
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLY-ATTENTION: A GENERAL SCHEME FOR HIGHER-
ORDER SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The self-attention mechanism, at the heart of the Transformer model, is able to
effectively model pairwise interactions between tokens. However, numerous recent
works have shown that it is unable to perform basic tasks involving detecting
triples of correlated tokens, or compositional tasks where multiple input tokens
need to be referenced to generate a result. Some higher-dimensional alternatives to
self-attention have been proposed to address this, including higher-order attention
(Sanford et al., 2023) and Strassen attention (Kozachinskiy et al., 2025), which
can perform some of these polyadic tasks in exchange for slower, superquadratic
running times.
In this work, we define a vast class of generalizations of self-attention, which we
call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-
order (tensor) computations as well as arbitrary relationship structures between
the input tokens, and they include the aforementioned alternatives as special cases.
We then systematically study their computational complexity and representational
strength, including giving new algorithms and matching complexity-theoretic
lower bounds on the time complexity of computing the attention matrix exactly
as well as approximately, and tightly determining which polyadic tasks they can
each perform. Our results give interesting trade-offs between different desiderata
for these mechanisms, including a tight relationship between how expressive a
mechanism is, and how large the coefficients in the model may be so that the
mechanism can be approximated in almost-linear time.
Notably, we give a new attention mechanism which can be computed exactly in
quadratic time, and which can perform function composition for any fixed number
of functions. Prior mechanisms, even for just composing two functions, could only
be computed in superquadratic time, and our new lower bounds show that faster
algorithms for them are not possible.

1 INTRODUCTION

The transformer architecture, introduced by Vaswani et al. (2017), has the self-attention mechanism at
its heart, which is used to capture pair-wise correlations in large language models. Since its inception,
it has been used in a variety of large language model (LLM) architectures, including BERT (Devlin
et al., 2019), GPT series (Radford et al., 2018; Brown et al., 2020; OpenAI, 2023), Claude (Anthropic,
2024), Llama (Grattafiori et al., 2024), and o1 (OpenAI, 2024). Its success has led to its prominent
use in nearly every area of modern deep learning.

Transformers consist of three main components within each block: an input Multilayer Perceptron
(MLP) layer, followed by a self-attention mechanism, then finally an output MLP layer Vaswani
et al. (2017). The self-attention mechanism is a function from Rn×d → Rn×d which computes and
combines weighted pairwise correlations between tokens in its input, and is key to the success of the
Transformer model.

Self-attention (Vaswani et al., 2017). For a matrix M and index i, we write Mi to denote the ith
row of M . Given a query matrix Q ∈ Rn×d, key matrix K ∈ Rn×d and value matrix V ∈ Rn×d for
a specific input, the output of the self-attention function is given by the matrix Att ∈ Rn×d, whose

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ith row is:

Atti =

∑
j∈[n] exp(

1
d ⟨Qi,Kj⟩) Vj∑

j∈[n] exp(⟨Qi,Kj⟩)
.

Despite the widespread use of self-attention in Transformers, there are limits to its expressive
power, which is intuitively limited to capturing pairwise correlations between tokens. In particular,
researchers have defined a number of basic tasks such as iterated function composition, Match3,
Parity, Majority, and Dyck-1 which require higher order relationships than pairwise correlations
and provably cannot be solved by simple self-attention networks (Sanford et al., 2024b; Peng et al.,
2024; Hahn, 2020). Empirical studies have also confirmed this intuition, showing poor performance
by simple Transformers on benchmark datasets like multiplication, logical puzzles and dynamic
programming Dziri et al. (2023), memorized mappings (Zhang et al., 2025) and other datasets like
SCAN (Lake & Baroni, 2018), PCFG (Hupkes et al., 2020), CLUTRR (Sinha et al., 2019), CoGS
(Kim & Linzen, 2020), GFQ (Keysers et al., 2020), and CREPE (Ma et al., 2023).

In this paper, we focus especially on a type of task called function composition. As a simple example,
the language model may be given the query "If Sam lives in Toronto, Peter lives in Paris, Toronto is
in Canada, and Paris is in France, which country does Sam live in?", and the model is expected to
reply "Canada". This is a composition of two functions: the first maps people to cities, and the second
maps cities to countries. Several works including (Peng et al., 2024; Dziri et al., 2023; Lu et al.,
2023) have shown, both theoretically and experimentally, that simple language models are unable to
perform these tasks. In order to overcome these representational limitations, several stronger attention
mechanisms have been proposed, notably higher-order tensor attention and Strassen attention which
we define next.

Tensor-attention. Clift et al. (2020) came up with a tensor generalization of self-attention, called 2-
simplical attention, which Sanford et al. (2024b) also studied as the higher-order tensor attention (that
we will call 3-tensor attention) for a query matrix Q(1) ∈ Rn×d, key matrices Q(2), Q(3) ∈ Rn×d

and value matrices V (2), V (3) ∈ Rn×d. The output is given by the matrix Att(T) ∈ Rn×d, whose ith
row is given by:

Att
(T)
i =

∑
ℓ1,ℓ2∈[n] exp(

1
d ⟨Q

(1)
i , Q

(2)
ℓ2

, Q
(3)
ℓ3

⟩) V (2)
ℓ2

⊙ V
(3)
ℓ3∑

ℓ1,ℓ2∈[n] exp(
1
d ⟨Q

(1)
i , Q

(2)
ℓ2

, Q
(3)
ℓ3

⟩)
.

Here ⊙ denotes the element-wise product (also called Hadamard product), and for three vectors
a, b, c ∈ Rd, we define ⟨a, b, c⟩ =

∑d
ℓ=1 a[ℓ]b[ℓ]c[ℓ].

Sanford et al. (2024b) showed that one 3-tensor attention head can solve more complicated tasks
like Match3, which requires finding a triple of correlated tokens. They also defined a natural
generalization to t-tensor attention, which can solve Match-t for t ≥ 3.

Strassen-attention. Later, Kozachinskiy et al. (2025) gave a more efficient attention mechanism
that can also perform Match3 and several other tasks difficult for self-attention. (As we will discuss
shortly, 3-tensor attention can have prohibitive computational complexity, and Strassen-attention was
defined as a step toward addressing this.) This attention mechanism is again defined over a query
matrix Q(1) ∈ Rn×d, key matrices Q(2), Q(3) ∈ Rn×d and value matrices V (2), V (3) ∈ Rn×d. The
output matrix is Att(S) ∈ Rn×d, where the ith row, for i ∈ [n], is given by:

Att
(T)
i =

∑
ℓ2,ℓ3∈[n] exp(

1
d (⟨Q

(1)
i , Q

(2)
ℓ2

⟩+ ⟨Q(2)
ℓ2

, Q
(3)
ℓ3

⟩+ ⟨Q(3)
ℓ3

, Q
(1)
i ⟩)) V (2)

ℓ2
⊙ V

(3)
ℓ3∑

ℓ2,ℓ3∈[n] exp(
1
d (⟨Q

(1)
i , Q

(2)
ℓ2

⟩+ ⟨Q(2)
ℓ2

, Q
(3)
ℓ3

⟩+ ⟨Q(3)
ℓ3

, Q
(1)
i ⟩))

.

Quite recently, 3-tensor attention has been implemented and performances studied by Roy et al.
(2025). We refer the reader to Section B in which we survey other attention mechanisms and the
landscape of results known about them in more detail.

1.1 RUNNING TIME CONSIDERATIONS

A natural trade-off arises in these proposed attention mechanisms: as the attention mechanism
becomes more general to give more representational power, the required running time increases too.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This can often be prohibitive: the quadratic running time of self-attention is already a computational
bottleneck which is mitigated in practice only by extensive hardware; a superquadratic running time
may not be practical even with such hardware speedups.

We compare here the running times of various attention mechanisms as a function of n, the number of
input tokens, where the embedding dimension is d = O(log n); see running times in Table 1 below.

Exact Algorithms. The best algorithms for self-attention take time n2+o(1), matching the straightfor-
ward algorithm. For tensor attention, the best algorithm is also the straightforward algorithm, which
for t-tensor attention (t ≥ 3) runs in superquadratic time nt+o(1).

The straightforward algorithm for Strassen attention, just following its definition, takes time n3+o(1).
However, Kozachinskiy et al. (2025) give a faster algorithm for Strassen attention with running
time O(nω), where ω ≤ 2.3714 is the exponent of matrix multiplication (Alman et al., 2025), i.e.,
the constant such that n × n matrices can be multiplied in time O(nω). This faster algorithm is
still truly supercubic, and moreover, we note that the aforementioned bound on ω comes from a
highly theoretical algorithm, and typically either ω ≈ 2.81 from Strassen’s algorithm (Strassen,
1969), or even ω = 3 from the straightforward matrix multiplication algorithm, are used in practice.
(Kozachinskiy et al. (2025) named it after Strassen’s matrix multiplication algorithm to emphasize
this faster algorithm.)

It is natural to wonder whether even faster algorithms are possible, and particularly whether tensor
attention or Strassen attention could be computed in quadratic time. In fact, these known running
times are known to be optimal under standard complexity-theoretic assumptions, so these algorithms
cannot be improved. For self-attention and tensor attention, this was shown in prior work (Alman &
Song, 2023; 2024); for Strassen attention, we prove this here in Theorem 3.6 below.

Approximation Algorithms. In most cases, a sufficiently accurate approximation of self-attention
suffices, and this can sometimes be computed much faster. Alman & Song (2023) shows that as
long as the entries of the query and key matrices are bounded (and all have magnitude at most
B = o(

√
log n)) we can compute an entry-wise approximation of the self-attention matrix in almost

linear time, n1+o(1). 1 Alman & Song (2024) similarly showed how to compute an entry-wise
approximation of tensor attention Att(T) in n1+o(1) time, with a smaller bound on B. These prior
works have also shown matching lower bounds, showing that these bounds B are tight: if the weights
are even slightly larger, than the straightforward exact running times discussed above are unavoidable.
(These lower bounds use standard assumptions from fine-grained complexity theory; see Section 4
for more details.) Many different lines of experimental work studied Transformers with reasonable
precision guarantees (Zafrir et al., 2019; Sun et al., 2019; Katharopoulos et al., 2020; Dettmers et al.,
2022; Xiao et al., 2023; Dettmers et al., 2022; Perez et al., 2023; Roy et al., 2021; Han et al., 2024).

Mechanism Exact cc Apx cc Bound

Self-attention n2+o(1) n1+o(1) o(
√
log n)

t-Tensor n3+o(1) n(1+o(1)) o((log n)1/t)
Strassen nω+o(1) n(1+o(1)) o(

√
log n)

Tree (new) n2+o(1) n(1+o(1)) o(
√
log n)

Poly (new) nt+o(1) n(1+o(1)) o((log n)1/k)

Table 1: This summarizes the running times of both exact
and approximate algorithms for these attention variants. For
entry-wise approximation (Apx cc), the bound B is the max-
imum absolute value of the matrix entries such that we can
entry-wise approximate the output matrix in near-linear time;
the attention polynomial is in t variables and has degree k.
Alman & Song (2023; 2024) proved bounds for self-attention
and tensor-attention, while we prove the rest.

In this paper, we build on this line of
work and give the first fast approxi-
mation algorithm for Strassen atten-
tion. We show that, if all the weights
are bounded by B = o(

√
log n), then

one can approximate Strassen atten-
tion in almost linear time n1+o(1), and
if the weights are larger, then the ex-
act running time of nω−o(1) cannot
be avoided (again using fine-grained
complexity assumptions). This lower
bound fits within a new, much more
general lower bound on different gen-
eralizations of attention which we will
state in Theorem 3.6 later. In partic-
ular, although the statement appears
similar to prior work, proving this
requires substantial new techniques,
since prior techniques focused on proving cubic lower bounds, but Strassen attention actually has a

1An entry-wise approximation outputs a matrix where each entry is at most 1
poly(n)

far from the exact value.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

subcubic (but superquadratic) time algorithm based on matrix multiplication; see Section 4 for more
details.

1.2 POLY-ATTENTION IS ALL YOU NEED

In this work we introduce a more general class of attention mechanisms called poly-attention that
generalizes and improves upon these previous attention mechanisms. An instantiation of poly-
attention is given by a base polynomial, h, over t variables, degree k and sparsity s. We will precisely
define poly-attention shortly, and show that it includes self-attention, tensor attention, and Strassen
attention as special cases.

Our main results include complete and exhaustive analyses of the running times one can achieve
to compute or approximate different poly-attentions, as well as the expressive power of each one.
Using these, we identify new, specific instantiations of poly-attention which are simultaneously more
expressive than self-attention, and easier to compute than prior replacements to self-attention. One
may also use our results to identify attention mechanisms of interest which achieve a desired trade-off
between expressiveness and computational complexity.

Tree-attention. We particularly highlight a subclass of our poly-attention mechanisms that we call
tree-attention, which loosely speaking is characterized by a subclass of degree-2 base polynomials
h that possesses a tree-like property. We find that all tree-attention mechanisms can be computed
in quadratic time, matching the running time of standard self-attention. Furthermore, we show that
tree-attention can solve r-fold function composition for any constant r.

This is a substantial improvement on prior attention mechanisms. Self-attention cannot even solve
2-fold function composition. Meanwhile, 3-tensor attention and Strassen attention, which can solve
2-fold function composition, require superquadratic time, and furthermore, they cannot solve 3-fold
function composition. Our new tree-attention can solve r-fold function composition for all r and can
be computed in quadratic time (Theorem 3.4).

We give a more detailed analysis of tree-attention, including tight exact and approximation algorithms,
in Section 3.2, (Theorem 3.5). We posit tree-attention as the best of all worlds in terms of representa-
tional strength and time complexity. In addition to strictly improving the expressive power of the
self-attention mechanism, we will see that the runtime of tree-attention matches the best possible
runtimes in both the exact and approximate versions. We envision two types of users/applications:

• if quadratic running time can be tolerated then use the exact algorithm for tree-attention

• if a faster, almost linear running time is needed, then the user should find the largest bound
B on the weights which can be tolerated by their hardware and architecture, and then apply
the most expressive tree-attention which can be approximated quickly for that B (we will
explore the trade-off in Section 3.2).

We emphasize that our exact and approximate algorithms for tree-attention only use straightforward
matrix multiplication algorithms, and do not rely on bounds on ω or other impractical fast matrix
multiplication algorithms. See Section 5 for an experimental validation.

Full characterization of poly-attention. Beyond tree-attention, we give a full characterization of
the running time needed to compute poly-attention as a function of the underlying properties of the
base polynomial, h. We find that these mechanisms often require cubic or more time to compute
exactly, but nonetheless have fast approximation algorithms when B (the bound on the weights) is
small enough, and meanwhile can perform very complex tasks.

2 THE POLY-ATTENTION MECHANISM

In this section, we define the general class of poly-attention mechanisms. They will be described by a
special class of multi-linear polynomials, which we will call attention polynomials.

Definition 2.1 (Attention polynomial). We call a polynomial h(x1, . . . , xt) an attention polynomial
of degree k if it is multi-linear, it has coefficients only in {0, 1}, and all its monomials have degree at
least 2 and at most k.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Attention polynomials will be a central concept in this article. We will use them to concisely denote
combinations of inner products of vectors. Given vectors Y1, . . . , Yt ∈ Rd, consider a multi-linear
monomial of an attention polynomial, m, of degree k containing variables xj1 , . . . , xjk , where
1 ≤ j1 < . . . < jk ≤ t. We denote m(Y1, . . . , Yt) := ⟨Yj1 , Yj2 , . . . , Yjk⟩, which is an inner product
of order k. Then, given an attention polynomial h(x1, . . . , xt) containing s monomials m1, . . . ,ms,
we define h(Y1, . . . , Yt) :=

∑
i∈[s] mi(Y1, . . . , Yt).

Now, we describe our new class of poly-attention mechanisms, of order t, using an attention polyno-
mial h(x1, . . . , xt) of degree k having s monomials (typically think of t, k, s as small constants).

Definition 2.2 (Poly-attention). For an attention polynomial h(x1, . . . , xt) having s monomials
of degree at most k, we define the poly-attention function from Rn×d to Rn×d, which depends
on h and has, as its parameters, query-key weights WQ(1) , . . . ,WQ(t) ∈ Rd×d and value weights
WV (2) , . . . ,WV (t) ∈ Rd×d.

For an input X ∈ Rn×d, the query-key matrices are denoted as Q(1) := XWQ(1) , . . . , Q(t) :=

XWQ(t) and the value matrices as V (2) := XWV (2) , . . . , V (t) := XWV (t) .

The output of the poly-attention function will be given by the matrix

Att(h)(Q(1), . . . , Q(t), V (1), . . . , V (t)) ∈ Rn×d,

where the ℓ1-th row is defined as:

Att
(h)
ℓ1

=

∑
ℓ2,...,ℓt∈[n] exp

Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
)
ä
V

(2)
ℓ2

⊙ V
(3)
ℓ3

⊙ . . .⊙ V
(t)
ℓt∑

ℓ2,...,ℓt∈[n] exp
Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
)
ä . (1)

We will often drop the Q(i)’s and V (j)’s from the notation Att(h) when it doesn’t lead to ambiguity.

Here, Q(1) will be the query matrix as used in the usual self-attention mechanisms, and Q(2), . . . , Q(t)

will be the key matrices, as the index of the row of Q(1) corresponds to the row of the output of
poly-attention, and correlations are considered with respect to that. However, since we use all the
variables (and hence, the matrices) in a symmetric sense, we denote both the query and the key
matrices using Q(j) for ease of notation.

Lemma 2.3. Poly-attention captures all the previous higher-order self-attention techniques. In
particular, (i) self-attention is poly-attention with the base polynomial h(x1, x2) = x1x2; (ii) t-
tensor attention is poly-attention with h(x1, . . . , xt) = x1 . . . xt; and (iii) Strassen-attention is
poly-attention with h(x1, x2, x3) = x1x2 + x2x3 + x3x1.

3 BEYOND SELF-ATTENTION: THE POWER OF POLY-ATTENTION

In this section, we study the strength and limitations of the poly-attention scheme. We begin in
Section 3.1 by studying an illustrative example. Thereafter, we will consider tree-attention and
poly-attention in full generality.

3.1 AN EXAMPLE: FUNCTION COMPOSITION

Mechanism 2-fold 3-fold
Self-attention No No
3-Tensor Yes No
Strassen Yes No
Tree (new) Yes Yes
Poly (new) Yes Yes

Table 2: Compositionality results show-
ing support for function composition.
Peng et al. (2024) prove impossibil-
ity bounds for self-attention, Kozachin-
skiy et al. (2025) simulate 2-fold with
Strassen-attention, while we prove the
rest.

To demonstrate the power of poly-attention, we analyze
a special case when h(x1, x2, x3) = x1x2 + x2x3. We
show that this specific poly-attention can efficiently solve
important tasks faster than any other previous attention
mechanisms.

To demonstrate the strength of this polynomial h, we de-
fine the function composition problem demonstrated ear-
lier. Mathematically, the 2-fold function composition prob-
lem is: given two functions f1, f2 : [n] → [n] and x ∈ [n],
output f2(f1(x)). To express this problem for an attention
mechanism, the input is X ∈ R(2n+1)×d, where Xi for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

i ∈ [n] contains an encoding of f1(i), Xj for j ∈ [n + 1, 2n] contains an encoding f2(j − n) and
X2n+1 contains an encoding of x; and our goal is to output the value of f2(f1(x)) in the (2n+ 1)-th
entry of the output.

Peng et al. (2024) proved that self-attention cannot simulate 2-fold function composition, and even
that almost n self-attention heads are needed in order to solve it. Since self-attention needs quadratic
time to compute, it would take cubic time to compute n heads. All prior mechanisms that solve
this, including 3-tensor attention and Strassen-attention, require superquadratic time. This leads
to our punchline: poly-attention for this very simple polynomial h2 can simulate 2-fold function
composition in just quadratic time!

Theorem 3.1. Let h2(x1, x2, x3) = x1x2 + x2x3. Poly-attention for h2 can simulate function
composition using only one head. Furthermore, Att(h2) can be computed in O(n2) time.

We will tightly characterize what weights are needed for efficient approximation of all poly-attentions;
in the case of Att(h2), we find:

Theorem 3.2. Given the polynomial h2(x1, x2, x3) = x1x2 + x2x3, where the entries of the query-
key matrices are in [−B,B]:

1. If B = o(
√
log n), we can compute an entry-wise (1/poly(n))-approximation of Att(h2) in

time n1+o(1).

2. If B = Ω(
√
log n), then every algorithm for computing an entry-wise (1/poly(n))-

approximation of Att(h2) requires time Ω(n2), unless SETH is false.

We consider next 3-fold function composition, in which the input is three functions, f1, f2, f3 :
[n] → [n] and x ∈ [n], and we want to compute f3(f2(f1(x))). To our knowledge, no prior attention
mechanisms could perform 3-fold function composition. In particular, although Strassen-attention
and 3-tensor attention were designed to solve problems like 2-fold function composition, we prove
that they cannot compute 3-fold function composition when the precision is bounded:

Theorem 3.3. Strassen-attention and 3-tensor attention, require at least H > n1−o(1) heads to
simulate 3-fold function composition when the precision is bounded.

However, we prove that poly-attention can indeed simulate 3-fold composition, and even more
generally r-fold composition for any constant r, and still be evaluated in quadratic time!

Theorem 3.4. For any integer r ≥ 2, define the polynomial hr(x1, . . . , xr) = x1x2 + x2x3 + . . .+
xrxr+1. Then, poly-attention for hr can simulate r-fold function composition, and Att(hr) can be
computed exactly in time O(r3n2) (input dimension here is O(rn), not n).

In fact, we give a general characterization of which polynomials h can be used in Att(h) to perform
r-fold function composition. For example, we will also prove that poly-attention for hr−1 can not
simulate r-fold function composition.

3.2 TREE-ATTENTION: POLYNOMIALS LEADING TO EFFICIENT POLY-ATTENTION

x1

x2 x3 x4

x5 x6
x7

Figure 1: Graphical representation for the tree
polynomial h(x1, . . . , x7) = x1x2 + x1x3 +
x1x4 + x2x5 + x2x6 + x4x7

We saw in the previous section that instances of poly-
attention which can be computed in quadratic time
can have great representational strength. A natural
question arises: what is the class of attention polyno-
mials that can be exactly computed in only n2+o(1)

time? Could there be even stronger ones? We answer
this by giving a complete characterization. We first
define a few notations to describe them.

For an attention polynomial h(x1, . . . , xt) of degree
2, we say that a simple graph G is the graphical rep-
resentation of h, if G contains t vertices v1, . . . , vt,
where vertex vi corresponds to the variable xi, and
there exists an edge between vi and vj if and only if xixj is a monomial present in h. If the graphical

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

representation of h is a tree or a forest, we say that h is a tree polynomial, and poly-attention for a
tree polynomial will be called tree-attention.

Our main result about tree-attention shows that it can be computed just as efficiently as self-attention,
both for exact algorithms (where it can be computed in quadratic time) and approximate algorithms
(which has the same bound B = o(

√
log n) as in self-attention, which is also the largest bound for

any poly-attention):

Theorem 3.5. Given a tree polynomial h, where the entries of the query-key matrices are in [−B,B]:

1. The output of tree-attention, Att(h), can be exactly computed in n2+o(1) time.

2. If B = o(
√
logn), entry-wise approximation of Att(h) can be computed in n1+o(1) time.

3. If B = Ω(
√
log n), under standard complexity assumptions, entry-wise approximation of

Att(h) requires Ω(n2) time.

Tree polynomials include the polynomials hr from Theorem 3.4 which can compute function composi-
tion. More generally, the poly-attention for a tree polynomial, where the tree has depth q, can simulate
(q − 1)-fold function composition, as well as a variety of tree generalizations. (Function composition
can be naturally seen as corresponding to the path graph, which is the graphical representation of hr.)

We show next that, for any attention polynomial which is not a tree polynomial (either because it has
degree more than 2, or because its graphical representation contains a cycle), its poly-attention requires
superquadratic time to compute. Thus, as promised, tree-attentions form a complete characterization
of quadratic-time poly-attentions.

3.3 COMPUTATIONAL COMPLEXITY OF NON-TREE POLY-ATTENTION

Next, we give a complete characterization of the computational complexity (both exact and approxi-
mate) for poly-attention for all attention polynomials h.

Theorem 3.6. Given poly-attention for an attention polynomial h(x1, . . . , xt) of degree k and
sparsity s which is not a tree polynomial, where the query-key matrices have entries in [−B,B]:

1. If B = o((log n)1/k), entry-wise 1
poly(n) -approximation of Att(h) can be computed in

almost-linear time.

2. If B = Ω((logn)1/k), entry-wise 1
poly(n) -approximation of Att(h) requires superquadratic

time, assuming standard complexity assumptions.

Prior work gave this characterization for specific polynomials h (Alman & Song (2023) for the usual
self-attention (i.e., h(x1, x2) = x1x2), followed by Alman & Song (2024) for t-tensor attention i.e.,
h(x1, . . . , xt) = x1 · · ·xt). We discuss in Section 4 below a number of technical hurdles which we
overcome to generalize their results to all attention polynomials and prove Theorem 3.6.

Notably, for many polynomials such as h(x1, x2, x3) = x1x2 + x2x3 + x1x3 (corresponding to
Strassen attention), there is a subcubic algorithm which uses fast matrix multiplication, so prior
approaches, which can only prove cubic (or above) lower bounds, cannot apply. In fact, we generalize
the Strassen attention algorithm (Kozachinskiy et al., 2025), and prove that for any degree-2 attention
polynomial h whose graphical representation contains exactly one cycle, there is an exact algorithm
for Att(h) running in subcubic time O(nω), and that this cannot be improved.

3.4 REPRESENTATIONAL STRENGTH OF POLY-ATTENTION

We have discussed function composition at length, but poly-attention is also able to perform a variety
of other basic expressive problems. As an example, Match3 has been highlighted by prior work
(Sanford et al., 2024a; Kozachinskiy et al., 2025) as a problem which requires detecting correlated
triples of tokens. We define here a generalization called polynomial root-finding which can be solved
by poly-attention.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The problem is defined in terms of a fixed polynomial p(x1, . . . , xn) (which, unlike an attention
polynomial, may have degree 1 monomials, and may not be multi-linear). In the problem, given as
input a set S containing n integers, and the goal is to find y1, . . . , yt ∈ S such that p(y1, . . . , yt) = 0.

Match3 is a special case of root-finding, corresponding to the simple polynomial p(x1, x2, x3) =
x1 + x2 + x3. Circuit evaluation for constant sized circuits, and other related problems can also be
captured by polynomial root-finding by using arithmetization. We prove that for any polynomial p,
one can solve polynomial root-finding using poly-attention:

Theorem 3.7. For every polynomial p(x1, . . . , xt), there is an attention polynomial h(x1, . . . , xt)
such that a Transformer using two heads of poly-attention for h can solve polynomial root-finding.

Finding the attention polynomial h for a given polynomial p using our approach is straightforward
but requires some details; it could be performed by a user who would like to answer query patterns
corresponding to polynomial root-finding for a particular p.

3.5 IMPLICATIONS OF POLY-ATTENTION
As we have seen, tree-attention can solve many problems which self-attention cannot, and still it can
be computed in quadratic time. We show that this quadratic time is indeed practicable by showing in
Figure 5 that the time-complexity does not hide large constants.

We further show in experiments in Section H that tree-attention is indeed more expressive than
self-attention. This seems to be a promising area of research, and it will be interesting to study the
large scale deployment of tree-attention instead of self-attention in follow-up work. One can select an
appropriate tree-polynomial to use depending on the relationships between the data that the model
intends to process.

When we move to more general poly-attention, for any attention polynomial h which is not a tree
polynomial, we have shown in Theorem 3.6 that (without a small bound on the model weights) poly-
attention provably requires superquadratic time. Thus, there is a trade-off between expressiveness
(most straightforwardly represented by the degree and order of the polynomial h, although it could
also take into account which tasks like polynomial root-finding can be performed), and running
time (depending on how bounded the entries must be). Model designers therefore have a choice,
potentially depending on the hardware available to them, the desired running time, and the logical
structures they expect to see in their data and queries.

It would be exciting, in future work, to further study the expressive power of tree-attentions other than
the ones studied here, and find more examples of complicated tasks with tree-like logical structures
that it can solve. As an example, Peng et al. (2024) proposed some more problems like relationship
composition, spatial composition and temporal composition which current language models cannot
solve; it would be interesting to see how well tree-attention performs on these problems.

4 TECHNIQUE OVERVIEW
Representational strength. Our representational strength results include both constructions (e.g.,
showing that tree-attention can perform r-fold function composition) and lower bounds (e.g., showing
that Strassen-attention and 3-tensor attention cannot perform 3-fold function composition).

Our constructions use a generalization of the “sum of squares” approach of Kozachinskiy et al. (2025):
If one can design a simple polynomial c which checks possible outputs of function composition, so
that it outputs 0 on correct outputs and large values on incorrect values, then the softmax underlying
attention can detect 0s and thus solve the problem. An interesting algebraic challenge arises of
expressing c in terms of the monomials available in an attention polynomial h.

Our lower bounds make use of communication complexity theory, similar to many other representa-
tional lower bounds in the literature. We show that if function-composition can be simulated by these
mechanisms, then there is a resulting, very efficient communication protocol for a problem called
myopic pointer jumping. Results from Chakrabarti (2007); Kozachinskiy et al. (2025) showing that
myopic pointer jumping cannot be solved with small communication can then be applied.

Fast approximation algorithms. For obtaining entry-wise approximation algorithms for poly-
attention, we use low-rank decomposition methods based on the polynomial method, which were
first applied in the context of Gaussian kernel density estimation (see Aggarwal & Alman (2022);
Alman & Guan (2024)). In this approach, one critically approximates the exponential function (part

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of softmax) with a low-degree single-variable polynomial. The bound B on the weights then naturally
comes into play: the smaller the interval one must approximate the exponential on, the lower degree
polynomial one may use.

A similar approach has been used to design approximation algorithms for other variants on attention
Alman & Song (2023; 2024; 2025), although a number of intricacies arise in this general setting. For
instance (recalling that t is the number of variables in the attention polynomial h, and k is the degree),
directly applying the approach of Alman & Song (2024) would yield an approximation algorithm
whenever B = o((logn)1/t), but our algorithm works even for the much larger bound o((log n)1/k).
This is a significant improvement for t > k– in tree-attention, one could choose t = 20 but k = 2.
Lower bounds. Our running time lower bounds, where we show that different poly-attention
mechanisms cannot be computed in quadratic time (for big enough bounds B on the weights), make
use of tools from fine-grained complexity theory. In particular, as in the previous works of Alman &
Song (2023; 2024; 2025) on the fine-grained complexity of attention mechanisms, we use a popular
conjecture called the Strong Exponential Time Hypothesis (SETH) to obtain conditional hardness
results. First introduced in Impagliazzo & Paturi (2001), SETH is a strengthening of the P ̸= NP
conjecture (so, proving SETH would imply P ̸= NP), and is perhaps the most widely used conjecture
in fine-grained complexity.

Notably, the way SETH has been used in prior work results in cubic (or higher) lower bounds, and
makes it difficult to prove lower bounds for running time Ω(nω) from the matrix multiplication
exponent ω < 3. Indeed, for such a lower bound, our starting assumption must itself use matrix
multiplication in some way!

In order to prove our lower bound against Strassen attention and other poly-attention mechanisms
with O(nω) running times, we therefore use a different conjecture, the Max-2SAT conjecture (see
Alman & Vassilevska Williams (2020) and its uses in El Halaby (2016); Jansen & Włodarczyk (2024);
Bringmann & Slusallek (2021); Lincoln et al. (2018)), which roughly asserts that our current best
algorithm for the Max-2SAT problem cannot be substantially improved. We ultimately show that
a faster algorithm for Strassen attention could be used to design a faster algorithm for Max-2SAT,
refuting the conjecture. Our proof of this makes use of the distributed PCP framework (Abboud et al.,
2017) for reducing variants of SAT to other problems through multi-party interactive communication
protocols (Aaronson & Wigderson, 2009; Rubinstein, 2018).

5 EXPERIMENTAL VALIDATION

Figure 2: Accuracy per epoch for learn-
ing f1(f2(x)) for sequence length 51,
on a single layer of tree-attention, one
layer self-attention and two layer self-
attention.

We have proved that tree-attention can be computed in
the same O(n2) time as self-attention, and can simulate
function composition (whereas self-attention cannot). We
complement this with a simple experiment to demonstrate
empirical learnability and efficiency. We compare the
following models: (i) a model with one head and one layer
of tree-attention; (ii) a model with one head and two layers
of self-attention; and (iii) a model with one head and one
layer of self-attention. We train all three in the same way to
solve function composition. As expected (proved by Peng
et al. (2024)), one head and one layer of self-attention is
not able to learn function composition, but we find that the
other two are. Furthermore, we find that our tree-attention
model learns function composition in many fewer training
epochs. Lastly, our empirical evaluation of inference time
validates that tree-attention takes roughly similar time as
self-attention.2 See Figure 2 for a summary, and Section H
for further details and quantitative results.

We also perform experiments comparing simple networks
with self-attention and tree-attention on the COGS NLP dataset Kim & Linzen (2020). This is
a dataset which tests whether a model can perform simple compositional tasks when processing
language. We find that networks with tree-attention learn to higher accuracy in the same number of
epochs. See Section H for more details and quantitative results.

2As shown in Figure 5, tree-attention takes around 1.3x time as that of self-attention.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We affirm that all aspects of this research comply with the ICLR Code of Ethics. This paper does not
involve human subjects, personally identifiable data, or sensitive applications, and we do not foresee
direct ethical risks.

7 REPRODUCIBILITY STATEMENT

The paper contains theoretical results to categorize higher-order self-attention mechanism, and provide
a fundamental framework for future work. All these results, including theorems and algorithms, have
complete proofs, presented in the appendix. A roadmap to the proofs has been provided in Section
A.1 for the reader.

The code which produces the experimental results described in Sections 5 and H can be found in the
supplementary materials.

REFERENCES

Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM
Transactions on Computation Theory (TOCT), 1(1):1–54, 2009.

Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to
algorithm design. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pp. 218–230. SIAM, 2014a.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment
of sequences. In Automata, Languages, and Programming: 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I 41, pp. 39–51. Springer, 2014b.

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for lcs and
other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pp. 59–78. IEEE, 2015.

Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness of
approximation in p. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 25–36. IEEE, 2017.

Elie Abboud and Noga Ron-Zewi. Finer-grained reductions in fine-grained hardness of approximation.
Theoretical Computer Science, 1026:114976, 2025.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In 37th Computational Complexity Conference (CCC 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Albert Alcalde, Giovanni Fantuzzi, and Enrique Zuazua. Clustering in pure-attention hardmax
transformers and its role in sentiment analysis. arXiv preprint arXiv:2407.01602, 2024.

Josh Alman and Yunfeng Guan. Finer-grained hardness of kernel density estimation. In 39th
Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA, volume
300 of LIPIcs, pp. 35:1–35:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36:63117–63135, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. arXiv preprint arXiv:2505.11892, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Josh Alman and Virginia Vassilevska Williams. OV graphs are (probably) hard instances. In Thomas
Vidick (ed.), 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pp. 83:1–83:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplica-
tion. TheoretiCS, 3, 2024.

Josh Alman and Hantao Yu. Fundamental limitations on subquadratic alternatives to transformers.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=T2d0geb6y0.

Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of threshold functions
and algorithmic applications. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 467–476. IEEE, 2016.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra
on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pp. 541–552. IEEE, 2020.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2005–2039. SIAM, 2025.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pp. 51–58, 2015.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615–626. IEEE, 2018.

Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. Advances in Neural Information Processing Systems, 34:1390–1402, 2021.

Karl Bringmann and Jasper Slusallek. Current algorithms for detecting subgraphs of bounded
treewidth are probably optimal. In Nikhil Bansal, Emanuela Merelli, and James Worrell (eds.),
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pp. 40:1–40:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In Twenty-Second Annual IEEE
Conference on Computational Complexity (CCC’07), pp. 33–45. IEEE, 2007.

Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more: Quickly
derandomizing razborov-smolensky. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pp. 1246–1255. SIAM, 2016.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In International
Conference on Learning Representations (ICLR), 2022.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit complexity
bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602, 2024.

11

https://openreview.net/forum?id=T2d0geb6y0
https://openreview.net/forum?id=T2d0geb6y0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 21–40. SIAM, 2019.

David Chiang. Transformers in uniform TC0. arXiv preprint arXiv:2409.13629, 2024.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In International Conference on Machine Learning, pp. 5544–5562. PMLR, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In ICLR. arXiv preprint arXiv:2009.14794, 2021.

James Clift, Dmitry Doryn, Daniel Murfet, and James Wallbridge. Logic and the 2-simplicial
transformer. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rkecJ6VFvr.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476–6489,
2020.

Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng Wang, and Yingyan
Lin. Vitality: Unifying low-rank and sparse approximation for vision transformer acceleration with
a linear taylor attention. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 415–428. IEEE, 2023.

Ronald B Dekker, Fabian Otto, and Christopher Summerfield. Curriculum learning for human compo-
sitional generalization. Proceedings of the National Academy of Sciences, 119(41):e2205582119,
2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In
2023 IEEE 64th annual symposium on Foundations of Computer Science (FOCS), pp. 2129–2138.
IEEE, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:70293–
70332, 2023.

Mohamed El Halaby. On the computational complexity of maxsat. In Electronic Colloquium on
Computational Complexity (ECCC), volume 23, pp. 34, 2016.

12

https://openreview.net/forum?id=rkecJ6VFvr
https://openreview.net/forum?id=rkecJ6VFvr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. 2023.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=XPZIaotutsD.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Bart MP Jansen and Michał Włodarczyk. Optimal polynomial-time compression for boolean max
csp. ACM Transactions on Computation Theory, 16(1):1–20, 2024.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels, 2024. URL https://openreview.net/forum?id=
YkCjojDG3l.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=nJnky5K944.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
method on realistic data. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SygcCnNKwr.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. 2020.

13

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=YkCjojDG3l
https://openreview.net/forum?id=YkCjojDG3l
https://openreview.net/forum?id=nJnky5K944
https://openreview.net/forum?id=SygcCnNKwr

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Alexander Kozachinskiy. Lower bounds on transformers with infinite precision. arXiv preprint
arXiv:2412.20195, 2024.

Alexander Kozachinskiy, Felipe Urrutia, Hector Jimenez, Tomasz Steifer, Germán Pizarro, Matías
Fuentes, Francisco Meza, Cristian Buc, and Cristóbal Rojas. Strassen attention: Unlocking
compositional abilities in transformers based on a new lower bound method. arXiv preprint
arXiv:2501.19215, 2025.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.
2873–2882. PMLR, 2018.

Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest cycles
and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1236–1252. SIAM, 2018.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=De4FYqjFueZ.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023b.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36:43447–43478, 2023.

Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe:
Can vision-language foundation models reason compositionally? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10910–10921, 2023.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in neural information processing systems, 36:52453–52463, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022a.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022b.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

14

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and François Fleuret. Faster causal attention over
large sequences through sparse flash attention. arXiv preprint arXiv:2306.01160, 2023.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. In First Conference on Language Modeling, 2024.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1–35, 2021.

Sergio Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca, Carlo
Luschi, Stephen Barlow, and Andrew Fitzgibbon. Training and inference of large language models
using 8-bit floating point. In Workshop on Advancing Neural Network Training: Computational
Efficiency, Scalability, and Resource Optimization (WANT@NeurIPS 2023), 2023. URL https:
//openreview.net/forum?id=nErbvDkucY.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
Bl8CQrx2Up4.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. ., 2018.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Aurko Roy, Timothy Chou, Sai Surya Duvvuri, Sijia Chen, Jiecao Yu, Xiaodong Wang, Manzil
Zaheer, and Rohan Anil. Fast and simplex: 2-simplicial attention in triton. arXiv preprint
arXiv:2507.02754, 2025.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pp. 1260–1268, 2018.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
heads task. arXiv preprint arXiv:2408.14332, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024b.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
diagnostic benchmark for inductive reasoning from text. November 2019.

Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356, 1969.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalak-
shmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating
point (hfp8) training and inference for deep neural networks. Advances in neural information
processing systems, 32, 2019.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. Sparse attention with learning to hash. In International
Conference on Learning Representations, 2021.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine learning,
pp. 10183–10192. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

15

https://openreview.net/forum?id=nErbvDkucY
https://openreview.net/forum?id=nErbvDkucY
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071–12083, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

R Ryan Williams. Algorithms and resource requirements for fundamental problems. Carnegie Mellon
University, 2007.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical
Computer Science, 348(2-3):357–365, 2005.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix
multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 3792–3835. SIAM, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pp. 36–39. IEEE, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In International Conference on Machine Learning, pp. 40605–40623.
PMLR, 2023.

Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A benchmark
for compositional visual reasoning. Advances in neural information processing systems, 35:
29776–29788, 2022.

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Complexity
control facilitates reasoning-based compositional generalization in transformers. arXiv preprint
arXiv:2501.08537, 2025.

CONTENTS

1 Introduction 1

1.1 Running time considerations . 2

1.2 Poly-attention is all you need . 4

2 The poly-attention mechanism 4

3 Beyond self-attention: the power of poly-attention 5

3.1 An example: function composition . 5

3.2 Tree-attention: polynomials leading to efficient poly-attention 6

3.3 Computational complexity of non-tree poly-attention 7

3.4 Representational strength of poly-attention . 7

3.5 Implications of poly-attention . 8

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

4 Technique overview 8

5 Experimental validation 9

6 Ethics statement 10

7 Reproducibility statement 10

A Preliminaries 18

A.1 Roadmap . 18

A.2 Notation and background . 18

A.3 Conjectured hard problems . 19

B Related works 20

C Warm-up: Strassen-attention upper and lower bounds 21

C.1 Algorithm for Strassen-attention . 21

C.2 Hardness of Strassen-attention . 25

C.2.1 Conditional hardness of ε-Gap-IP∆ . 26

C.2.2 Hardness of approximating Strassen-attention 28

D Proofs of Section 3.2: tree-attention 31

E Proofs of Section 3.3: computational complexities of poly-attention 33

E.1 Polynomial method for poly-attention . 34

E.2 Time lower bounds for poly-attention . 37

E.2.1 Time lower bounds based on degree of polynomial using SETH 37

E.2.2 Time lower bounds based on substructure of polynomial using Max-kSAT
conjecture . 43

E.2.3 Time lower bounds for degree 2 polynomials using Max-2SAT conjecture . 47

F Proofs of Section 3.1: function composition 51

G Proofs of Section 3.4: polynomial root-finding 56

H Experimental details 59

H.1 Function composition . 59

H.2 COGS Dataset . 61

I The use of Large Language Models (LLMs) 62

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A PRELIMINARIES

A.1 ROADMAP

In the rest of this paper, we prove all the results that we have stated in the main version. After
describing some relevant notations and conjectures that we will use, we prove the results in two
parts. First we prove the computational complexities of the poly-attention mechanism, followed by
proofs of representational strengths. The proofs of computational complexities use two subdivisions–
an upper bound where we show that if the entries of the query-key matrices are bounded, then we
can compute an entry-wise approximation in near-linear time, and a lower bound where we show
that if the entries of the query-key matrices are large, then assuming certain fine-grained complexity
conjectures, computing entry-wise approximations are difficult. As a warm-up, we start with upper
and lower bounds for Strassen-attention (Section C), based on which, we proceed to prove the same
for general poly-attention in Section E. In order to completely characterize time complexities for
poly-attention, we also give quadratic time algorithms for tree-attentions in Section D.

The proofs of the results stated in the main paper are given as follows:

• For Theorem 3.1, poly-attention can simulate function-composition has been proved in
Theorem F.6 for t0 = 2, and the time complexity of O(n2) has been proved in Theorem
D.2.

• Theorem 3.2 Part 1 has been proved in Theorem E.2, and Theorem 3.2 Part 2 has been
proved in Theorem E.3 Part 1.

• Theorem 3.3 has been proved in Theorem F.3 and Corollary F.4.
• Theorem 3.4 has been proved in Theorem F.6.
• Theorem 3.5 Part 1 has been proved in Theorem D.2, Theorem 3.5 Part 2 has been proved in

Theorem E.2, and Theorem 3.5 Part 3 has been proved in Theorem E.3.
• Theorem 3.6 Part 1 has been proved in Theorem E.2 and Theorem 3.6 Part 2 has been proved

in Theorem E.3.
• Theorem 3.7 has been proved in Theorem G.1.

A.2 NOTATION AND BACKGROUND

Throughout this article, for a natural number n we denote [n] as the set {1, 2, . . . , n}, [i : j] as the
set of integers {i, i+ 1, . . . , j} for i < j, and [i, j] as the set of real numbers between i and j. Given
a matrix M ∈ Rn×m, for i ∈ [n], j ∈ [m], we denote [M]i,j , and more loosely Mi,j , as the (i, j)-th
entry of the matrix, Mi as the i-th row as a m-dimensional vector, and M:,j as the j-th column as the
transpose of a n-dimensional vector. M(i1:j1,i2:j2) will also denote the submatrix of M having rows
[i1 : j1] and columns [i2 : j2].

For two matrices A,B ∈ Rn×m, we define A
B as the entry-wise division, i.e., [AB]i,j =

Ai,j

Bi,j
. Given a

vector X ∈ Rn×1, by diag(X), we denote the n× n diagonal matrix such that [diag(X)]i,i = X[i]
for all i ∈ [n]. Some other operators on matrices are defined as follows.
Definition A.1 (Hadamard product ⊙). Given to matrices A,B ∈ Rn×m, we denote the Hadamard
product, denoted by A⊙B ∈ Rn×m, as the entrywise product

[A⊙B]i,j = Ai,j ·Bi,j ,

for i ∈ [n], j ∈ m.
Definition A.2 (Row-wise Kronecker product ⊘). For matrices A ∈ Rn×d, B ∈ Rm×d, we denote
the row-wise Kronecker product as A⊘B ∈ Rnm×d, where

[A⊘B](i−1)m+j = Ai ⊙Bj ,

for i ∈ [n], j ∈ [m].

Definition A.3 (Entry-wise approximation). Given a matrix M ∈ Rn×d, we say that M̂ is an
entry-wise γ-approximation of M if for all i ∈ [n], j ∈ [d], we have

|M̂i,j −Mi,j | < γ.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Throughout this paper, we will choose γ = 1/poly(n).
Definition A.4 (Entry-wise function). Given a function f : R → R and a matrix M ∈ Rn×m, we
define the matrix [M]f as the n× n matrix such that the the (i, j)-th element is

[M]fi,j = f(Mi,j).

We will use [M]e as the entrywise exponentiation function, i.e., [M]ei,j = eMi,j . For a real number c,
M/c will also refer to the matrix obtained by dividing each entry of M by c.

The coefficient of matrix multiplication, ω, roughly refers to the exponent of n such that two n× n
matrices can be multiplied in time O(nω) for large enough n. There is a series of works trying
to improve this coefficient Alman & Williams (2024); Duan et al. (2023); Williams et al. (2024);
Fawzi et al. (2022); Alman et al. (2025), with the fastest being Alman et al. (2025) that achieves
ω = 2.371339. However, these matrix multiplications require n to be quite large and the hidden
constants are enormous, which does not make implementations feasible. There is an algorithm by
Strassen Strassen (1969) which is more practicable and achieves ω ≈ 2.8, but in most cases, only the
naive matrix multiplication algorithm is used as GPUs work better on them.

We will use some more concepts to define the ideas in this article. Given an integer t, we define the
symmetric group of order r,

(
[t]
r

)
, as the set of tuples:Ç

[t]

r

å
= {(j1, j2, . . . , jr) | 1 ≤ j1 < j2 < . . . < jr ≤ t}.

Note that |
(
[t]
r

)
| =

(
t
r

)
. Based on this, an elementary symmetric polynomial of degree r having t

variables is defined as ∑
1≤j1<j2<...<jr≤t

xj1xj2 . . . xjr .

Definition A.5 (Variable separability). We say that a polynomial h(x1, . . . , xt) is variable separable
if there exists a maximum integer r and non-zero attention polynomials g1(x1, x̄1), . . . , gr(x1, x̄r),
where x̄1, . . . , x̄r are disjoint subsets of the variables, such that h(x1, x2, . . . , xn) = g1(x1, x̄1) +
. . .+ gr(x1, x̄r).

We denote each of the polynomials gi(x1, x̄i) as branches.

Note that this definition of variable separability differs slightly from the folklore usage as here we
allow f and g to share at most one variable, x1.

In this paper, for a given polynomial h, we are interested in computing the entry-wise approximation
of Att(h). For this, we define the following version of computing poly-attention approximately.

Definition A.6 (Entry-wise Approximate Poly-Attention Computation APAC(h)(n, d,Γ, γ)). Let h
be an attention polynomial in t variables of degree k having sparsity s. Given query-key matrices
Q(1), . . . , Q(t) ∈ [−Γ,Γ]n×d and value matrices V (2), . . . , V (t) ∈ Rn×d, we want to output a matrix

Âtt(h) ∈ Rn×d such that for all i ∈ [n], j ∈ [d],

|[Âtt(h)]i,j − [Att(h)(Q(1), . . . , Q(t), V (2), . . . , V (t))]i,j | ≤ γ.

A.3 CONJECTURED HARD PROBLEMS

We define some commonly known problems in fine-grained complexity and state conjectures which
will be used to show conditional hardness of generalized attention computations. First, we start by
defining a few central problems in fine-grained complexity.
Definition A.7 (kIP problem). Given sets of vectors A1, . . . , Ak ⊆ {0, 1}d, each of size n, and a
target inner product m ∈ [d], the problem of kIP asks if there exists a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak

such that ⟨a1, a2, . . . , ak⟩ = m.

For k = 2 and m = 0, it is the famous orthogonal vectors problem, which we will abbreviate 2OV or
just the OV problem, and for k = 2 and arbitrary m, we will abbreviate the problem as IP.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Definition A.8 (kSAT). In the kSAT problem for k ≥ 2, given as input a k-CNF formula ϕ,
determine whether or not ϕ has a satisfying assignment.
Definition A.9 (Max-kSAT). In the Max-kSATn,m problem for k ≥ 2, given as input a k-CNF
formula ϕ in n variables and m clauses, determine the maximum number of clauses in ϕ that can be
simultaneously satisfied by a Boolean assignment to the underlying variables.

Based on these definitions, we are now ready to describe some popular conjectures in fine-grained
complexity that we will use to prove our (conditional) hardness results.
Hypothesis 1 (SETH Impagliazzo & Paturi (2001)). For every δ > 0, there exists k ≥ 3 such that
kSAT can not be solved in time O(2(1−δ)n).

The current fastest known algorithm for kSAT uses the reduction to OV with dimension d = c logn.
The best known time complexity of OV is n2−1/O(log c) given by Abboud et al. (2014a); Chan &
Williams (2016).

Since kSAT is a special case of Max-kSAT, SETH implies that Max-kSAT also cannot be solved
in time Ω(2(1−δ)n) for every δ > 0. The next hypothesis Alman & Vassilevska Williams (2020)
strengthens this further to sparse instances of Max-kSAT.
Hypothesis 2 (Sparse Max-kSAT Hypothesis). For every k ≥ 3 and every δ > 0, there exists c > 0
such that Max-kSATn,cn cannot be solved in time O(2(1−δ)n).

The fastest known algorithm for sparse instances of Max-kSATn,cn for k ≥ 3 takes time
2n(1−1/Õ(c

1/3)) Alman et al. (2016); therefore the above hypothesis is consistent with the state-
of-the-art algorithms. In contrast to the special case of Max-kSAT for k = 2, the hypothesis is false.
The best algorithm for Max-2SAT Williams (2005; 2007) runs in time 2ωn/3poly(n), where ω is the
matrix multiplication exponent. The following Max-2SAT hypothesis states that William’s algorithm
Williams (2005) is essentially optimal when k = 2.
Hypothesis 3 (Max2SAT hypothesis). For every δ > 0, there exists a c > 0 such that Max-2SATn,cn

cannot be solved in time O(2n(ω/3−δ)), where ω is the matrix multiplication exponent.

The following theorem gives a reduction from kSAT to kIP, thus proving the hardness of kIP under
SETH.
Theorem A.10 (Williams (2005); Abboud et al. (2014b); Backurs & Indyk (2015); Abboud et al.
(2015)). Assuming SETH, for every k and δ > 0, there exists c > 0 such that kIPn,c logn cannot be
solved in time O(n(1−δ)k),

B RELATED WORKS

The most similar prior works on attention mechanisms which are more expressive than self-attention
are Sanford et al. (2024b) and Kozachinskiy et al. (2025), which we have already discussed in detail.
There is another attention mechanism, triangular attention, introduced by Bergen et al. (2021), whose
design was inspired by logic programming, and which was shown to perform better than self-attention
on certain compositional tasks. However, Kozachinskiy et al. (2025) proved that it cannot perform
function composition.

As we have discussed, the self-attention mechanism (Vaswani et al., 2017) is at the center of all
large language models because of its expressivity in real-life applications, but the quadratic time
complexity for computing its output is sometimes already prohibitively expensive. One extensive line
of work has introduced faster heuristic algorithms, which work well on many inputs. These have
used different approximation techniques, including sparsity assumptions, norm bounds, and kernel
density estimation (Zandieh et al., 2023; Han et al., 2024; Kitaev et al., 2020; Choromanski et al.,
2021; Pagliardini et al., 2023; Child et al., 2019; Wang et al., 2020; Daras et al., 2020; Katharopoulos
et al., 2020; Chen et al., 2021; 2022; Qin et al., 2022; Liu et al., 2023b; He et al., 2021; Kacham et al.,
2024; Dao et al., 2022; Dao, 2024; Roy et al., 2021; Sun et al., 2021; Ding et al., 2023; Han et al.,
2023; Zaheer et al., 2020; Dass et al., 2023).

Other alternatives have been considered which completely replace attention with different mechanisms.
A simple example is Hardmax attention, in which the softmax is replaced by a (hard) max, but training

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hardmax attention Transformer models appears difficult as we do not know an efficient way to perform
gradient descent. The power of hardmax has been explored in Alcalde et al. (2024); Pérez et al.
(2021); Kajitsuka & Sato (2024). Instead of computing the output of self-attention faster, some
other alternatives to Transformers have been proposed that completely replace attention with other
mechanisms; examples include Synthesizer (Tay et al., 2021), routing Transformers (Roy et al.,
2021), and Mamba (Gu & Dao, 2024). These alternatives can typically be computed much faster than
attention (often in almost linear time by definition), but in exchange appear to have weaker expressive
power (Alman & Yu, 2025). This paper continues a long line of work on understanding the power
and limitations of Transformers, and finding more expressive alternative models.

Some papers have studied the circuit complexity of Transformers (Chiang, 2024; Merrill & Sabharwal,
2023a; Merrill et al., 2022b; Chen et al., 2024; Merrill & Sabharwal, 2023b; Merrill et al., 2022a;
Chiang et al., 2023). Other works on the representational strength of Transformers focus on their
relationship with other models of computation. For example, a line of work has studied the ability
of Transformers to approximate other models of computation (Pérez et al., 2021; Wei et al., 2022a;
Malach, 2023; Liu et al., 2023a; Hao et al., 2022). On the other hand, there are many more tasks,
beyond those discussed here, which are difficult to solve by a Transformer, including compositional
reasoning (Dekker et al., 2022; Zerroug et al., 2022; Marcus, 2018; Kozachinskiy, 2024; Sanford
et al., 2024a; Peng et al., 2024).

Another approach to overcoming the limitations of Transformers is to augment them in other ways.
An important example is chain-of-thought (Wei et al., 2022b). Merrill & Sabharwal (2024) studied
the space and time complexity of chain-of-thought, and Peng et al. (2024) studied how this relates to
function composition.

C WARM-UP: STRASSEN-ATTENTION UPPER AND LOWER BOUNDS

As a warm-up, we describe the polynomial method and show Max-2SAT-based hardness results on
Strassen-attention. Since Strassen-attention is only a special case of poly-attention, we will later
move on to show similar algorithms and lower bounds on poly-attention in Section E.

C.1 ALGORITHM FOR STRASSEN-ATTENTION

In this section, we give a near-linear algorithm for computing an entry-wise approximation of the
output matrix of Strassen-attention, when the entries of the query-key matrices are bounded. We will
use the polynomial method, which has been used in entry-wise approximations of other attention
mechanisms as well, like in self-attention Alman & Song (2023), tensor-attention Alman & Song
(2024), RoPE based attention Alman & Song (2025).

Our goal is to compute the n×d matrix Att(S), the output of Strassen-attention, for query-key matrices
Q(1), Q(2), Q(3) ∈ [−Γ,Γ]n×d and value matrices V (1), V (2) ∈ Rn×d. Using the expression of
Strassen-attention Kozachinskiy et al. (2025), it can also be written as

Att
(S)
i,ℓ =

[1dQ
(1)(Q(2))T]e(i,1:n)D

1,ℓ[1dQ
(2)(Q(3))T]eD2,ℓ[1dQ

(3)(Q(1))T]e(1:n,i)

[1dQ
(1)(Q(2))T]e(i,1:n)[

1
dQ

(2)(Q(3))T]e[1dQ
(3)(Q(1))T]e(1:n,i)1n

, (2)

for all i ∈ [n], ℓ ∈ [d], where D1,ℓ = diag(V
(1)
(1:n,ℓ)) and D2,ℓ = diag(V

(2)
(1:n,ℓ)).

We will compute the entry-wise approximations of the numerator and the denominator terms of
Equation 2 separately. The main idea is to use a low rank entry-wise approximations for each of
[1dQ

(1)(Q(2))T]e, [1dQ
(2)(Q(3))T]e, [1dQ

(3)(Q(1))T]e, and multiply the low rank matrices together–
something that can be done more efficiently. In order to obtain the low rank approximations, we will
use the following lemma from Aggarwal & Alman (2022).
Lemma C.1 (Aggarwal & Alman (2022)). Let Γ > 1, ε ∈ (0, 0.1). There exists a polynomial
P (x) ∈ R[x] of degree t := Θ

Ä
max

¶
log(1/ε)

log(log(1/ε)/Γ) ,Γ
©ä

such that for all a ∈ [−Γ,Γ], we have
|P (a)− ea| < εea. Furthermore, P can be computed in poly(t) time and its coefficients are rational
numbers.

Using the previous lemma, we obtain the low rank matrix approximations as a corollary.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lemma C.2 (Low rank approximation Alman & Song (2023; 2024)). Let ε = 1/poly(n), d =
O(logn), r = no(1), and B = o(logn). Given matrices P,Q ∈ [−Γ,Γ]n×d, we can compute
matrices U,W ∈ Rn×r in time O(n1+o(1)) such that UWT entry-wise ε-approximates PQT ; that
is: |[UWT]i,j − [PQT]ei,j | < ε[PQT]ei,j .

This is an instance of the Gaussian KDE which has widely been used in LLMs and machine learning
algorithms Zandieh et al. (2023); Backurs et al. (2018); Katharopoulos et al. (2020); Alman et al.
(2020); Aggarwal & Alman (2022); Alman & Song (2023; 2024).

We will show that we can compute ∀i ∈ [n], γ-approximations of denominator in Equation 2 in
time O(n1+o(1)), and fixing any ℓ ∈ [d], we can compute γ-approximations of the numerator in time
O(n1+o(1)), ∀i ∈ [n], where γ = 1/poly(n). Once we find the values of the denominator and the

numerator, we perform a division, to compute the γ-approximation Âtt(S)
i,ℓ, which takes a total

time of O(n1+o(1) + d.n1+o(1) + nd) = O(n1+o(1)). Using this as the central idea, we prove the
following result. Since Strassen-attention is a special case of poly-attention with the polynomial
hS(x1, x2, x3) = x1x2 + x2x3 + x3x1, we state the following result:

Theorem C.3. There is an algorithm that solves APAC(hS)(n, d = O(logn),Γ = o(
√
log n), γ =

1/poly(n)) with query-key matrices Q(1), Q(2), Q(3) ∈ [−Γ,Γ]n×d, and value matrices V (2), V (t) ∈
Rn×d in time O(n1+o(1)).

The algorithm is summed up as follows.

Algorithm 1 Algorithm to compute entry-wise approximation of Att(S)

Input: A number Γ = o(
√
log n), query-key matrices Q(1), Q(2), Q(3) ∈ [−Γ,Γ]n×d, value matri-

ces V (1), V (2) ∈ Rn×d, an approximation parameter γ = 1/poly(n).

Output: Entry-wise γ-approximation Âtt(S) of Att(S).
1: Initialize Âtt(S) := 0n×d.
2: Compute the low-rank γ-approximations U1(W 1)T of [1dQ

(1)(Q(2))T]e, U2(W 2)T

of [1dQ
(2)(Q(3))T]e and U3(W 3)T of [1dQ

(3)(Q(1))T]e using Lemma C.2, where
U1,W 1, U2,W 2, U3,W 3 ∈ Rn×r for r = no(1). ▷ O(n1+o(1)r) time.

3: D1,ℓ := diag(V
(1)
(1:n,ℓ)), D

2,ℓ := diag(V
(2)
(1:n,ℓ)). ▷ O(n) time.

4: Compute Ũ2 := D1,ℓU2, W̃ 2 := D2,ℓW 2 ∈ Rn×r. ▷ O(nr) time.
5: Compute A := (W 1)TU2︸ ︷︷ ︸

r×r

(W 2)TU3︸ ︷︷ ︸
r×r

and B := (W 1)T Ũ2︸ ︷︷ ︸
r×r

(W̃ 2)TU3︸ ︷︷ ︸
r×r

. ▷ O(nr2) times.

6: for i ∈ [n], ℓ ∈ [d] do
7: Compute the Θ(γ)-approximation of the denominator (Equation 2) as

Ri := U1
(i,1:r)A(W 3

(i,1:r))
T ∈ R.

▷ O(r2) time.
8: Compute the Θ(γ)-approximation of the numerator (Equation 2) as

P ℓ
i := U1

(i,1:r)B(W 3
(i,1:r))

T ∈ R.

▷ O(r2) time.
9: Compute the ℓ-th row of the entry-wise Θ(γ)a-approximation of Att(S) as

Âtt(S)[i, ℓ] :=
P ℓ
i

Qi
.

▷ O(1) time.
10: end for
11: Return Âtt(S).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Before proving the correctness of this algorithm, we first show that the entries of the exponentiated
matrices are bounded, which is necessary for applying Lemma C.2.

Lemma C.4 (Bounded entries). The entries of [1dQ
(1)(Q(2))T]e, [1dQ

(2)(Q(3))T]e, [1dQ
(3)(Q(1))T]e

are bounded as

e−Γ2

≤ [
1

d
Q(1)(Q(2))T]ei,j , [

1

d
Q(2)(Q(3))T]ei,j , [

1

d
Q(3)(Q(1))T]ei,j ≤ eΓ

2

,

for all i, j ∈ [n].

Proof. Without loss of generality, we prove the upper bound only for X and the rest follows similarly.
Since each entry of Q(1), Q(2), Q(3) are in [−Γ,Γ], the value of [Q(1)(Q(2))T]i,j is

[Q(1)(Q(2))T]i,j = ⟨Q(1)
i , Q

(2)
j ⟩ =

∑
ℓ∈[d]

Q
(1)
i,ℓ Q

(2)
j,ℓ ,

=⇒ − Γ2 ≤ ⟨Q(1)
i , Q

(2)
j ⟩/d ≤ Γ2 (Since −Γ ≤ Q

(1)
i,ℓ , Q

(2)
j,ℓ ≤ Γ).

Therefore, e−Γ2 ≤ [1dQ
(1)(Q(2))T]ei,j ≤ eΓ

2

for all i, j ∈ [n], and we can similarly bound
[1dQ

(2)(Q(3))T]e, [1dQ
(3)(Q(1))T]e.

Now, we prove Theorem C.3, which is also the correctness of Algorithm 1.

Proof of Theorem C.3. First, we compute the low-rank approximations of
[1dQ

(1)(Q(2))T]e, [1dQ
(2)(Q(3))T]e, [1dQ

(3)(Q(1))T]e using Lemma C.2 (Step 2 of Algorithm
1). However, in order for Lemma C.2 to succeed in Step 2 of Algorithm 1, we need the entries of the
exponentiated matrices to be bounded, which is true due to Lemma C.4.

We compute the Strassen-attention matrix in two steps, first computing the denominator, and then the
numerator in Equation 2 to compute the entire self-attention matrix.

Computing the denominator. This has been described in Step 7 of Algorithm 1, and we now
prove its correctness. Since the entries of [1dQ

(1)(Q(2))T]e, [1dQ
(2)(Q(3))T]e, [1dQ

(3)(Q(1))T]e

are bounded, we can apply Lemma C.2 to find their low rank approximations. Let the low-rank
approximations of [1dQ

(1)(Q(2))T]e, [1dQ
(2)(Q(3))T]e, [1dQ

(3)(Q(1))T]e be U1(W 1)T , U2(W 2)T

and U3(W 3)T respectively, with entry-wise error ε for ε = 1/poly(n), where each of U i,W i ∈ Rn×r.
Namely, for all i, j, k ∈ [n],∣∣∣∣[1dQ(1)(Q(2))T]ei,j − [U1(W 1)T]i,j

∣∣∣∣ < ε[
1

d
Q(1)(Q(2))T]ei,j < γ,∣∣∣∣[1dQ(2)(Q(3))T]ej,k − [U2(W 2)T]j,k

∣∣∣∣ < ε[
1

d
Q(2)(Q(3))T]ej,k < γ,∣∣∣∣[1dQ(3)(Q(1))T]ek,i − [U3(W 3)T]k,i

∣∣∣∣ < ε[
1

d
Q(3)(Q(1))T]ek,i < γ.

(3)

where γ = εeΓ
2

. When we choose ε as the inverse of a large enough polynomial such that εeΓ
2

=
1

poly(n) , we have γ = 1/poly(n) (note that Γ = O(
√
log n)). Now, we claim that

[U1(W 1)TU2(W 2)TU3(W 3)T]i,i

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

is an approximation of [[1dQ
(1)(Q(2))T]e[1dQ

(2)(Q(3))T]e[1dQ
(3)(Q(1))T]e]i,i. For ease of notation,

let us denote X = [1dQ
(1)(Q(2))T]e, Y = [1dQ

(2)(Q(3))T]e, Z = [1dQ
(3)(Q(1))T]e. Now,

|[XY Z]i,i − [U1(W 1)TU2(W 2)TU3(W 3)T]i,i|

=

∣∣∣∣Å[XY Z]i,i − [U1(W 1)TY Z]i,i

ã
+

Å
[U1(W 1)TY Z]i,i − [U1(W 1)TU2(W 2)TZ]i,i

ã
+

Å
[U1(W 1)TU2(W 2)TZ]i,i − [U1(W 1)TU2(W 2)TU3(W 3)T]i,i

ã∣∣∣∣
≤
∣∣∣∣[XY Z]i,i − [U1(W 1)TY Z]i,i

∣∣∣∣+ ∣∣∣∣[U1(W 1)TY Z]i,i − [U1(W 1)TU2(W 2)TZ]i,i

∣∣∣∣
+

∣∣∣∣[U1(W 1)TU2(W 2)TZ]i,i − [U1(W 1)TU2(W 2)TU3(W 3)T]i,i

∣∣∣∣,

(4)

where the last inequality follows from triangle inequality.

Now, using Equation 3 in each of the three terms, we can show that this is bounded above by O(γ).

The computation of [U1(W 1)TU2(W 2)TU3(W 3)T]i,i for i ∈ [n] from Algorithm 1, takes
O(n1+o(1)) time for r = no(1) (which is true for the choice of d = O(log n), B = o(

√
log n), γ =

1/poly(n) using the parameters of Lemma C.2).

Computing the numerator. An entry-wise γ-approximation of the numerator of the Strassen-
attention matrix Att(S) ∈ Rn×d (Equation 2) has been computed in Step 8 of Algorithm 1. Here,
essentially, we compute each entry [XD1,ℓY D2,ℓZ]i,i, for all i ∈ [n] by fixing ℓ ∈ [d] at a time.

We again make use of the low rank decompositions of X,Y, Z as above (Equation 3). Note that the
value of each element of Att(S) is given as

Att
(S)
i,ℓ = [XD1,ℓY D2,ℓZ]i,i.

We claim that [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T]i,i is an O(γ)-approximation of
[XD1,ℓY D2,ℓZ]i,i. Indeed, we have

|[XD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T]i,i|

=

∣∣∣∣Å[XD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓY D2,ℓZ]i,i

ã
+

Å
[U1(W 1)TD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i

ã
+

Å
[U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T]i,i

ã∣∣∣∣
≤
∣∣∣∣[XD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓY D2,ℓZ]i,i

∣∣∣∣
+

∣∣∣∣[U1(W 1)TD1,ℓY D2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i

∣∣∣∣
+

∣∣∣∣[U1(W 1)TD1,ℓU2(W 2)TD2,ℓZ]i,i − [U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T]i,i

∣∣∣∣,

(5)

which again follows from the triangle inequality, and each term can be shown to be upper bounded by
O(γ) using Equation 3.

Wrapping up. An approximation of the (i, ℓ)-th element, Att
(S)
i,ℓ , is obtained by approximating the

value of [XD1,ℓY D2,ℓZ]i,i and then dividing by the approximate value of [XY Z]i,i. Using

P ℓ
i = U1(W 1)TD1,ℓU2(W 2)TD2,ℓU3(W 3)T ,

Ri = U1
i

(
(W 1)TU2(W 2)TU3

)
(W 3

i)
T ,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

we have
|[XD1,ℓY D2,ℓZ]i,i − P ℓ

i | ≤ O(γ),

and,
|[XY Z]i,i −Ri|∞ ≤ O(γ),

for i ∈ [n], ℓ ∈ [d].

Therefore, the error is given by

|[XY Z]−1
i,i [XD1,ℓY D2,ℓZ]i,i −R−1

i P ℓ
i | ≤ |[XY Z]−1

i,i [XD1,ℓY D2,ℓZ]i,i − [XY Z]−1
i,i P

ℓ
i |

+ |[XY Z]−1
i,i P

ℓ
i −R−1

i P ℓ
i | (Triangle inequality)

≤ O(γ),

which follows from Equations 4, 5, repeated applications of triangle inequalities, and the fact that ε is
an inverse polynomial in n, and,

|[XD1,ℓY D2,ℓZ]i,i| =
∣∣∣∣ ∑
j,k∈[n]

Xi,jV
1
j,ℓYj,kV

2
k,ℓZk,i

∣∣∣∣ < e3Γ
2

||V 1||∞||V 2||∞,

∣∣∣∣ 1

[XY Z]i,i

∣∣∣∣ = ∣∣∣∣ 1∑
j,k∈[n] Xi,jYj,kZk,i

∣∣∣∣ < e3Γ
2

,

for all i ∈ [n], ℓ ∈ [d] since the entries of Q(1), Q(2), Q(3) are in [−Γ,Γ] (Lemma C.4). For
d = O(log n), Γ = o(

√
log n) and ||V (1)||∞, ||V (2)||∞ = poly(n), we can choose γ0 = 1/poly(n)

for a large enough polynomial such that∣∣∣∣P ℓ
i

Ri
−Att

(S)
i,ℓ

∣∣∣∣ < γ0,

where γ0 = O(γ) = 1/poly(n), which is our required approximation parameter.

As described in Algorithm 1 we compute this γ-approximation for all i ∈ [n] in time O(n1+o(1)),
and repeating this over all ℓ ∈ [d] requires O(n1+o(1)d) = O(n1+o(1)) time since d = O(logn).
This proves Theorem C.3.

C.2 HARDNESS OF STRASSEN-ATTENTION

Now, we introduce the techniques that will be used to prove lower bounds in this paper. We establish
the hardness of Strassen-attention in the high weight case, assuming the Max-2SAT conjecture
(Hypothesis 3). Our reduction will proceed in three steps. First, we use a reduction from Alman
& Vassilevska Williams (2020) that establishes the hardness of IP∆ (Definition C.5) assuming Hy-
pothesis 3 (hardness of Max-2SAT). Second, we prove the hardness of ε-Gap-IP∆ (an approximate
version of IP∆ defined in Definition C.6) from the hardness of IP∆, in Section C.2.1. Lastly, we
prove the hardness of Strassen-attention from the hardness of ε-Gap-IP∆ in Section C.2.2.

We begin by defining the problems IP∆ and ε-Gap-IP∆.
Definition C.5 (IP∆). Given three sets of vectors A1, A2, A3 ⊆ {0, 1}d, |A1| =
|A2| = |A3| = n, and target inner products, m12,m23,m31 ∈ {0, . . . , d}, the problem
IP∆n,d(A

1, A2, A3,m12,m23,m31) asks whether there exist vectors a1 ∈ A1, a2 ∈ A2, a3 ∈ A3

such that, simultaneously, ⟨a1, a2⟩ = m12, ⟨a2, a3⟩ = m23, ⟨a3, a1⟩ = m31.
Definition C.6 (ε-Gap-IP∆). Let ε > 0. Given three sets of vectors A1, A2, A3 ⊆ {0, 1}d, with
|A1| = |A2| = |A3| = n, a target inner product m ∈ {0, . . . , d}, and the promise that for every
a1 ∈ A1, a2 ∈ A2, a3 ∈ A3,

• either ⟨a1, a2⟩ ≤ (1− ε)m or ⟨a1, a2⟩ = m,

• and, either ⟨a2, a3⟩ ≤ (1− ε)m or ⟨a2, a3⟩ = m,

• and, either ⟨a3, a1⟩ ≤ (1− ε)m or ⟨a3, a1⟩ = m,

the problem ε-Gap-IP∆n,d(A
1, A2, A3,m) is to decide if there exist vectors a1 ∈ A1, a2 ∈ A2, a3 ∈

A3 such that: ⟨a1, a2⟩ = ⟨a2, a3⟩ = ⟨a3, a1⟩ = m.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

For IP∆ and ε-Gap-IP∆, we will drop the parameters m, d when they are clear from context. Note
that even though IP∆ might have different inner products for all three pairs, for ε-Gap-IP∆, the
three inner products being equal suffices as the reduction for proving its hardness accommodates this
property, and for proving hardness of approximating the output of Strassen-attention, we need them
to be equal.

As mentioned above, the first step uses a result due to Alman & Vassilevska Williams (2020) which
proved that IP∆ is at least as hard as Max-2SAT:
Lemma C.7 (Alman & Vassilevska Williams (2020)). Assuming the Max-2SAT conjecture (Hy-
pothesis 3), for every δ > 0 there exists c > 0 such that IP∆n,c logn cannot be solved in time
O(nω−δ).

C.2.1 CONDITIONAL HARDNESS OF ε-GAP-IP∆

In this subsection we prove the following theorem, establishing hardness of ε-Gap-IP∆ assuming
hardness of IP∆.
Theorem C.8. For every δ, ε > 0, there exists c, c′ > 0 such that if ε-Gap-IP∆n,c logn can be solved
in time Õ(n(ω−δ)), then IP∆n,c′ logn can be solved in time Õ(n(ω−δ/2)).

Building on Aaronson & Wigderson (2009), Rubinstein Rubinstein (2018) gave a reduction from the
IP problem to the gap version, ε-Gap-IP. That is, they proved a similar reduction to what we want,
but where IP and ε-Gap-IP take as input two sets A1, A2 instead of three sets. Chen & Williams
(2019); Abboud & Ron-Zewi (2025) further improved their reduction; for our reductions, we will use
and build upon the proof given by Abboud & Ron-Zewi (2025).

The following lemma was proven in Abboud & Ron-Zewi (2025) (see the proofs of Lemma 4.1 and
Claim 4.3 in their paper).
Lemma C.9 (Abboud & Ron-Zewi (2025)). For all n, d = O(log n), there exists d′ = O(d),
q = no(1), m′ = O(logn), such that for every instance of IPn,d given by sets of vectors A,B and
a target inner product m ∈ {0, . . . , d}, there is a set of q instances {(Ãi, B̃i,m′) | i ∈ [q]} of
ε-Gap-IPn,d′ computable in O(n1+o(1)) time, where ε ∈ (0, 1) is a constant such that:

1. (Yes case) If there exists (a, b) ∈ A×B such that ⟨a, b⟩ = m, then there exists i ∈ [q] such
that (Ãi, B̃i,m′) is a yes instance of ε-Gap-IPn,d′ .

2. (No case) If for every pair (a, b) ∈ A×B, ⟨a, b⟩ ̸= m, then for all i ∈ [q], (Ãi, B̃i,m′) is
a no instance of ε-Gap-IPn,d′ .

Proof of Theorem C.8. We start with an instance of IP∆n,d=O(logn), given by a target inner product
m, and matrices A,B,C each of dimension n × d, where the rows of A correspond to a set of n
vectors, and similarly for B and C.

For the pair (A,B), we apply Lemma C.9 to create a set of q instances of ε-Gap-IPn,d′ , each with
target inner product m′:

(ÃAB , B̃AB) = {(Ãi
AB , B̃

i
AB ,) | i ∈ [q]}.

Similarly we apply the Lemma to the pair (B,C) to get ε-Gap-IP instances

(B̃BC , C̃BC) = {(B̃i
BC , C̃

i
BC) | i ∈ [q]}

and to the pair (A,C) to get instances

(ÃAC , C̃AC) = {(Ãi
AC , C̃

i
AC) | i ∈ [q]}.

By Lemma C.9, the following properties are satisfied by (ÃAB , B̃AB):

(1) For all i ∈ [q], the instance (Ãi
AB , B̃

i
AB ,m

′) satisfies the gap property. That is, for every
aiAB ∈ Ãi

AB , biAB ∈ B̃i
AB , ⟨aiAB , b

i
AB⟩ is either equal to m′ or is at most (1− ε)m′.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(2) Correctness of the reduction:

(2b) If there exists (a, b) ∈ A × B such that ⟨a, b⟩ = m, then there exists i ∈ [q], and
vectors aiAB ∈ Ãi

AB , b
i
AB ∈ B̃i

AB such that ⟨aiAB , b
i
AB⟩ = m′.

(2c) If for every (a, b) ∈ A × B, ⟨a, b⟩ ̸= m, then for all i ∈ [q], and for all vectors
aiAB ∈ Ãi

AB , b
i
AB ∈ B̃i

AB , we have ⟨aiAB , b
i
AB⟩ ≤ (1− ε)m′.

By the same argument, the above two properties are also satisfied by (B̃BC , C̃BC) and (ÃAC , C̃AC).

Equipped with the above pairs of 3-dimensional tensors, we are now ready to describe our reduction
from the instance (A,B,C,m) of IP∆n,d to a set of q3 instances of ε-Gap-IP∆n,O(logn), denoted
by:

(A,B, C) = {(Ai,j,k,Bi,j,k, Ci,j,k) | i, j, k ∈ [q]}

For each i, j, k ∈ [q], we define Ai,j,k to consist of the following set of length 3d′ vectors:

Ai,j,k = {aiAB 0d akAC | aiAB ∈ Ãi
AB , a

k
AC ∈ Ãk

AC}

Similarly we define Bi,j,k and Ci,j,k:

Bi,j,k = {biAB bjBC 0d | biAB ∈ B̃i
AB , b

j
BC ∈ B̃j

BC}

Ci,j,k = {0d cjBC ckAC | cjBC ∈ C̃j
BC , c

k
AC ∈ C̃k

AC}

Gap Property First, we prove that every instance (Ai,j,k,Bi,j,k, Ci,j,k) satisfies the gap property.
Consider a generic triple (ai,j,k, bi,j,k, ci,j,k) ∈ Ai,j,k × Bi,j,k × Ci,j,k, where

ai,j,k = aiAB0
d′
akAC ,

bi,j,k = biABb
j
BC0

d′
,

ci,j,k = 0d
′
cjBCc

k
AC .

Since ⟨ai,j,k, bi,j,k⟩ = ⟨aiAB , b
i
AB⟩, we can apply property (1) to (ÃAB , B̃AB) to infer that this inner

product is either m′ or at most (1− ε)m′. By a similar argument we can show that ⟨bi,j,k, ci,j,k⟩ and
⟨ai,j,k, ci,j,k⟩ are either m′ or at most (1− ε)m′. This completes the proof of the gap property.

Proof of Correctness. We first consider the yes case, when there exists (a, b, c) ∈ A×B × C such
that ⟨a, b⟩ = ⟨b, c⟩ = ⟨a, c⟩ = m. Applying property (2a) above, we have:

1. There exists i ∈ [q], aiAB ∈ Ãi
AB , biAB ∈ B̃i

AB such that ⟨aiAB , b
i
AB⟩ = m′.

2. There exists j ∈ [q], bjBC ∈ B̃j
BC , ckBC ∈ C̃j

BC such that ⟨bjBC , c
j
BC⟩ = m′.

3. There exists k ∈ [q], akAC ∈ Ãk
AC , ckAC ∈ C̃k

AC such that ⟨akAC , c
k
AC⟩ = m′.

Now consider the corresponding vectors ai,j,k ∈ Ai,j,k, bi,j,k ∈ Bi,j,k, and ci,j,k in Ci,j,k defined as:

ai,j,k = aiAB0
d′
akAC

bi,j,k = biABb
j
BC0

d′

ci,j,k = 0d
′
cjBCc

k
AC

By inspection together with the above three properties (1, 2, 3), we have

⟨ai,j,k, bi,j,k⟩ = ⟨bi,j,k, ci,j,k⟩ = ⟨ai,j,k, ci,j,k⟩ = m′,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

thus completing the "yes" case of correctness.

In the no case, suppose for all (a, b, c) ∈ A×B × C, either ⟨a, b⟩ ̸= m or ⟨b, c⟩ ̸= m or ⟨a, c⟩ ̸= m.
We want to show that for all i, j, k ∈ [q] and for all (ai,j,k, bi,j,k, ci,j,k) ∈ Ai,j,k × Bi,j,k × Ci,j,k, at
least one of the following holds: (i) ⟨ai,j,k, bi,j,k⟩ ≤ (1− ε)m′ or (ii) ⟨bi,j,k, ci,j,k⟩ ≤ (1− ε)m′ or
(iii) ⟨ai,j,k, ci,j,k⟩ ≤ (1− ε)m′.

Fix i, j, k ∈ [q] and consider a generic triple (ai,j,k, bi,j,k, ci,j,k) in Ai,j,k × Bi,j,k × Ci,j,k, where

ai,j,k = aiAB0
d′
akAB ,

bi,j,k = biABb
j
BC0

d′
,

ci,j,k = 0dcjBCc
k
BC

Consider first the case where ⟨a, b⟩ ̸= m. Then by applying property (2b) to (ÃAB , B̃AB) we have
⟨aiAB , b

i
AB⟩ ≤ (1− ε)m′, and therefore ⟨ai,j,k, bi,j,k⟩ ≤ (1− ε)m′, so case (i) above holds.

Similarly in the second case where ⟨b, c⟩ ̸= m, applying property (2b) (B̃BC , C̃BC) it follows that
⟨bi,j,k, ci,j,k⟩ ≤ (1− ε)m′, so case (ii) holds. For the last case where ⟨a, c⟩ ̸= m we can similarly
use (2b) to show that (iii) holds.

This completes the proof of correctness of the reduction.

Time complexity. Assume we are able to solve ε-Gap-IP∆ in time nω−δ for a constant δ > 0.
Then we can solve all q3 instances (Ai,j,k,Bi,j,k, Ci,j,k) of ε-Gap-IP∆ in time q3nω−δ. Since
q = no(1), q3 < nδ/2 for n sufficiently large, and thus the runtime of the (Turing) reduction from
IP∆ to Gap-IP∆ is at most nω−δ/2. This completes the proof of Theorem C.8.

C.2.2 HARDNESS OF APPROXIMATING STRASSEN-ATTENTION

In this subsection, we prove the following theorem which is the last step of our reduction for proving
the lower bound. The following theorem gives an efficient reduction from ε-Gap-IP∆ to Strassen-
attention when the weights are large. We again use the fact that Strassen-attention is poly-attention
for the polynomial hS(x1, x2, x3) = x1x2 + x2x3 + x3x1.

Theorem C.10 (Hardness of Strassen-attention). For every constant ε > 0, every δ ∈
(0, 0.01), every c,M > 0, there exist constants Ca > 0 and Cb > 0 such that if
APAC(hS)(2n, 2c log n,Γ = Cb

√
log n, γ = n−Ca) (Definition A.6) with query-key matrices

Q(1), . . . , Q(t) ∈ [−Γ,Γ]2n×2c logn, value matrices V (2), . . . , V (t) ∈ R2n×2c logn can be solved
in time O(nω−δ), then ε-Gap-IP∆n,c logn (Definition C.6) with target inner product m = M log n

can also be solved in O(nω−δ) time.

Proof. We start with an instance of ε-Gap-IP∆n,d=c logn, defined by sets A,B,C ⊆ {0, 1}d, and
target inner product m = M logn for a constant M , satisfying the promise given by the definition of
ε-Gap-IP∆ (e.g., for every pair of vectors from different sets, their inner product is either equal to m
or at most (1− ε)m). From this instance we now want to create an instance of Strassen attention,
given by matrices Q(1), Q(2).Q(3), V (1), V (2).

Now, for a positive real number B = ω(1) that we will fix later, similar to Alman & Song (2023;
2024), we construct the matrices Q(1), Q(2), Q(3) ∈ Rñ×d̃ for ñ = 2n, d̃ = 2d as:

Q(1) = B



a1 1d
...

...
an 1d
0d 1d
...

...
0d 1d


2n×2d

, Q(2) = B



b1 0d
...

...
bn 0d
0d 1d
...

...
0d 1d


2n×2d

, Q(3) = B



c1 0d
...

...
cn 0d
0d 1d
...

...
0d 1d


2n×2d

.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

We also define V (1), V (2) ∈ Rñ×d̃ whose first columns are

V
(1)
(1:2n,1) =

ï
1Tn
0Tn

ò
, V

(1)
(1:2n,1) =

ï
1Tn
0Tn

ò
,

and the remaining entries are zeros.

Correctness of the construction. We have defined the matrices Q(1), Q(2), Q(3) underlying
Strassen-attention so that, for any i, j, k ∈ [n] we will have ⟨Q(1)

i , Q
(2)
j ⟩ + ⟨Q(2)

j , Q
(3)
k ⟩ +

⟨Q(3)
k , Q

(1)
i ⟩ = B2(⟨ai, bj⟩ + ⟨bj , ck⟩ + ⟨ck, ai⟩), and the bottom half of the matrices,

Q
(1)
(n+1:2n), Q

(2)
(n+1:2n), Q

(3)
(n+1:2n), will act as a normalizing terms when we compute the softmax.

As before, computing the output of the Strassen-attention works in two steps: for all i ∈ [ñ],
we first calculate the value of the denominator [XY Z]i,i, where X = [1

d̃
Q(1)(Q(2))T]e, Y =

[1
d̃
Q(2)(Q(3))T]e and Z = [1

d̃
Q(3)(Q(1))T]e. The normalizing term will allow us to give similar

upper and lower bounds on this. Next, we will compute the numerator, [XD1,ℓY D2,ℓZ]i,i, for all
ℓ ∈ [d̃], where D1,ℓ = diag(V

(1)
1:2n,ℓ) and D2,ℓ = diag(V

(2)
1:2n,ℓ). Our approach is to show that if there

exists some i ∈ [n] such that for some j, k ∈ [n], we have ⟨ai, bj⟩ = M logn, ⟨bj , ck⟩ = M logn
and ⟨ck, ai⟩ = M log n, then we will be able to find such an i using the entry-wise approximation of
one Strassen-attention head. Thus, further improvements to the entry-wise approximation algorithm
would imply an algorithm for solving ε-Gap-IP∆ in time nω−Ω(1) time.

Bounds on the denominator. We analyze the denominator term and give upper
and lower bounds on [XY Z]i,i. For computing this value, we find the value of∑

j,k∈[ñ] exp (
1
d̃
(⟨Q(1)

i , Q
(2)
j ⟩+ ⟨Q(2)

j , Q
(3)
k ⟩+ ⟨Q(3)

k , Q
(1)
i ⟩)). We only care about the first

n rows of the attention matrix as this is where the existence of an IP∆ will be noticed. For i ∈ [n],
this is equivalent to computing

[XY Z]i,i =
∑

j,k∈[n]

e(⟨ai,bj⟩+⟨bj ,ck⟩+⟨ck,ai⟩)B2/d̃ +
∑

j∈[n+1:2n],k∈[n]

e(d+0+⟨ck,ai⟩)B2/d̃

+
∑

j∈[n],k∈[n+1:2n]

e(⟨ai,bj⟩+0+d)B2/d̃ +
∑

j,k∈[n+1:2n]

e(d+d+d)B2/d̃.
(6)

Using the gap property that the inner products of any pairs of ai, bj , ck are either less than (1 −
ε)M logn or exactly equal to M logn, and denoting λ := M logn

d̃
where d̃ = 2c logn, from the

previous equation, we get

[XY Z]i,i ≥
∑

j,k∈[n]

e3(1−ε)λB2

+
∑

j∈[n+1:2n],k∈[n]

e(1+(1−ε)λ)B2

+
∑

j∈[n],k∈[n+1:2n]

e((1−ε)λ+1)B2

+
∑

j,k∈[n+1:2n]

e3B
2/2

≥ n2e3(1−ε)λB2

+ 2n2e(1+(1−ε)λ)B2

+ n2e3B
2/2 ≥ n2e3B

2/2

We also have λ < 1/2 since M < c. Now, an upper bound of [XY Z]i,i can also be computed using
⟨ai, bj⟩, ⟨bj , ck⟩, ⟨ck, ai⟩ ≤ M log n and Equation 6 as,

[XY Z]i,i ≤
∑

j,k∈[n]

e3λB
2

+
∑

j∈[n+1:2n],k∈[n]

e(1+λ)B2

+
∑

j∈[n],k∈[n+1:2n]

e(1+λ)B2

+
∑

j,k∈[n+1:2n]

e3B
2/2,

≤ n2e3λB
2

+ 2n2e(1+λ)B2

+ n2e3B
2/2 ≤ 2n2e3B

2/2,

for large enough B when λ is constant.

Bounds on the numerator. We analyze bounds on [XD1,1Y D2,1Z]i,i when a positive certificate
of IP∆ contains ai versus when it does not.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Case 1: IP∆ present at i. In this case, we have

[XD1,1Y D2,1Z]i,i =
∑

j,k∈[ñ]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃V

(1)
j,1 V

(1)
k,2

=
∑

j,k∈[n]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃ (Using values of V (1), V (2)),

=
∑

j,k∈[n]

e(⟨ai,bj⟩+⟨bj ,ck⟩+⟨ck,ai⟩)B2/d̃ > e3λB
2

+ (n2 − 1)e3(1−ε)λB2

> e3λB
2

,

since we have some j, k ∈ [n] such that ⟨ai, bj⟩ = ⟨bj , ck⟩ = ⟨ck, ai⟩ = m.

Therefore,
[XD1,1Y D2,1Z]i,i

[XY Z]i,i
>

e3λB
2

2n2e3B2/2
. (7)

Case 2: IP∆ not present in i. Here, we have all ⟨ai, bj⟩ + ⟨bj , ck⟩ + ⟨ck, ai⟩ ≤ (2M + (1 −
ε)M) logn for all j, k since otherwise it will contain a IP∆. Therefore,

[XD1,1Y D2,1Z]i,i =
∑

j,k∈[ñ]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃V

(1)
j,1 V

(2)
k,2

=
∑

j,k∈[n]

e(⟨Q
(1)
i ,Q

(2)
j ⟩+⟨Q(2)

j ,Q
(3)
k ⟩+⟨Q(3)

k ,Q
(1)
i ⟩)/d̃,

=
∑

j,k∈[n]

e(⟨ai,bj⟩+⟨bj ,ck⟩+⟨ck,ai⟩)B2/d̃ ≤
∑

j,k∈[n]

e(3−ε)λB2

≤ n2e(3−ε)λB2

.

which implies

[XD1,1Y D2,1Z]i,i
[XY Z]i,i

<
e(3−ε)λB2

e3B2/2
. (8)

Wrapping up. Let ui be the value of the approximation of the i-th entry of the first row of the
Strassen-attention matrix, i.e., ∣∣∣∣ui −

[XD1,1Y D2,1Z]i,i
[XY Z]i,i

∣∣∣∣ ≤ γ.

We will show that ui is a distinguisher between the yes and no instances of IP∆; in particular for
appropriate settings of the parameters we will see that the value of ui in Case 1 (the yes case) is
always greater than the value of ui in Case 2 (the no case).

In Case 1, using Equations 7, we have

ui >
[XD1,1Y D2,1Z]i,i

[XY Z]i,i
− γ >

e3λB
2

2n2e3B2/2
− γ,

and in Case 2, using Equation 8, we have

ui <
[XD1,1Y D2,1Z]i,i

[XY Z]i,i
+ γ <

e(3−ε)λB2

e3B2/2
− γ.

Thus it suffices to verify the following inequality:

e(3−ε)λB2

e3B2/2
+ γ <

e3λB
2

2n2e3B2/2
− γ,

which is indeed satisfied for γ < 1
n2+Ω(1) and eελB

2

> n2. Therefore, B2 = Ω(logn) suffices.

Therefore, we have reduced Gap-IP∆ to APAC(hS) where Γ = B = Ω(
√
logn), completing the

proof of the lemma.

Therefore, if APAC(hS) could be solved in O(nω−δ) time, then that would imply that IP∆ could be
solved in O(nω−Ω(δ)) time (Theorem C.8), which in turn would imply Max-2SAT could be solved in
2(ω/3−Ω(δ))n time (Lemma C.7), which can not be true for an absolute constant δ > 0 (Hypothesis 3).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D PROOFS OF SECTION 3.2: TREE-ATTENTION

In this section, we prove the first part of Theorem 3.5 by giving an algorithm to exactly compute
the output of tree-attention. The second and third parts are computational complexities of special
subcases of poly-attention, which has been proved in Section E.

Before giving an algorithm for the exact computation complexity of tree-attention, we show a property
of branchings in the graphical representation. This happens when the underlying polynomial for the
poly-attention is a variable separable polynomial.
Lemma D.1 (Variable separability). If h(x1, . . . , xt) = f(x1, . . . , xi) + g(x1, xi+1, . . . , xt) for
some i ∈ [t − 1] and some polynomials f, g of minimum possible degrees, i.e., h is variable
separable (Definition A.5), then we have Att(h) = Att(f) ⊙ Att(g) and also the entrywise-
approximation Âtt(h) = Âtt(f) ⊙ Âtt(g). If the (entrywise-approximations of) outputs of poly-
attention, Att(f) and Att(g), can be computed in time T f (n) and T g(n) respectively, then computing
the (entrywise-approximation of) output of poly-attention for h, Att(h), can be performed in time
O(max{T f (n), T g(n)}+ nd).

Proof. For all j ∈ [n], k ∈ [d], we have,

Att
(f)
j,k ·Att

(g)
j,k

=

∑
ℓ2,...,ℓi

exp(1df(Q
(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
))V

(2)
ℓ2,k

. . . V
(i)
ℓi,k∑

ℓ2,...,ℓi
exp(1df(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
))

×
∑

ℓi+1,...,ℓt
exp(1dg(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))V

(i+1)
ℓi+1,k

. . . V
(t)
ℓt,k∑

ℓi+1,...,ℓt
exp(1dg(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))

=

∑
ℓ2,...,ℓt

exp
Ä
1
d (f(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
) + g(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))
ä
V

(2)
ℓ2,k

. . . V
(t)
ℓt,k∑

ℓ2,...,ℓt
exp
Ä
1
d (f(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(i)
ℓi
) + g(Q

(1)
j , Q

(i+1)
ℓi+1

, . . . , Q
(t)
ℓt
))
ä

=

∑
ℓ2,...,ℓt

exp(1dh(Q
(1)
j , Q

(2)
ℓ2

, . . . , Q
(t)
ℓt
))V

(2)
ℓ2,k

. . . V
(t)
ℓi,k∑

ℓ2,...,ℓt
exp(1dh(Q

(1)
j , Q

(2)
ℓ2

, . . . , Q
(t)
ℓt
))

= Att
(h)
j,k .

(9)

This implies Att(f)⊙Att(g) = Att(h), and if we obtain entrywise approximations Âtt(f) and Âtt(g)

respectively with error γ = 1
poly(n) , then Âtt(f) ⊙ Âtt(g) will be an entrywise approximation of

Att(h) with error γ0 = O(γ) = 1
poly(n) as well.

Note that the polynomials might not even contain the variable x1, in which case we all the rows of
the output of the corresponding poly-attention matrix will be the same.

Now, we prove that Att(h), where h is a tree polynomial, can be computed in O(n2) time.
Theorem D.2. If h is a tree polynomial (graphical representation of h is a tree or a forest), then we
can compute Att(h) exactly in Õ(n2) time.

Proof. Algorithm 2 gives a procedure for computing the output of tree-attention given query-key and
value matrices as inputs. Indeed, if there were multiple forests, we could have computed the output
of tree-attention for each of them separately, and composed them together using Lemma D.1.

Overview. We start with a tree rooted at v1, and compute poly-attention on each of the subtrees
(polynomials corresponding to the subtrees) where the query variable3 is the root of the subtree.
The main idea to compute this is, whenever we have a branching, we compute each of the subtrees
separately, and compose them together using Hadamard product of Lemma D.1.

3Query variable refers to the variable of the highest priority in the polynomial (priority of monomials and
variables has been defined in Definition E.1). It is usually the variable x1, and the indices of the corresponding
query-key matrix in the softmax computation correspond to the rows of Att(h) (see Equation 1).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 2 Algorithm to compute tree attention Att(h)

Input: A polynomial h(x1, . . . , xt) whose graphical representation is a tree, query-key matrices
Q(1), . . . , Q(t) ∈ Rn×d and value matrices V (2), . . . , V (t) ∈ Rn×d.

Output: Att(h) ∈ Rn×d

1: Construct G as the graphical representation of h, with vertices v1, . . . , vt.
2: for ℓ ∈ [d] do
3: Let p be the number of children of v1.
4: for all child node vji of v1, i ∈ [p] do
5: if vji is not a leaf then
6: Let gi(xji , x̄

i) be the polynomial of the subtree rooted at vji .

7: Compute Att
(gi(xji

,x̄i))

(1:n,ℓ) recursively, where vji is the query variable, by computing
the numerator term and the denominator term separately. Let the numerator term be
P (gi(xji

,x̄i)) ∈ Rn×1 and the denominator term be R(gi(xji
,x̄i)) ∈ Rn×1.

8: Define the numerator

P (x1xji
+gi(xji

,x̄i)) := [Q(1)(Q(ji))T]eDV (ji)

P (gi(xji
,x̄i)),

and the denominator,

R(x1xji
+gi(xji

,x̄i)) := [Q(1)(Q(ji))T]eR(gi(xji
,x̄i)),

where DV (ji)

= diag(V
(ji)
(1:n,ℓ)) ∈ Rn×n.

9: Compute

Att
(x1xji

+gi(xji
,x̄i))

(1:n,ℓ) :=
P (x1xji

+gi(xji
,x̄i))

R(x1xji
+gi(xji

,x̄i))
.

10: else
11: Here, gi(xji , x̄

i) = 0 since there is no tree rooted at vji .
12: Define the numerator

P (x1xji
) := [Q(1)(Q(ji))T]eV

(ji)
(1:n,ℓ),

and the denominator,

R(x1xji
) := [Q(1)(Q(ji))T]e1n×1.

13: Compute

Att
(x1xji

)

(1:n,ℓ) :=
P (x1xji

)

R(x1xji
)
.

14: end if
15: end for
16: For composing the branches together, compute the final numerator

P (h) := P (xjxj1
+g1(xj1

,x̄1)) ⊙ . . .⊙ P (xjxjp+gp(xjp ,x̄
p)),

and the final denominator,

R(h) := R(xjxj1+g1(xj1 ,x̄
1)) ⊙ . . .⊙R(xjxjp+gp(xjp ,x̄

p)),

where h = xjxj1 + g1(xj1 , x̄
1) + . . .+ xjxjp + gp(xjp , x̄

p) (by definition).
17: Define

Att
(h)
(1:n,ℓ) :=

P (h)

R(h)
.

18: end for
19: return Att(h).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

In Algorithm 2, we fix each of the columns ℓ ∈ [d] (Step 2), and compute Att
(h)
(1:n,ℓ), one at a time.

The computation of proceeds as computing the numerator and the denominator terms separately, from
the graphical representation Gh (as in Equation 1). In this recursive formulation, we employ compute
the values in a DFS fashion, first, we fix the root of the tree given by variable x1 (vertex v1 in the
graph), having the corresponding query-key matrix Q(1), and proceed to computing the output of the
poly-attention mechanism for its subtree polynomial.

Each branch. Without loss of generality, consider the root variable v1, and for each branch from
v1, consider an edge given by (v1, vji), i.e., v1—vji , for i ∈ [p], where p is the number of branches.
When vji is a leaf, we compute the poly-attention Att(x1xji

), and recursively pass it up the tree. The
denominator and numerator of Att(x1xji

) are defined in Step 12 of Algorithm 2 – two vectors in
Rn×1 which can be computed in O(n2) time and then their ratio is the poly-attention output for this
branch (Step 13).

Next, when vji is not a leaf, i.e., the tree proceeds as v1—vji—, let us assume the polynomial
whose subtree rooted at vji is given by gi(xji , x̄

i) and that we have already computed Att(gi(xji
,x̄i))

(the numerator and the denominator are separately given to us as P (gi(xji
,x̄i)), R(gi(xji

,x̄i)) ∈ Rn×1

respectively). By x̄i, we simply denote the subset of variables other than xji that the subtree consists
of. The output of tree-attention of the subtree rooted at v1 is essentially Att(x1xji

+gi(xji
,x̄i)). For this,

the numerator and the denominator can be computed as in Step 8 – both of these computations take

O(n2) time. The final value of Att
(x1xji

+gi(xji
,x̄i))

(1:n,ℓ) is given by Step 9, and we pass the numerator
and denominator vectors up the tree recursively.

Along a branching. For conglomerating the branches, let us say that the children nodes of v1
are vj1 , . . . , vjp , where the polynomials corresponding to their subtrees are g1(xj1 , x̄

1), . . . , gp
(xjp , x̄

p) (x̄1, . . . , x̄p are disjoint subsets of variables which are precisely the ones present in each
of the p subtrees, respectively). We also assume that we have recursively computed the ℓ-th

columns of the poly-attention outputs Att
(g1(xj1

,x̄1))

(1:n,ℓ) , . . . , Att
(gp(xjp ,x̄

p))

(1:n,ℓ) , in terms of the numera-

tors P (g1(xj1
,x̄1)), . . . , P (gp(xjp ,x̄

p)), and denominators R(g1(xj1
,x̄1)), . . . , R(gp(xjp ,x̄

p)) respectively.
Now, the poly-attention output for the polynomial having the subtree rooted at v1, which is

h(x1, x̄1, . . . , x̄p) := x1xj1 + gj1(xj1 , x̄
1) + . . .+ x1xjp + gjp(xjp , x̄

p),

is computed in Steps 16-17, and the correctness of this computation follows from Lemma D.1.

Time complexity. We show a quadratic time-complexity for Algorithm 2. Let us assume that
recursively in a branch, the numerator and the denominator of Att(gi(xji

,x̄)) can be computed in
Õ(n2) time (Step 7). From this, extending the output matrix of poly-attention to the current vertex
(Steps 8-9, 12-13, followed by 16-17) each require Õ(n2) time. The number of these sub-tree
attention computations required is at most the size of the tree, O(s), which is a constant. Therefore,
this gives a DFS-style procedure to compute the Att

(h)
(1:n,ℓ) in time Õ(n2) since the graph is of

constant size, and repeating for all ℓ ∈ [d], we will be able to find the entire matrix Att(h).

E PROOFS OF SECTION 3.3: COMPUTATIONAL COMPLEXITIES OF
POLY-ATTENTION

Throughout this paper, we will compute the numerator and the denominator in Equation 1 separately,
where the numerator term is

∑
ℓ2,...,ℓt∈[n] exp

Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(k)
ℓk

⟩
ä
V

(2)
ℓ2

⊙ V
(3)
ℓ3

⊙ . . .⊙ V
(t)
ℓt

, and

the denominator term is
∑

ℓ2,...,ℓt∈[n] exp
Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(k)
ℓk

⟩
ä

.

We also define a monomial ordering, which will help us proceed with the proofs of these theorems.

Definition E.1 (Monomial ordering). A monomial m1 is said to be higher preference than another
monomial m2 if either of the following holds:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

• deg(m1) > deg(m2), or

• deg(m1) = deg(m2) and m1 comes lexicographically before m2, i.e., if i is the smallest
index such that xi is present in exactly one of the monomials, then the monomial in which xi

is present has higher preference.

We will order the monomials of h according to this order, and mi will denote the i-th monomial.
Note that this definition can also be used with variables, where a variable xi has a higher preference
than xj if and only if i < j.

The polynomial method Alman & Song (2023; 2024; 2025) can again be applied to poly-attention, by
reducing APAC(h) to the computation the output of a larger t-tensor attention, where the query-key
vectors in tensor attention are of dimension n× (sd). However, the bound on the variables in this
case of computing poly-attention will be o((log n)1/k) in contrast to that of tensor attention being
o((log n)1/t) Alman & Song (2024).

For proving Theorem 3.6, we show the two parts, upper and lower bounds, separately. For upper
bounds, we give a polynomial method algorithm if the entries of the query-key matrices are bounded
(Theorem E.2), and if the entries are large, we give hardness results for entry-wise approximation
conditioned on fine-grained complexity conjectures (Theorem E.3).
Theorem E.2 (Polynomial method on poly-attention). Given an attention polynomial h(x1, . . . , xt)
of degree k having s monomials, where t, k, s are constants, there is an algorithm that
solves APAC(h)(n, d = O(logn),Γ = o((logn)1/k), γ = 1/poly(n)) with query-key matrices
Q(1), . . . , Q(t) ∈ [−Γ,Γ]n×d, and value matrices V (2), . . . , V (t) ∈ Rn×d in time O(n1+o(1)).
Theorem E.3 (Lower bound for poly-attention). Given an attention polynomial h(x1, . . . , xt) of
degree k having s monomials, where t, k, s are constants, we are interested in computing an entry-
wise γ-approximation Att(h) having query-key matrices Q(1), . . . , Q(t) ∈ [−Γ,Γ]n×d, and value
matrices V (2), . . . , V (t) ∈ Rn×d, for d = O(log n), γ = 1/poly(n). Then, depending on the structure
of h,

1. If k ≥ 2, then assuming SETH (Hypothesis 1), an entry-wise approximation of Att(h) can
not be computed in time O(nk−Ω(1)) when Γ = Ω((logn)1/k).

2. If h contains an elementary symmetric polynomial
(
[t0]
k

)
for some t0 ≤ t, then assuming the

Max-kSAT conjecture (Hypothesis 2), an entry-wise approximation of Att(h) can not be
computed in time O(nk0−Ω(1)) when Γ = Ω((log n)1/k).

3. If k = 2 and h is not a tree polynomial, then assuming the Max-2SAT conjecture (Hypothesis
3), an entry-wise approximation of Att(h) can not be computed in time O(nω−Ω(1)) when
Γ = Ω((logn)1/2).

E.1 POLYNOMIAL METHOD FOR POLY-ATTENTION

In this section, we prove Theorem E.2. We start with the polynomial h as defined in Theorem
E.2, and reduce the problem of computing an entry-wise approximation of Att(h) ∈ Rn×d to that
of Att(T) ∈ Rn×(sd), by constructing query-key matrices K(1), . . . ,K(t) ∈ Rn×(sd) and value
matrices W (1), . . . ,W (t) ∈ Rn×(sd), such that the row-softmax matrix of

1

d
K(1)

Ä
K(2) ⊘K(3) ⊘ . . .⊘K(t)

äT
,

is same as the softmax matrix of Att(h), and Att(h) is exactly equal to Att
(T)
(1:n,1:d) using these inputs,

and the remaining entries of Att(T) are zeros.

Defining K(j). We define K(j) ∈ Rn×(sd), for all j ∈ [t], by dividing the columns into s blocks,
each having d columns. These blocks are defined as, for j ∈ [t]:

• the i-th block, for i ∈ [s], contains the matrix Q(j) if the i-th monomial of h contains the
variable xj ,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• otherwise, the i-th block, for i ∈ [s], contains the all ones matrix 1n×d.

Roughly, the query-key matrices can be seen as:

K(j) =



d

1 . . . 1
...

...
1 . . . 1︸ ︷︷ ︸
xj not in m1

d

Q
(j)
1,1 . . . Q

(j)
1,d

...
...

Q
(j)
n,1 . . . Q

(j)
n,d︸ ︷︷ ︸

xj is in m2

d

1 . . . 1
...

...
1 . . . 1︸ ︷︷ ︸
xj not in m3

. . .


n×(sd)

.

Using these definitions, it can be verified that for this choice of K(j)’s, we have

⟨K(1)
ℓ1

,K
(2)
ℓ2

, . . . ,K
(t)
ℓt

⟩ =
∑
i∈[s]

⟨K(1)
ℓ1,(i−1)d+1:id,K

(2)
ℓ2,(i−1)d+1:id, . . . ,K

(t)
ℓt,(i−1)d+1:id⟩ (10)

=
∑
i∈[s]

⟨Q(j1)
ℓj1

, . . . , Q
(jki

)

ℓjki

⟩, (11)

where the monomials of h are defined as before (Definition 2.2).

Defining W (j). The value matrices for the t-tensor attention operation will be the same as that of
poly-attention. In order to match the embedding dimensions of the query-key matrices and the value
matrices of the t-tensor attention operation (as was used in Alman & Song (2024)), we can simply
consider the new n× (sd) dimensional value matrices, W (j)’s to contain the corresponding n× d
dimensional value matrices V (t) in the first d-columns, and all the remaining entries of W (j) contain
zero. More specifically,

W (j) =
[
V (j) 0n×d . . . 0n×d

]
n×(sd)

. (12)

Now, in Equation 1, note that the poly-attention output can be written as

D−1AW (2) ⊘ . . .⊘W (t),

where A ∈ Rn×nt−1

is defined as

A = [
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T]e,

and D is the n× n diagonal matrix

D = diag

Ü
[
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T]e 1n×1 ⊘ . . .⊘ 1n×1︸ ︷︷ ︸

(t− 1) times

ê
.

This is precisely the form of a t-tensor attention mechanism. Next, in order to use the polynomial
method on this matrix, we need the entries to be bounded.
Lemma E.4 (Bounded entries). Given Q(j) ∈ [−Γ,Γ]n×d and h defined as above, we have

e−sΓk

≤ exp

Å
1

d
h(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
)

ã
≤ esΓ

k

,

for all ℓ1, . . . , ℓt ∈ [n]. For Γ = o(1s (log n)
1/k) = o((log n)1/k), the entries

exp
Ä
1
dh(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
)
ä

are sub-polynomial in n.

Proof. Since h is a degree k polynomial with constant coefficients, for each monomial mi of h,
1
dmi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
) in in the range of [−Γk,Γk]. There are s monomials and the total value is

bounded inside the interval [−sΓk, sΓk], which gives the required result after exponentiation.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

For completing the algorithm, we use results which follow from the proofs in (Alman & Song, 2024,
Apx. E).

Theorem E.5 (Alman & Song (2024)). Given matrices K(1), . . . ,K(t) ∈ [−Γ,Γ]n×d and value
matrices W (2), . . . ,W (t) ∈ Rn×d, we can compute an entry-wise γ-approximation, for γ = 1/poly(n),
of the following:

1. A matrix Âtt ∈ Rn×d which is the entry-wise γ-approximation of the numerator matrix of
tensor attention output

Att = [
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T]eW (2) ⊘ . . .⊘W (t),

that is, for all i ∈ [n], j ∈ [d],

|Âtti,j −Atti,j | < γ.

2. A diagonal matrix D̂ ∈ Rn×n which is an entry-wise approximation of the diagonal matrix
D ∈ Rn×n given by

D = diag

Å
[
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T]e1n×1 ⊘ . . .⊘ 1n×1

ã
,

that is, for all i ∈ [n],
|D̂i,i −Di,i| < γ.

Here, when the condition max
¶

log(1/γ)
log(log(1/γ)/Λ) ,Λ

©
= o(log n) is met (where Λ = || 1dK

(1)(K(2) ⊘
. . . ⊘ K(t))T ||∞), the time complexity for finding the matrices Âtt, D̂, and hence an entry-wise
2γ-approximation of D−1Att, is n1+o(1).

Using Lemma E.4, the value of Λ in Theorem E.5 is O(Γk), and for the choice of Γ = o((logn)
1
k),

the quantity max
¶

log(1/γ)
log(log(1/γ)/Λ) ,Λ

©
is indeed o(log n), which gives our required almost-linear

complexity for computing Att(h).

Summing up, the algorithm for computing entry-wise approximation of Att(h) is given as the
following algorithm.

Algorithm 3 Algorithm to compute an entry-wise approximation of Att(h)

Input: An attention polynomial h(x1, . . . , xt) of degree k, matrices
Q(1), . . . , Q(t), V (2), . . . , V (t) ∈ Rn×d, γ = 1

poly(n)

Output: Entry-wise γ-approximation Âtt(h) ∈ Rn×d of Att(h) ∈ Rn×d.
1: Using Q(1), . . . , Q(t) and h, compute K(1), . . . ,K(t) ∈ Rn×(sd) (Equation 10). ▷ O(nd) time.
2: Compute W (2), . . . ,W (t) ∈ Rn×(sd) from V (2), . . . , V (t) (Equation 12). ▷ O(nd) time.
3: Compute entry-wise γ-approximation Âtt ∈ Rn×(sd) of

Att = [
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T]eW (2) ⊘ . . .⊘W (t),

using Theorem E.2, Step 1. ▷ O(n1+o(1)d) time.
4: Compute entry-wise γ-approximation D̂ ∈ Rn×n of

D = diag

Å
[
1

d
K(1)(K(2) ⊘ . . .⊘K(t))T]e1n×1 ⊘ . . .⊘ 1n×1

ã
,

which is a diagonal matrix, using Theorem E.2, Step 2. ▷ O(n1+o(1)d) time.
5: Return D̂−1Âtt(1:n,1:d). ▷ O(nd) time.

This proves Theorem E.2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E.2 TIME LOWER BOUNDS FOR POLY-ATTENTION

We complete the main complexity result of this paper, either we can compute an entry-wise ap-
proximation of poly-attention in near-linear time, when the entries of the query-key matrices are
bounded; or we require at least superquadratic time, unless the polynomial for poly-attention is a tree
polynomial.

Our proofs for showing the hardness of entry-wise approximation of Att(h) consists of two reductions:
(1) first we reduce from each of kIP, HypergraphIP, and IP∆ (which have popularly known hardness
conjectures of SETH, Max-2SAT, Max-kSAT respectively) to no(1) instances of their respective gap
versions, and (2) secondly, we reduce each of those gap versions to an entry-wise approximation of
poly-attention. These subcases and the starting complexity assumptions will be based on the structure
of h provided, as categorized in Theorem E.3.

For proving Step 1, when we prove the first case, we get hard instances of ε-Gap-kIP assuming
SETH (Theorem E.7). For the second case, we assume Max-kSAT is true, reduce Max-kSAT using
a known reduction (Lemma E.10) to no(1) instances of HypergraphIP, and further reduce each of
those instances to no(1) instances of ε-Gap-HypergraphIP (Corollary E.12). For the third case,
we start with Max-2SAT and reduce that to no(1) instances of IP∆ (Lemma C.7), and then to no(1)

instances of ε-Gap-IP∆ (Theorem C.8).

We complete the reductions for Step 2 in each of the following subsections.

E.2.1 TIME LOWER BOUNDS BASED ON DEGREE OF POLYNOMIAL USING SETH

In this section, we prove the first part of Theorem E.3. We first start with an instance of kIP, which is
SETH-hard, reduce it to ε-Gap-kIP (Definition E.6) using some previous works Rubinstein (2018);
Alman & Song (2024), and then using the instances of ε-Gap-kIP, create query-key matrices for
Att(h) such that an entry-wise γ-approximation of Att(h) would solve the instance of ε-Gap-kIP.
Definition E.6 (ε-Gap-kIP). For every ε ∈ (0, 1) and positive integers k ≥ 2, given sets of vectors
A1, . . . , Ak ⊆ {0, 1}d with |A1| = . . . = |Ak| = n, a target inner product m ∈ {0, . . . , d}, and the
promise that for any a1 ∈ A1, . . . , ak ∈ Ak,

• either ⟨a1, . . . , ak⟩ = m,

• or, ⟨a1, . . . , ak⟩ ≤ (1− ε)m,

the problem of ε-Gap-kIPn,d is to decide if there exist vectors a1 ∈ A1, . . . , ak ∈ Ak such that
⟨a1, . . . , ak⟩ = m.

Using Rubinstein (2018)-like techniques, conditional hardness of ε-Gap-kIP can be obtained.
Theorem E.7 (Alman & Song (2024); Rubinstein (2018)). For every δ > 0 and every constant
ε ∈ (0, 1), there exists a constant c > 0, such that ε-Gap-kIPn,c logn for any target inner product
m ∈ {0, . . . , c log n}, cannot be solved in time O(n(1−δ)k), unless SETH is false.

Due to this result, we start with an instance of ε-Gap-kIP and reduce that to an entry-wise approxi-
mation of Att(h). If the entry-wise approximation of Att(h) can be computed in n(1−δ)k time for a
constant δ > 0, then ε-Gap-kIP can be solved in Õ(n(1−δ)k) time, which would refute SETH.

Lemma E.8 (ε-Gap-kIP to APAC(h)). For every constant ε > 0, every δ ∈ (0, 0.01), every
c,M > 0, given an attention polynomial h(x1, . . . , xt) of degree k ≥ 2 having s monomials, where
t, k, s are constants, there exist constants Ca > 0 and Cb > 0 such that if APAC(h)(2n, (s +
1)c logn,Γ = Cb(logn)

1/k, γ = n−Ca) (Definition A.6) with query-key matrices Q(1), . . . , Q(t) ∈
[−Γ,Γ]2n×(s+1)c logn and value matrices V (2), . . . , V (t) ∈ R2n×(s+1)c logn can be solved in time
O(nk−δ), then ε-Gap-kIPn,c logn (Definition E.6) with target inner product m = M log n can also
be solved in O(nk−δ) time for any constant M .

Proof. Let us start with an instance of ε-Gap-kIPn,d=c logn that we want to solve, with k sets of
vectors A1, . . . , Ak ⊆ {0, 1}d, consisting of n vectors each. The vectors are {ai1, . . . , ain} := Ai and

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

the target inner product is m = M log n, for a constant M , with the promise of the gap condition for
an approximation factor ε. We also assume that there does not exist an all one’s vector in Ai for each
i ∈ [k], as that would violate the gap-property (as m needs to be smaller than d for hardness).

Using this instance of deciding ε-Gap-kIP, we reduce it to computing an entry-wise approximation of
Att(h), with query-key matrices Q(1), . . . , Q(t) ∈ [−Γ,Γ]ñ×d̃, and value matrices V (2), . . . , V (t) ∈
Rñ×d̃, for ñ = 2n, d̃ = (s+ 1)d = (s+ 1)c log n, and a Γ that we will choose later.

Let us assume that the highest preference monomial of h, a monomial of degree k, is given by
xr1 . . . xrk , where r1 has the index of the highest preference that may or may not be 1.

We will construct the query-key matrices such that each matrix Q(rj) will contain vectors from Aj

for j ≤ k, zeros otherwise. Having the monomials ordered according to descending order of the
monomial ordering (Definition E.1), each of these Q(rj)’s will consist of blocks of columns which
correspond to monomials– the i-th column block, containing d columns from (i− 1)d+ 1 to i.d, for
i ∈ [s], will correspond to the monomial mi, and the last column block will be a normalizing block.
The idea of the reduction is that only the degree k term xr1 . . . xrk of h will contribute to computing
the final inner product, the terms which are subsets of this degree k term will cancel each other out,
and all the other terms will be zero, thereby not contributing anything to h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
).

More specifically, we want,

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Λ⟨a1ℓr1 , . . . , a

k
ℓrk

⟩,

for ℓr1 , . . . , ℓrk ∈ [n], and some scaling factor Λ which we will see later.

Construction of matrices. Let us now define each block of Q(j), j ∈ [t], which will have 2n rows
and (s+ 1)d columns. We will define them by defining each of the column-blocks using a scaling
factor B = ω(1). Considering the set T = {r1, . . . , rk}, we define:

1. For Q(j)’s, if j ̸∈ T , we just make the entire matrix zero 02n×(s+1)d.

2. We now fix j ∈ [k] and define Q(rj) (i.e., some value of rj ∈ T). We define first column
block of Q(rj) as:

Q
(rj)

(1:2n,1:d) = B



aj1
aj2
...
ajn
0d

0d

...
0d


2n×d

.

For column blocks i ∈ [s], if the monomial mi does not divide xr1 . . . xrk , we just make
that block all zeros

Q
(rj)

(1:2n,(i−1)d+1:i.d) = 02n×d.

3. If monomial i ∈ [s] does indeed divide xr1 . . . xrk , consider j1 as the index of the highest
preference variable present in mi = xrj1

. . . xrjki
, for j1, . . . , jki

∈ [k], ki < k. Let si be
the negation of the integer which is the number of occurrences of this monomial mi along
with coefficients, in each of the monomials ordered higher than i and that divides xr1 . . . xrk
(these are the only non-zero monomials).

More specifically, si is the sum defined by adding:

• −1 from the monomial m1.
• −sℓ whenever 1 < ℓ < i, the monomial mℓ divides m1, the monomial mi divides mℓ,

and the highest preference variable of mℓ is also present in mi.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

• −1 whenever 1 < ℓ < i, the monomial mℓ divides m1 and mi divides mℓ, but the
highest preference variable of mℓ is not present in mi.

• 0 in all other cases.

If xrj is not present in monomial i, we simply set

Q
(rj)

(1:2n,(i−1)d+1:i.d) := 02n×d,

otherwise:

Q
(rj1)

(1:2n,(i−1)d+1:i.d) = B



sia
j1
1

sia
j1
2
...

sia
j1
n

0d

0d

...
0d


2n×d

,

where xrj1
is the highest preference variable in mi, and

Q
(rj)

(1:2n,(i−1)d+1:i.d) = B



aj1
aj2
...
ajn
0d

0d

...
0d


2n×d

,

for all other j’s such that xrj is present in monomial i.

4. The last column block for Q(r1) is the all ones matrix 1n×d with a scaling factor, i.e.,

Q
(r1)
(1:2n,s.d+1:(s+1)d) = B · 12n×d,

and for j ∈ [2 : k], it is the matrix

Q
(rj)

(1:2n,s.d+1:(s+1)d) =

ï
0n×d

1n×d

ò
2n×d

.

Roughly, the query-key matrices can be seen as:

Q(r1) = B



d

a11
...
a1n
0d

...
0d︸︷︷︸

xr1 not in m1

d

0d

...

0d︸︷︷︸
m2 does not divide m1

d

s3 · a11
...

s3 · a1n
0d

...
0d︸ ︷︷ ︸

m3 divides m1

. . .

d

1d

...

1d


n×((s+1)d)

,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

and for all other j ∈ [2 : k],

Q(rj) = B



d

aj1
...
ajn
0d

...
0d︸︷︷︸

xr1 not in m1

d

0d

...

0d︸︷︷︸
m2 does not divide m1

d

s3 · aj1
...

s3 · ajn
0d

...
0d︸ ︷︷ ︸

m3 divides m1

. . .

d

0d

...
0d

1d

...
1d


n×((s+1)d)

.

For the value matrices V (j) ∈ R(2n)×(s+1)d, j ∈ T\{1}, we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

0T
n

ò
,

and for j ∈ [2 : t]\T , we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

1T
n

ò
.

All the other columns are completely zero 0T
2n.

Correctness of construction. We now show that for ℓ1, . . . , ℓt ∈ [n], h(Q(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
) =

Bk⟨a1ℓr1 , . . . , a
k
ℓrk

⟩. By definition, m1 = xr1 . . . xrk , and it is easy to note that

m1(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Bk⟨a1ℓr1 , . . . , a

k
ℓrk

⟩. For all the other degree k terms, the inner products

from their corresponding blocks are all zeros as we had defined Q(j) as all zeros matrix for all j ̸∈ T .

We want to show that for all other i’s, mi(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = 0. When we compute

mi(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
), the î-th column blocks for î < i have some contributions to the inner

product mi if and only if mi divides mî (otherwise mi(Q
(1)

ℓ1,(̂i−1)d+1:̂i.d
, . . . , Q

(t)

ℓt,(̂i−1)d+1:̂i.d])

is zero), and no î has a contribution for î > i due to the correctness of the mono-
mial ordering. Now, from the choice of si as above, it follows that mi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
) =∑i

î=1 mi(Q
(1)

ℓ1,(̂i−1)d+1:̂i.d
, . . . , Q

(t)

ℓt,(̂i−1)d+1:̂i.d
) = 0.

For bounding the values of si’s, we use induction to prove |si| < si. The base case is obviously
true. For the induction step, assuming |si| < si, for the (i+ 1)-th monomial, si+1 needs to cancel
the contribution to the inner product corresponding to mi+1 from each monomial mî which is
divisible by mi+1. The contribution is at most |sî| < sî (from the induction hypothesis), and hence
|si+1| <

∑
î : mi+1|mî

|sî| <
∑

î : mi+1|mî
sî < i.si < si+1. Therefore, we have |si| < ss, which

implies Γ = O(ssB), and from the definitions, we obviously have Γ ≥ B as well. Since, s = O(1),
we have Γ = Θ(B).

Further, these query-key and value matrices can be computed in O(n1+o(1)) time.

Approximation yields gap property. We assume an entry-wise approximation of the self-attention
matrix, and the goal is to compute two values, the numerator and the denominator, for computing the
softmax. The numerator, for ℓ1 ∈ [2n], is given by

P̄ℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
V

(2)
ℓ2

⊙ . . .⊙ V
(t)
ℓt

,

and the denominator by

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

The ℓ1-th row of the Att(h) will be P̄ℓ1

Rℓ1
, and we want to find an entry-wise approximation. Since

in our choice of the value matrices, the first coordinate of P̄ℓ1 is the only non-zero one, and its
summation is only upto the top half of the value matrices, ℓj ∈ [n], for j ∈ [2 : k]. The only non-zero
part of the numerator, that we care about, is therefore given by

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
.

If we have an entry-wise γ-approximation of Att(h), let xℓ1-th be the approximation for the (ℓ1, 1)
entry of Att(h). By definition, we have

|xℓ1 −
Pℓ1

Rℓ1

| < γ. (13)

Bounds on denominator. Consider the summation
∑

ℓ2,...,ℓt∈[2n] exp
Ä
1
d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)
ä

.
Define λ as the factor such that when only the r1, . . . , rk coordinates are B.1d and the remaining are
zeros, i.e.,

h(0d, B.1d, . . . , B.1d︸ ︷︷ ︸
k

,0d, . . . ,0d) = λdBk.

It is easy to see that λ = 1 + o(1), since the evaluation of h at these values will give a Bk from the
first monomial, and the other s− 1 monomials will give at most (s− 1)Bk−1 = o(Bk).

For the choice of Q(j)’s, we have

Rℓ1 >
∑

ℓi∈[n+1:2n] : i∈T
ℓj∈[2n] : j ̸∈T

exp(
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
))

>
∑

ℓ2,...,ℓt∈[n:2n]

exp(λdBk/d̃) = nt−1e(B
k λ

s+1),

since all the Q(rj)
ℓrj

’s, for j ∈ [k], have the zeros in the last column-block and 1d along with the scaling

factor B, which makes all the monomials of h give inner product dBk.

For the upper bound on Rℓ1 , we have to use the maximum possible value of h(Q(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
),

irrespective of whether ℓj’s are in [n] or [n+ 1 : 2n]. Let us consider a choice of ℓ2, . . . , ℓt ∈ [2n].
If all the ℓrj ’s, for j ∈ T\{1}, are in [n+1 : 2n], then the value of h(Q(1)

ℓ1
, Q

(2)
ℓ2

, . . . , Q
(t)
ℓt
) obtained

will be be λdBk. Otherwise, there are some (but not all) ℓj’s in [n] for j ∈ [2 : k], where the
monomial of degree < k containing only those variables will be at most ssdBk−1, and the maximum
value will be obtained from the first term, which can be at most Bk⟨a1ℓr1 , . . . , a

k
ℓrk

⟩ = (d − 1)Bk.

Thus, in this case, the maximum value of h(Q(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
) would be (d− 1 + o(1))Bk which

is still less than λdBk.

Therefore,

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
≤

∑
ℓ2,...,ℓt∈[2n]

exp

Ç
λdBk

d̃

å
= 2t−1nt−1e(B

k λ
s+1).

Therefore,

nt−1e(B
k λ

s+1) < Rℓ1 < 2t−1nt−1e(B
k λ

s+1). (14)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Bounds on numerator. Now, we will show that if a vector tuple exists with the proper target inner
product (a positive certificate for γ-Gap-kIP), then Pℓ1 is so large that xℓ1 (Equation 13) is larger
than a fixed threshold. Here, we first show a lower bound on Pℓ1 . Otherwise, we will show that xℓ1 is
small since every inner product will be scaled down by a gap due to the approximation promise.

Consider ℓ1 ∈ [n] when there exists ℓ0r1 , . . . , ℓ
0
rk

∈ [n] such that the inner product ⟨a1ℓ0r1 , . . . , a
k
ℓ0rk

⟩ =
M logn (it is quite possible that r1 = 1, in which case we will only consider ℓ1 = ℓ01). Then, we
have

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
>

∑
ℓi=ℓ0i : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
= (2n)t−k−1 exp

Å
1

d̃
Bk⟨a1ℓ0r1 , a

2
ℓ0r2

, . . . , atℓ0rt
⟩
ã

= (2n)t−k−1 exp

Å
Bk M

(s+ 1)c

ã
,

where the second equality follows from the construction of the Q(j)’s. Using the upper bound of Rℓ1
in Equation 14, we get,

Pℓ1

Rℓ1

>
(2n)t−k−1e(B

k M
(s+1)c)

(2n)t−1e(B
k λ

s+1)
=

e
Ä
Bk(M

c
−λ)/(s+1)

ä
(2n)k−1

.

Using xℓ1 >
Pℓ1

Rℓ1
− γ (Equation 13), we get

xℓ1 >
e
Ä
Bk(M

c
−λ)/(s+1)

ä
(2n)k−1

− γ. (15)

Now, for finding an upper bound on xℓ1 when an exact inner product tuple does not exist, we use

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈[T]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
= (2n)t−k−1

∑
ℓi∈[n] : i∈T

exp

Å
1

d̃
Bk⟨a1ℓr1 , a

2
ℓr2

, . . . , akℓrk
⟩
ã
,

using the construction of Q(rj)’s. Now, using the gap property of inner products in our instance of
ε-Gap-kIP, we have

Pℓ1 = (2n)t−k−1
∑

ℓi∈[n] : i∈T

exp

Å
1

d̃
Bk⟨a1ℓ1 , a

2
ℓ2 , . . . , a

k
ℓk
⟩
ã

< (2n)t−k−1
∑

ℓi∈[n] : i∈T

exp

Ç
Bk

d̃
(1− ε)M log n

å
=⇒ Pℓ1 < 2t−k−1nt−1e((1−ε)Bk M

(s+1)c).

Finally, using the lower bound of Rℓ1 (Equation 14), we get

Pℓ1

Rℓ1

<
2t−k−1nt−1e((1−ε)Bk M

(s+1)c)

nt−1e(B
k λ

s+1)
= 2t−k−1e

(
Bk((1−ε)M

c
−λ)/(s+1)

)
,

and the bound on xℓ1 from Equation 13 implies,

xℓ1 <
Pℓ1

Rℓ1

+ γ < 2t−k−1e

(
Bk((1−ε)M

c
−λ)/(s+1)

)
+ γ. (16)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Wrapping up. In order to differentiate between the cases, we must have the lower bound of xℓ1
when a positive instance for ε-Gap-kIP tuple exists, Equation 15, must be greater than the upper
bound when such an instance does not exist, Equation 16:

1

e(εB
k M

(s+1)c)

2t−k−1

e
Ä
Bk(λ−M

c)/(s+1)

ä + γ <
1

(2n)k−1e
Ä
Bk(λ−M

c)/(s+1)

ä − γ,

which is true for the choice of γ ≤ n−Ca and B > Cb(logn)
1/k, for large enough constants

Ca, Cb > 0. This would make e(εB
k M

c) large enough and γ small enough, such that the inequality
will be valid.

Now, since s is constant, the maximum absolute value of the entries of the query-key matrices are
Ω(B) = Ω((logn)1/k), which proves our result. Therefore, if we can find an algorithm for finding an
entry-wise γ-approximation of Att(h) for APAC(h) with these parameters, that runs in time nk−Ω(1),
then SETH will be refuted (Theorem E.7).

E.2.2 TIME LOWER BOUNDS BASED ON SUBSTRUCTURE OF POLYNOMIAL USING MAX-kSAT
CONJECTURE

In the second part of Theorem E.3, we prove a stronger lower bound when the monomials of
h contains an elementary symmetric polynomial of degree k in t0 variables where k < t0 ≤ t.
The underlying conjecture for this lower bound is the Max-kSAT. We first start with a problem
called HypergraphIP (Definition E.9), which is at least as hard as Max-kSAT, show that its gap
version, ε-Gap-HypergraphIP (Definition E.11), is also at least as hard as HypergraphIP using
Rubinstein (2018); Abboud & Ron-Zewi (2025), and finally show that computing an entry-wise
γ-approximation of Att(h) efficiently would solve ε-Gap-HypergraphIP faster, thereby refuting
Max-kSAT conjecture.

Definition E.9 (HypergraphIPn,d
t,k). For positive integers t, k, given t sets of vectors A1, . . . , At ∈

{0, 1}d with |A1| = . . . = |At| = n, and target inner products m1, . . . ,m(tr)
, the problem

HypergraphIPn,d
t,k is to decide if there exist vectors a1 ∈ A1, . . . , at ∈ At such that for all sub-

sets S ∈
(
[t]
k

)
, we have ⟨aS[1], . . . , aS[k]⟩ = mS , where mS is the target inner product corresponding

to the given k-sized subset among the
(
t
k

)
choices.

We will drop n, d from the superscript and not include the target inner products as the parameters to
make the problem definitions less cumbersome. This problem again has a hardness result, as follows.

Lemma E.10 ((Alman & Vassilevska Williams, 2020, Theorem 23)). Assuming the Max-kSAT
conjecture (Hypothesis 2), for every δ > 0 and every positive integer t, k, there exists a constant
c > 0 and target inner products m1, . . . ,m(tr)

∈ {0, . . . , d} such that HypergraphIPn,c logn
t,k cannot

be solved in time O(n(1−δ)t).

We can again reduce HypergraphIP to its gap version Gap-HypergraphIP to show that this problem
is hard as well.

Definition E.11 (ε-Gap-HypergraphIPn,d
t,k). For every ε ∈ (0, 1) and positive integers t, k, given

t sets of vectors A1, . . . , At ∈ {0, 1}d with |A1| = . . . = |At| = n, and target inner product
m ∈ {0, . . . , d}, along with the promise that for every a1 ∈ A1, . . . , at ∈ At and ∀S ∈

(
[t]
k

)
,

• either, ⟨aS[1], . . . , aS[k]⟩ = m,

• or, ⟨aS[1], . . . , aS[k]⟩ ≤ (1− ε)m,

the problem ε-Gap-HypergraphIPn,d
t,k is to decide if there exist vectors a1 ∈ A1, . . . , at ∈ At such

that ∀S ∈
(
[t]
k

)
, we have ⟨aS[1], . . . , aS[k]⟩ = m.

Again, similar to Gap-IP∆, for Gap-HypergraphIP, we consider the target inner products to be the
same for all the subsets of inner products, since the Rubinstein (2018)-like reduction accommodates

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

this, and we need this condition for reducing Gap-HypergraphIP to entry-wise approximation of
Att(h).

The hardness of ε-Gap-HypergraphIP follows from a proof very similar to Theorem C.8, given by
the following corollary.
Corollary E.12. For positive integers t, k with k ≥ 3, and every δ > 0, assuming the Max-kSAT
conjecture, there exists a constant c and target inner product m ∈ {0, . . . , c log n}, the problem
ε-Gap-HypergraphIPn,c logn

t,k cannot be solved in time O(n(1−δ)t).

Proof. We can again use the reductions of Lemma C.9. We start with an instance of HypergraphIPn,d
t,k

having sets of vectors A1, . . . , At ⊆ {0, 1}d containing n vectors each, and reduce that to no(1) in-
stances of ε-Gap-HypergraphIPn,d̃

t,k having sets of vectors B1, . . . , Bk ⊆ {0, 1}d̃ for d̃ = Θ(logn),
where each Bi contains n vectors.

The proof goes as– for each k-tuple (j1, . . . , jk) ∈
(
[t]
k

)
, we reduce Aj1 , . . . , Ajk , an instance of

kIP, to no(1) instances of ε-Gap-kIP of dimension d0 (using methods of Alman & Song (2024);
Rubinstein (2018); Abboud & Ron-Zewi (2025)). Then, we combine each of the ε-Gap-kIP instances
for all (j1, . . . , jk) ∈

(
[t]
k

)
by creating

(
t
k

)
column blocks, each of dimension d0, as done in the proof

of Theorem C.8, where the block corresponding to (j1, . . . , jk) will contain vectors obtained from
the above reduction, and the rest will be zero. The hardness result also holds true when the target
inner product for every subset of B1, . . . , Bk are equal.

Now, to show hardness of computing an entry-wise γ-approximation of Att(h) where h satisfies the
conditions of Part 2 of Theorem E.3, we reduce ε-Gap-HypergraphIPt0,r

(which we know is at
least as hard as Max-kSAT), to an entry-wise approximation of Att(h). Armed with Corollary E.12,
we are now ready to prove the following lemma which completes the second part of Theorem E.3.

Lemma E.13 (ε-Gap-HypergraphIP to APAC(h)). For every constant ε > 0, every δ ∈
(0, 0.01), every c,M > 0, given an attention polynomial h(x1, . . . , xt) of degree k ≥ 3 hav-
ing s monomials, such that the set of monomials of h contains as a subset all the monomi-
als of the elementary symmetric polynomial in t0 < t variables of degree k, where t, k, s, t0
are constants, there exist constants Ca > 0 and Cb > 0 such that if APAC(h)(2n, (s +
1)c logn,Γ = Cb(logn)

1/k, γ = n−Ca) (Definition A.6) with query-key matrices Q(1), . . . , Q(t) ∈
[−Γ,Γ]2n×(s+1)c logn and value matrices V (2), . . . , V (t) ∈ R2n×(s+1)c logn can be solved in
time O(nt0−δ), then ε-Gap-HypergraphIPn,c logn

t0,k
(Definition E.11) with target inner product

m = M log n can also be solved in O(nt0−δ) time for any constant M .

Proof. First, we consider that the subset of the monomials of h, which constitute a symmetric
polynomial in t0 variables of degree k, is given by the set of subset of variables xr1 , . . . , xrt0

. Let us
denote T := {r1, . . . , rt0} ⊆ [t].

Let us start instance of ε-Gap-HypergraphIPn,d=c logn
t0,k

with t0 sets of vectors be A1, . . . , At0 ⊆
{0, 1}d, having n vectors each, and the target inner product being m = M log n with a promise of
gap given with a constant approximation factor of ε. More specifically, we want to check if there
exists ℓr1 , . . . , ℓrt0 ∈ [n] such that for all (j1, . . . , jk) ∈

(
[t0]
k

)
, we have ⟨aj1ℓj1 , . . . , a

j1
ℓjk

⟩ = m, i.e.,∑
j1,...,jk∈([t0]

k)

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩ =
Ç
t0
k

å
m =: m0,

where m0 = M0 log n. We also have the promise that for every other tuple ℓr1 , . . . , ℓrt0 ∈ [n] where
HypergraphIPt0,k property is not satisfied,∑

j1,...,jk∈([t0]
k)

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩ <
ÇÇ

t0
k

å
− 1

å
m+ (1− ε)m =: (1− ε0)m0,

for another constant ε0 = ε/(t0k).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Constructing the matrices. Now, we define the matrices Q(j)’s, such that

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Λ

∑
j1,...,jk∈([t0]

k)

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩,

for a scaling factor Λ, in a construction quite similar to the proof of Lemma E.8. The query-key
matrices will be Q(1), . . . , Q(t) ∈ [−Γ,Γ]ñ×d̃, for ñ = 2n, d̃ = (s+ 1)d, defined as follows using a
scaling value B = ω(1) which we will choose later:

1. For Q(j)’s, if j ̸∈ T , we just make the entire matrix zero 02n×(s+1)d.

2. For some i ∈ [s], if mi is equal to some xrj1
. . . xrjk

for j1, . . . , jk ∈
(
[t0]
k

)
, we define that

block as:

Q
(rjℓ)

(1:2n,(i−1)d+1:i.d) = B



ajℓ1
ajℓ2
...
ajℓn
0d

0d

...
0d


2n×d

,

for all ℓ ∈ [k], and

Q
(j)
(1:2n,(i−1)d+1:i.d) = 02n×d,

for all other j ∈ [t]\{rj1 , . . . , rjk}.

3. However, if for i ∈ [s], monomial i has degree ≤ k − 1, let this be equal to xrj1
. . . xrjki

,
where j1, . . . , jki ∈ [t0], ki < k is the degree (note that if the variables are anything outside
T , we have defined the corresponding query-key matrices to be zeros anyway). Let si be the
integer which is the negation of the number of occurrences of this monomials in each of the
monomials ordered higher preference than i.

As before, si is the sum defined by adding:

• −1 whenever ℓ < i and mℓ is of degree k.
• −sℓ whenever ℓ < i, the monomial mℓ is of degree ≤ k, mi divides mℓ, and the

highest preference variable of mℓ is also present in mi.
• −1 whenever ℓ < i, the monomial mℓ is of degree ≤ k and mi divides mℓ, but the

highest preference variable of mℓ is also present in mi.
• 0 in all other cases.

If xrj is not present in monomial i, we just set

Q
(rj)

(1:2n,(i−1)d+1:i.d) := 02n×d,

otherwise:

Q
(rj1)

(1:2n,(i−1)d+1:i.d) = B



sia
j1
1

sia
j1
2
...

sia
j1
n

0d

0d

...
0d


2n×d

,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

where xrj1
is the highest preference variable of mi, and

Q
(rj)

(1:2n,(i−1)d+1:i.d) = B



aj1
aj2
...
ajn
0d

0d

...
0d


2n×d

,

for all other j’s such that xrj is present in monomial i.

4. The last column block for Q(r1) is the all ones matrix 1n×d with a scaling factor, i.e.,

Q
(r1)
(1:2n,s.d+1:(s+1)d) = B · 12n×d,

and for j ∈ {2, . . . , t0}, it is the all zeros matrix

Q
(rj)

(1:2n,s.d+1:(s+1)d) =

ï
0n×d

1n×d

ò
2n×d

.

For the value matrices V (j) ∈ R(2n)×(s+1)d, j ∈ T\{1}, we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

0T
n

ò
,

and for j ∈ [2 : t]\T , we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

1T
n

ò
,

with every other columns 0T
2n.

Correctness of construction. Again, similar to the proof of Lemma E.8, we can prove that this
construction does indeed give

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Bk

∑
j1,...,jr∈Sr

t0

⟨aj1ℓrj1
, . . . , ajkℓrjk

⟩,

and the entries of the query-key matrices are in [−Γ,Γ] for B < Γ < O(ssB).

Also, these query-key and value matrices can be computed in O(n1+o(1)) time.

Approximation yields gap property. As before, let us assume there exists an entry-wise approxi-
mation xℓ1 of the (ℓ1, 1)-th element of Att(h) such that

|xℓ1 −
Pℓ1

Rℓ1

| < γ,

where

Pℓ1 =
∑

ℓi∈[n] : i∈T
ℓj∈[2n] : j ̸∈T

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

and the (ℓ1, 1)-th element of Att(h) is Pℓ1

Rℓ1
.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Bounds on Pℓ1 , Rℓ1 . Similar to before, we can prove

nt−1e

(
λBk

(s+1)

)
< Rℓ1 < 2t−1nt−1e

(
λBk

(s+1)

)
,

where λ = 1 + o(1). For the numerator, we can show that when a positive certificate of
ε-Gap-HypergraphIP does exist (if r1 ̸= 1, then this holds for all ℓ1’s, otherwise, there will
be a fixed ℓ1 such that a1ℓ1 is included in the positive certificate),

Pℓ1 > (2n)t−k−1e(B
k M0

(s+1)c),

which implies

xℓ1 >
Pℓ1

Rℓ1

− γ >
e

(
Bk(M0

c
−λ)/(s+1)

)
(2n)k−1

− γ. (17)

Otherwise, if no positive certificate of ε-Gap-HypergraphIP exists when r1 ̸= 1, or when r1 = 1,
the positive certificate, if exists, does not contain the vector a1ℓ1 , then

Pℓ1 < 2t−k−1nt−1e((1−ε0)B
k M0

(s+1)c),

and therefore,

xℓ1 <
Pℓ1

Qℓ1

+ γ < e

(
Bk
Å
(1−ε0)M0

c
−λ

ã
/(s+1)

)
+ γ. (18)

Wrapping up. In order to maintain a gap between the cases of an HypergraphIP existing, we
require the lower bound (Equation 18) must be less than the upper bound (Equation 17)

1

e(ε0B
k M0

(s+1)c)

2t−k−1

e

(
Bk(λ−M0

c)/(s+1)

) + γ <
1

(2n)k−1e

(
Bk(λ−M0

c)/(s+1)

) − γ.

Now, there exist large enough constants Ca, Cb > 0 such that this inequality is satisfied for γ ≤ n−Ca

and B ≥ Cb(log n)
1/k.

This proves that any algorithm for an entry-wise γ-approximation of Att(h) having maximum value
of the entries Γ = Ω((log n)1/k) requires time Ω(nt0), assuming the Max-kSAT conjecture, since
if APAC(h) could be solved in O(nt0−δ) time, then that would imply Max-kSAT could be solved
in 2(1−Ω(δ))n time (Corollary E.12), something that can not be true for an absolute constant δ > 0
(Hypothesis 2).

Remark 1. In Lemma E.13, for computing APAC(h), when h is in t variables, of degree k and
contains as a subpolynomial an elementary symmetric polynomial in t0 = t variables and degree k,
the time-complexity is lower bounded by Ω(nt). This is the strongest time complexity lower bound we
can achieve, as the trivial algorithm for summing over the indices of all the query-key matrix also
requires O(nt) time and we say that this is the best we can hope for!

E.2.3 TIME LOWER BOUNDS FOR DEGREE 2 POLYNOMIALS USING MAX-2SAT CONJECTURE

In this section, we prove the final part of Theorem E.3, where we show a lower bound for a certain
subcase of h when the degree is 2. For the remaining degree 2 cases, we have already shown in
Sections 3.2 and D that they can be computed in O(n2) time, which is essentially tight from Part 1 of
Theorem E.3.

Unlike using SETH which proves lower bounds which are integer powers of n, in order to prove
lower bounds of the form nω , we use the Max-2SAT conjecture (Hypothesis 3) by giving a reduction
from ε-Gap-IP∆ (Theorem C.8) to entry-wise approximation of Att(h).

The reductions work as, we first use the reduction of Max-2SAT to IP∆, then reduction of IP∆
to a new problem IP-DIR-rCYC using Alman & Vassilevska Williams (2020), which then is re-
duced to its gap version containing no(1) instances of ε-Gap-IP-DIR-rCYC. Finally, we reduce
ε-Gap-IP-DIR-rCYC to computing an entry-wise approximation of Att(h).

For these sets of reductions, we first define the new problem of IP-DIR-rCYC, which was introduced
in Alman & Vassilevska Williams (2020).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Definition E.14 (IP-DIR-rCYC). For a positive integer r, given r sets of vectors A1, . . . , Ar ⊆
{0, 1}d with |A1| = . . . = |Ar| = n, and target inner products m1, . . . ,mr ∈ {0, . . . , d}, the
problem IP-DIR-rCYCn,d is to decide if there exist vectors a1 ∈ A1, . . . , ar ∈ Ar such that
simultaneously ⟨a1, a2⟩ = m1, ⟨a2, a3⟩ = m2, . . . , ⟨ar−1, ar⟩ = mr−1, ⟨ar, a1⟩ = mr.

Naturally, to prove hardness of entry-wise approximation of poly-attention, we will again require the
hardness of the gap version of this problem, ε-Gap-IP-DIR-rCYC.

Definition E.15 (ε-Gap-IP-DIR-rCYC). For every ε > 0 and positive integer r, given r sets of
vectors A1, . . . , Ar ∈ {0, 1}d with |A1| = . . . = |Ar| = n, and a target inner product m ∈
{0, . . . , d} along with the promise that for all i ∈ [r], for all vectors ai ∈ Ai, and ai+1 mod r ∈
Ai+1 mod r,

• either ⟨ai, a(i+1) mod r⟩ = m,

• or ⟨ai, a(i+1) mod r⟩ ≤ (1− ε)m,

the problem of ε-Gap-IP-DIR-rCYCn,d is to decide if there exist vectors a1 ∈ A1, . . . , ar ∈ Ar

such that simultaneously ⟨a1, a2⟩ = ⟨a2, a3⟩ = . . . = ⟨ar−1, ar⟩ = ⟨ar, a1⟩ = m.

Now, we know that IP-DIR-rCYC is at least as hard as IP∆, which in turn is at least as hard as
Max-2SAT (Lemma C.7), given by the following lemma. An OV version of this lemma was proved
in (Alman & Vassilevska Williams, 2020, Lemma 21), i.e., when the target inner products are
zero, by reducing OV∆ to OV-DIR-rCYC, but all the proofs work similarly for reducing IP∆ to
IP-DIR-rCYC as well.

Lemma E.16 (IP∆ to IP-DIR-rCYC Alman & Vassilevska Williams (2020)). For every δ > 0 and
positive integer r ≥ 3, if IP-DIR-rCYCn,d, can be computed in O(nω−δ) time, then IP∆n,d can
also be computed in time O(nω−δ).

Again, the ε-Gap-IP-DIR-rCYC is at least as hard as IP-DIR-rCYC using proofs very similar to
Theorem C.8.

Corollary E.17. For every δ > 0, positive integer r ≥ 3 and every constant ε > 0, assuming the
Max2SAT conjecture, there exists a constant c > 0 and target inner product m ∈ {0, . . . , d}, such
that ε-Gap-IP-DIR-rCYCn,c logn cannot be solved in time O(nω−δ) .

Proof. We prove the hardness of ε-Gap-IP-DIR-kCYC by starting with a hard instance of
IP-DIR-rCYC containing sets vectors A1, . . . , Ar ⊆ {0, 1}d, where n = |Ai| and d = c log n.

Following the technique of the proof of Theorem C.8, we consider Ai, Ai+1 mod r for each i ∈ [r]
as a 2IP instance, and reduce it to no(1) many instances of ε-GapIP having two sets n vectors of
dimension d0. For the final instance of ε-Gap-IP-DIR-rCYC, we create vectors having r blocks,
each block having the dimension d0. The ((i − 1) mod r)-th block and the i-th block in the final
instances of the reduction will contain vectors from each of the instances of ε-GapIP obtained from
the instances of 2IP from A(i+1) mod r, Ai and Ai, A(i+1) mod r respectively, while the other blocks
will be zero, exactly similar to the proof of Theorem C.8. This hardness result is also true when all
the target inner products are the same.

Therefore, for proving the hardness of the entry-wise approximation of poly-attention based on
Max-2SAT conjecture, it is sufficient to start with a hard instance of ε-Gap-IP-DIR-rCYC. Further,
we prove the lower bound for poly-attention for all polynomials that are not tree polynomials (since
we already know that tree polynomials have exact computational complexity O(n2)). If a polynomial
is not a tree polynomial, the graphical representation must contain at least one cycle.

Lemma E.18 (ε-Gap-IP-DIR-rCYC to APAC(h)). For every constant ε > 0, every δ ∈
(0, 0.01), every c,M > 0, given an attention polynomial h(x1, . . . , xt) of degree 2 having
s monomials, such that its graphical representation contains a cycle of size r, where t, s, r

are constants, there exist constants Ca > 0 and Cb > 0 such that if APAC(h)(2n, (r +
1)c logn,Γ = Cb

√
log n, γ = n−Ca) (Definition A.6) with query-key matrices Q(1), . . . , Q(t) ∈

[−Γ,Γ]2n×(s+1)c logn and value matrices V (2), . . . , V (t) ∈ R2n×(s+1)c logn can be solved in

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

time O(nω−δ), then ε-Gap-IP-DIR-rCYCn,c logn (Definition E.15) with target inner product
m = M log n can also be solved in O(nω−δ) time for any constant M .

Proof. In our final part of Theorem E.3, we reduce Max-2SAT to entry-wise approximate com-
putation of poly-attention. We start with an instance of ε-Gap-IP-DIR-rCYCn,d=c logn, since
we know that this is at least as hard as Max-2SAT (Theorem E.17, Lemma E.16), consisting
of sets of vectors A1, . . . , Ar ⊆ {0, 1}d, where Ai for all i ∈ [t] has n vectors {ai1, . . . , ain}
each. The target inner product is M logn, and the constant approximation factor is ε for the
gap condition. This is equivalent to checking if there exists a1j1 ∈ A1, a2j2 ∈ A2, . . . , arjr ∈ Ar

such that ⟨a1j1 , a
2
j2
⟩ + ⟨a2j2 , a

3
j3
⟩ + · · · + ⟨ar−1

jr−1
, arjr ⟩ + ⟨ar−1

jr−1
, a1j1⟩ = M0 log n, or, due to the

promise, if ⟨a1j1 , a
2
j2
⟩ + ⟨a2j2 , a

3
j3
⟩ + · · · + ⟨ar−1

jr−1
, arjr ⟩ + ⟨ar−1

jr−1
, a1j1⟩ ≤ (1 − ε0)M0 log n, where

M0 = Θ(M), ε0 = Θ(ε).

For the graph G of the polynomial, we consider a vertex vt0 where the cycle of length r starts. If
there are multiple cycles, we consider any one.

Let the cycle be of length r be given by (vt0 , vt0+1), (vt0+1, vt0+2), . . . , (vt0+r−1, vt0), without
loss of generality. When we construct the matrices Q(j)’s, the idea is to construct the instance of
ε-Gap-IP-DIR-rCYC from vt0 (i.e., from Q(t0)), and make every other query-key matrix corre-
sponding to variables outside the cycle to be zero.

Similar to as before, we construct query-key matrices such that for all ℓ1, . . . , ℓt ∈ [n],

h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = Λ(⟨a1ℓt0 , a

2
ℓt0+1

⟩+ . . .+ ⟨ar−1
ℓt0+r−1

, arℓt0+r
⟩+ ⟨arℓt0+r

, a1ℓt0 ⟩), (19)

for a scaling factor Λ.

Constructing the matrices. We form the matrices Q(1), . . . , Q(t) ∈ [−Γ,Γ]ñ×d̃, ñ = 2n, d̃ =
(r + 1)d as follows, using a scaling factor B = ω(1):

1. For Q(j)’s, if j < t0 or j > r + t0 − 1, we just make the entire matrix zero 02n×(r+1)d.

2. For defining Q(t0), we define the first column block (starting of the cycle) as,

Q
(t0)
(1:2n,1:d) = B



a11
a12
...
a1n
0d

0d

...
0d


2n×d

,

the r-th column block (end of the cycle) as,

Q
(t0)
(1:2n,(r−1)d+1:r.d) = B



a11
a12
...
a1n
0d

0d

...
0d


2n×d

,

the final block that balances the inner product as

Q
(t0)
(1:2n,r.d+1:(r+1)d) = B12n×d,

and all the other remaining blocks as 02n×d.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

3. Now, for the matrices inside the cycle, i.e., j ∈ [t0 + 1, t0 + r − 1], we define Q(j) as
follows. For i = j − 1, j (which is the traversal inside the cycle from vj−1 to vj , and vj to
vj−1 respectively), we define that block as,

Q
(j)
(1:2n,(i−1)d+1:i.d) = B



a
j−(t0−1)
1

a
j−(t0−1)
2

...

a
j−(t0−1)
n

0d

0d

...
0d


2n×d

,

the final block as,

Q
(j)
(1:2n,r.d+1:(r+1)d) =

ï
0n×d

1n×d

ò
2n×d

,

and all other blocks as 02n×d.

For the value matrices V (j) ∈ R(2n)×(r+1)d, j ∈ [t0, t0 + r − 1], we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

0T
n

ò
,

and for all other j’s, we define the first column as,

V
(j)
(1:2n,1) =

ï
1T
n

1T
n

ò
,

with every other columns 0T
2n.

Correctness of construction. We prove that indeed Equation 19 is satisfied when ℓ1, . . . , ℓt ∈ [n].
When we consider h, all the monomials containing variables xj for j < t0 or j > t0 + r − 1 vanish
since Q(j)’s are zero. Whenever we have a monomial of the form xjxj+1, j ∈ [t0, t0 + r − 1], it
survives and gives ⟨aj−t0+1

ℓ(j−t0+1)
, a

(j−t0+2) mod r
ℓ((j−t0+2) mod r)

⟩.

These query-key and value matrices can be computed in O(n1+o(1)) time.

Approximation yields gap property. We again consider the entry-wise approximation of Att
(h)
ℓ1,1

as xℓ1 , and we have

|xℓ1 −
Pℓ1

Rℓ1

| < γ,

for

Pℓ1 =
∑

ℓ2,...,ℓt∈[n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

Rℓ1 =
∑

ℓ2,...,ℓt∈[2n]

exp

Å
1

d̃
h(Q

(1)
ℓ1

, Q
(2)
ℓ2

, . . . , Q
(t)
ℓt
)

ã
,

when the (ℓ1, 1)-th element of Att(h) is Pℓ1

Rℓ1
.

Bounds on Pℓ1 , Rℓ1 . For the lower bound on Rℓ1 , using a calculation exactly similar to that of the
proof of Lemma E.8 gives us

nt0−1e

(
rB2

(r+1)

)
< Rℓ1 < 2t0−1nt0−1e

(
rB2

(r+1)

)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

When a positive certificate for the given ε-Gap-IP-DIR-rCYC exists, we will have some
ℓ0t0 , ℓ

0
t0+1, . . . , ℓ

0
t0+r−1 ∈ [n] for which ⟨a1

ℓ0t0
, a2

ℓ0t0+1
⟩+ . . .+ ⟨ar−1

ℓ0t0+r−1
, ar

ℓ0t0+r
⟩+ ⟨ar

ℓ0t0+r
, a1

ℓ0t0
⟩ =

M0 log n. This would give

Pℓ1 > (2n)t0−r−1e(
M0

(r+1)c
B2),

which implies

xℓ1 >
Pℓ1

Rℓ1

− γ >
e

(
B2(M0

c
−r)/(r+1)

)
(2n)r

− γ. (20)

Otherwise, if no positive certificate for IP-Dir-rCYCLE exists, then

Pℓ1 < 2t0−r−1nt0−1e((1−ε0)B
2 M0

(r+1)c),

and therefore,

xℓ1 <
Pℓ1

Rℓ1

+ γ < 2t0−r−1e

(
B2
Å
(1−ε0)M0

c
−r

ã
/(r+1)

)
+ γ. (21)

Note that if a positive instance of ε-Gap-IP-DIR-rCYC exists, then xℓ1 is the greater than the
lower bound (it is greater for all ℓ1 if t0 ̸= 1, otherwise we choose only that ℓ1 for which the
ε-Gap-IP-DIR-rCYC instance contains a1ℓ1), otherwise always lesser than the lower bound.

Wrapping up. In order to maintain a gap between the cases of a positive instance of
ε-Gap-IP-DIR-rCYC existing, we require the lower bound (Equation 21) must be less than the
upper bound (Equation 20)

1

e(ε0B
2 M0

(r+1)c)

2t0−r−1

e

(
B2(r−M0

c)/(r+1)

) + γ <
1

(2n)re

(
B2(r−M0

c)/(r+1)

) − γ.

Now, there exist large enough constants Ca, Cb > 0 such that this inequality is satisfied for γ ≤ n−Ca

and B ≥ Cb

√
log n.

This proves that any algorithm for an entry-wise γ-approximation of Att(h) having maximum value
of the entries Γ = B = Ω(

√
log n) requires time Ω(nω), assuming the Max-2SAT conjecture, since

if APAC(h) could be solved in O(nω−δ) time, then that would imply that would imply Max-2SAT
could be solved in 2(ω/3−Ω(δ))n time (Corollary E.12), which can not be true for an absolute constant
δ > 0 (Hypothesis 3).

F PROOFS OF SECTION 3.1: FUNCTION COMPOSITION

In this section, we describe a poly-attention mechanism whose one attention head can simulate t-fold
function composition. In order to study the representational powers, it is important to also consider
the number of bits stored for each entry for the matrices, denoted as precision, p. Since the entries
are usually considered to be polynomial in n, it is safe to assume p = no(1). Furthermore, as usual,
we consider the embedding dimension d = O(log n).

Before showing the representational strength of poly-attention, we first show that Strassen-attention
and 3-tensor attention cannot simulate 3-fold function composition. For this limitation result, we
require a communication lower bound proved in a previous work of Chakrabarti (2007) on myopic
pointer jumping.
Definition F.1 (Myopic pointer jumping). For every t ≥ 2, myopic pointer jumping can be seen as
similar to function composition, where we are interested in computing t-fold function composition, for
inputs as functions f1, . . . , ft : [n] → [n] and a value x ∈ [n]. There are t players and a coordinator
C, such that:

• Player 1 has as inputs x and f2,

• Player i for i ∈ [2 : t− 1] have inputs x and f1, . . . , fi−1, fi+1,

• Player t has inputs x and f1, . . . , ft−1.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

The Players i ∈ [t] can only send messages to C, and the goal of the protocol is for C to compute the
value of ft(ft−1 . . . f1(x)).

Now, the lower bound due to Chakrabarti (2007) for myopic pointer jumping is given as below.

Lemma F.2 ((Chakrabarti, 2007, Theorem 1)). To solve the myopic pointer jumping problem, the
players need to send at least Ω(n/t) bits to C in order for C to compute ft(ft−1 . . . f1(x))).

We want to study the representational strengths and limitations in terms of function composition.
We say that an attention mechanism simulates t-fold function composition, if, given the input
X ∈ R(tn+1)×d containing descriptions of f1, . . . , ft and an x ∈ [n] , the attention mechanism is
able to output the value of ft(ft−1 . . . f1(x)). As before, the input function fi will be given as the
i-th block of X , in X((i−1)n+1:i.n) for all i ∈ [t], and x will be given in Xtn+1, and we want the
attention mechanism to output the value of ft(ft−1 . . . f1(x) in the (tn+ 1)-th entry of the output.

The first limitation result, Strassen-attention can not simulate 3-fold function composition is given by:

Theorem F.3. One layer of Strassen-attention requires at least H > n1−o(1) heads to simulate 3-fold
function composition.

Proof. Let us consider an instance of 3-fold function composition where, given f1, f2, f3 : [n] → [n],
and x ∈ [n], we want to compute f3(f2(f1(x))). As usual, the input X contains N = 3n+ 1 rows
of embedding dimension d = O(log n), where X(1:n) corresponds to the values of f1(1), . . . , f1(n),
X(n+1:2n) corresponds to the values of f2(1), . . . , f2(n), X(2n+1:3n) corresponds to the values of
f3(1), . . . , f3(n) and finally X3n+1 corresponds to x.

The main idea for proving this lower bound is by assuming that Strassen-attention can simulate
3-fold function composition using H heads. We are given the query-key and value matrices for
H Strassen-attention heads such that the output of mechanism contains the value of f3(f2(f1(x))).
Using these, we define a communication problem which will use computations required for outputting
the matrix Att(S), that gives the value of f3(f2(f1(x))). Next, we will use existing lower bounds
(Lemma F.2) to contradict this statement, which would give a lower bound on the minimum number
of heads of Strassen-attention required to compute f3(f2(f1(x))).

We now define the communication problem to capture this setting. Consider 3 players with inputs,

• Player 1 has x, f2,

• Player 2 has x, f1, f3,

• Player 3 has x, f1, f2,

and a coordinator C. The communication channel is such that only the 3 players can send messages
to the coordinator. The communication complexity is the total number of bits sent by the players to
the coordinator such that the coordinator can compute the value of f3(f2(f1(x))).

As defined before, this communication setting is an instance of myopic pointer jumping for t = 3,
and the lower bound from Lemma F.2 implies that at least Ω(n) bits are need to be communicated.

Now, let us assume that there exists a Strassen-attention mechanism that computes 3-fold function
composition using H heads, where we will denote the index of the head as a superscript u ∈ [H].
The weight matrices for query-key are WQ(1)

u,WQ(2)
u,WQ(3)

u ∈ Rd×d and the value weights are
WV (2)

u,WV (3)
u ∈ Rd×d for the attention head u ∈ [H]. Let the precision of the values be p. These

matrices and the functions computed by the first and last MLP layers are known to all the 3 players
and the coordinator. Assuming that Strassen-attention can simulate 3-fold function composition, we
devise a communication protocol for the above problem using the value of Att(S) to obtain lower
bounds on H using a proof inspired by works of Peng et al. (2024); Sanford et al. (2024b).

The output matrix of the u-th head of Strassen-attention, Att(S)u, for u ∈ [H], is given as

Att
(S)
N

u =

∑
j,k∈[N] r

N
j,k

u(Xj WV (2))u ⊙ (Xk WV (3)
u)∑

j,k∈[N] r
N
j,k

u
, (22)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

where we have N = 3n+ 1, which is the row of Att(S) where we want the value of f3(f2(f1(x))),
and

rNj,k
u = exp

(1
d
(X3n+1 WQ(1)

u(WQ(2)
u)TXT

j +Xj WQ(2)
u(WQ(3)

u)TXT
k

+Xk WQ(3)
u(WQ(1)

u)TXT
3n+1)

)
,

for all heads u ∈ [H]. The players have parts of X , i.e., for f1 they have X(1:n), for f2 they have
X(n+1:2n), for f3 they have X(2n+1:3n) and for x they have X3n+1.

The communication protocol proceeds as follows, where the player sends the values for each Strassen-
attention head u ∈ [H]:

1. Player 1 sends L̂1
u and L̂′

1
u, where L̂1

u is an O(p log log n)-bit approximation of the binary
expression of L1

u, and L̂′
1
u is an O(p log log n)-bit approximation of the binary expression

of L′
1
u, where

L1
u :=

∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n+1:2n]}

rNj,k
u,

and

L′
1
u :=

1

L1
u

Å ∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n+1:2n]}

rNj,k
u(XjWV (2)

u)⊙ (XkWV (3)
u)

ã
,

for all u ∈ [H], to C.

2. Player 2 sends L̂2
u and L̂′

2
u, where L̂2

u is an O(p log log n)-bit approximation of the binary
expression of L2

u, and L̂′
2
u is an O(p log log n)-bit approximation of the binary expression

of L′
2
u, where

L2
u :=

∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n],[2n+1:3n]}
(S1,S2)̸=({3n+1},{3n+1})

rNj,k
u,

and

L′
2
u :=

1

L2
u

Å ∑
j∈S1,k∈S2

S1,S2∈{{3n+1},[n],[2n+1:3n]}
(S1,S2)̸=({3n+1},{3n+1})

rNj,k
u(XjWV (2)

u)⊙ (XkWV (3)
u)

ã
,

for all u ∈ [H], to C.

3. Player 3 sends L̂3
u and L̂′

3
u, where L̂3

u is an O(p log log n)-bit approximation of the binary
expression of L3

u, and L̂′
3
u is an O(p log log n)-bit approximation of the binary expression

of L′
3
u, where

L3
u :=

∑
j∈S1,k∈S2

S1,S2∈{[n],[n+1:2n]}
S1 ̸=S2

rNj,k
u,

and

L′
3
u :=

1

L3
u

Å ∑
j∈S1,k∈S2

S1,S2∈{[n],[n+1:2n]}
S1 ̸=S2

rNj,k
u(XjWV (2)

u)⊙ (XkWV (3)
u)

ã
,

for all u ∈ [H], to C.

4. C computes ∑
i∈[3] L̂

′
i
u.L̂i

u∑
i∈[3] L̂i

u
∈ Rd, (23)

as the N -th row of the Att(S)u matrix.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Note that Equation 23 is the correct value of the approximation of Att
(S)
N

u, for all u ∈ [H], since the
values of LN

u, L′
N
u are simply the partial sums, all of which amount to Equation 22 with the given

bounds on each of the summations. Sanford et al. (2024b) showed that using O(p log logn) bits of
precision is sufficient in this approximation, and this gives us the correct value of f3(f2(f1(x))) upto
p bits of precision. The number of bits communicated is equal to O(dpH log log n), and using the
lower bound from Lemma F.2, we must have dpH > Ω(n/(log logn)). Since we usually choose
d = O(log n), p = no(1), we must have, the number of heads, H > n1−o(1).

Corollary F.4. One layer of 3-tensor attention requires at least n1−o(1) heads to simulate 3-fold
function composition.

Proof. The proof is very similar to that of Theorem F.3, where again we have 3 players and a
coordinator in a myopic pointer jumping instance. Using the construction of 3-tensor attention, we
can again infer that the communication complexity will be O(dpH log logN), which needs to be
greater than Ω(n) from Lemma F.2. This gives our result.

In fact, we can show a stronger result.
Theorem F.5. If h can be written as a variable separable polynomial, where each branch (see
Definition A.5) has ≤ t0 variables, then one layer of poly-attention for h requires at least H > n1−o(1)

heads to solve t0-fold function composition.

Proof. We use the same proof as of Theorem F.3, by constructing a communication protocol for
t0-fold function composition if poly-attention for h can solve it, and using the lower bound result of
Lemma F.2. The input X contains N = t0n+ 1 tokens, and we want the output to be in the last row
of Att(h)u for each head u ∈ [H].

We define a communication problem again as that of myopic pointer jumping, with t0 players and
a coordinator C who wants to compute ft0(ft0−1 . . . f1(x)) (Definition F.1). Since t0 is constant,
Lemma F.2 states that this requires Ω(n) bits of communication.

Now, we develop a communication protocol for function composition using the Att(h)u matrices,
∀u ∈ [H], which will have a communication complexity of O(Hdp log logN). In computing the
output of the poly-attention mechanism at the last row of Att(h)u, we have the numerator term as∑

ℓ2,...,ℓt0∈[N]

exp(h(Q
(1)
N

u, Q
(2)
ℓ2

u, . . . , Q
(t0)
ℓt0

u))V
(2)
ℓ2

u ⊙ . . .⊙ V
(t0)
ℓt0

u,

and the denominator term as ∑
ℓ2,...,ℓt0∈[N]

exp(h(Q
(1)
N

u, Q
(2)
ℓ2

u, . . . , Q
(t0)
ℓt0

u)).

If the polynomial h is variable separable and has r branches, where each branch is given by the
polynomial gi(x1, x̄i) having ≤ t0 variables each, i.e., h(x1, . . . , xt) =

∑
i∈[r] gi(x1, x̄i), then

players devise a protocol to separately compute the (t0n+1)-th row of Att(gi) for all i ∈ [r]. Similar
to the proof of Theorem F.3, the summation of ℓ2, . . . , ℓt0 ∈ [N] will be broken down to partial
summations, which correspond to computations performed from the inputs of each player.

In computing the poly-attention output of each branch (both numerator and denominator as in
the proof of Theorem F.3), let the corresponding variables of that branch be xr1 , . . . , xrt0

. Now,
Player 1 would send the summations of ℓr1 , . . . , ℓrt0 ∈ [n + 1 : 2n] ∪ {t0n + 1}, Player 2 would
send the summations over ℓr1 , . . . , ℓrt0 ∈ [n] ∪ [2n + 1 : 3n] ∪ {t0n + 1} except the tuples that
have already been sent, and so on until Player i would send the summations over ℓr1 , . . . , ℓrt0 ∈
[(i− 1)n+1]∪ [i.n+1 : (i+1)n]∪ {t0n+1} except the tuples that have already been sent. Since
there are t0 − 1 variables that are not fixed (ℓ1 is fixed to N) and all the t0 players with their given
inputs completely cover the summation required in the softmax computation of Att(h).

In this way, the players can communicate O(Hdp log logN) bits as before to compute the value of
Att(gi)uN for all i ∈ [r] and u ∈ [H], and given the poly-attention outputs for all these branching
polynomials, the coordinator can compute the value of Att(h) using Lemma D.1.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Therefore, with a total of O(Hdp log logN) bits (since the number of branches, r, of the polynomial
h is constant), the coordinator will be able to solve t0-fold function composition. By Lemma F.2,
Hdp log logN ≥ Ω(n), and considering d = O(logn), p = no(1), we require H > n1−o(1).

Next we prove that a certain class of tree-attention, given by polynomials of the form
ht(x1, . . . , xt+1) = x1x2 + x2x3 + . . . + xtxt+1 can simulate t-fold function composition. This
proves Theorem 3.4, which is also the generalization of Theorem 3.1.
Theorem F.6. For every integer t ≥ 2, poly-attention for the polynomial

ht(x1, . . . , xt) = x1x2 + x2x3 + . . .+ xtxt+1

can simulate t-fold function composition using one poly-attention head.

Proof. For solving the problem of t-fold function composition, we consider the t functions f1, . . . , ft :
[n] → [n]. The input (before the first MLP layer) is a sequence of numbers ϕ(1), . . . , ϕ(tn+1) ∈ [n],
such that for ℓ ∈ [n], j ∈ [t], we have ϕ(ℓ+ (j − 1)t) = fj(ℓ), and finally ϕ(3n+ 1) = x. Our task
is to compute the value of ft(ft−1 . . . f1(x)), and we give a construction of the MLPs, the query-key
weights and the value weights of poly-attention for ht, such that this Transformer layer can compute
the same using only one head. We adopt the construction of Kozachinskiy et al. (2025) due to its
simplicity, and use it to define the parameters of poly-attention.

We define the first MLP layer such that its output, i.e., the positional encoding of the i-th entry of the
input to poly-attention, is given by:

Xi =
[
1 i i2 ϕ(i) (ϕ(i))2 03k−5

]
1×3k

,

for i ∈ [tn + 1]. Here, a precision of p = Θ(log n) can be used. Next, we construct the weight
matrices WQ(1) , . . . ,WQ(t) .

Our goal is to create a them such that

ht(Q
(1)
ℓ1

, . . . , Q
(t+1)
ℓt+1

) = −A2 log n

Å
(ϕ(ℓ1)− ℓ2)

2 + (ℓ3 − n− ϕ(ℓ2))
2

+ (ℓ4 − 2n− ϕ(ℓ3))
2 + . . .+ (ℓt+1 − (t− 1)n− ϕ(ℓt))

2

ã
,

(24)
for a constant A > 1. For ℓ1 = tn+ 1, this is maximized when

ℓ2 = ϕ(ℓ1) = ϕ(tn+ 1) = x,

ℓ3 = n+ ϕ(ℓ2) = n+ ϕ(x) = n+ f1(x) = f2(f1(x)),

...

ℓt+1 = (t− 1)n+ ϕ(ℓt−1) = (t− 1)n+ ft−1(ft−2 . . . f1(x)) = ft(ft−1 . . . f1(x)),

which is precisely our required value.

For constructing Q(j) ∈ Rn×3t for j ∈ [t+ 1], with such properties, we can define each row as:

1. for i = 1:

Q
(1)
ℓ = A

√
log n

ϕ(ℓ)
2

ϕ(ℓ)
1

0T
3t−3


T

3k×1

,

2. for j ≥ 2:

Q
(j)
ℓ = A

√
log n



03(j−2)

−1
2(ℓ− (j − 2)n)
−(ℓ− (j − 2)n)2

ϕ(ℓ)2

ϕ(ℓ)
1

0T
3(t−j)



T

3k×1

,

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

for all ℓ ∈ [n].

Note that, for any j ∈ [t],

⟨Q(j)
ℓj

, Q
(j+1)
ℓj+1

⟩ = −A2 log n(ℓj+1 − n− ϕ(ℓj))
2,

which is consistent with Equation 24. While computing the softmax entries for ℓ1 = tn + 1, the
value of ht(Q

(1)
tn+1, Q

(2)
ℓ2

, . . . , Q
(t+1)
ℓt+1

) for all ℓ2, . . . , ℓt+1 that do not maximize this value, will be a
factor of n−A less than the maximum value. Since while computing softmax, we take a sum over all
ℓ2, . . . , ℓt+1 ∈ [tn+ 1], as long as we choose A > Ω(

√
t), the maximum value will be obtained in

the correct setting of ℓj’s.

For outputting the value, we set the first column of all the V (j)’s, j ∈ [2 : t], as ones, and the rest as
zeros; and for V (t+1), we define the first column as V (t+1)

ℓ,1 = ℓ, for all ℓ ∈ [tn+ 1], and the rest as

zeros. The error in the final output will be nt−A2

, and as long as this is less than the number of bits
of precision, we have the correct output.

As we will see, even though poly-attention for ht will be able to solve t-fold function composition,
the previous theorem, Theorem F.5, shows that not only poly-attention for ht−1 can not simulate
t-fold function composition, but neither can the poly-attention for the polynomial h(x1, . . . , xt+2) =
x1x2 + x2x3 + . . . xt−1xt + x1xt+1xt+2, which is a polynomial in t+ 2 variables!
Remark 2. From Theorem F.6, we saw that poly-attention for h2(x1, x2, x3) = x1x2 + x2x3 can
simulate 3-fold function composition just as Strassen-attention. Again, Strassen-attention is poly-
attention for the polynomial h(x1, x2, x3) = x1x2 + x2x3 + x3x1, which is just one monomial
different from h2. However, even though they might seem similar, the cost of this one monomial is
huge– Att(h2) can be computed in Õ(n2) time, while computing Att(S) requires at least Ω(nω) time.

G PROOFS OF SECTION 3.4: POLYNOMIAL ROOT-FINDING

In this final section of the proofs, we prove the strong characterization of representational strength
of poly-attention introduced in Section 3.4. We show this by giving a construction of the weight
matrices of a poly-attention mechanism which solves polynomial root-finding (Theorem 3.7).

In this problem of polynomial root-finding, for a fixed polynomial p(x1, . . . , xt) and given as
input a set S ⊆ Rn, we are interested in finding if there are elements y1, . . . , yt ∈ S such that
p(y1, . . . , yt) = 0. For the output, if y01 , . . . , y

0
t is a root of p and S[j] = y01 , then in the row j of the

output, we want to output an encoding of that root.
Theorem G.1 (Polynomial root-finding). For a polynomial p(x1, . . . , xt) of degree k0, and given
an input S ⊆ Rn, for any integers k, s if a polynomial h(x1, . . . , xt) of degree k and sparsity s is
such that all the monomials of the polynomial p2 divide at least some degree k monomial of h, then
poly-attention for h with 2 attention heads can perform polynomial root-finding for p with the input.

Proof. We give a construction of the MLP layers, query-key weights and the value weights such that
the Transformer can find a root of the polynomial from St, and output it. First, given S, considering
s0 as the sparsity of p2, we set the embedding dimension as d = s0.s. For the input X ∈ Rn×(s0.s),
let the embedding of Xi after the first MLP layer be

Xi =
[
1 yi y2i . . . y2k0

i 0s0.s−2k0−1

]
1×(s0.s)

,

where we require s0.s > 2k0 + 1.

Construction of first head. Now, our goal is to define the weight matrices such that after computing
the query-key matrices Q(1), . . . , Q(t), the value of h(Q(1)

ℓ1
, . . . , Q

(t)
ℓt
) will yield −n2p(yℓ1 , . . . , yℓt)

2

where yi = S[i], and ℓ1, . . . , ℓt ∈ [n].

Choose a h(x1, . . . , xt) of degree k (where k is a number greater than the maximum number of
variables in each monomial of p2), and is of any sparsity s (satisfying s0.s > 2k0), where each
monomial of p2 divides at least some degree k monomial of h. We assign each of these monomials

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

of p2 to exactly one degree k monomial mi of h for i ∈ [s], and we associate a set Ti which stores all
the monomials of p2 that are assigned to this monomial mi of h.

Now, define Q(1), . . . , Q(t) ∈ Rn×(s0.s), where each column block is of size s0, as:

1. For the i-th column block, where for each column j ∈ [s0] of the block, we consider the
exponents of the variables of p such that h(Q(1)

ℓ1
, . . . , Q

(t)
ℓt
) will give evaluations of the j-th

monomial of −p2 at (yℓ1 , . . . , yℓt), for all ℓ1, . . . , ℓt ∈ [n]. For these values of i, j, we will
simply denote these terms as the monomial corresponding to this column (i− 1)s0 + j.

(a) If the j-th monomial of p2, for j ∈ [s0], consists of kj variables, and is in Ti for some

i ∈ [s], let Cjx
dr1
r1 . . . x

drkj
rkj

be this monomial where xr1 is the highest preference
variable. Then, we define the j-th column of the i-th column block of Q(r1) as

Q
(r1)
1:n,(i−1)s0+j := n

−Cjy
dr1
1

...

−Cjy
dr1
n

 ,

and for 1 < q ≤ kj ,

Q
(rq)

1:n,(i−1)s0+j := n

y
drq

1
...

y
drq
n

 .

For all r ∈ [t] such that xr is a variable of mi and the j-th monomial of p2 does not
contain xr but is present in Ti, we define

Q
(r)
1:n,(i−1)s0+j := n.1n,

and otherwise, if xr is not present in mi

Q
(r)
1:n,(i−1)s0+j := 0n.

(b) If the j-th monomial of p2, for j ∈ [s0], is not in Ti, then we define

Q
(r)
(1:n,(i−1)s0+j) = 0n,

for all r ∈ [t].

2. Fixing an i such that mi is of degree ≤ k, we define the query-key matrices as before, to
cancel out the terms which were defined in the degree k. Each degree k term had s0 terms
which could lead to non-zero values, and now for the block i, corresponding to the monomial
i, the r-th column in that block will cancel out the j-th columns of each block obtained from
the degree k-terms, for j ∈ [s0].

Let sji be the integer which is the number of occurrences of j-th monomial of p2 while com-
puting the monomial containing variables x1, . . . , xt corresponding to mi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
),

when we consider each of the monomials mℓ ordered higher preference than i, (i.e., ℓ < i),
and is divisible by mi.

As before, sji is the sum defined by adding:

• −Cj whenever ℓ < i, mi divides mℓ, degree of mℓ is exactly k, and the highest priority
variable of mℓ is present in mi.

• −sjℓ whenever ℓ < i, mi divides mℓ, degree of mℓ is less than k, and the highest
priority variable of mℓ is also present in mi.

• −1 otherwise when the above conditions are not met but mℓ divides mi.
• 0 in all other cases.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

For every j ∈ [s0], if xr is not present in monomial j of p2 for r ∈ [t], we just set

Q
(r)
(1:n,(i−1)s0+j) := 0n,

otherwise, for the highest preference xr1 variable of the j-th monomial of p2, we define:

Q
(r1)
(1:n,(i−1)s0+j) = n


sjiy

dr1
1

sjiy
dr1
2
...

siy
dr1
n


n×s0.s

,

and for all other r such that xr divides this monomial,

Q
(r)
(1:n,(i−1)s0+j) = n


ydr
1

ydr
2
...

ydr
n


n×s0.s

.

Notice that in these constructions, we have only used linear combinations of yqr ’s for r ∈ [t] and
q ∈ [2k0]. Therefore, weight matrices WQ(r) ∈ R(s0.s)×(s0.s) exist for every fixed polynomial p such
that 

1 y11 . . . y2k0
1 0 . . . 0

1 y12 . . . y2k0
2 0 . . . 0

...
...

...
1 y1n . . . y2k0

n 0 . . . 0


T

︸ ︷︷ ︸
s0.s

WQ(r)

yield the required Q(r)’s. For defining the value matrices, for the first t coordinates, the r-th coordinate
of V (r), r ∈ [2 : t] stores the corresponding value of xr, and all the other entries are of the coordinates
in [2 : t]\{r} are one, and the first coordinate is zero. More specifically, we define

V (r) =


0 1 . . . 1 y1 1 . . . 1 0 . . . 0
0 1 . . . 1 y2 1 . . . 1 0 . . . 0
...

...
...

0 1 . . . 1 yn 1 . . . 1 0 . . . 0

 ,

where the r-th column has the values of the yi’s.

Using the construction defined above, we have h(Q
(1)
ℓ1

, . . . , Q
(t)
ℓt
) = −nkp2(yℓ1 , . . . , yℓt) since the

degree k monomials of h are what contribute to −p2(yℓ1 , . . . , yℓt) from the corresponding column
blocks. Inside each of these column blocks corresponding to degree k monomials of h, the j-th
column for j ∈ [s0] gives the value of the j-th monomial of −p2 at (yℓ1 , . . . , yℓt). Due to our
construction, all the values of mi(Q

(1)
ℓ1

, . . . , Q
(t)
ℓt
) are zeros when mi’s are of degree < k, which

finally gives us the required result.

Now, for each fixed ℓ1, the value of h(Q(1)
ℓ1

, . . . , Q
(t)
ℓt
) = −p2(yℓ1 , . . . , yℓt) which is maximized

for some indices ℓ02, . . . , ℓ
0
t , is at least en

2

factor larger than all the other values in the summation∑
ℓ2,...,ℓt∈[n] e

h(Q
(1)
ℓ1

,...,Q
(t)
ℓt

). With the given construction of V (r)’s, the values of yℓ02 , . . . , yℓ0t for

which −p2(yℓ1 , ∗) is maximized, will be present in the first t coordinates of the output Att
(h)
ℓi

.

Construction of second head. Finally, we need to verify that if there exists some ℓ01 such that the
values of x2, . . . , xt encoded in Att

(h)

ℓ01
indeed is a root of the polynomial. For this, we need the value

of yℓ1’s for each of the ℓ1-th coordinate, and we incorporate this by using a second attention-head,
whose output matrix contains the vector [y1 . . . yn]

T in the first column and all zeros elsewhere.

Therefore, when we add the two attention heads, the ℓ1-th row will contain the values of (yℓ1 , . . . , yℓt)
which maximizes the value of −p2(yℓ1 , ∗). Finally, we can check using the output MLP layer if
indeed the value is a root of the polynomial.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

H EXPERIMENTAL DETAILS

H.1 FUNCTION COMPOSITION

In this section, we explain the experimental setup behind Figure 2. We train a transformers that
uses self-attention for one layer, a transformer that uses self-attention for two layers, as well as
a transformer that uses tree-attention for one layer, for the attention polynomial h(x1, x2, x3) =
x1x2 + x2x3. (This is the polynomial from Theorem 3.1 above.) We infer from the experimental
findings that tree-attention is better: it is faster, more learnable, and uses less space compared to its
representational counterpart, the two layer self-attention.

In the remainder of this subsection, we first explain the details behind Figure 2, which shows that
despite having less trainable parameters than two layer self-attention tree-attention is more learnable.
Note that two layer self-attention requires two query matrices, two key matrices, and two MLP layers,
while tree-attention requires only three query-key matrices and one MLP layer. Second, we show that
the time to compute tree-attention is comparable to the runtime to compute two-layer self-attention.

Problem set-up. We solve the task of function composition, where, for an integer n, given two
functions f1, f2 : [n] → [n] and a value x ∈ [n], we are interested in computing the value of
f1(f2(x)).

We know that a two layer transformer using self-attention can solve function composition but one
layer can not Peng et al. (2024), and we further proved in Theorem 3.1 that tree attention can solve it
as well. We show that these theoretical results are in line with practice, where transformers with two
layer self-attention as well as transformers with one layer tree-attention can both solve 0-function
composition for n = 25 (which means the number of tokens is 2n+ 1 = 51).

Input generation. As described above, we train the transformers to learn f1(f2(x)) where f1, f2 :
[n] → [n], and x ∈ [n], for n = 25. The inputs are given as a tuple (i − 1 + (j − 1).n, fj(i)), for
j ∈ {1, 2}, i ∈ [n], and a final token (2n+ 1, x), on which the output will be encoded. This requires
a vocabulary size of 2n+ 1 + n = 3n+ 1. The functions f1, f2, and x, are generated uniformly at
random from the set [n] for each batch in each epoch.

Architecture details. We choose a sequence length of 51. The transformer has an embedding
dimension d = 32, number of heads H = 4, followed by an MLP layer which uses ReLU activation
with one hidden layer of size 128. We also use the standard sinusoidal positional encoding from
Vaswani et al. (2017), given by

PEi,2j = sin

Å
i

100002j/d

ã
,

PEi,2j+1 = cos

Å
i

100002j/d

ã
,

, for i ∈ [n], j ∈ {0, . . . , d/2}, which is added to the i-th token.

Training details. For learning, we use a batch size of 64, a learning rate of 0.001 and train the
model using an Adam optimizer. The model is trained for 100, 000 epochs on a 2024 Apple Macbook
Air with an M3 Chip, and the evaluations have been shown in Figure 2 and Figure 3.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Figure 3: Training loss per epoch, averaged over 10 seeds, for learning f1(f2(x)) for sequence
length 51, on a single layer of tree-attention, one layer self-attention and two layer self-attention.
Tree-attention learns faster and has less fluctuations.

Figure 4: Accuracy per FLOP, averaged over 10 seeds, for tree-attention, 1-layer self-attention
and 2-layer self-attention for learning function composition. Notice that tree-attention learns more
efficiently and the learning is stable.

Observed inference running time. We plot the running time of computing various attention
schemes for sequence lengths in {20, 50, 100}. We use vocabulary size v = 32, embedding dimension
d = 64, number of heads H = 4, and hidden layer width 256 for the transformers, and evaluate it on
a batch of size B = 64.

With this architecture, we randomly choose query, key and value weights in Rd×d, and random
weights and biases for the MLP layer. Then we randomly generate 1000 sets of inputs X ∈ RB×n×v

and compute the running time of the attention mechanisms. The average running time has been
depicted in the following table.

Seq len 1-layer SA (ms) 2-layer SA (ms) 1-layer tree (ms) 1-layer 3-tensor (ms) 1-layer Strassen (ms)
20 1.076± 0.057 1.775± 0.085 1.367± 0.057 1.442± 0.062 1.593± 0.086
50 1.079± 0.048 1.757± 0.060 1.363± 0.055 2.911± 0.044 1.594± 0.088

100 1.080± 0.048 1.781± 0.097 1.374± 0.060 13.813± 0.051 3.395± 0.081
Figure 5: Average running time of various attention schemes implemented on NVIDIA A100 GPU.
Tree-attention performs as fast as self-attention, implying that hidden constants in the time complexity
computations are small.

Discussion. We obtain the following conclusion about tree-attention from these experiments.

• One layer tree-attention can successfully learn function composition, despite having only
three query-key matrices and only one MLP layer (compared to two-layer self-attention that
has two query matrices, two key matrices and two MLP layers).

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

• One layer tree-attention exhibits better learnability for function composition than two layer
self-attention as in Figure 2, since accuracy increases faster for tree-attention.

• Tree-attention has an efficient inference time. From Table 5, we infer that it has a running
time comparable to self-attention, and in our cases, even outperforms two layer self-attention.

H.2 COGS DATASET

To give further evidence of the practical advantage of tree-attention, we evaluate two simple models
(one with self-attention and one with tree-attention) on a benchmark NLP task, the COGS dataset
Kim & Linzen (2020). We compare the two models, which differ only in which attention mechanism
they use, and evaluate the difference.

COGS is a dataset which challenges the model to perform a composition based task, in which it must
parse sentences into fragments, and understand the relationships of the different fragments throughout
the sentence. In our experiment, the words of the sentences, along with special characters, are input
to the transformer after encoding by a pre-trained tokenizer, and the error is computed on the output
which is expected to be a semantically parsed sentence.

Example 1. Input: A melon was given to a girl by the guard .
Target: * guard (x _ 9) ; melon (x _ 1) AND give . theme (x _ 3 , x _ 1) AND give . recipient (x _
3 , x _ 6) AND give . agent (x _ 3 , x _ 9) AND girl (x _ 6)

From the above example, the transformer is supposed to figure out that ‘guard’ is the subject, and is
present at position 9 of the sentence, where indexing starts from 0. The other nouns are ‘melon’ and

‘girl’, in positions 1 and 6 respectively. The verb ‘give’, present at position 3, has logical forms given
by a theme ‘melon’ (position 1), recipient ‘girl’ (position 6), and agent ‘guard’ (position 9).

We trained both tree-attention and self-attention on the training set of COGS, and tested them on
in-distribution test set as well as a generalization test set. Including a generalization test set is
important to make sure the model is not just memorizing the distribution. We compare the exact
token match accuracy for both, and infer that tree-attention performs better in the generalization
set than self-attention. This gives strong evidence of the inherent ability of tree-attention to solve
composition-related tasks.

Figure 6 shows the table for the final accuracy results. The learning plots have been described in
Figure 7, where tree-attention almost always out-performs self-attention. The training was performed
over 10 randomly chosen seeds, and we see in Figure 8, that tree-attention achieves considerable
performance of around 30-50% accuracy on almost half of the seeds.

Implementation details. We use simple 3 layer encoder-only transformers, having embedding
dimension 64 having 4 heads, and an MLP with a hidden layer of size 256. Both transformer models
(using tree-attention and self-attention), were trained for 200 epochs with a batch size of 32 (755
batches per epoch) with a learning rate of 0.001, and tested on the in-distribution test set and the
generalization test set. The results for in-distribution test token accuracy were similar, both giving an
exact match of around 97.5%. The generalization set accuracies have been plotted as follows.

Tree-attention Self-attention
Generalization token accuracy 0.727691± 0.013486 0.723993± 0.008649

Generalization exact match 0.264919± 0.127609 0.239024± 0.087350
Figure 6: Table for mean accuracies and standard deviation over 10 random seeds.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Figure 7: Plots for mean ± one standard deviation over 10 random seeds for token accuracy and exact
match accuracy on the generalization set. Tree-attention has higher accuracy than self-attention.

Figure 8: Exact match accuracies with each seed on the generalization set for tree-attention and
self-attention. Tree-attention reaches ∼ 40% accuracy for 4 out of 10 random seeds.

Conclusion. From the learning experiments, we infer that tree-attention is more expressive when
it is used to solving composition based task. As can be inferred in Figures 7 and 8, tree-attention
noticeable performance benefits for several seeds, which calls for future work to explore learning
heuristics for further strengthening the results.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models have been used to find related works, and to polish the code for experiments.

62

	Introduction
	Running time considerations
	Poly-attention is all you need

	The poly-attention mechanism
	Beyond self-attention: the power of poly-attention
	An example: function composition
	Tree-attention: polynomials leading to efficient poly-attention
	Computational complexity of non-tree poly-attention
	Representational strength of poly-attention
	Implications of poly-attention

	Technique overview
	Experimental validation
	Ethics statement
	Reproducibility statement
	Preliminaries
	Roadmap
	Notation and background
	Conjectured hard problems

	Related works
	Warm-up: Strassen-attention upper and lower bounds
	Algorithm for Strassen-attention
	Hardness of Strassen-attention
	Conditional hardness of -Gap-IP
	Hardness of approximating Strassen-attention

	Proofs of Section 3.2: tree-attention
	Proofs of Section 3.3: computational complexities of poly-attention
	Polynomial method for poly-attention
	Time lower bounds for poly-attention
	Time lower bounds based on degree of polynomial using SETH
	Time lower bounds based on substructure of polynomial using Max-kSAT conjecture
	Time lower bounds for degree 2 polynomials using Max-2SAT conjecture

	Proofs of Section 3.1: function composition
	Proofs of Section 3.4: polynomial root-finding
	Experimental details
	Function composition
	COGS Dataset

	The use of Large Language Models (LLMs)

