solve a special case of function composition, which we will call 0-function
composition. Here, for an integer n, given two functions f1, f2 : [n] → [n], we are interested in
computing the value of f1(f2(0)).

We know that a two layer transformer using self-attention, can solve function composition but one
layer can not Peng et al. (2024), and we further proved in Theorem 3.1 that tree attention can solve it
as well. The lower bound proof of Peng et al. (2024) for impossibility of solving function composition
using one layer self-attention also translates to impossibility of solving f1(f2(0)). We show that
these theoretical results are in line with practice, where transformers with two layer self-attention as
well as transformers with one layer tree-attention can both solve 0-function composition for n = 12
(which means the number of tokens is 2n+ 1 = 25).

Input generation. As described above, we train the transformers to learn f1(f2(0)) where f1, f2 :
[n] → [n], for n = 12. The inputs are given as a triples (j, fj(i), i), for j ∈ {1, 2}, i ∈ [n], and
a final token (3, 0, 0), on which the output will be encoded. This requires a vocabulary size of
3 + n+ n = 2n+ 3. The functions f1, f2’s are generated uniformly at random from the set [n] for
each batch in each epoch.

Architecture details. We choose a sequence length of 25, having vocabulary size 27. The trans-
former has an embedding dimension d = 8, number of heads H = 1, followed by an MLP layer
which uses ReLU activation with one hidden layer of size 1024. We also use the standard sinusoidal
positional encoding from Vaswani et al. (2017), given by

PEi,2j = sin

Å
i

100002j/d

ã
,

PEi,2j+1 = cos

Å
i

100002j/d

ã
,

, for i ∈ [n], j ∈ {0, . . . , d/2}, which is added to the i-th token.

Training details. For learning, we use a batch size of 1024, a learning rate of 0.001 and train the
model using an Adam optimizer. The model is trained for 30, 000 epochs on a 2024 Apple Macbook
Air with an M3 Chip, and the evaluations have been shown in Figure 2 and Figure 3.

Figure 3: Loss per epoch for learning f1(f2(0)) for sequence length 25, on a single layer of tree-
attention, one layer self-attention and two layer self-attention.
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Observed inference running time. We plot the running time of computing self-attention for
sequence length in {50, 100, 200}. We use embedding dimension d = 16, number of heads H = 8,
and hidden layer width 256 for the transformers, and evaluate it on a batch of 1024.

With this architecture, we randomly choose query, key and value weights in Rd×d, and random
weights and biases for the MLP layer. Then we randomly generate 1024 inputs X ∈ Rn×d and
compute the running time of the attention mechanisms. We repeat this a total of 10 times and take an
average of the running time, has been depicted in the following table.

Sequence length 1-layer self-attention 2-layer self-attention 1-layer tree-attention
50 12.600 ms 48.532 ms 24.171 ms

100 31.403 ms 172.083 ms 81.579 ms
200 115.239 ms 680.325 ms 337.360 ms

Figure 4: Average running time of self-attention and tree-attention

Discussion. We obtain the following conclusion about tree-attention from these experiments.

• One layer tree-attention can successfully learn 0-function composition, despite having only
three query-key matrices and only one MLP layer (compared to two-layer self-attention that
has two query matrices, two key matrices and two MLP layers).

• One layer tree-attention exhibits better learnability for 0-function composition than two
layer self-attention as in Figure 2, since accuracy increases faster for tree-attention.

• Tree-attention has an efficient inference time. From Table 4, we infer that it has a running
time comparable to self-attention, and in our cases, even outperforms two layer self-attention.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models have been used to find related works, and to polish the codes for experiments.
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