Under review as a conference paper at ICLR 2026

POLY-ATTENTION: A GENERAL SCHEME FOR HIGHER-
ORDER SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The self-attention mechanism, at the heart of the Transformer model, is able to
effectively model pairwise interactions between tokens. However, numerous recent
works have shown that it is unable to perform basic tasks involving detecting
triples of correlated tokens, or compositional tasks where multiple input tokens
need to be referenced to generate a result. Some higher-dimensional alternatives to
self-attention have been proposed to address this, including higher-order attention
(Sanford et al., 2023) and Strassen attention (Kozachinskiy et al., 2025), which
can perform some of these polyadic tasks in exchange for slower, superquadratic
running times.

In this work, we define a vast class of generalizations of self-attention, which we
call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-
order (tensor) computations as well as arbitrary relationship structures between
the input tokens, and they include the aforementioned alternatives as special cases.
We then systematically study their computational complexity and representational
strength, including giving new algorithms and matching complexity-theoretic
lower bounds on the time complexity of computing the attention matrix exactly
as well as approximately, and tightly determining which polyadic tasks they can
each perform. Our results give interesting trade-offs between different desiderata
for these mechanisms, including a tight relationship between how expressive a
mechanism is, and how large the coefficients in the model may be so that the
mechanism can be approximated in almost-linear time.

Notably, we give a new attention mechanism which can be computed exactly in
quadratic time, and which can perform function composition for any fixed number
of functions. Prior mechanisms, even for just composing two functions, could only
be computed in superquadratic time, and our new lower bounds show that faster
algorithms for them are not possible.

1 INTRODUCTION

The transformer architecture, introduced by |Vaswani et al.|(2017)), has the self-attention mechanism at
its heart, which is used to capture pair-wise correlations in large language models. Since its inception,
it has been used in a variety of large language model (LLM) architectures, including BERT (Devlin
et al., [2019), GPT series (Radford et al., 2018} Brown et al.,[2020; |OpenAlL |2023), Claude (Anthropic,
2024), Llama (Grattafiori et al.,|2024), and ol (OpenAll|[2024)). Its success has led to its prominent
use in nearly every area of modern deep learning.

Transformers consist of three main components within each block: an input Multilayer Perceptron
(MLP) layer, followed by a self-attention mechanism, then finally an output MLP layer Vaswani
et al.|(2017)). The self-attention mechanism is a function from R™*% — R™*4 which computes and
combines weighted pairwise correlations between tokens in its input, and is key to the success of the
Transformer model.

Self-attention (Vaswani et al.,|2017). For a matrix M and index ¢, we write M; to denote the ith
row of M. Given a query matrix Q € R"*?, key matrix K € R™*? and value matrix V € R™"*¢ for
a specific input, the output of the self-attention function is given by the matrix Att € R"*% whose

Under review as a conference paper at ICLR 2026

ith row is:

Zje[n] eXP(é@ivKﬁ) Vi
Zje[n] exp(<Qi7 KJ>)

Despite the widespread use of self-attention in Transformers, there are limits to its expressive
power, which is intuitively limited to capturing pairwise correlations between tokens. In particular,
researchers have defined a number of basic tasks such as iterated function composition, Match3,
Parity, Majority, and Dyck-1 which require higher order relationships than pairwise correlations
and provably cannot be solved by simple self-attention networks (Sanford et al., [2024b}; Peng et al.,
2024; Hahn| [2020). Empirical studies have also confirmed this intuition, showing poor performance
by simple Transformers on benchmark datasets like multiplication, logical puzzles and dynamic
programming Dziri et al.| (2023)), memorized mappings (Zhang et al., 2025)) and other datasets like
SCAN (Lake & Baroni, [2018)), PCFG (Hupkes et al.,|2020), CLUTRR (Sinha et al.,|2019), CoGS
(Kim & Linzen, 2020), GFQ (Keysers et al.,|2020), and CREPE (Ma et al.| 2023).

Att; =

In this paper, we focus especially on a type of task called function composition. As a simple example,
the language model may be given the query "If Sam lives in Toronto, Peter lives in Paris, Toronto is
in Canada, and Paris is in France, which country does Sam live in?", and the model is expected to
reply "Canada". This is a composition of two functions: the first maps people to cities, and the second
maps cities to countries. Several works including (Peng et al.| [2024; |Dzir1 et al., |2023; |Lu et al.,
2023)) have shown, both theoretically and experimentally, that simple language models are unable to
perform these tasks. In order to overcome these representational limitations, several stronger attention
mechanisms have been proposed, notably higher-order tensor attention and Strassen attention which
we define next.

Tensor-attention. |[Clift et al.| (2020) came up with a tensor generalization of self-attention, called 2-
simplical attention, which|Sanford et al.|(2024b)) also studied as the higher-order tensor attention (that
we will call 3-tensor attention) for a query matrix Q1) € R"*¢, key matrices Q(*), Q©®) € R**¢
and value matrices V), V() € R"*4_ The output is given by the matrix Att(T) € R"*¢, whose i*
row is given by:

1 2 3 2 3
) Cmem (3@, Q1 Q) VY o v
- 1 2 3)
ZZ;{,ZQE[TL] eXp(é <Q§)7 Q§2)7 Qé3)>)
Here ® denotes the element-wise product (also called Hadamard product), and for three vectors
a,b,c € RY, we define (a,b,¢) = S0, a[f]b[¢]c[].

Sanford et al.| (2024b) showed that one 3-tensor attention head can solve more complicated tasks
like Match3, which requires finding a triple of correlated tokens. They also defined a natural
generalization to ¢-tensor attention, which can solve Match-t for ¢ > 3.

A"

Strassen-attention. Later,|Kozachinskiy et al.|(2025) gave a more efficient attention mechanism
that can also perform Match3 and several other tasks difficult for self-attention. (As we will discuss
shortly, 3-tensor attention can have prohibitive computational complexity, and Strassen-attention was
defined as a step toward addressing this.) This attention mechanism is again defined over a query
matrix Q) € R"*?, key matrices Q, Q(®) € R"*? and value matrices V(?), V3) € R"*4, The
output matrix is Att(%) € R™*¢, where the i*" row, for i € [n], is given by:

1 2 2 3 3 1 2 3
Cntacr XPGQY, Q) + (02,0 + (@2, V) VP o v
1 2 2 3 3 1 :
Yt tacp PRV, QD) + Q. Q) + (@Y, QM)
Quite recently, 3-tensor attention has been implemented and performances studied by Roy et al.

(2025). We refer the reader to Section [B]in which we survey other attention mechanisms and the
landscape of results known about them in more detail.

A" =

1.1 RUNNING TIME CONSIDERATIONS

A natural trade-off arises in these proposed attention mechanisms: as the attention mechanism
becomes more general to give more representational power, the required running time increases too.

Under review as a conference paper at ICLR 2026

This can often be prohibitive: the quadratic running time of self-attention is already a computational
bottleneck which is mitigated in practice only by extensive hardware; a superquadratic running time
may not be practical even with such hardware speedups.

We compare here the running times of various attention mechanisms as a function of n, the number of
input tokens, where the embedding dimension is d = O(logn); see running times in Table below.

Exact Algorithms. The best algorithms for self-attention take time 72+°(1)| matching the straightfor-
ward algorithm. For tensor attention, the best algorithm is also the straightforward algorithm, which
for ¢-tensor attention (¢ > 3) runs in superquadratic time n‘*°(1).

The straightforward algorithm for Strassen attention, just following its definition, takes time n3+°(1),
However, Kozachinskiy et al.| (2025)) give a faster algorithm for Strassen attention with running
time O(n*), where w < 2.3714 is the exponent of matrix multiplication (Alman et al.,2025), i.e.,
the constant such that n x n matrices can be multiplied in time O(n*). This faster algorithm is
still truly supercubic, and moreover, we note that the aforementioned bound on w comes from a
highly theoretical algorithm, and typically either w ~ 2.81 from Strassen’s algorithm (Strassen,
1969), or even w = 3 from the straightforward matrix multiplication algorithm, are used in practice.
(Kozachinskiy et al.[(2025]) named it after Strassen’s matrix multiplication algorithm to emphasize
this faster algorithm.)

It is natural to wonder whether even faster algorithms are possible, and particularly whether tensor
attention or Strassen attention could be computed in quadratic time. In fact, these known running
times are known to be optimal under standard complexity-theoretic assumptions, so these algorithms
cannot be improved. For self-attention and tensor attention, this was shown in prior work (Alman &
Songl 2023}2024); for Strassen attention, we prove this here in Theorem@]below.

Approximation Algorithms. In most cases, a sufficiently accurate approximation of self-attention
suffices, and this can sometimes be computed much faster. |Alman & Song| (2023)) shows that as
long as the entries of the query and key matrices are bounded (and all have magnitude at most
B = o(y/log n)) we can compute an entry-wise approximation of the self-attention matrix in almost
linear time, n'*°(M)_ [!| /Alman & Song| (2024) similarly showed how to compute an entry-wise
approximation of tensor attention Att(T) in n!*+°(1) time, with a smaller bound on B. These prior
works have also shown matching lower bounds, showing that these bounds B are tight: if the weights
are even slightly larger, than the straightforward exact running times discussed above are unavoidable.
(These lower bounds use standard assumptions from fine-grained complexity theory; see Section 4]
for more details.) Many different lines of experimental work studied Transformers with reasonable
precision guarantees (Zafrir et al.,|2019; [Sun et al., 2019; Katharopoulos et al., 2020; Dettmers et al.}
2022} Xiao et al.,[2023}; |Dettmers et al., 2022; Perez et al., 2023} Roy et al.,[2021}; |[Han et al.| [2024)).

In this paper, we build on this line of
work and give the first fast approxi-
mation algorithm for Strassen atten-
tion. We show that, if all the weights ~ Self-attention =~ n2t°o(1) pl+o() o(y/Togn)

Mechanism Exactcc Apxcc Bound

are bounded by B = o(v/logn), then ¢ _Tensor p3te) p(+e) o((logn)'/?)
one can approximate Strassen atten- Strassen peto(1) p(1+o(1)) o(vIogn)
tion in almost linear time n' 7" and .. (new) p2to) p+e()) o(,/Togn)
if the weights are larger, then the ex- Poly (new) ni+o() p(1+o(1) o((log n)l/k’)
act running time of n*~°() cannot

Table 1: This summarizes the running times of both exact
and approximate algorithms for these attention variants. For
entry-wise approximation (Apx cc), the bound B is the max-
imum absolute value of the matrix entries such that we can
entry-wise approximate the output matrix in near-linear time;
the attention polynomial is in ¢ variables and has degree k.
Alman & Song|(2023;2024) proved bounds for self-attention
and tensor-attention, while we prove the rest.

be avoided (again using fine-grained
complexity assumptions). This lower
bound fits within a new, much more
general lower bound on different gen-
eralizations of attention which we will
state in Theorem [3.6|later. In partic-
ular, although the statement appears
similar to prior work, proving this
requires substantial new techniques,
since prior techniques focused on proving cubic lower bounds, but Strassen attention actually has a

' An entry-wise approximation outputs a matrix where each entry is at most m far from the exact value.

Under review as a conference paper at ICLR 2026

subcubic (but superquadratic) time algorithm based on matrix multiplication; see Section [for more
details.

1.2 POLY-ATTENTION IS ALL YOU NEED

In this work we introduce a more general class of attention mechanisms called poly-attention that
generalizes and improves upon these previous attention mechanisms. An instantiation of poly-
attention is given by a base polynomial, h, over ¢ variables, degree k and sparsity s. We will precisely
define poly-attention shortly, and show that it includes self-attention, tensor attention, and Strassen
attention as special cases.

Our main results include complete and exhaustive analyses of the running times one can achieve
to compute or approximate different poly-attentions, as well as the expressive power of each one.
Using these, we identify new, specific instantiations of poly-attention which are simultaneously more
expressive than self-attention, and easier to compute than prior replacements to self-attention. One
may also use our results to identify attention mechanisms of interest which achieve a desired trade-off
between expressiveness and computational complexity.

Tree-attention. We particularly highlight a subclass of our poly-attention mechanisms that we call
tree-attention, which loosely speaking is characterized by a subclass of degree-2 base polynomials
h that possesses a tree-like property. We find that all tree-attention mechanisms can be computed
in quadratic time, matching the running time of standard self-attention. Furthermore, we show that
tree-attention can solve r-fold function composition for any constant r.

This is a substantial improvement on prior attention mechanisms. Self-attention cannot even solve
2-fold function composition. Meanwhile, 3-tensor attention and Strassen attention, which can solve
2-fold function composition, require superquadratic time, and furthermore, they cannot solve 3-fold
function composition. Our new tree-attention can solve r-fold function composition for all » and can
be computed in quadratic time (Theorem [3.4).

We give a more detailed analysis of tree-attention, including tight exact and approximation algorithms,
in Section[3.2] (Theorem [3.5). We posit tree-attention as the best of all worlds in terms of representa-
tional strength and time complexity. In addition to strictly improving the expressive power of the
self-attention mechanism, we will see that the runtime of tree-attention matches the best possible
runtimes in both the exact and approximate versions. We envision two types of users/applications:

* if quadratic running time can be tolerated then use the exact algorithm for tree-attention

* if a faster, almost linear running time is needed, then the user should find the largest bound
B on the weights which can be tolerated by their hardware and architecture, and then apply
the most expressive tree-attention which can be approximated quickly for that B (we will
explore the trade-off in Section [3.2)).

We emphasize that our exact and approximate algorithms for tree-attention only use straightforward
matrix multiplication algorithms, and do not rely on bounds on w or other impractical fast matrix
multiplication algorithms. See Section [5]for an experimental validation.

Full characterization of poly-attention. Beyond tree-attention, we give a full characterization of
the running time needed to compute poly-attention as a function of the underlying properties of the
base polynomial, h. We find that these mechanisms often require cubic or more time to compute
exactly, but nonetheless have fast approximation algorithms when B (the bound on the weights) is
small enough, and meanwhile can perform very complex tasks.

2 THE POLY-ATTENTION MECHANISM

In this section, we define the general class of poly-attention mechanisms. They will be described by a
special class of multi-linear polynomials, which we will call attention polynomials.

Definition 2.1 (Attention polynomial). We call a polynomial h(x1, ..., x:) an attention polynomial
of degree k if it is multi-linear, it has coefficients only in {0, 1}, and all its monomials have degree at
least 2 and at most k.

Under review as a conference paper at ICLR 2026

Attention polynomials will be a central concept in this article. We will use them to concisely denote
combinations of inner products of vectors. Given vectors Y7, ...,Y; € R%, consider a multi-linear
monomial of an attention polynomial, m, of degree k£ containing variables x;, ,...,x;,, where
1<y <...<jr <t.Wedenote m(Yy,...,Y;) :=(Y;,,Y},,..., Y],), which is an inner product
of order k. Then, given an attention polynomial h(x1, ..., x;) containing s monomials my, ..., ms,
we define A(Y1, ..., Y4) := 300 gmi(Yr,... YY)

Now, we describe our new class of poly-attention mechanisms, of order ¢, using an attention polyno-
mial h(x1,...,2) of degree k having s monomials (typically think of ¢, k, s as small constants).

Definition 2.2 (Poly-attention). For an attention polynomial h(z1,...,x:) having s monomials
of degree at most k, we define the poly-attention function from R"*? to R"*4, which depends
on h and has, as its parameters, query-key weights Wga), ..., Wge € R and value weights

Wv(2), ey Wv(t) S RdXd.

For an input X € R™ 9, the query-key matrices are denoted as Q) = XWoa, -, QW =
XWQ(t) and the value matrices as V() := XWy@,..., V® .= XWyr .

The output of the poly-attention function will be given by the matrix
At QW ..., QW v v®) e Rrxd
where the £1-th row is defined as:
S o0 (00 @V V0oV
Staticto o0 (30 Q1) |

At =

We will often drop the Q(¥)’s and V' /)°s from the notation A¢t(") when it doesn’t lead to ambiguity.

Here, Q") will be the query matrix as used in the usual self-attention mechanisms, and Q2 ..., Q)
will be the key matrices, as the index of the row of Q(!) corresponds to the row of the output of
poly-attention, and correlations are considered with respect to that. However, since we use all the
variables (and hence, the matrices) in a symmetric sense, we denote both the query and the key
matrices using Q7) for ease of notation.

Lemma 2.3. Poly-attention captures all the previous higher-order self-attention techniques. In
particular, (i) self-attention is poly-attention with the base polynomial h(x1,x2) = x129; (ii) t-
tensor attention is poly-attention with h(z1,...,x;) = x1...x; and (iii) Strassen-attention is
poly-attention with h(x1, T2, x3) = T12Z2 + TaXs + T327.

3 BEYOND SELF-ATTENTION: THE POWER OF POLY-ATTENTION

In this section, we study the strength and limitations of the poly-attention scheme. We begin in
Section [3.1] by studying an illustrative example. Thereafter, we will consider tree-attention and
poly-attention in full generality.

Mechanism 2-fold 3-fold
3.1 AN EXAMPLE: FUNCTION COMPOSITION Self-attention No No
3-Tensor Yes No
To demonstrate the power of poly-attention, we analyze Strassen Yes No
a special case when h(x1,x2,x3) = 122 + xow3. We Tree (new) Yes Yes
show that this specific poly-attention can efficiently solve Poly (new) Yes Yes
important tasks faster than any other previous attention Table 2: Compositionality results show-
mechanisms. ing support for function composition.

Peng et al.| (2024) prove impossibil-
ity bounds for self-attention, [Kozachin{
skiy et al.| (2025) simulate 2-fold with
Strassen-attention, while we prove the
rest.

To demonstrate the strength of this polynomial A, we de-
fine the function composition problem demonstrated ear-
lier. Mathematically, the 2-fold function composition prob-
lem is: given two functions f1, f : [n] — [n] and = € [n],
output fo(f1(x)). To express this problem for an attention
mechanism, the input is X € RC?T1xd where X; for

Under review as a conference paper at ICLR 2026

i € [n] contains an encoding of fi (i), X; for j € [n + 1, 2n] contains an encoding f»(j — n) and
Xan+1 contains an encoding of x; and our goal is to output the value of fo(f1(x)) in the (2n + 1)-th
entry of the output.

Peng et al.| (2024) proved that self-attention cannot simulate 2-fold function composition, and even
that almost n self-attention heads are needed in order to solve it. Since self-attention needs quadratic
time to compute, it would take cubic time to compute n heads. All prior mechanisms that solve
this, including 3-tensor attention and Strassen-attention, require superquadratic time. This leads
to our punchline: poly-attention for this very simple polynomial ho can simulate 2-fold function
composition in just quadratic time!

Theorem 3.1. Let ho(x1,x2,x3) = z122 + xox3. Poly-attention for ho can simulate function
composition using only one head. Furthermore, Att\"2) can be computed in O(n?) time.

We will tightly characterize what weights are needed for efficient approximation of all poly-attentions;
in the case of Att("2) we find:

Theorem 3.2. Given the polynomial ho (1,22, T3) = X129 + Taxs, where the entries of the query-
key matrices are in [B, B|:

1. If B = o(v/Togn), we can compute an entry-wise (1/poly(n))-approximation of Att"2) in
time n* o),

2. If B = Q(logn), then every algorithm for computing an entry-wise (1/poly(n))-
approximation of Att"?) requires time Q(n?), unless SETH is false.

We consider next 3-fold function composition, in which the input is three functions, fi, fo, f3 :
[n] = [n] and = € [n], and we want to compute f5(f2(f1(x))). To our knowledge, no prior attention
mechanisms could perform 3-fold function composition. In particular, although Strassen-attention
and 3-tensor attention were designed to solve problems like 2-fold function composition, we prove
that they cannot compute 3-fold function composition when the precision is bounded:

Theorem 3.3. Strassen-attention and 3-tensor attention, require at least H > nt=oMW heads to
simulate 3-fold function composition when the precision is bounded.

However, we prove that poly-attention can indeed simulate 3-fold composition, and even more
generally r-fold composition for any constant r, and still be evaluated in quadratic time!

Theorem 3.4. For any integer v > 2, define the polynomial h,.(x1,...,2,) = T122 + X223 + ... +
T, Zy41. Then, poly-attention for h, can simulate r-fold function composition, and Atth) can be
computed exactly in time O(r>n?) (input dimension here is O(rn), not n).

In fact, we give a general characterization of which polynomials & can be used in Att(") to perform
r-fold function composition. For example, we will also prove that poly-attention for h,._; can not
simulate r-fold function composition.

3.2 TREE-ATTENTION: POLYNOMIALS LEADING TO EFFICIENT POLY-ATTENTION

We saw in the previous section that instances of poly-

attention which can be computed in quadratic time x1

can have great representational strength. A natural

question arises: what is the class of attention polyno-

mials that can be exactly computed in only n2*°(1) L2 3 T4
time? Could there be even stronger ones? We answer

this by giving a complete characterization. We first .. Te T

define 2 few notations to describe them. Figure 1: Graphical representation for the tree

For an attention polynomial i(x1, ..., z;) of degree polynomial h(x1,...,27) = 2102 + T123 +
2, we say that a simple graph G is the graphical rep- 124 + T2T5 + Toxg + X427
resentation of h, if G contains t vertices vy, ..., V¢,

where vertex v; corresponds to the variable x;, and
there exists an edge between v; and v; if and only if x;x; is a monomial present in h. If the graphical

Under review as a conference paper at ICLR 2026

representation of h is a tree or a forest, we say that h is a tree polynomial, and poly-attention for a
tree polynomial will be called tree-attention.

Our main result about tree-attention shows that it can be computed just as efficiently as self-attention,
both for exact algorithms (where it can be computed in quadratic time) and approximate algorithms
(which has the same bound B = o(+1/logn) as in self-attention, which is also the largest bound for
any poly-attention):

Theorem 3.5. Given a tree polynomial h, where the entries of the query-key matrices are in [—B, B|:

1. The output of tree-attention, Att""), can be exactly computed in n*t°") time.
2. If B = o(y/log n), entry-wise approximation of Att™) can be computed in n*t°W) time.

3. If B = Q(\/logn), under standard complexity assumptions, entry-wise approximation of
AttM) requires Q(n?) time.

Tree polynomials include the polynomials %, from Theorem [3.4]which can compute function composi-
tion. More generally, the poly-attention for a tree polynomial, where the tree has depth ¢, can simulate
(¢ — 1)-fold function composition, as well as a variety of tree generalizations. (Function composition
can be naturally seen as corresponding to the path graph, which is the graphical representation of h,..)

We show next that, for any attention polynomial which is not a tree polynomial (either because it has
degree more than 2, or because its graphical representation contains a cycle), its poly-attention requires
superquadratic time to compute. Thus, as promised, tree-attentions form a complete characterization
of quadratic-time poly-attentions.

3.3 COMPUTATIONAL COMPLEXITY OF NON-TREE POLY-ATTENTION

Next, we give a complete characterization of the computational complexity (both exact and approxi-
mate) for poly-attention for all attention polynomials h.

Theorem 3.6. Given poly-attention for an attention polynomial h(x1,...,x:) of degree k and

sparsity s which is not a tree polynomial, where the query-key matrices have entries in [—B, B]:

1. If B = o((logn)'/*), entry-wise
almost-linear time.

-approximation of Att"™") can be computed in

1
poly(n)

2. If B = Q((logn)'/*), entry-wise m—appmximation of Att™) requires superquadratic

time, assuming standard complexity assumptions.

Prior work gave this characterization for specific polynomials h (Alman & Song|(2023) for the usual
self-attention (i.e., h(x1, 22) = x1x2), followed by|Alman & Song|(2024) for ¢-tensor attention i.e.,
h(zxy,...,x¢) = x1 - 2¢). We discuss in SectionE]below a number of technical hurdles which we
overcome to generalize their results to all attention polynomials and prove Theorem [3.6]

Notably, for many polynomials such as h(z1, 22, 23) = 2122 + 223 + 123 (corresponding to
Strassen attention), there is a subcubic algorithm which uses fast matrix multiplication, so prior
approaches, which can only prove cubic (or above) lower bounds, cannot apply. In fact, we generalize
the Strassen attention algorithm (Kozachinskiy et al.l 2025)), and prove that for any degree-2 attention
polynomial i whose graphical representation contains exactly one cycle, there is an exact algorithm
for Att") running in subcubic time O(n®), and that this cannot be improved.

3.4 REPRESENTATIONAL STRENGTH OF POLY-ATTENTION

We have discussed function composition at length, but poly-attention is also able to perform a variety
of other basic expressive problems. As an example, Match3 has been highlighted by prior work
(Sanford et al.| |2024a}; [Kozachinskiy et al.,[2025)) as a problem which requires detecting correlated
triples of tokens. We define here a generalization called polynomial root-finding which can be solved
by poly-attention.

Under review as a conference paper at ICLR 2026

The problem is defined in terms of a fixed polynomial p(z1,...,,) (which, unlike an attention
polynomial, may have degree 1 monomials, and may not be multi-linear). In the problem, given as
input a set S containing n integers, and the goal is to find y1, . . ., y; € S such that p(y1,...,y:) = 0.

Match3 is a special case of root-finding, corresponding to the simple polynomial p(xy, z2,23) =
1 + 2 + x3. Circuit evaluation for constant sized circuits, and other related problems can also be
captured by polynomial root-finding by using arithmetization. We prove that for any polynomial p,
one can solve polynomial root-finding using poly-attention:

Theorem 3.7. For every polynomial p(z1, ..., x), there is an attention polynomial h(z1, ..., x)
such that a Transformer using two heads of poly-attention for h can solve polynomial root-finding.

Finding the attention polynomial / for a given polynomial p using our approach is straightforward
but requires some details; it could be performed by a user who would like to answer query patterns
corresponding to polynomial root-finding for a particular p.

3.5 IMPLICATIONS OF POLY-ATTENTION

As we have seen, tree-attention can solve many problems which self-attention cannot, and still it can
be computed in quadratic time. We show that this quadratic time is indeed practicable by showing in
Figure 5] that the time-complexity does not hide large constants.

We further show in experiments in Section [H| that tree-attention is indeed more expressive than
self-attention. This seems to be a promising area of research, and it will be interesting to study the
large scale deployment of tree-attention instead of self-attention in follow-up work. One can select an
appropriate tree-polynomial to use depending on the relationships between the data that the model
intends to process.

When we move to more general poly-attention, for any attention polynomial h which is not a tree
polynomial, we have shown in Theorem [3.6] that (without a small bound on the model weights) poly-
attention provably requires superquadratic time. Thus, there is a trade-off between expressiveness
(most straightforwardly represented by the degree and order of the polynomial h, although it could
also take into account which tasks like polynomial root-finding can be performed), and running
time (depending on how bounded the entries must be). Model designers therefore have a choice,
potentially depending on the hardware available to them, the desired running time, and the logical
structures they expect to see in their data and queries.

It would be exciting, in future work, to further study the expressive power of tree-attentions other than
the ones studied here, and find more examples of complicated tasks with tree-like logical structures
that it can solve. As an example, [Peng et al.| (2024) proposed some more problems like relationship
composition, spatial composition and temporal composition which current language models cannot
solve; it would be interesting to see how well tree-attention performs on these problems.

4 TECHNIQUE OVERVIEW

Representational strength. Our representational strength results include both constructions (e.g.,
showing that tree-attention can perform r-fold function composition) and lower bounds (e.g., showing
that Strassen-attention and 3-tensor attention cannot perform 3-fold function composition).

Our constructions use a generalization of the “sum of squares” approach of [Kozachinskiy et al.|(2025)):
If one can design a simple polynomial ¢ which checks possible outputs of function composition, so
that it outputs 0 on correct outputs and large values on incorrect values, then the softmax underlying
attention can detect Os and thus solve the problem. An interesting algebraic challenge arises of
expressing c in terms of the monomials available in an attention polynomial h.

Our lower bounds make use of communication complexity theory, similar to many other representa-
tional lower bounds in the literature. We show that if function-composition can be simulated by these
mechanisms, then there is a resulting, very efficient communication protocol for a problem called
myopic pointer jumping. Results from |Chakrabarti| (2007); [Kozachinskiy et al.| (2025) showing that
myopic pointer jumping cannot be solved with small communication can then be applied.

Fast approximation algorithms. For obtaining entry-wise approximation algorithms for poly-
attention, we use low-rank decomposition methods based on the polynomial method, which were
first applied in the context of Gaussian kernel density estimation (see|Aggarwal & Alman|(2022);
Alman & Guan|(2024)). In this approach, one critically approximates the exponential function (part

Under review as a conference paper at ICLR 2026

of softmax) with a low-degree single-variable polynomial. The bound B on the weights then naturally
comes into play: the smaller the interval one must approximate the exponential on, the lower degree
polynomial one may use.

A similar approach has been used to design approximation algorithms for other variants on attention
Alman & Song| (2023}, [2024; 2025)), although a number of intricacies arise in this general setting. For
instance (recalling that ¢ is the number of variables in the attention polynomial /, and k is the degree),
directly applying the approach of /Alman & Song|(2024)) would yield an approximation algorithm
whenever B = o((logn)"/*), but our algorithm works even for the much larger bound o((logn)"/*).
This is a significant improvement for ¢ > k— in tree-attention, one could choose ¢t = 20 but k = 2.

Lower bounds. Our running time lower bounds, where we show that different poly-attention
mechanisms cannot be computed in quadratic time (for big enough bounds B on the weights), make
use of tools from fine-grained complexity theory. In particular, as in the previous works of |Alman &
Song| (20232024} 2025)) on the fine-grained complexity of attention mechanisms, we use a popular
conjecture called the Strong Exponential Time Hypothesis (SETH) to obtain conditional hardness
results. First introduced in|Impagliazzo & Paturi| (2001), SETH is a strengthening of the P #= NP
conjecture (so, proving SETH would imply P # NP), and is perhaps the most widely used conjecture
in fine-grained complexity.

Notably, the way SETH has been used in prior work results in cubic (or higher) lower bounds, and
makes it difficult to prove lower bounds for running time 2(n*) from the matrix multiplication
exponent w < 3. Indeed, for such a lower bound, our starting assumption must itself use matrix
multiplication in some way!

In order to prove our lower bound against Strassen attention and other poly-attention mechanisms
with O(n*) running times, we therefore use a different conjecture, the Max-2SAT conjecture (see
Alman & Vassilevska Williams|(2020) and its uses in [El Halaby|(2016); Jansen & Wtodarczyk|(2024);
Bringmann & Slusallek| (2021); Lincoln et al.| (2018)), which roughly asserts that our current best
algorithm for the Max-2SAT problem cannot be substantially improved. We ultimately show that
a faster algorithm for Strassen attention could be used to design a faster algorithm for Max-2SAT,
refuting the conjecture. Our proof of this makes use of the distributed PCP framework (Abboud et al.|
2017) for reducing variants of SAT to other problems through multi-party interactive communication
protocols (Aaronson & Wigderson, 2009; Rubinstein, [2018]).

5 EXPERIMENTAL VALIDATION

We have proved that tree-attention can be computed in

the same O(n?) time as self-attention, and can simulate Test Accuracy Comparison
function composition (whereas self-attention cannot). We
complement this with a simple experiment to demonstrate
empirical learnability and efficiency. We compare the
following models: (i) a model with one head and one layer
of tree-attention; (ii) a model with one head and two layers "
of self-attention; and (iii) a model with one head and one
layer of self-attention. We train all three in the same way to
solve function composition. As expected (proved by Peng
et al.| (2024)), one head and one layer of self-attention is
not able to learn function composition, but we find that the °

other two are. Furthermore, we find that our tree-attention Figure 2: Accuracy per epoch for learn-
model learns function composition in many fewer training ing f;(f2(x)) for sequence length 51,
epochs. Lastly, our empirical evaluation of inference time on a single layer of tree-attention, one
validates that tree-attention takes roughly similar time as layer self-attention and two layer self-
self—attentionﬂ See Figure|2|for a summary, and Section attention.

for further details and quantitative results.

We also perform experiments comparing simple networks

with self-attention and tree-attention on the COGS NLP dataset Kim & Linzen! (2020). This is
a dataset which tests whether a model can perform simple compositional tasks when processing
language. We find that networks with tree-attention learn to higher accuracy in the same number of
epochs. See Section [Hfor more details and quantitative results.

2As shown in Figure tree-attention takes around 1.3x time as that of self-attention.

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We affirm that all aspects of this research comply with the ICLR Code of Ethics. This paper does not
involve human subjects, personally identifiable data, or sensitive applications, and we do not foresee
direct ethical risks.

7 REPRODUCIBILITY STATEMENT

The paper contains theoretical results to categorize higher-order self-attention mechanism, and provide
a fundamental framework for future work. All these results, including theorems and algorithms, have
complete proofs, presented in the appendix. A roadmap to the proofs has been provided in Section
[ATlfor the reader.

The code which produces the experimental results described in Sections [5|and [H|can be found in the
supplementary materials.

REFERENCES

Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM
Transactions on Computation Theory (TOCT), 1(1):1-54, 2009.

Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to
algorithm design. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pp. 218-230. SIAM, 2014a.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment
of sequences. In Automata, Languages, and Programming: 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I 41, pp. 39-51. Springer, 2014b.

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for Ics and
other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pp. 59-78. IEEE, 2015.

Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness of
approximation in p. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 25-36. IEEE, 2017.

Elie Abboud and Noga Ron-Zewi. Finer-grained reductions in fine-grained hardness of approximation.
Theoretical Computer Science, 1026:114976, 2025.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In 37th Computational Complexity Conference (CCC 2022).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2022.

Albert Alcalde, Giovanni Fantuzzi, and Enrique Zuazua. Clustering in pure-attention hardmax
transformers and its role in sentiment analysis. arXiv preprint arXiv:2407.01602, 2024.

Josh Alman and Yunfeng Guan. Finer-grained hardness of kernel density estimation. In 39th
Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA, volume
300 of LIPIcs, pp. 35:1-35:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36:63117-63135, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. arXiv preprint arXiv:2505.11892, 2025.

10

Under review as a conference paper at ICLR 2026

Josh Alman and Virginia Vassilevska Williams. OV graphs are (probably) hard instances. In Thomas
Vidick (ed.), 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pp. 83:1-83:18. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2020.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplica-
tion. TheoretiCS, 3, 2024.

Josh Alman and Hantao Yu. Fundamental limitations on subquadratic alternatives to transformers.
In The Thirteenth International Conference on Learning Representations, 2025. URL https |
//openreview.net/forum?id=T2d0geb6y0l

Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of threshold functions
and algorithmic applications. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 467-476. IEEE, 2016.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra
on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pp. 541-552. IEEE, 2020.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2005-2039. SIAM, 2025.

Al Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pp. 51-58, 2015.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615-626. IEEE, 2018.

Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. Advances in Neural Information Processing Systems, 34:1390-1402, 2021.

Karl Bringmann and Jasper Slusallek. Current algorithms for detecting subgraphs of bounded
treewidth are probably optimal. In Nikhil Bansal, Emanuela Merelli, and James Worrell (eds.),
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pp. 40:1-40:16.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In Twenty-Second Annual IEEE
Conference on Computational Complexity (CCC’07), pp. 33-45. IEEE, 2007.

Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more: Quickly
derandomizing razborov-smolensky. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pp. 1246-1255. SIAM, 2016.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413-17426, 2021.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In International
Conference on Learning Representations (ICLR), 2022.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit complexity
bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602, 2024.

11

https://openreview.net/forum?id=T2d0geb6y0
https://openreview.net/forum?id=T2d0geb6y0

Under review as a conference paper at ICLR 2026

Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 21-40. SIAM, 2019.

David Chiang. Transformers in uniform TCY. arXiv preprint arXiv:2409.13629, 2024.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In International Conference on Machine Learning, pp. 5544-5562. PMLR, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In ICLR. arXiv preprint arXiv:2009.14794, 2021.

James Clift, Dmitry Doryn, Daniel Murfet, and James Wallbridge. Logic and the 2-simplicial
transformer. In International Conference on Learning Representations, 2020. URL https
//openreview.net/forum?id=rkecJ6VEvr.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344-16359, 2022.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476—6489,
2020.

Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng Wang, and Yingyan
Lin. Vitality: Unifying low-rank and sparse approximation for vision transformer acceleration with
a linear taylor attention. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 415-428. IEEE, 2023.

Ronald B Dekker, Fabian Otto, and Christopher Summerfield. Curriculum learning for human compo-
sitional generalization. Proceedings of the National Academy of Sciences, 119(41):€2205582119,
2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix

multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318-30332, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In
2023 IEEE 64th annual symposium on Foundations of Computer Science (FOCS), pp. 2129-2138.
IEEE, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of

transformers on compositionality. Advances in Neural Information Processing Systems, 36:70293—
70332, 2023.

Mohamed El Halaby. On the computational complexity of maxsat. In Electronic Colloquium on
Computational Complexity (ECCC), volume 23, pp. 34, 2016.

12

https://openreview.net/forum?id=rkecJ6VFvr
https://openreview.net/forum?id=rkecJ6VFvr

Under review as a conference paper at ICLR 2026

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47-53, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL |https://openreview.net/forum?id=
tEYskwlVY2.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156—-171, 2020.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. 2023.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL |https://openreview.net/forum?id=
Eh0Od2BJIM.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800-810, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=XPZIaotutsD.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757-795, 2020.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367-375, 2001.

Bart MP Jansen and Michal Wiodarczyk. Optimal polynomial-time compression for boolean max
csp. ACM Transactions on Computation Theory, 16(1):1-20, 2024.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels, 2024. URL https://openreview.net/forum?id=
YkCjojDG31.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=nJnky5K944.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156-5165. PMLR, 2020.

Daniel Keysers, Nathanael Schirli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momcheyv, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
method on realistic data. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SygcCnNKwr.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. 2020.

13

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=YkCjojDG3l
https://openreview.net/forum?id=YkCjojDG3l
https://openreview.net/forum?id=nJnky5K944
https://openreview.net/forum?id=SygcCnNKwr

Under review as a conference paper at ICLR 2026

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview,
net/forum?id=rkgNKkHtVvB.

Alexander Kozachinskiy. Lower bounds on transformers with infinite precision. arXiv preprint
arXiv:2412.20195, 2024.

Alexander Kozachinskiy, Felipe Urrutia, Hector Jimenez, Tomasz Steifer, German Pizarro, Matias
Fuentes, Francisco Meza, Cristian Buc, and Cristébal Rojas. Strassen attention: Unlocking
compositional abilities in transformers based on a new lower bound method. arXiv preprint
arXiv:2501.19215, 2025.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.
2873-2882. PMLR, 2018.

Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest cycles
and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1236-1252. SIAM, 2018.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=DedFYqgjFueZl

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137-22176. PMLR,
2023b.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36:43447-43478, 2023.

Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe:
Can vision-language foundation models reason compositionally? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10910-10921, 2023.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in neural information processing systems, 36:52453-52463, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531-545, 2023b.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https
//openreview.net/forum?id=NjNG1Ph8Whl

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843-856,
2022a.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843—-856,
2022b.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
OpenAl. Introducing openai ol-preview, 2024. URL https://openai.com/index/

introducing-openai-ol-preview/,

14

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

Under review as a conference paper at ICLR 2026

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and Francois Fleuret. Faster causal attention over
large sequences through sparse flash attention. arXiv preprint arXiv:2306.01160, 2023.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. In First Conference on Language Modeling, 2024.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1-35, 2021.

Sergio Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca, Carlo
Luschi, Stephen Barlow, and Andrew Fitzgibbon. Training and inference of large language models
using 8-bit floating point. In Workshop on Advancing Neural Network Training: Computational
Efficiency, Scalability, and Resource Optimization (WANT @ NeurIPS 2023), 2023. URL https:
//openreview.net/forum?id=nErbvDkucY.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Confer-
ence on Learning Representations, 2022. URL |https://openreview.net/forum?id=
B18CQrx2Up4l

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. ., 2018.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53-68, 2021.

Aurko Roy, Timothy Chou, Sai Surya Duvvuri, Sijia Chen, Jiecao Yu, Xiaodong Wang, Manzil
Zaheer, and Rohan Anil. Fast and simplex: 2-simplicial attention in triton. arXiv preprint
arXiv:2507.02754, 2025.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pp. 1260-1268, 2018.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
heads task. arXiv preprint arXiv:2408.14332, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024b.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
diagnostic benchmark for inductive reasoning from text. November 2019.

Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354-356, 1969.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalak-
shmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating
point (hfp8) training and inference for deep neural networks. Advances in neural information
processing systems, 32, 2019.

Zhiqging Sun, Yiming Yang, and Shinjae Yoo. Sparse attention with learning to hash. In International
Conference on Learning Representations, 2021.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine learning,
pp.- 10183-10192. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

15

https://openreview.net/forum?id=nErbvDkucY
https://openreview.net/forum?id=nErbvDkucY
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4

Under review as a conference paper at ICLR 2026

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071-12083, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022b.

R Ryan Williams. Algorithms and resource requirements for fundamental problems. Carnegie Mellon
University, 2007.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical
Computer Science, 348(2-3):357-365, 2005.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix
multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 3792-3835. SIAM, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 20719
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurlPS Edition
(EMC2-NIPS), pp. 36-39. IEEE, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In International Conference on Machine Learning, pp. 40605—40623.
PMLR, 2023.

Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A benchmark
for compositional visual reasoning. Advances in neural information processing systems, 35:
2977629788, 2022.

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Complexity
control facilitates reasoning-based compositional generalization in transformers. arXiv preprint
arXiv:2501.08537, 2025.

CONTENTS
I TInfroducfion| 1
[I. Running time considerations| L ...
(1.2 Poly-attentionis allyouneed| 4
[2° The poly-attention mechanism| 4

{3 Beyond self-attention: the power of poly-attention|

[3.1 Anexample: function composition| L.

[3.2 ‘Iree-attention: polynomials leading to efficient poly-attention|

[3.3 Computational complexity of non-tree poly-attention|

[3.4 Representational strength of poly-attention|.

00 N 9N L i

[3.5 Implications of poly-attention|.

Under review as a conference paper at ICLR 2026

|4 Technique overview|

[5 Experimental validation|

[0 Ethics statement]

(7 Reproducibility statement|

A Roadmap|

IA.2 Notation and background|,

IA.3 Conjectured hard problems|,

[B_Related works|

10

10

18
18
18
19

20

[C Warm-up: Strassen-attention upper and lower bounds|

|C.1 Algorithm for Strassen-attention|

|C.2.1 Conditional hardness of e-Gap-IPA[.

|IC.2.2 Hardness of approximating Strassen-attention|

D Proofs of Section B2 free- ol

[E Proofs of Section[3.3F computational complexities of poly-attention|

[E.1 Polynomial method for poly-attention|

|[E.2 Time lower bounds for poly-attention|

[E.2.1 'Time lower bounds based on degree of polynomial using SETH|

|[E.2.2 Time lower bounds based on substructure of polynomial using Max-kSAT

conjecturef.

I[E.2.3 Time lower bounds for degree 2 polynomials using Max-2SAT conjecture| .

[FProofs of Section[3.1t function composition|

|[G_Proofs of Section [3.4: polynomial root-finding|

[H Experimental details]

|H.1 Function composition|

I The use of Large Language Models (LLMs)|

17

43

51

56

59
59
61

62

Under review as a conference paper at ICLR 2026

A PRELIMINARIES

A.1 ROADMAP

In the rest of this paper, we prove all the results that we have stated in the main version. After
describing some relevant notations and conjectures that we will use, we prove the results in two
parts. First we prove the computational complexities of the poly-attention mechanism, followed by
proofs of representational strengths. The proofs of computational complexities use two subdivisions—
an upper bound where we show that if the entries of the query-key matrices are bounded, then we
can compute an entry-wise approximation in near-linear time, and a lower bound where we show
that if the entries of the query-key matrices are large, then assuming certain fine-grained complexity
conjectures, computing entry-wise approximations are difficult. As a warm-up, we start with upper
and lower bounds for Strassen-attention (Section E]), based on which, we proceed to prove the same
for general poly-attention in Section [E} In order to completely characterize time complexities for
poly-attention, we also give quadratic time algorithms for tree-attentions in Section [D]

The proofs of the results stated in the main paper are given as follows:

* For Theorem [3.1] poly-attention can simulate function-composition has been proved in
Theorem for ty = 2, and the time complexity of O(n?) has been proved in Theorem
D.2

* Theorem [3.2] Part 1 has been proved in Theorem [E.2] and Theorem [3.2] Part 2 has been
proved in Theorem [E.3| Part 1.

* Theorem [3.3]has been proved in Theorem [F.3|and Corollary [F-4]
* Theorem [3.4]has been proved in Theorem [F.6]

* Theorem[3.5|Part 1 has been proved in Theorem [D.2] Theorem [3.5]Part 2 has been proved in
Theorem [E.2] and Theorem [3.5|Part 3 has been proved in Theorem [E.3]

* Theorem[3.6]Part 1 has been proved in Theorem[E.2|and Theorem 3.6 Part 2 has been proved
in Theorem [E3]

* Theorem [3.7]has been proved in Theorem |[G.1]

A.2 NOTATION AND BACKGROUND

Throughout this article, for a natural number n we denote [n] as the set {1,2,...,n}, [i : j] as the
set of integers {i,i + 1,...,5} fori < j, and [¢, j] as the set of real numbers between 4 and j. Given
amatrix M € R"*™, fori € [n],j € [m], we denote [M]; ;, and more loosely M; ;, as the (i, j)-th
entry of the matrix, M; as the i-th row as a m-dimensional vector, and M. ; as the j-th column as the
transpose of a n-dimensional vector. M(;, .5, i,:j,) Will also denote the submatrix of M having rows
[i1 : j1] and columns [ig : jol.

A;

For two matrices A, B € R™*™, we define % as the entry-wise division, i.e., [%]L j = g+ Givena

i,J
vector X € R™ !, by diag(X), we denote the n x n diagonal matrix such that [diag(X)];; = X|i]
for all i € [n]. Some other operators on matrices are defined as follows.

Definition A.1 (Hadamard product ®). Given to matrices A, B € R"*™, we denote the Hadamard
product, denoted by A ® B € R™"*"™, as the entrywise product

[A® Bl;; = Aij - Bij,

fori€n],j€m.
Definition A.2 (Row-wise Kronecker product @). For matrices A € R"*¢ B € R™*%, we denote
the row-wise Kronecker product as A © B € R"™*4 where

[A© Bli-1ym+; = 4i © Bj,
fori€[nl],j € [m].

Definition A.3 (Entry-wise approximation). Given a matrix M € R™*%, we say that M is an
entry-wise ~y-approximation of M if for all i € [n],j € [d], we have

|Mij — M ;] <.

18

Under review as a conference paper at ICLR 2026

Throughout this paper, we will choose 7 = 1/poly(n).

Definition A.4 (Entry-wise function). Given a function f : R — R and a matrix M € R™"*™, we
define the matrix [M|7 as the n x n matrix such that the the (i, j)-th element is

(M), = f(0M;).

We will use [M]° as the entrywise exponentiation function, i.e., [M]7 ; = eMi.i For a real number c,

M /c will also refer to the matrix obtained by dividing each entry of M by c.

The coefficient of matrix multiplication, w, roughly refers to the exponent of n such that twon x n
matrices can be multiplied in time O(n*) for large enough n. There is a series of works trying
to improve this coefficient Alman & Williams| (2024); |Duan et al.| (2023); Williams et al.| (2024);
Fawzi et al.| (2022); |/Alman et al.| (20235)), with the fastest being |/Alman et al.| (2025) that achieves
w = 2.371339. However, these matrix multiplications require n to be quite large and the hidden
constants are enormous, which does not make implementations feasible. There is an algorithm by
Strassen |Strassen| (1969) which is more practicable and achieves w == 2.8, but in most cases, only the
naive matrix multiplication algorithm is used as GPUs work better on them.

We will use some more concepts to define the ideas in this article. Given an integer ¢, we define the
symmetric group of order r, ([t]) as the set of tuples:

t
(Q) ={(1,J2,--»dr) |1 < g1 <jo < ... <jr <t}

Note that |([ﬁ)| = (!). Based on this, an elementary symmetric polynomial of degree r having ¢
variables is defined as
Z lesz,...xjr.

1<j1<j2<...<jr <t

Definition A.5 (Variable separability). We say that a polynomial h(z1, ..., x;) is variable separable

if there exists a maximum integer v and non-zero attention polynomials g1 (x1,x1),.. ., gr(x1,2"),

where x1, ... x" are disjoint subsets of the variables, such that h(z1, o, ..., 2,) = g1(x1,zt) +
o+ g,«(a:l, .ZTT)

We denote each of the polynomials g;(x1,x?) as branches.

Note that this definition of variable separability differs slightly from the folklore usage as here we
allow f and g to share at most one variable, x;.

In this paper, for a given polynomial &, we are interested in computing the entry-wise approximation
of Att™")_ For this, we define the following version of computing poly-attention approximately.
Definition A.6 (Entry-wise Approximate Poly-Attention Computation APAC™) (n,d,T',v)). Let h

be an attention polynomial in t variables of degree k havmg S{Jarsny s. Given query-key matrices
Q(l) QW ¢ [—T,T)"*4 and value matrices V@ R™*? ywe want to output a matrix

At® e R™4 such that for all i € [n], j € [d],

[At M, — (AP QM. QW V. VO] | <.

A.3 CONJECTURED HARD PROBLEMS

We define some commonly known problems in fine-grained complexity and state conjectures which
will be used to show conditional hardness of generalized attention computations. First, we start by
defining a few central problems in fine-grained complexity.

Definition A.7 (kIP problem). Given sets of vectors A, ..., AF C {0, 1}d, each of size n, and a
target inner product m € [d], the problem of kIP asks if there exists a* € A',a% € A2,... a* € A*
such that (a',a?,. .. a") = m.

For k = 2 and m = 0, it is the famous orthogonal vectors problem, which we will abbreviate 20V or
just the OV problem, and for k£ = 2 and arbitrary m, we will abbreviate the problem as IP.

19

Under review as a conference paper at ICLR 2026

Definition A.8 (kSAT). In the kSAT problem for k > 2, given as input a k-CNF formula ¢,
determine whether or not ¢ has a satisfying assignment.

Definition A.9 (Max-kSAT). In the Max-kSAT,, ., problem for k > 2, given as input a k-CNF
formula ¢ in n variables and m clauses, determine the maximum number of clauses in ¢ that can be
simultaneously satisfied by a Boolean assignment to the underlying variables.

Based on these definitions, we are now ready to describe some popular conjectures in fine-grained
complexity that we will use to prove our (conditional) hardness results.

Hypothesis 1 (SETH Impagliazzo & Paturi| (2001)). For every § > 0, there exists k > 3 such that
KSAT can not be solved in time O(217°)"),

The current fastest known algorithm for £SAT uses the reduction to OV with dimension d = clogn.
The best known time complexity of OV is n?~/°0°=) given by Abboud et al. (2014a); Chan &
Williams| (2016).

Since kSAT is a special case of Max-kSAT, SETH implies that Max-kSAT also cannot be solved
in time Q(2(1=9)") for every 6 > 0. The next hypothesis |Alman & Vassilevska Williams| (2020)
strengthens this further to sparse instances of Max-kSAT.

Hypothesis 2 (Sparse Max-kSAT Hypothesis). For every k > 3 and every § > 0, there exists ¢ > 0
such that Max-KSAT,, c,, cannot be solved in time 0(2(1_5)”).

The fastest known algorithm for sparse instances of Max-kSAT,, ., for k& > 3 takes time

9n(1-1/6¢"/*) |Alman et al| (2016); therefore the above hypothesis is consistent with the state-
of-the-art algorithms. In contrast to the special case of Max-kSAT for k = 2, the hypothesis is false.
The best algorithm for Max-2SAT Williams| (2005; 2007) runs in time 2"/ *poly(n), where w is the
matrix multiplication exponent. The following Max-2SAT hypothesis states that William’s algorithm
Williams| (2005)) is essentially optimal when k£ = 2.

Hypothesis 3 (Max2SAT hypothesis). For every § > 0, there exists a ¢ > 0 such that Max-2SAT,, .,
cannot be solved in time 0(2"(“’/ 3_5)), where w is the matrix multiplication exponent.

The following theorem gives a reduction from £SAT to kIP, thus proving the hardness of kIP under
SETH.

Theorem A.10 (Williams| (2005); |/Abboud et al.|(2014b); |Backurs & Indyk| (2015);|Abboud et al.
(2015). Assuming SETH, for every k and 6 > 0, there exists ¢ > 0 such that kIP,, c1og n, cannot be

solved in time O(n(l_‘;)k),

B RELATED WORKS

The most similar prior works on attention mechanisms which are more expressive than self-attention
are Sanford et al.|(2024b)) and [Kozachinskiy et al.|(2025)), which we have already discussed in detail.
There is another attention mechanism, triangular attention, introduced by [Bergen et al.|(2021)), whose
design was inspired by logic programming, and which was shown to perform better than self-attention
on certain compositional tasks. However, Kozachinskiy et al.|(2025) proved that it cannot perform
function composition.

As we have discussed, the self-attention mechanism (Vaswani et al., [2017) is at the center of all
large language models because of its expressivity in real-life applications, but the quadratic time
complexity for computing its output is sometimes already prohibitively expensive. One extensive line
of work has introduced faster heuristic algorithms, which work well on many inputs. These have
used different approximation techniques, including sparsity assumptions, norm bounds, and kernel
density estimation (Zandieh et al., [2023; [Han et al., [2024; Kitaev et al., [2020; |(Choromanski et al.,
2021} |Pagliardini et al., [2023; (Child et al., 2019; |Wang et al., 2020; [Daras et al., 2020; [Katharopoulos
et al.,2020; |Chen et al., [2021;2022; |Qin et al.| 2022} [Liu et al.| [2023bj He et al.| 2021; |Kacham et al.,
2024; Dao et al., 2022} |Daol 2024} Roy et al., 20215 Sun et al., 2021} |Ding et al., 2023; |Han et al.,
2023 Zaheer et al.||[2020; |Dass et al., [2023)).

Other alternatives have been considered which completely replace attention with different mechanisms.
A simple example is Hardmax attention, in which the softmax is replaced by a (hard) max, but training

20

Under review as a conference paper at ICLR 2026

Hardmax attention Transformer models appears difficult as we do not know an efficient way to perform
gradient descent. The power of hardmax has been explored in |Alcalde et al.| (2024); Pérez et al.
(2021); |Kajitsuka & Sato| (2024). Instead of computing the output of self-attention faster, some
other alternatives to Transformers have been proposed that completely replace attention with other
mechanisms; examples include Synthesizer (Tay et al., [2021)), routing Transformers (Roy et al.,
2021)), and Mamba (Gu & Dao,|2024)). These alternatives can typically be computed much faster than
attention (often in almost linear time by definition), but in exchange appear to have weaker expressive
power (Alman & Yul|[2025). This paper continues a long line of work on understanding the power
and limitations of Transformers, and finding more expressive alternative models.

Some papers have studied the circuit complexity of Transformers (Chiang|2024; |[Merrill & Sabharwal|
2023a; Merrill et al., 2022b}; (Chen et al., 2024} Merrill & Sabharwal, |2023bj; Merrill et al., [2022a;
Chiang et al.,[2023)). Other works on the representational strength of Transformers focus on their
relationship with other models of computation. For example, a line of work has studied the ability
of Transformers to approximate other models of computation (Pérez et al.,|2021; 'Wei et al., [2022a;
Malachl 2023; [Liu et al., 2023a}; [Hao et al.,[2022)). On the other hand, there are many more tasks,
beyond those discussed here, which are difficult to solve by a Transformer, including compositional
reasoning (Dekker et al.l [2022; Zerroug et al., [2022; Marcus, 2018} |Kozachinskiyl |2024; Sanford
et al.,[2024a; Peng et al., 2024)).

Another approach to overcoming the limitations of Transformers is to augment them in other ways.
An important example is chain-of-thought (Wei et al.| [2022b)). Merrill & Sabharwal (2024) studied
the space and time complexity of chain-of-thought, and [Peng et al.|(2024) studied how this relates to
function composition.

C WARM-UP: STRASSEN-ATTENTION UPPER AND LOWER BOUNDS

As a warm-up, we describe the polynomial method and show Max-2SAT-based hardness results on
Strassen-attention. Since Strassen-attention is only a special case of poly-attention, we will later
move on to show similar algorithms and lower bounds on poly-attention in Section [E]

C.1 ALGORITHM FOR STRASSEN-ATTENTION

In this section, we give a near-linear algorithm for computing an entry-wise approximation of the
output matrix of Strassen-attention, when the entries of the query-key matrices are bounded. We will
use the polynomial method, which has been used in entry-wise approximations of other attention
mechanisms as well, like in self-attention |Alman & Song|(2023)), tensor-attention |Alman & Song
(2024), RoPE based attention /Alman & Song|(2025]).

Our goal is to compute the 1 x d matrix Att(S), the output of Strassen-attention, for query-key matrices
QWM. QP QB ¢ [T, T]™*? and value matrices V1), V(2) ¢ R"*<, Using the expression of
Strassen-attention Kozachinskiy et al.| (2025)), it can also be written as
[FQMWQP)TY, 1,y DGR (Q) T D> QP QM))
QD@D 1 BRP Q)LD QD) , 1n

forall i € [n],£ € [d], where D¢ = diag(V((ll:L,é)) and D%* = diag(V((ﬁiM)).

At = ,)

We will compute the entry-wise approximations of the numerator and the denominator terms of
Equation 2] separately. The main idea is to use a low rank entry-wise approximations for each of
[2QW(Q®)Te, [P (Q®)T]e, [2Q®) (Q™M)T]°, and multiply the low rank matrices together—
something that can be done more efficiently. In order to obtain the low rank approximations, we will
use the following lemma from |Aggarwal & Alman)|(2022).

Lemma C.1 (Aggarwal & Alman|(2022)). Let T' > 1, ¢ € (0,0.1). There exists a polynomial

log(1/e

P(z) € R[z] of degree t := © (max {m, F}) such that for all a € [-T',T], we have
|P(a) — e*| < ee®. Furthermore, P can be computed in poly(t) time and its coefficients are rational
numbers.

Using the previous lemma, we obtain the low rank matrix approximations as a corollary.

21

Under review as a conference paper at ICLR 2026

Lemma C.2 (Low rank approximation |Alman & Song| (2023; 2024)). Let € = 1/poly(n), d =
O(logn), r = n°M, and B = o(logn). Given matrices P,Q € [~T',T|"*% we can compute
matrices U;W € R™ " in time O(n1+0(1)) such that UWT entry-wise e-approximates PQ™ ; that
is: [[UWT];; — [PQT] ;| < e[PQTIS ;.

This is an instance of the Gaussian KDE which has widely been used in LLMs and machine learning
algorithms |Zandieh et al.| (2023)); Backurs et al.| (2018]); [Katharopoulos et al.[(2020); |/Alman et al.
(2020); |Aggarwal & Alman| (2022); /Alman & Song| (2023} {2024).

We will show that we can compute Vi € [n], y-approximations of denominator in Equation [2|in
time O(n'*t°(1)), and fixing any ¢ € [d], we can compute y-approximations of the numerator in time
O(nH"(l)), Vi € [n], where v = 1/poly(n). Once we find the values of the denominator and the

—

numerator, we perform a division, to compute the y-approximation Att(5); ,, which takes a total
time of O(n'*t°() 4 d.n'*+°() 1 nd) = O(n'+°(M)). Using this as the central idea, we prove the
following result. Since Strassen-attention is a special case of poly-attention with the polynomial
hs(z1, x2,x3) = 122 + T2x3 + x3x1, we state the following result:

Theorem C.3. There is an algorithm that solves APAC"s) (n,d = O(logn),T’ = o(y/logn),y =
Upoly(n)) with query-key matrices Q) Q) Q®) € [-T',T]"*%, and value matrices V? V) ¢
R™*4 in time O(n'+oM),

The algorithm is summed up as follows.

Algorithm 1 Algorithm to compute entry-wise approximation of Att(%)

Input: A number I' = o(y/Tog 1), query-key matrices Q1), Q?), Q©®) ¢ [T, T']"*4, value matri-
ces V(D V(2 € R"*4_ an approximation parameter v = 1/poly(n).

Output: Entry-wise y-approximation Att(S) of Att(S),

1: Initialize Att(S) := 0,, 4.

2: Compute the low-rank ~-approximations UY(W')T of [1QW(Q®@)T]e, U2(W*)T
of [2Q@(@Q®)T]¢ and U(W3)T of [3Q®(QW)T]® using Lemma where

UL WYL U2, W2 U3, W3 € R for r = n°W), > O(n'toMr) time.

3: DM = digg(‘/((ﬁl,@), DQ’NK = diag(‘/((ﬁzw)). > O(n) time.

4: Compute U2 := DV'U? W2 := D>'W? e R™". > O(nr) time.

5: Compute A := (WHTU? (W?)TU? and B .= (WHTU2 (W2)TU3. > O(nr?) times.
—_— —_—

X7 TXT X7 X7
6: for i € [n], ¢ € [d] do
Compute the O(+y)-approximation of the denominator (Equation 2) as

~

R; = U(1i71:7‘)A(W(3i,1:T))T eR.

> O(r?) time.
8: Compute the O(+y)-approximation of the numerator (Equation [2)) as

P’LE = U(li,lzr)B(W(?;,lzr))T eR.

> O(r?) time.
9: Compute the (-th row of the entry-wise O(7),-approximation of Att() as
— Pt
AttS) i, 0] == .
Qi
> O(1) time.
10: end for
11: Return Att(5),

22

Under review as a conference paper at ICLR 2026

Before proving the correctness of this algorithm, we first show that the entries of the exponentiated
matrices are bounded, which is necessary for applying Lemma[C.2]

Lemma C.4 (Bounded entries). The entries of [5QM(Q™)T¢, 3@ (@) T]e, 3B (QW)T]e
are bounded as

e < LQWQP)E, QP (QP)E, [LRP Q)T < o,

foralli,j € [n].

Proof. Without loss of generality, we prove the upper bound only for X and the rest follows similarly.
Since each entry of QV), Q?), Q) are in [T, T, the value of [QM) (Q@)T]; ; is

[Q(l)(Q(z))T}i,j _ <Q§l)7Q§2)> _ Z E}Z)Qfé)7

Leld]

= —T2<(QV,QP)/d <T? (Since -T < Q). Q%) <.

Therefore, e 1 < [LQW@Q) T, < ™ for all 4,5 € [n], and we can similarly bound

[GQPQ®)T]", [P (@MW) U
Now, we prove Theorem [C.3] which is also the correctness of Algorithm T}

Proof of Theorem|C.3| First, we compute the low-rank approximations of
LQW(Q)T), [FQ@(QW)T)<,[LQ®) (QM)T]* using Lemma [C.2] (Step 2 of Algorithm

. However, in order for Lemma |C.2]to succeed in Step 2 of Algorithm[I] we need the entries of the
exponentiated matrices to be bounded, which is true due to Lemma|C.4]

We compute the Strassen-attention matrix in two steps, first computing the denominator, and then the
numerator in Equation [2]to compute the entire self-attention matrix.

Computing the denominator. This has been described in Step 7 of Algorithm |1, and we now
prove its correctness. Since the entries of [2Q™M (Q®)T]e, 2@ (QENT]e, QB (QW)T]e
are bounded, we can apply Lemma [C.2]to find their low rank approximations. Let the low-rank
approximations of [éQ(l)(Q(z))T]e, [éQ@)(Q(S))T]E, [éQ(?’)(Q(l))T]e be UY(WHT, U2(W?)T
and U3(W3)T respectively, with entry-wise error € for £ = 1/poly(n), where each of U?, W € R"*",
Namely, for all ¢, j, k € [n],

|[;Q<l><c2<2>mij - WOV ig| < lg@V@QP)TE < v

[5QQUY 5~ WOV | < 3QD(@) T < ®

09 @QU)TIE ~ 0307 | < 130 Q)T < .

where v = cel’”. When we choose ¢ as the inverse of a large enough polynomial such that eel” =
we have 7 = 1/poly(n) (note that I' = O(y/log n)). Now, we claim that

1
poly(n)’

[Ul (Wl)TUQ (WQ)TUB(WB)T]Z'7Z‘

23

Under review as a conference paper at ICLR 2026

is an approximation of [[1Q) (Q(z)) Je[2Q! 2)(62(3) 1°[2Q®(Q()]e]” For ease of notation,
let us denote X = [éQ(l QN T)e Y [1 (Q(S))T}e *[QP (QM)Te. Now,

XY Z)s — [0 (W) U2 072) T 0309
(v 21— 0 WY 210 + (0 W)Y 2 0 0 TUA) 7))

+ ([Ul(Wl)TUZ(WQ)TZ]i,i - [Ul(Wl)TUQ(W2>TU3(W3)T]“’>’ @)

<|[XYZ); - [UNWHTY Z],,

n ([Ul(Wl)TYZh,i U WYTUA(W) 2],

+ ‘[Ul(Wl)TU2(W2)TZ]M o [Ul(Wl)TUQ(Wz)TU?’(Wg’)T]Z-,i

b

where the last inequality follows from triangle inequality.
Now, using Equation in each of the three terms, we can show that this is bounded above by O(7).

The computation of [U'(WHTU2(W?)TU3(W3)T];; for i € [n] from Algorithm |1} takes
O(n'*t°M)) time for r = n°() (which is true for the choice of d = O(logn), B = o(y/Togn),y =
1/poly(n) using the parameters of Lemma|C.2).

Computing the numerator An entry-wise y-approximation of the numerator of the Strassen-
attention matrix Att(5) € R"*? (Equation [2) has been computed in Step 8 of Algonthml Here,
essentially, we compute each entry [X DV¢Y D% 7], ;, for all i € [n] by fixing £ € [d] at a time.

We again make use of the low rank decompositions of X, Y, Z as above (Equation E[) Note that the
value of each element of Att(%) is given as

Aty = XDy D7),

We claim that [UY(WYH)TDLU2(W2)TD2U3(W*)T);; is an O(v)-approximation of
[X DYy D**Z]; ;. Indeed, we have

IXDYY D> 7], ; — [UH(WHT DU (W) D> U3 (W) T, 4|
‘ ([XDMYD”Z]M - [Ul(Wl)TDMYD“Z]m)
4 ([Ul(Wl)TDl*ZYDQ’KZ]M _ [Ul(Wl)TD1’£U2(WQ)TD2’EZ]1'7¢)
+ ([Ul(Wl)TDl,ZUZ (WQ)TDQ’EZ]i)i _ [Ul(Wl)TD1’£U2(W2)TD2’€U3(WB)TL"Z) ‘ (5)
g‘[XDMYD”Z]m— - [UtwhHT D4y D> Z];

+ ’ [Ul(Wl)T.DLZYD?’éZ]iJ o [Ul(Wl)TDl’eUz(WQ)TDZEZ]M

)

+ ‘ [Ul(Wl)TDLKUQ(WQ)TDZ’EZL'J‘ - [Ul(WI)TD1,€U2(W2)TD2,ZU3 (Wd)T]zﬂ

which again follows from the triangle inequality, and each term can be shown to be upper bounded by
O(7) using Equation 3]

Wrapping up. An approximation of the (i, £)-th element, Attgi), is obtained by approximating the
value of [X D**Y D**Z], ; and then dividing by the approximate value of [XY Z]; ;. Using

‘Pf — Ul(Wl)TDl,ZUQ(W2>TD2,ZU3(W3)T7
Ri _ Uz'l ((WI)TU2(W2)TU3) (WiS)Ta

24

Under review as a conference paper at ICLR 2026

we have
XDy D*>*Z];; — P{| < O(),

and,
[XY Z]ii — Rilos < O(v),
fori € [n], ¢ € [d].
Therefore, the error is given by
XY Z]; ' IXDY'Y D> 2], ; — Ry Pf| < |[XY Z]; [XDY'Y D> Z); ; — (XY Z];} Pf|
+[[XY Z] 1_11 P} — R; ! P{| (Triangle inequality)
<0(),

which follows from Equations 4] [5} repeated applications of triangle inequalities, and the fact that ¢ is
an inverse polynomial in n, and,

[XDYY D> 24l = | Y XijViYuViEeZii| < €5 1V ool V2] |oo,
J.k€[n]

’ 1 _ ' 1 - 63F27

(XY Z]ii| |22 kem XisYikZe,

for all i € [n],¢ € [d] since the entries of Q), Q) Q® are in [-T,T] (Lemma |C.4). For
d = O(logn), T = o(y/Togn) and ||[VV||s, ||V ?)||s = poly(n), we can choose yg = 1/poly(n)
for a large enough polynomial such that

P ()
- Al

T

<70,

where 79 = O() = 1/poly(n), which is our required approximation parameter.

As described in Algorithmwe compute this y-approximation for all i € [n] in time O(n!*+°(),
and repeating this over all ¢ € [d] requires O(n't°(Vd) = O(n'*+°M) time since d = O(logn).
This proves Theorem [C.3] O

C.2 HARDNESS OF STRASSEN-ATTENTION

Now, we introduce the techniques that will be used to prove lower bounds in this paper. We establish
the hardness of Strassen-attention in the high weight case, assuming the Max-2SAT conjecture
(Hypothesis [3). Our reduction will proceed in three steps. First, we use a reduction from [Alman
& Vassilevska Williams| (2020) that establishes the hardness of IPA (Definition|C.3]) assuming Hy-
pothesis [3] (hardness of Max-2SAT). Second, we prove the hardness of e-Gap-IPA (an approximate

version of IPA defined in Definition [C.6) from the hardness of IPA, in Section[C.2.1] Lastly, we
prove the hardness of Strassen-attention from the hardness of e-Gap-IPA in Section

We begin by defining the problems IPA and e-Gap-IPA.

Definition C.5 (IPA). Given three sets of vectors A',A%2, A> C {0,1}¢, |Al| =
|A%2| = |A%| = n, and target inner products, miz,maz,m3; € {0,...,d}, the problem
IPA, (A, A%, A3, m1a, ma3, m31) asks whether there exist vectors ay; € A',ay € A% az € A3
such that, simultaneously, (a1, as) = mya, (az,as) = mas, (as,a;) = masi.

Definition C.6 (c-Gap-IPA). Let ¢ > 0. Given three sets of vectors A', A%, A*> C {0,1}4, with
|AY| = |A?| = |A3| = n, a target inner product m € {0,...,d}, and the promise that for every
a € A ,a9 € A2,CL3 € AS,

e either {(ay,a2) < (1 —e)mor (ay,az) =m,
* and, either (az,a3) < (1 —e)mor (az,az) =m
* and, either (as,a1) < (1 —e)mor (ag,a1) =m

the problem 5-C-?a;)-/,’DAmd(fll7 A% A3 m) is to decide if there exist vectors a; € A',ay € A% a3 €
A3 such that: {ay,as) = {(as,a3) = {az,a;) = m.

25

Under review as a conference paper at ICLR 2026

For IPA and e-Gap-IPA, we will drop the parameters m, d when they are clear from context. Note
that even though IPA might have different inner products for all three pairs, for e-Gap-IPA, the
three inner products being equal suffices as the reduction for proving its hardness accommodates this
property, and for proving hardness of approximating the output of Strassen-attention, we need them
to be equal.

As mentioned above, the first step uses a result due to|Alman & Vassilevska Williams| (2020) which
proved that IPA is at least as hard as Max-2SAT:

Lemma C.7 (Alman & Vassilevska Williams| (2020). Assuming the Max-2SAT conjecture (Hy-
pothesis , Sfor every § > 0 there exists ¢ > 0 such that \PA,, c10gn cannot be solved in time
O(n*79).

C.2.1 CONDITIONAL HARDNESS OF -GAP-IPA

In this subsection we prove the following theorem, establishing hardness of e-Gap-IPA assuming
hardness of IPA.

Theorem C.8. For every d,e > 0, there exists ¢, ¢’ > 0 such that if e-Gap-IPA
in time O~(n(‘”*5)), then IPA,, ¢ 105 n can be solved in time O~(n(‘”*5/2)).

n,clogn AN be solved

Building on|Aaronson & Wigderson| (2009), Rubinstein [Rubinstein| (2018)) gave a reduction from the
IP problem to the gap version, e-Gap-IP. That is, they proved a similar reduction to what we want,
but where IP and e-Gap-IP take as input two sets A, A instead of three sets. Chen & Williams
(2019);|Abboud & Ron-Zewi|(2025) further improved their reduction; for our reductions, we will use
and build upon the proof given by |Abboud & Ron-Zew1i| (2025).

The following lemma was proven in|Abboud & Ron-Zewi|(2025) (see the proofs of Lemma 4.1 and
Claim 4.3 in their paper).

Lemma C.9 (Abboud & Ron-Zewi| (2025)). For all n,d = O(logn), there exists d' = O(d),
q =n°D, m/ = O(logn), such that for every instance of IP, q given by sets of vectors A, B and
a target inner product m € {0,...,d}, there is a set of q instances {(/Ii, éi, m') | i € [q]} of
e-Gap-IP,, ;; computable in O(n'*°M) time, where € € (0,1) is a constant such that:

1. (Yes case) If there exists (a,b) € A x B such that {(a,b) = m, then there exists i € [q] such
that (A*, B*,m') is a yes instance of e-Gap-IP,, ;.

2. (No case) If for every pair (a,b) € A x B, (a,b) # m, then for all i € [q), (A*, B}, m’) is
a no instance of ¢-Gap-IP,, ;.

Proof of Theorem|[C.8] We start with an instance of IPA, 4=0(log n)» given by a target inner product
m, and matrices A, B, C' each of dimension n x d, where the rows of A correspond to a set of n
vectors, and similarly for B and C.

For the pair (4, B), we apply Lemmato create a set of ¢ instances of e-Gap-IP,, ., each with
target inner product m/’:

(Aap, Bap) = {(A4p, Bap,) i € [d]}.
Similarly we apply the Lemma to the pair (B, C') to get e-Gap-IP instances

(Bpc,Cpe) = {(Bse, Cpe) | € [al}
and to the pair (4, C) to get instances

(Aac,Cac) = {(A4¢,Che) i € [q}-

By Lemma the following properties are satisfied by (fl 4B, Ba B):

(1) Foralli € [g], the instance (zzlf4 B Bg 5, m/) satisfies the gap property. That is, for every
ayg € Ayp. byp € BYp, (a4,) is either equal to m/ or is at most (1 — e)m/.

26

Under review as a conference paper at ICLR 2026

(2) Correctness of the reduction:

(2b) If there exists (a,b) € A x B such that (a,b) = m, then there exists ¢ € [q], and
vectors a'y g € Al 5, bl 5 € BYy g such that (a5, bl 5) = m'.
(2¢c) If for every (a,b) € A x B, {a,b) # m, then for all ¢ € [g], and for all vectors

alyp € Ayp,byp € BYp, we have (a’y 5, by 5) < (1 —e)m/.

By the same argument, the above two properties are also satisfied by (B so,C Bc) and (fl a0, C AC)-

Equipped with the above pairs of 3-dimensional tensors, we are now ready to describe our reduction
from the instance (A, B, C,m) of IPA,, 4 to a set of ¢ instances of e-Gap-IPA,, 504, denoted

by:
(A, B,C) = {(AMWk BYIF Chiky | 5k € [q]}

For each i, j, k € [g], we define A*7** to consist of the following set of length 3d’ vectors:

igk _ fi nd ok i i k ik
A ={ayp 0% ajc | ayp € AYp, ajc € Ao}

Similarly we define B%7:F and C*9-F:
BYIF = (bl b 07 | by € Blyy, bl € Bho}

i.5,k _ fod J k J ~J k ~k
C7" ={0% cpe che | epe € Cpe Cac € Cact
Gap Property First, we prove that every instance (A**, B)"F (k) satisfies the gap property.
Consider a generic triple (a®J* ph3F chiky e Ak x ik x CHIE | where
gk _ i od k
a"" = a4 g0% 'y,
i,k _ pi pd d’
b = by gbp07,
ij,k _nd Ik
c = 0% cgeCac-

Since (a3*, b13*) = (a%, 5, bY), we can apply property (1) to (Aap, Bap) to infer that this inner
product is either m’ or at most (1 — £)m/. By a similar argument we can show that (b"3:*, ¢J-*) and
{(a®Jk cIk) are either m/ or at most (1 — ¢)m/. This completes the proof of the gap property.

Proof of Correctness. We first consider the yes case, when there exists (a,b,¢) € A x B x C such
that (a, b) = (b, ¢) = (a,) = m. Applying property (2a) above, we have:

1. There exists i € [q], a’yp € A% 5, by 5 € By such that (a’y 5, by 5) = m'.
2. There exists j € [q], bl € Bheos ¢y € Chy such that (Mg, cly) = m.

3. There exists k € [q], a¥ € A%, iy € Ck such that (a¥,) = m'.

Now consider the corresponding vectors abik e Abik phik e Bidk and b9k in €19k defined as:

.. . !’
¥ = a0

igk _ i i od
b = b pbpc0
ijk _ nd J k
Pt = 0% epecic

By inspection together with the above three properties (1, 2, 3), we have

<ai,j,k7bi,j,k> — <bi,j,k,ci,j,k> _ <ai,j,k,ci,j,k> _ m/’

27

Under review as a conference paper at ICLR 2026

thus completing the "yes" case of correctness.

In the no case, suppose for all (a,b,c) € A x B x C, either (a,b) # m or (b, c) # m or (a,c) # m.
We want to show that for all i, j, k € [¢] and for all (a"F, b"3F (k) € ABIE x Bhik 5 Chik at
least one of the following holds: (i) (a"F,b%9%) < (1 —e)m’ or (ii) (b"F, ¢"IF) < (1 —e)m’ or
(iii) (a®k, kY < (1 —e)m/.

Fix 4, 7,k € [q] and consider a generic triple (a*7'F, b7:* ¢b3:F) in A3k x Bidk i CHIF | where

ij,k _ i d k
a =ayg0% axp,

i5k _ i j d’
b = ABbBCO)

igk _ gdd Kk
" = 0%cpolpe

Consider first the case where (a, b) # m. Then by applying property (2b) to (Aap, Bap) we have
(aly g, by p) < (1 —e)m/, and therefore (™% b7} < (1 — g)m’, so case (i) above holds.

Similarly in the second case where (b, ¢) # m, applying property (2b) (Bgc, Cpe) it follows that
(bidk chdky < (1 — ¢)m/, so case (ii) holds. For the last case where (a, c¢) # m we can similarly
use (2b) to show that (iii) holds.

This completes the proof of correctness of the reduction.

Time complexity. Assume we are able to solve e-Gap-IPA in time n“~% for a constant § > 0.
Then we can solve all ¢° instances (A“7"F, B):F C4F) of ¢-Gap-IPA in time ¢®n“~°. Since
g = n°M, ¢ < nd/2 for n sufficiently large, and thus the runtime of the (Turing) reduction from
IPA to Gap-IPA is at most n*~%/2, This completes the proof of Theorem O

C.2.2 HARDNESS OF APPROXIMATING STRASSEN-ATTENTION

In this subsection, we prove the following theorem which is the last step of our reduction for proving
the lower bound. The following theorem gives an efficient reduction from e-Gap-IPA to Strassen-
attention when the weights are large. We again use the fact that Strassen-attention is poly-attention
for the polynomial hg(x1, X2, x3) = x122 + X223 + T3271.

Theorem C.10 (Hardness of Strassen-attention). For every constant € > 0, every & €
(0,0.01), every ¢,M > 0, there exist constants C, > 0 and C, > 0 such that if
APAC(hS)(2n, 2clogn,I' = Cyy/logn,y = n~%) (Definition @) with query-key matrices
QW,...,QW ¢ [-I,T)?*2¢loen yalue matrices V), ...,V € R?>2¢logn can e solved
in time O(n*~°), then e-Gap-IPA,, .10q 1, (Deﬁnition with target inner product m = M logn
can also be solved in O(n“~°) time.

Proof. We start with an instance of e-Gap-IPA,, ;_ ., - defined by sets A, B,C C {0,1}¢, and
target inner product m = M logn for a constant M, satisfying the promise given by the definition of
e-Gap-IPA (e.g., for every pair of vectors from different sets, their inner product is either equal to m
or at most (1 — £)m). From this instance we now want to create an instance of Strassen attention,
given by matrices Q(1), Q(2.Q®) v(1) v (),

Now, for a positive real number B = w(1) that we will f:1x later, similar to|Alman & Song| (2023}
2024), we construct the matrices Q(1), Q(?), Q3 € R™"*4 for i = 2n, d = 2d as:

far 147 b1 047 fer 04

1) _ plan 14 @ _ n|bn Oa 3) _ plcn 04

Q=5 04 14 , @Y =8 0q 14 , QU =8 04 14
'Od 1d‘ 2nx2d 'Od]'d‘ 2nx2d 'Od]'d‘ 2nx2d

28

Under review as a conference paper at ICLR 2026

We also define V1), V(2 ¢ R7"*d whose first columns are
o _ [W _ [
V(1;2n,1) = {02} J V(1;2n,1) = [02)
and the remaining entries are zeros.

Correctness of the construction. We have defined the matrices Q"), Q®), Q©® underlying

Strassen-attention so that, for any ¢,j,k € [n] we will have (le),ng) + (Qg.?), ,(93)> +

(;3),Q§1)> = BQ(<az,b]> + (bj,ck) + (ck,a;)), and the bottom half of the matrices,
QE:L)H:%)’ Qg?ﬂan)’ Q (n4+1:2n)° will act as a normalizing terms when we compute the softmax.

As before, computing the output of the Strassen-attention works in two steps: for all i € [7],
we first calculate the value of the denominator [XY Z]; ;, where X = [%Q(l)(Q@))T]e, Y =
[%Q@)(Q(B))T]e and Z = [%Q(?’)(Q(l))T]e. The normalizing term will allow us to give similar
upper and lower bounds on this. Next, we will compute the numerator, [X D'*Y D?¢Z Ji.q, for all
¢ € [d], where D' = diag(Vl(}Q)n’ ,) and D% = diag(Vl(é)n ;). Our approach is to show that if there
exists some ¢ € [n] such that for some j, k € [n], we have (al, b;) = Mlogn, (b;,cr) = Mlogn
and (c, a;) = M logn, then we will be able to find such an ¢ using the entry-wise approximation of
one Strassen-attention head. Thus, further improvements to the entry-wise approximation algorithm
would imply an algorithm for solving e-Gap-IPA in time 7 ~*(!) time.

Bounds on the denominator. We analyze the denominator term and give upper
and lower bounds on [XYZ];;. For computing this value, we find the value of

2 kelf] exp(((Q(1 Q(2> +(Q; (2) Qk) (),le)))). We only care about the first

T TOWS of the attentlon matrix as this is where the existence of an IPA will be noticed. For i € [n],
this is equivalent to computing

[XYZ]”: Z 6(<ai»bj>+<bj7Ck>+<ckaai>)32/d+ Z 6(d+0+<ck1ai>)32/d

j,k€[n] j€[n+1:2n],k€[n] ©6)
+ Z o((aisb;)+0+d)B?/d + Z pldt+d+d)B?/d
j€[n],k€[n+1:2n] J,k€[n+1:2n]

Using the gap property that the inner products of any pairs of a;, b;, ¢ are either less than (1 —
€)M logn or exactly equal to M log n, and denoting \ := lsg" where d = 2clogn, from the
previous equation, we get

(XYZ);: > Z e3(1—e)AB? | Z c(1+(1—))) B2
Jj.ke[n] j€[n+1:2n],k€[n]

+ Z e((175)>\+1)32 + Z 6332/2

j€[n],k€[n+1:2n] J,k€[n+1:2n]
> n2e3(175)>\B + 2n2e(1+01— E)A)B2 26332/2 > n26332/2

We also have A < 1/2 since M < c. Now, an upper bound of [XY Z]; ; can also be computed using
(ai,bj), (bj, ck), (ck, ai) < M logn and Equation [6]as,

(XYZ)ii < Y PPy S Bty) R A SV

j,k€[n] JjE[n+1:2n],k€[n] Jj€[n],k€[n+1:2n] j,k€[n+1:2n]
2 _3AB? 2 (14+M\)B? 2 _3B%/2 2 _3B?/2
<n-e + 2n2eIHNEBT | n26387/2 < 9p2e /,

for large enough B when) is constant.

Bounds on the numerator. We analyze bounds on [X DY D*!Z]; ; when a positive certificate
of IPA contains a; versus when it does not.

29

Under review as a conference paper at ICLR 2026

Case 1: IPA present at i. In this case, we have
1) H2) 2) HB3) 3) Wy /7
[XDW'Y D> 7] = Y UQ.Q7) Q. Q) +(Q QY >)/de(,1)sz,1)

2
J.keln]
> @7+ Q@Y. QN (Using values of VD, V@),
Jken]
=3 e((@isbi)+(bjren) +Hena) B/ 5 (3AB® | (2 1)3(1-e)AB® 5 (3AB?
Jke(n]

since we have some j, k € [n] such that {(a;,b;) = (b;, cx) = (ck, a;) = m.
Therefore,
[XDl’lYDQ’lZ]” 63/\32

7
[XYZ]Z’Z = 2n2€3B2/2' ()

Case 2: IPA not present in <. Here, we have all (a;,b;) + (b;,cx) + (ck,a;) < (2M + (1 —
g)M)logn for all j, k since otherwise it will contain a IPA. Therefore,
1 5@ @ H® &) oMy /g
[XDV'Y D> 7= Y Q7.9 +Q Q)+ Q! VvV
S
_ Z Q.7+ Q)+ QM) /.
Jik€[n]
= Z (@) +(bj ex)+(en,a:)) B? /d < Z (BB < n2,(3-)AB?
j,k€[n] j,k€[n]
which implies
[XD1’1YD2’1Z]1'7Z‘ 6(375))\B2

XYZ, = &b ®)

Wrapping up. Let u; be the value of the approximation of the i-th entry of the first row of the
Strassen-attention matrix, i.e.,

[XD1’1YD2’1ZL‘J' <
(XY Z]:. =7

U; —

We will show that u; is a distinguisher between the yes and no instances of IPA; in particular for
appropriate settings of the parameters we will see that the value of u; in Case 1 (the yes case) is
always greater than the value of u; in Case 2 (the no case).

In Case 1, using Equations|/| we have

. [XD1’1YD2’1Z]Z‘_i - 63)\32
u; = - = 3m

XY Z,. 77 op2esBr2 T
and in Case 2, using Equation |8} we have

_ [XDLlYDQ’lZ]Z"i e 6(3—8))\32
’LLZ f - .
XY 2], TS e
Thus it suffices to verify the following inequality:
e(3—€)AB? e3AB?

+7<

o3B7/2 on2e3B?z 1

which is indeed satisfied for ¥ < —hry and e3> n2. Therefore, B> = Q(logn) suffices.

Therefore, we have reduced Gap-IPA to APAC"s) where T = B = Q(y/log n), completing the
proof of the lemma. U

Therefore, if APAC"S) could be solved in O(n*~9%) time, then that would imply that IPA could be

solved in O(n*~*%)) time (Theorem C.8), which in turn would imply Max-2SAT could be solved in
2(</3=2()" time (Lemma|C.7)), which can not be true for an absolute constant § > 0 (Hypothesis [3).

30

Under review as a conference paper at ICLR 2026

D PROOFS OF SECTION[3.2l TREE-ATTENTION

In this section, we prove the first part of Theorem [3.5] by giving an algorithm to exactly compute
the output of tree-attention. The second and third parts are computational complexities of special
subcases of poly-attention, which has been proved in Section

Before giving an algorithm for the exact computation complexity of tree-attention, we show a property
of branchings in the graphical representation. This happens when the underlying polynomial for the
poly-attention is a variable separable polynomial.

Lemma D.1 (Variable separability). If h(z1,...,z;) = f(z1,...,2;) + g(x1,Tip1, ..., x4) for
some i € [t — 1] and some polynomials f,g of minimum possible degrees, i.e., h is variable
separable (Definition , then we have Att(") = AttlH) © Attl9) and also the entrywise-

approximation Att(h) = Att(H) © Att(9). If the (entrywise-approximations of) outputs of poly-
attention, Att'Y) and Att'9), can be computed in time TY (n) and T9(n) respectively, then computing

the (entrywise-approximation of) output of poly-attention for h, Att'"), can be performed in time
O(max{T/(n),T9(n)} + nd).
Proof. Forall j € [n], k € [d], we have,
AttlI) - At9)
1 2 i 2 i
e xp(RF(Q, Qéﬁ,-.wcgﬁh>vg},--vz2
Zl £ GXp(f(Q(l) Qz 73Qg:)))
1 it+1 i+1)
Dt G QUL QU k- Vi

S (9@, QY QM) ©)
252,...,12,, exp (%(f(@(‘l) QZ)""’ %Z))JFQ(QJ(;)’ Z:l)""’Q(t)))) Ve(f) Ve(,t)k
St exp(FQD,QP,....Q0) + 9@V, QDo1))
Y, p(H(Q wainmf>~%%A@2

.....

o exp(Lh(QM, Q... QM)

This implies Att(f) © Att(9) = Att(") and if we obtain entrywise approximations Att(f) and Att(9)

respectively with error v = then Att(f) © Att(9) will be an entrywise approximation of

1
poly(n)’

Att(h) with error vp = O(7y) = as well.

1
poly(n)

Note that the polynomials might not even contain the variable x1, in which case we all the rows of
the output of the corresponding poly-attention matrix will be the same. O

Now, we prove that Att("), where h is a tree polynomial, can be computed in O(n?) time.

Theorem D.2. If h is a tree polynomlal (graphical representation of h is a tree or a forest), then we
can compute Att"™) exactly in O(%) time.

Proof. Algorithm [2] gives a procedure for computing the output of tree-attention given query-key and
value matrices as inputs. Indeed, if there were multiple forests, we could have computed the output
of tree-attention for each of them separately, and composed them together using Lemma [D.T]

Overview. We start with a tree rooted at vy, and compute poly-attention on each of the subtrees
(polynomials corresponding to the subtrees) where the query variableE] is the root of the subtree.
The main idea to compute this is, whenever we have a branching, we compute each of the subtrees
separately, and compose them together using Hadamard product of Lemma[D.1]

3Query variable refers to the variable of the highest priority in the polynomial (priority of monomials and
variables has been defined in Definition [E-T). It is usually the variable x1, and the indices of the corresponding

query-key matrix in the softmax computation correspond to the rows of Att™ (see Equation.

31

Under review as a conference paper at ICLR 2026

Algorithm 2 Algorithm to compute tree attention Att(")

Input: A polynomial h(x1,...,x;) whose graphical representation is a tree, query-key matrices
QW, ..., QW e R™*4 and value matrices V2, ... V() ¢ Rnxd,
Output: Att(") ¢ Rn*d
1: Construct G as the graphical representation of h, with vertices vy, . .., v;.
2: for ¢ € [d] do
Let p be the number of children of v.
for all child node v;, of vq, 4 € [p] do
if v;, is not a leaf then
Let g;(zj,, ") be the polynomial of the subtree rooted at v, .

Compute Attg’nxg)l =) recursively, where v;, is the query variable, by computing

the numerator term and the denominator term separately. Let the numerator term be
Pi(=5;,2) ¢ R™*1 and the denominator term be R(%:(%3:-#") ¢ Rnx1,
8: Define the numerator

w

AN

pleies, +gi(ej,zh) . [Q(l)(Q(J'i))T]EDV(“)P(gi(x_fi,ii))’
and the denominator,

R(wlmj,;"!‘gi(mj,;vx_i)) = [Q(l)(Q(ji))T]elltg(gi(:n“,ﬂﬂ_i))7

where DV = diag(V")) e R,

(1:n,0)
9: Compute
Att(mlz“ +gi(z5,,)) _ Pl +gi(zj;,21)
(1:n.6) RG125,+9i(w5,,20) |
10: else ~
11: Here, g;(xj,,2") = 0 since there is no tree rooted at v;,.
12: Define the numerator

P(J;wj7 — [Q(l)(Q(]z)] V(J1) Py
and the denominator,

R(leji) = [Q(l)(Q(ji))T]elnxl.

13: Compute
(wrm5;) _ Pl
Att(1) = R
14: end if
15: end for
16: For composing the branches together, compute the final numerator

P .— pleiztai(zi2') o o P&z +9p(5p,27))
and the final denominator,
RM .— Rz tai(ei2h) o o R(®i%ip+9p(2jp,7))

where h = z;x;, + g1(zj,,21) + ... + xjxj, + gp(xj,,2P) (by definition).
17: Define

18: end for
19: return A#t("),

32

Under review as a conference paper at ICLR 2026

In Algorithm we fix each of the columns ¢ € [d] (Step 2), and compute Atté?}n ¢)» One ata time.

The computation of proceeds as computing the numerator and the denominator terms separately, from
the graphical representation G* (as in Equation . In this recursive formulation, we employ compute
the values in a DFS fashion, first, we fix the root of the tree given by variable x; (vertex v; in the
graph), having the corresponding query-key matrix Q(1), and proceed to computing the output of the
poly-attention mechanism for its subtree polynomial.

Each branch. Without loss of generality, consider the root variable vy, and for each branch from
v1, consider an edge given by (v1,v;,), i.e., v1—vj,, for i € [p], where p is the number of branches.
When vy, is a leaf, we compute the poly-attention Att*1%3;) and recursively pass it up the tree. The

denominator and numerator of Att(*1%i:) are defined in Step 12 of Algorithm — two vectors in
R™*! which can be computed in O(n?) time and then their ratio is the poly-attention output for this
branch (Step 13).

Next, when v;, is not a leaf, i.e., the tree proceeds as v{—uv;,—, let us assume the polynomial
whose subtree rooted at v;, is given by g;(x;,, :E’) and that we have already computed Att(9:(%i:)
(the numerator and the denominator are separately given to us as Ploi; "ii)), R(9:(@;;,2) g Rnx1
respectively). By x?, we simply denote the subset of variables other than z;, that the subtree consists
of. The output of tree-attention of the subtree rooted at v; is essentially Att(@125,+9i(@;; ’ii)). For this,
the numerator and the denominator can be computed as in Step 8 — both of these computations take
O(n?) time. The final value of Attgffijg’;rgi(x“ 7D s given by Step 9, and we pass the numerator
and denominator vectors up the tree recursively.

Along a branching. For conglomerating the branches, let us say that the children nodes of v
are vj,,...,v;,, where the polynomials corresponding to their subtrees are g (z;,,2%),..., g,

(x,,xP) (x1,...,zP are disjoint subsets of variables which are precisely the ones present in each
of the p subtrees, respectively). We also assume that we have recursively computed the ¢-th

columns of the poly-attention outputs Attgf;%l ’wl)), e, Attgf’é%p’mp)), in terms of the numera-

tors Pr(@ie) - pon(i,.2) and denominators R (@in-e)) R(p (s, .a?)) respectively.
Now, the poly-attention output for the polynomial having the subtree rooted at v;, which is

h(.ﬁl,xﬁ, coy@P) = x4 gy (2, 2t) L mxy, + g, (25, 2P),

is computed in Steps 16-17, and the correctness of this computation follows from Lemma[D.I]

Time complexity. We show a quadratic time-complexity for Algorithm [2| Let us assume that
recursively in a branch, the numerator and the denominator of At¢(9(%i:»%)) can be computed in
O(n?) time (Step 7). From this, extending the output matrix of poly-attention to the current vertex

(Steps 8-9, 12-13, followed by 16-17) each require O(n?) time. The number of these sub-tree
attention computations required is at most the size of the tree, O(s), which is a constant. Therefore,

this gives a DFS-style procedure to compute the Attgif:)n’ 0 in time O(nQ) since the graph is of
constant size, and repeating for all £ € [d], we will be able to find the entire matrix At O

E PROOFS OF SECTION 3.3 COMPUTATIONAL COMPLEXITIES OF
POLY-ATTENTION

Throughout this paper, we will compute the numerator and the denominator in Equation [I] separately,
where the numerator termis 3, c,,) €XP (éh(@gi), ceey Qg?)) Ve(f) © VE(SS) ©...0 Ve(:)’ and
the denominator term is Zéz,...,&e[n] exp (éh(Qg), cl ng)>)'

We also define a monomial ordering, which will help us proceed with the proofs of these theorems.

Definition E.1 (Monomial ordering). A monomial m; is said to be higher preference than another
monomial my if either of the following holds:

33

Under review as a conference paper at ICLR 2026

* deg(mq) > deg(mz), or

o deg(mq) = deg(msz) and my comes lexicographically before ms, i.e., if i is the smallest
index such that x; is present in exactly one of the monomials, then the monomial in which x;
is present has higher preference.

We will order the monomials of h according to this order, and m; will denote the i-th monomial.
Note that this definition can also be used with variables, where a variable x; has a higher preference
than z; if and only if ¢ < j.

The polynomial method |Alman & Song| (2023}, [2024;|2025)) can again be applied to poly-attention, by
reducing APAC™ to the computation the output of a larger ¢-tensor attention, where the query-key
vectors in tensor attention are of dimension n x (sd). However, the bound on the variables in this

case of computing poly-attention will be o((logn)'/*) in contrast to that of tensor attention being
o((logn)'/*) Alman & Song| (2024).

For proving Theorem [3.6] we show the two parts, upper and lower bounds, separately. For upper
bounds, we give a polynomial method algorithm if the entries of the query-key matrices are bounded
(Theorem [E.2)), and if the entries are large, we give hardness results for entry-wise approximation
conditioned on fine-grained complexity conjectures (Theorem [E.3)).

Theorem E.2 (Polynomial method on poly-attention). Given an attention polynomial h(z1, . ..,)
of degree k having s monomials, where t,k,s are constants, there is an algorithm that
solves APAC") (n,d = O(logn),T = o((logn)*),y = 1poly(n)) with query-key matrices
QW, ..., QW ¢ [-T,T1"*4, and value matrices V? ..., V® € R"*4 in time O(n*+to),
Theorem E.3 (Lower bound for poly-attention). Given an attention polynomial h(z1, . ..,x:) of
degree k having s monomials, where t, k, s are constants, we are interested in computing an entry-
wise y-approximation Att"") having query-key matrices Q... QW € [-T',T'"*%, and value
matrices V) ... V1) ¢ R"*? for d = O(logn),y = 1/poly(n). Then, depending on the structure
of h,

1. If k > 2, then assuming SETH (Hyf)otheszsl) an entry-wise approximation of Att™") can
not be computed in time O(n*~W)) when T = Q((logn)/*).

2. If h contains an elementary symmetric polynomial ([tlg]) for some tg < t, then assuming the
Max-k SAT conjecture (Hypothesis , an entry-wise approximation of Att™) can not be
computed in time O(n =1 when T = Q((logn)*/*).

3.1 k = 2 and h is not a tree polynomial, then assuming the Max- ZSATconjecture (H(v othesis
, an entry-wise approximation of Att") can not be computed in time O(n) when

F Q((logn)'/?).

E.1 POLYNOMIAL METHOD FOR POLY-ATTENTION

In this section, we prove Theorem [E.2l We start with the polynomial h as defined in Theorem
[E.2] and reduce the problem of computing an entry-wise approximation of Att(") € R"*? to that
of Att™ e R"*(d) by constructing query-key matrices K1), ... K ¢ R"*(sd) and value
matrices WM .. W(t) € R"*(sd) gych that the row-softmax matrix of

1w (E®oK®o.. .0 K“))T
d K

is same as the softmax matrix of Att("), and Att(") is exactly equal to Attgzl) Using these inputs,

and the remaining entries of Att(") are zeros.

Defining K). We define K9) € R"*(s9 forall j € [t], by dividing the columns into s blocks,
each having d columns. These blocks are defined as, for j € [t]:

» the i-th block, for i € [s], contains the matrix Q) if the i-th monomial of / contains the
variable x;,

34

Under review as a conference paper at ICLR 2026

* otherwise, the i-th block, for ¢ € [s], contains the all ones matrix 1, x 4.

Roughly, the query-key matrices can be seen as:
d

d — d
r ! (4) G !
1 ... 1 Q) .. @y 1 ... 1
K9 =|: o o :
1 ... 1 () @ 1 ... 1
\ , Qn,l te Qn,d N ,
; notin my w; is Vin ma ; notin ms

4 nx(sd)

Using these definitions, it can be verified that for this choice of K @) ’s, we have

(1) 7-(2))y _ (1) (2) (t)
(Kp W Ky Ky) = Z<K€1,(z‘—1)d+1:id’Kb,(i—l)d—i—l:id’"'7K€,,,(i—1)d+1:id> (10)
i€[s]
= Y@, (11
i€(s] ’

where the monomials of / are defined as before (Definition 2.2).

Defining W), The value matrices for the ¢-tensor attention operation will be the same as that of
poly-attention. In order to match the embedding dimensions of the query-key matrices and the value
matrices of the ¢-tensor attention operation (as was used in|/Alman & Song|(2024)), we can simply
consider the new n x (sd) dimensional value matrices, W)’s to contain the corresponding n x d
dimensional value matrices V) in the first d-columns, and all the remaining entries of W) contain
zero. More specifically,

W(i):[V(j) Opxa .- Onxd}nx(“"d)- "

Now, in Equation [I] note that the poly-attention output can be written as
D'AW®@ o . ow®,

where A € R ™" is defined as
1
A=[=KWVEKEP .. .0 K®)T)e
LEOESD oo KO,

and D is the n X n diagonal matrix

1
D = diag [EK“)(K(Q) O...0 KNP 1,0 0...0 1

(t — 1) times

This is precisely the form of a ¢-tensor attention mechanism. Next, in order to use the polynomial
method on this matrix, we need the entries to be bounded.

Lemma E.4 (Bounded entries). Given QU) e [T, T)"*? and h defined as above, we have

1 .
e—sr" < exp (Eh(Qg), ey g?)) < esF"7
for all ty,....0, € [n. For T = o(i(log n)Y*) = o((logn)'/*), the entries
exp (éh(Qg), ce 2))) are sub-polynomial in n.

Proof. Since h is a degree k polynomial with constant coefficients, for each monomial m; of h,
émi(Qéi), e 2)) in in the range of [-T'*, T'*]. There are s monomials and the total value is
bounded inside the interval [—sT'*, sT'¥], which gives the required result after exponentiation. ~ []

35

Under review as a conference paper at ICLR 2026

For completing the algorithm, we use results which follow from the proofs in (Alman & Song| 2024,
Apx. E).

Theorem E.5 (Alman & Song| (2024)). Given matrices KV, ... | Kt ¢ [T, T)"*4 and value

matrices W) ... WU € R" 4 e can compute an entry-wise ~y-approximation, for ~y = /poly(n),
of the following:

1. A matrix Att € R™*% which is the entry-wise y-approximation of the numerator matrix of
tensor attention output

Att = %K(”(K@) 0...0 KTl w®@ o, . ow®,
that is, for all i € [n],j € [d],
|Att1‘_’j — Atti,j| <.

2. A diagonal matrix D e R™ ™ which is an entry-wise approximation of the diagonal matrix
D € R™™™ given by

1
D = diag ([gK(l)(K(z) 0...0KNT*1,,,0...0 1nx1> ,

that is, for all i € [n),
|D; i — Dy | <.
Here, when the condition max {%’ A} = o(logn) is/m\et (tvhere A=[EKD(E®P ¢
.. @ K)T||), the time complexity for finding the matrices Att, D, and hence an entry-wise
2v-approximation of D~ Att, is n+o(1),

Using Lemma the value of A in Theoremis O(T'%), and for the choice of I' = o((logn)*),
the quantity max {%, A} is indeed o(logn), which gives our required almost-linear
complexity for computing Att(").

Summing up, the algorithm for computing entry-wise approximation of Att(") is given as the
following algorithm.

Algorithm 3 Algorithm to compute an entry-wise approximation of Att(")

Input: An attention polynomial h(zq,...,x) of degree k, matrices
QW,....QW V@ . v® gRrxd = _L

Output: Entry-wise y-approximation Att(h) € R"*4 of Att(") ¢ R4,
1: Using QM ..., Q® and h, compute K1) ... K ¢ R"*(sd) (Equation . > O(nd) time.

poly(n)

2: Compute WP, ..., W® ¢ R™6d) from V), ... V) (Equation[12). > O(nd) time.
3: Compute entry-wise y-approximation Att € R"* () of
1
Att = [gK(l)(K(Q) 0...0 KTew@ o . .ow®,

using Theorem [E.2} Step 1. > O(n' o) time.
4: Compute entry-wise ~y-approximation D € R™*" of

1
D = diag ([gK(l)(K(z) 0...0KNT 1, 0...0 1“1) ,

which is a diagonal matrix, using Theorem Step 2. > O(n*+°(Md) time.
5: Return D™t Att (1., 1.q)- > O(nd) time.
This proves Theorem [E.2

36

Under review as a conference paper at ICLR 2026

E.2 TIME LOWER BOUNDS FOR POLY-ATTENTION

We complete the main complexity result of this paper, either we can compute an entry-wise ap-
proximation of poly-attention in near-linear time, when the entries of the query-key matrices are
bounded; or we require at least superquadratic time, unless the polynomial for poly-attention is a tree
polynomial.

Our proofs for showing the hardness of entry-wise approximation of Att(") consists of two reductions:
(1) first we reduce from each of kIP, HypergraphlP, and IPA (which have popularly known hardness
conjectures of SETH, Max-2SAT, Max-kSAT respectively) to n°(!) instances of their respective gap
versions, and (2) secondly, we reduce each of those gap versions to an entry-wise approximation of
poly-attention. These subcases and the starting complexity assumptions will be based on the structure
of h provided, as categorized in Theorem |E.3

For proving Step 1, when we prove the first case, we get hard instances of e-Gap-kIP assuming
SETH (Theorem . For the second case, we assume Max-kSAT is true, reduce Max-kSAT using
a known reduction (Lemma to n°() instances of HypergraphlP, and further reduce each of
those instances to n°(!) instances of e-Gap-HypergraphlP (Corollary [E.12)). For the third case,
we start with Max-2SAT and reduce that to n°(") instances of IPA (Lemma , and then to n°1)
instances of e-Gap-IPA (Theorem [C.8).

We complete the reductions for Step 2 in each of the following subsections.

E.2.1 TIME LOWER BOUNDS BASED ON DEGREE OF POLYNOMIAL USING SETH

In this section, we prove the first part of Theorem We first start with an instance of kIP, which is
SETH-hard, reduce it to e-Gap-kIP (Definition [E.6) using some previous works |[Rubinstein| (2018));
Alman & Song| (2024), and then using the instances of e-Gap-kIP, create query-key matrices for
Att(") such that an entry-wise y-approximation of Att(") would solve the instance of e-Gap-kIP.

Definition E.6 (c-Gap-kIP). For every e € (0, 1) and positive integers k > 2, given sets of vectors

AL AR C {0, 1} with |AY| = ... = |A¥| = n, a target inner product m € {0, ..., d}, and the
promise that for any a; € A', ... a; € AF,

o cither {ay,...,ax) =m,

e or {ay,...,ar) < (1 —¢e)m,
the problem of e-Gap-kIP,, , is to decide if there exist vectors a; € Al .. ap € A¥ such that
(ay,...,ar) = m.

Using Rubinstein| (2018)-like techniques, conditional hardness of e-Gap-kIP can be obtained.
Theorem E.7 (Alman & Song| (2024); Rubinstein| (2018)). For every § > 0 and every constant

€ (0,1), there exists a constant ¢ > 0, such that e-Gap-kIP,, .., , for any target inner product
m € {0,...,clogn}, cannot be solved in time O(n'=*), unless SETH is false.

Due to this result, we start with an instance of e-Gap-kIP and reduce that to an entry-wise approxi-
mation of Att(™. If the entry-wise approximation of Att™™ can be computed in n(!=9* time for a
constant § > 0, then e-Gap-kIP can be solved in O(n(1~%)*) time, which would refute SETH.

Lemma E.8 (s-Gap-kIP to APAC™). For every constant € > 0, every 6 € (0,0.01), every
¢, M > 0, given an attention polynomial h(x1, . ..,x) of degree k > 2 having s monomials, where
t,k,s are constants, there exist constants C, > 0 and Cy, > 0 such that ifAPAC(h)(2n, (s +
Declogn,T' = Cy(logn)/*, v = n=Ca) (Deﬁnition with query-key matrices QY ... Q" e
[T, T2nx(stheloen and value matrices V). .., V) ¢ R2x(sthelogn can pe solved in time
O(nF=2), then e-Gap-kIP,, .\.g , (Definition with target inner product m = M logn can also
be solved in O(n*~%) time for any constant M.

Proof. Let us start with an instance of e-Gap-kIP

vectors AL, ... A* C {0,1}4, consisting of n vectors each. The vectors are {a}, ..., a%} := A’ and

n.d—clog n that we want to solve, with & sets of

37

Under review as a conference paper at ICLR 2026

the target inner product is m = M log n, for a constant M, with the promise of the gap condition for
an approximation factor . We also assume that there does not exist an all one’s vector in A* for each
1 € [k], as that would violate the gap-property (as m needs to be smaller than d for hardness).

Using this instance of deciding e-Gap-kIP, we reduce it to computing an entry-wise approximation of
Att(’i), with query-key matrices QY ..., Q® & [T, I']"*¢, and value matrices V?, ... V(") ¢
R™"*4 for i = 2n,d = (s + 1)d = (s + 1)clogn, and a T that we will choose later.

Let us assume that the highest preference monomial of /&, a monomial of degree k, is given by
Ty, ... Zr,, where 71 has the index of the highest preference that may or may not be 1.

We will construct the query-key matrices such that each matrix Q("3) will contain vectors from A7
for j < k, zeros otherwise. Having the monomials ordered according to descending order of the
monomial ordering (Definition , each of these Q("7)’s will consist of blocks of columns which
correspond to monomials— the i-th column block, containing d columns from (i — 1)d + 1 to i.d, for
i € [s], will correspond to the monomial m;, and the last column block will be a normalizing block.
The idea of the reduction is that only the degree k term x,, ... x,, of h will contribute to computing
the final inner product, the terms which are subsets of this degree &k term will cancel each other out,
and all the other terms will be zero, thereby not contributing anything to h(QE), QZ), e Qg)).
More specifically, we want,

hQY,..Q) =Ma},...af),

for ¢, ,..., 4., € [n], and some scaling factor A which we will see later.

Construction of matrices. Let us now define each block of Q) j € [t], which will have 2n rows
and (s + 1)d columns. We will define them by defining each of the column-blocks using a scaling
factor B = w(1). Considering the set T' = {r, ..., 7}, we define:

1. For QU)’s, if j & T', we just make the entire matrix zero Oz, (s+1)d-

2. We now fix j € [k] and define Q"9) (i.e., some value of r; € T'). We define first column
block of Q"4 as:

(rj) a’l
(1:2n,1:d) 0,

- 2nxd

For column blocks ¢ € [s], if the monomial m; does not divide z., ...z, , we just make
that block all zeros

(r5) _
Q(I:Qn,(ifl)dJrl:i.d) = O2nx4-

3. If monomial i € [s] does indeed divide ., ... 2., , consider j; as the index of the highest
preference variable present in m; = ., ... Ty, ,forji, ... j, € [k], ki < k. Let s; be

the negation of the integer which is the number of occurrences of this monomial m; along
with coefficients, in each of the monomials ordered higher than 7 and that divides x,, ...z,
(these are the only non-zero monomials).

More specifically, s; is the sum defined by adding:

e —1 from the monomial m.

e —sy whenever 1 < ¢ < 4, the monomial m, divides m1, the monomial m; divides my,
and the highest preference variable of m, is also present in m,;.

38

Under review as a conference paper at ICLR 2026

e —1 whenever 1 < ¢ < i, the monomial m, divides m and m; divides my, but the
highest preference variable of m, is not present in m;.

* 01in all other cases.
If z,.,; is not present in monomial 7, we simply set
(r5) —
Q(l?zn,(iq)dﬂzi.d) = O2nxd,

otherwise:

(rjy) S-c.ljl
Q12 (i— aa) =B [Tgm ;
(1:2n,(i—1)d+1:i.d) 0,

L 0 15,04

where x,, is the highest preference variable in m;, and

(rj) _ al
Qiian (i—1yat+1:0.0) = B | 3" J

-Od- 2nxd
for all other j’s such that ., is present in monomial 3.

4. The last column block for Q(“) is the all ones matrix 1,, x4 with a scaling factor, i.e.,

(r1) _
Q(1:12n,s‘d+1:(s+1)d) =B 1271><d7

and for j € [2 : k], it is the matrix

Q(T‘J) _ |:On><d:|
1:2n,s.d+1:(s+1)d) — .
((s+1)d) loxdly, g
Roughly, the query-key matrices can be seen as:
- d d -
d — d
™ —/ 1 —/
al Od S3 al 1d
1 e
Q) =B Oy, : 83 -Gy o
04 04 ’
0, 04 0, 1q
~—~
v mo does not divide m 1 LY
Lz, notinmy mg divides m

“ nx((s+1)d)

39

Under review as a conference paper at ICLR 2026

and for all other j € [2 : k],

d d d
— d [— —
j m J 0
ap Od 83 - ay d
J : .l
Q) —p| : ssoan o 0d
Od Od 1d
. O . °
Od \f/ Od 1d
~ mo does not divide m 1 Y
| ©r, nOtinmg mg divides mq

4 nx((s+1)d)
For the value matrices V(1) ¢ R(2n)x(s+1)d j € T\{1}, we define the first column as,
() L,
Viiany = {OZ} ’
and for j € [2 : ¢{]\T, we define the first column as,
() L,
Vv(1]2n 1) — |:1£:| :
All the other columns are completely zero 02,

Correctness of construction. We now show that for ¢1,...,¢; € [n], h (Q(l) Qg), . QZ)) =

B"’(a% . ,azk). By definition, m; = ,,...2,, and it is easy to note that

ml(Q(l), ce Q(t)) B*(a} RERE ,ak). For all the other degree k terms, the inner products
. .

from their corresponding blocks are all zeros as we had defined Q) as all zeros matrix for all j & 7.

We want to show that for all other i’s, mi(Qg),...,QZ)) = 0. When we compute
mZ(Q/i e y)), the i-th column blocks for i < 4 have some contributions to the inner
product m; if and only if m; divides m; (otherwise mi(Q(l) Goydi1sa .,Qéi)(l V) 1.d))
is zero), and no i has a contribution for i > 4 due to the correctness of the mono-
mial ordering. Now, from the choice of s; as above, it follows that m,((1), .. .,Q(t)) =

(1) (t) _
Z (Qi J(i—1)d+1:5.d> """ Qet,(i—l)dﬂzi.d) o

For bounding the values of s;’s, we use induction to prove |s;| < s'. The base case is obviously
true. For the induction step, assuming |s;| < s*, for the (¢ + 1)-th monomial, s;;1 needs to cancel
the contribution to the inner product corresponding to m;41 from each monomial m; which is

divisible by m; 1. The contribution is at most |s;| < s* (from the induction hypothesis), and hence
[sit1] < 225 i 1531 < 205 e 8¢ < d-8" < s'T1. Therefore, we have |s;| < s°, which
implies I = O(s° B), and from the definitions, we obviously have I' > B as well. Since, s = O(1),
we have I' = ©(B).

Further, these query-key and value matrices can be computed in O(n!T°(1)) time.
Approximation yields gap property. We assume an entry-wise approximation of the self-attention

matrix, and the goal is to compute two values, the numerator and the denominator, for computing the
softmax. The numerator, for ¢ € [2n], is given by

Pie S ow(M@al) o o)
la,....L €[2n]
and the denominator by

Ro= 3 ew(Gh@.Q0)).

La,...,0¢€[2n]

40

Under review as a conference paper at ICLR 2026

The ¢;-th row of the Att(") will be , and we want to find an entry-wise approximation. Since

in our choice of the value matrices, the first coordinate of Pgl is the only non-zero one, and its
summation is only upto the top half of the value matrices, ¢; € [n], for j € [2 : k]. The only non-zero
part of the numerator, that we care about, is therefore given by

Py= > exp((Q&i%@é?,...,@“)))-

Li€n] : i€T
L;€[2n] : 5&T

If we have an entry-wise y-approximation of Att("), let x¢, -th be the approximation for the ({1, 1)
entry of Att("). By definition, we have

Py,
— <. 13
|:CZ1 Rél ‘ Y (13)
Bounds on denominator. Consider the summation) ex ((Q(l) Q(Q) Q(t)))
. lg,. 0r€[2n) OXP ey .
Define) as the factor such that when only the rq, ..., 7k coordlnates are B.1, and the remaining are
Z€eros, 1.€.,
h(04,B.1g,...,B.14,0q4,...,04) = \dB".
——————
k

It is easy to see that A = 1 + o(1), since the evaluation of h at these values will give a B* from the
first monomial, and the other s — 1 monomials will give at most (s — 1) B*~! = o(B¥).

For the choice of Q(j)’s, we have

Ry, > > exp(hQPD.QP,....QM)
li€[n+1:2n] : i€T
L;€(2n] : jET

> Z exp(AdB* /d) = nt_le(Bkﬁ),
La,....k+E€[n:2n]

since all the Q) K?) s, for j € [k], have the zeros in the last column-block and 14 along with the scaling

factor B, which makes all the monomials of A give inner product d B*.

For the upper bound on R, , we have to use the maximum possible value of h(Q(l) QZ), RN QE?),
irrespective of whether ¢;’s are in [n] or [n + 1 : 2n]. Let us consider a choice of lo, ..., ¢; € [2n].
If all the £,..’s, for j € T'\{1}, are in [n + 1 : 2n], then the value of h(Q(l) Qg), e QZ)) obtained
will be be A\dB*. Otherwise, there are some (but not all) ¢;’s in [n] for j € [2 : k], where the
monomial of degree < k containing only those variables will be at most s°dB*~1, and the maximum

value will be obtained from the first term, which can be at most B*(a} REREE af)= (d—1)B*.
- -
Thus, in this case, the maximum value of h(Q(l) Q(2) . Z)) would be (d — 1+ o(1)) B* which
is still less than AdB*.
Therefore,
1 1) A2 t
Rél = Z €xXp <§h(Q21)aQ§2)aaQét)))
62,.“,€t€[2n}
k: o
< Z €xp (Ad~B > — ot Ipt=1e(B 53,
L,...,L1€[2n] d
Therefore,
nt=1e(B*531) < Ry, < 2t~ Int1e(B" 1), (14)

41

Under review as a conference paper at ICLR 2026

Bounds on numerator. Now, we will show that if a vector tuple exists with the proper target inner
product (a positive certificate for y-Gap-kIP), then Py, is so large that z, (Equation is larger
than a fixed threshold. Here, we first show a lower bound on P, . Otherwise, we will show that x¢, is
small since every inner product will be scaled down by a gap due to the approximation promise.

Consider £1 € [n] when there exists £2 , ..., 2 € [n] such that the inner product (a}, ,...,a},) =
T TR

M logn (it is quite possible that 7; = 1, in which case we will only consider ¢; = £9). Then, we
have

1
L;€[n] : i€T
L;€2n] : jET

1
> Y ew(Gr@.e o)
0;=£9 : i€T
L;€[2n] : jET

1
= (2n)t_k_1exp <:Bk<a}9 ,azq ,...,azq >>
d I ro Tt

M
= (2 t—k—1 (Bk)
(2n) P\ B i)
where the second equality follows from the construction of the Q/)’s. Using the upper bound of Ry,
in Equation[T4] we get,

P, _ (2n)—h1e(P o) (B ())

Ry, (gn)t—le(B’“siﬁ) B (2n)k-1

Using x4, > %l — v (Equation , we get
1

e(“(%*%)/(sﬂ))

D -7 (15)

Ty, >

Now, for finding an upper bound on z,, when an exact inner product tuple does not exist, we use

1 ,
&E[n] €T
¢;€2n] : jE(T]

. 1_,
= (2n>t—k—1 Z exp <§Bk <aér1 , a?w Y ,azk >> ,
l;€[n] : i€T

using the construction of Q("3)’s. Now, using the gap property of inner products in our instance of
e-Gap-kIP, we have

X 1
Py, = (2n)tF 1 Z exp <53k<a%1 , a%z, cey algk>>
L;€[n] : i€T

Bk
< (2n)t=k—1 Z exp (J(l - s)Mlogn)
€T

L;En] : i

k
— Py, < 2t~k 1pt=1o(0-9)B" i)

Finally, using the lower bound of R, (Equation[I4), we get

Py, gt—k—1pt-1,((1-2)B" 3157) _ 2t7k716(3k(7(175)M7>‘)/(s+1))
Ry, nt—1e(B* 1) ’
and the bound on x,, from Equation [T3]implies,
P k(Q=)M Y,
Ty, < Ril +7< gkt (P ()) + 7. (16)
1

42

Under review as a conference paper at ICLR 2026

Wrapping up. In order to differentiate between the cases, we must have the lower bound of xy,
when a positive instance for e-Gap-kIP tuple exists, Equation must be greater than the upper
bound when such an instance does not exist, Equation [I6}

1 2t—k—1 1

+ < :
(P) (PO) T (gt o(P)

Vs

which is true for the choice of v < n~C and B > Cj(logn)/*, for large enough constants

C,,Cy > 0. This would make e(?) large enough and -y small enough, such that the inequality
will be valid.

Now, since s is constant, the maximum absolute value of the entries of the query-key matrices are
Q(B) = Q((logn)'/*), which proves our result. Therefore, if we can find an algorithm for finding an

entry-wise y-approximation of Att(" for APAC"") with these parameters, that runs in time n#=(1),
then SETH will be refuted (Theorem[E.7). O

E.2.2 TIME LOWER BOUNDS BASED ON SUBSTRUCTURE OF POLYNOMIAL USING MAX-ESAT
CONJECTURE

In the second part of Theorem [E.3] we prove a stronger lower bound when the monomials of
h contains an elementary symmetric polynomial of degree k in ¢y variables where k < tg < t.
The underlying conjecture for this lower bound is the Max-kSAT. We first start with a problem
called HypergraphlP (Definition [E.9), which is at least as hard as Max-kSAT, show that its gap
version, e-Gap-HypergraphlP (Definition [E.11), is also at least as hard as HypergraphlP using
Rubinstein| (2018); |Abboud & Ron-Zewil (2025), and finally show that computing an entry-wise
~-approximation of Att(") efficiently would solve e-Gap-HypergraphlP faster, thereby refuting
Max-kSAT conjecture.

Definition E.9 (HypergraphlP?’kd). For positive integers t, k, given t sets of vectors A*, ... Al €

{0,1} with |AY| = ... = |A!| = n, and target inner products my, . .. Sy, the problem
HypergraphlP?’,f is to decide if there exist vectors a; € A',... a; € A® such that for all sub-
sets S € ([,i]), we have <a5[1], ceey as[k]> = mg, where mg is the target inner product corresponding

to the given k-sized subset among the (,i) choices.

We will drop n, d from the superscript and not include the target inner products as the parameters to
make the problem definitions less cambersome. This problem again has a hardness result, as follows.

Lemma E.10 ((Alman & Vassilevska Williams, 2020, Theorem 23)). Assuming the Max-kSAT
conjecture (Hypothesis [2), for every & > 0 and every positive integer t, k, there exists a constant

¢ > 0 and target inner products my, . . ., mey € {0,...,d} such that HypergraphlP?}flog"

: cannot
be solved in time O(n(1=9t),

We can again reduce HypergraphlP to its gap version Gap-HypergraphlP to show that this problem
is hard as well.

Definition E.11 (E-Gap-HypergraphIPZ}?). For every € € (0, 1) and positive integers t, k, given
t sets of vectors A*,... At € {0,1}? with |A'| = ... = |At| = n, and target inner product
m € {0,...,d}, along with the promise that for every a; € A, ... a; € At and VS € ([,i]),

e either, (aspy, -, asx) =m,
> or (asp, - - asp) < (1—e)m,

the problem E-Gap-HypergraphlP;i’,c‘l is to decide if there exist vectors a; € A, ... a; € A! such
that V'S € ([}?), we have (ag|), - .. ,as[k) = M.

Again, similar to Gap-IPA, for Gap-HypergraphlP, we consider the target inner products to be the
same for all the subsets of inner products, since the Rubinstein|(2018))-like reduction accommodates

43

Under review as a conference paper at ICLR 2026

this, and we need this condition for reducing Gap-HypergraphlP to entry-wise approximation of
At

The hardness of -Gap-HypergraphlP follows from a proof very similar to Theorem|[C.8] given by
the following corollary.

Corollary E.12. For positive integers t, k with k > 3, and every 0 > 0, assuming the Max-kSAT
conjecture, there exists a constant ¢ and target inner product m € {0,...,clogn}, the problem

E-Gap-HypergraphlPZ’,flog " cannot be solved in time O(n1=%)t),

Proof. We can again use the reductions of Lemma We start with an instance of Hypergra phIPZ’kd
having sets of vectors A, ..., A" C {0, 1}d containing n vectors each, and reduce that to n°W in-
stances of E—Gap-HypergraphlPZ}cd having sets of vectors B!, ..., B¥ C {0,1}¢ for d = ©(logn),
where each B® contains n vectors.

The proof goes as— for each k-tuple (j1,...,jk) € ([,i]), we reduce A7, ..., A%, an instance of
kIP, to n°1) instances of e-Gap-kIP of dimension dy (using methods of |Alman & Song|(2024);
Rubinstein|(2018);|/Abboud & Ron-Zewi|(2025)). Then, we combine each of the e-Gap-kIP instances
forall (ji, ..., jx) € (1)) by creating (%) column blocks, each of dimension do, as done in the proof
of Theorem where the block corresponding to (ji, . . ., jx) will contain vectors obtained from
the above reduction, and the rest will be zero. The hardness result also holds true when the target
inner product for every subset of B!, ..., B¥ are equal. O

Now, to show hardness of computing an entry-wise y-approximation of Att(") where h satisfies the
conditions of Part 2 of Theorem we reduce e-Gap-HypergraphlP, . (which we know is at

least as hard as Max-kSAT), to an entry-wise approximation of Att("). Armed with Corollary [E.12

we are now ready to prove the following lemma which completes the second part of Theorem [E.3|

Lemma E.13 (e-Gap-HypergraphlP to APAC™). For every constant ¢ > 0, every § €
(0,0.01), every ¢, M > 0, given an attention polynomial h(x1,...,x:) of degree k > 3 hav-
ing s monomials, such that the set of monomials of h contains as a subset all the monomi-
als of the elementary symmetric polynomial in ty < t variables of degree k, where t,k,s,tg

are constants, there exist constants C, > 0 and C, > 0 such that if APAC™ (2n, (s +
Declogn,T = Cy(logn)/*, v = n=Ca) (Deﬁnition@ with query-key matrices QY ... Q") e
[T, T)2nx(stelogn and value matrices V), ..., V) ¢ R2x(sthelogn can pe solved in
time O(nt=%), then s-Gap-Hypergraphngf,Jog" (Definition m) with target inner product
m = M logn can also be solved in O(n'°~%) time for any constant M.

Proof. First, we consider that the subset of the monomials of h, which constitute a symmetric
polynomial in ¢, variables of degree k, is given by the set of subset of variables =, ..., zy, . Letus

denote T := {ry,...,7 } C [t].

Let us start instance of E—Gap-HypergraphIPZ)’i:C o8 with ¢, sets of vectors be A!,... Ao C

{0,1}%, having n vectors each, and the target inner product being m = M log n with a promise of
gap given with a constant approximation factor of . More specifically, we want to check if there

exists £y, ..., Lr, € [n] such that for all (ji, ..., k) € (1), we have (ag1 e a;:k> =m,ie.,

. . tO
Y it) = ()=
J1 Ik
g1edk€(1Q))

where mg = M log n. We also have the promise that for every other tuple £;.,, ..., (., € [n] where
HypergraphlP, , property is not satisfied,

Z <a2a‘1 e 7a%fjk> < ((2)) - 1> m+ (1 —e)m =: (1 — g)mo,

PR (0}

for another constant g = €/(0).

44

Under review as a conference paper at ICLR 2026

Constructing the matrices. Now, we define the matrices Q(j) ’s, such that
(1))y _ J J
h(le) Qét) - A Z <aéijl A aagfjk >,
g1,eedn € (100

for a scaling factor A, in a construction quite similar to the proof of Lemma [E-8] The query-key
matrices will be QU ..., Q® € [T, T']"*4, for o = 2n,d = (s + 1)d, defined as follows using a
scaling value B = w(1) which we will choose later:

1. For QU)s, if j & T, we just make the entire matrix zero 0y, » (s41)d-

2. For some i € [s], if m; is equal to some @, ... 2., forji,...,jx € ([tlg]), we define that
block as:

(7‘]’) a’jl’.
Q112 (i— qa) = B |7)
(1:2n,(i—1)d+1:i.d) 0,

- 2nxd
for all £ € [k], and

) 3
Q({:Zn,(i—l)d—‘—l:i.d) - 02n><d7
for all other j € [t]\{rj,,...,7j.}.

3. However, if for ¢ € [s], monomial 7 has degree < k — 1, let this be equal to Tpj oo Ty s

where j1, ..., jk; € [to], ki < k is the degree (note that if the variables are anything outside
T, we have defined the corresponding query-key matrices to be zeros anyway). Let s; be the
integer which is the negation of the number of occurrences of this monomials in each of the
monomials ordered higher preference than .

As before, s; is the sum defined by adding:

» —1 whenever ¢ < i and my is of degree k.

e —sy whenever ¢ < 14, the monomial my is of degree < k, m; divides my, and the
highest preference variable of m, is also present in m;.

e —1 whenever ¢ < i, the monomial my is of degree < k and m; divides m,, but the
highest preference variable of my is also present in m;.

¢ (in all other cases.

If z,.; is not present in monomial 4, we just set

(r3) o
Q(12m,(i—1)d+1:0.d) = O2nxds

otherwise:
sial’

;a3

(r51) _ Si(.le
Q(lgn,(i—l)d+1:i.d) =B Od”)

04

L Od 4 2nxd

45

Under review as a conference paper at ICLR 2026

where ., is the highest preference variable of m;, and

(rj) _ J
Q(rlan,(i—1yat1.a) = B | &

- 2nxd

for all other j’s such that ., is present in monomial 3.
4. The last column block for Q(“) is the all ones matrix 1,, x4 with a scaling factor, i.e.,
(r1) —
Q(l:l2n,s.d+1:(s+1)d) = B - 1lanxd,
and for j € {2,...,t0}, it is the all zeros matrix

Onxd

Q(Tj) =
(1:2n,s.d+1:(s+1)d) — 1n><d 2 ><d.

For the value matrices V(9 ¢ R(2n)x(s+1)d j € T\{1}, we define the first column as,

G [
V(1J:2n,1) {Oﬂ)
and for j € [2 : t]\T', we define the first column as,
G o[
‘/(1]:27171) Lﬂ ’

with every other columns 0.

Correctness of construction. Again, similar to the proof of Lemma[E.8 we can prove that this
construction does indeed give

MQY,....Q"y =B Y (a) ,....a)),
j17...,j7~€SIO
and the entries of the query-key matrices are in [-T',T'] for B < T' < O(s*B).

Also, these query-key and value matrices can be computed in O(n'*t°(1)) time.

Approximation yields gap property. As before, let us assume there exists an entry-wise approxi-
mation 2, of the (¢1, 1)-th element of Att(") such that

P,
<
7 | <,

0y

|:L'Z1 -

where

1
Po= Y ew(Sn@ef).
L;€[n] : €T
t;€(2n] : jET

1
Rh = Z €Xp (é‘h(QZ)7 Q§z)7 R Qg?)))

62,...7&6[271]

and the (¢, 1)-th element of Att(") is ;—il.

1

46

Under review as a conference paper at ICLR 2026

Bounds on Py, , I?,. Similar to before, we can prove
ABF ABF
nt—le((s+1)) < R€1 < 2t—1nt—1e((s+1))7

where A = 1 + o(1). For the numerator, we can show that when a positive certificate of
e-Gap-HypergraphlP does exist (if 71 # 1, then this holds for all ¢;’s, otherwise, there will
be a fixed /1 such that a}l is included in the positive certificate),

Py, > (2n)t~hte(B i),

which implies
(P*(M03) 1)

(2n)k—1

e

Ty, v > — . a7

(5
> _—
Ry,
Otherwise, if no positive certificate of e-Gap-HypergraphlP exists when r; # 1, or when r; = 1,
the positive certificate, if exists, does not contain the vector a%l, then

_ k__Mg
Py, < 2t-k1pt=1o((0-<0)B" o)

b)
and therefore,
Py,

Qo

2o, < (Bk<%—*)/<s+l>)
1

+v<e + . (18)

Wrapping up. In order to maintain a gap between the cases of an HypergraphlP existing, we
require the lower bound (Equation[T8) must be less than the upper bound (Equation

1 2t—k—1 1

v <
e(aoBk%) e(Bk(A—iﬂO)/(erl)) 7

Mg

(Qn)k—1€<3k(>‘7 c)/(s+1>) B

Now, there exist large enough constants C,,, C, > 0 such that this inequality is satisfied for y < n=C=
and B > Cy(logn)'/*.

This proves that any algorithm for an entry-wise y-approximation of A¢t(") having maximum value

of the entries T' = Q((logn)'/*) requires time Q(n'0), assuming the Max-kSAT conjecture, since

if APAC™ could be solved in O nto—?) time, then that would imply Max-kSAT could be solved
i

in 2(1-2)" time (Corollary), something that can not be true for an absolute constant § > 0
(Hypothesis [2). O

Remark 1. In Lemma for computing APAC™ | when h is in t variables, of degree k and
contains as a subpolynomial an elementary symmetric polynomial in ty = t variables and degree k,
the time-complexity is lower bounded by Q2(n'). This is the strongest time complexity lower bound we
can achieve, as the trivial algorithm for summing over the indices of all the query-key matrix also
requires O(n?) time and we say that this is the best we can hope for!

E.2.3 TIME LOWER BOUNDS FOR DEGREE 2 POLYNOMIALS USING MAX-2SAT CONJECTURE

In this section, we prove the final part of Theorem [E.3] where we show a lower bound for a certain
subcase of h when the degree is 2. For the remaining degree 2 cases, we have already shown in
Sections and@] that they can be computed in O(n?) time, which is essentially tight from Part 1 of
Theorem [E.3|

Unlike using SETH which proves lower bounds which are integer powers of n, in order to prove
lower bounds of the form n*, we use the Max-2SAT conjecture (Hypothesis 3 by giving a reduction
from e-Gap-IPA (Theorem|C.8) to entry-wise approximation of Att(").

The reductions work as, we first use the reduction of Max-2SAT to IPA, then reduction of IPA
to a new problem IP-DIR-rCYC using |Alman & Vassilevska Williams| (2020), which then is re-

duced to its gap version containing n°!) instances of e-Gap-IP-DIR-rCYC. Finally, we reduce
e-Gap-IP-DIR-rCYC to computing an entry-wise approximation of Att(").

For these sets of reductions, we first define the new problem of IP-DIR-rCYC, which was introduced
in|Alman & Vassilevska Williams| (2020)).

47

Under review as a conference paper at ICLR 2026

Definition E.14 (IP-DIR-rCYC). For a positive integer r, given r sets of vectors A', ... A" C

{0,1} with |A'| = ... = |A"| = n, and target inner products my,...,m, € {0,...,d}, the
problem IP-DIR-rCYC,, 4 is to decide if there exist vectors ay € A',... a, € A" such that
simultaneously (a1, as) = m, (a2,a3) = ma, ..., (ar_1,0r) = My_1, (ar,a1) = My

Naturally, to prove hardness of entry-wise approximation of poly-attention, we will again require the
hardness of the gap version of this problem, e-Gap-IP-DIR-rCYC.

Definition E.15 (s-Gap-IP-DIR-rCYC). For every ¢ > 0 and positive integer r, given r sets of
vectors A', ..., A" € {0,1}? with |A'| = ... = |A"| = n, and a target inner product m €

{0, ...,d} along with the promise that for all i € [r], for all vectors a; € A%, and a; 11 mod » €
Ai+1 mod r

e cither <CL»L‘, a(i+1) mod 7,> =m,
* o7 (i, A(i+1) mod r) < (1 —€)m,

the problem of e-Gap-IP-DIR-rCYC,, ,; is to decide if there exist vectors a; € Al . a, € AT
such that simultaneously (a1, as) = (ag,a3) = ... = {a,_1,a,) = {(ar,a1) = m.

Now, we know that IP-DIR-rCYC is at least as hard as IPA, which in turn is at least as hard as
Max-2SAT (Lemma|C.7), given by the following lemma. An OV version of this lemma was proved
in (Alman & Vassilevska Williams| 2020, Lemma 21), i.e., when the target inner products are
zero, by reducing OVA to OV-DIR-rCYC, but all the proofs work similarly for reducing IPA to
IP-DIR-rCYC as well.

Lemma E.16 (IPA to IP-DIR-rCYC |Alman & Vassilevska Williams| (2020)). For every § > 0 and
positive integer v > 3, if IP-DIR-rCYC,, 4, can be computed in O(n“~°) time, then |\PA,, 4 can
also be computed in time O(n*~?).

Again, the e-Gap-IP-DIR-rCYC is at least as hard as IP-DIR-rCYC using proofs very similar to
Theorem [C.8]

Corollary E.17. For every § > 0, positive integer v > 3 and every constant € > 0, assuming the
Max2SAT conjecture, there exists a constant ¢ > 0 and target inner product m € {0, ..., d}, such

that e-Gap-IP-DIR-rCYC, cannot be solved in time O(n“~?) .

n,clogn

Proof. We prove the hardness of -Gap-IP-DIR-ACYC by starting with a hard instance of
IP-DIR-rCYC containing sets vectors A',... A" C {0,1}%, where n = |A’| and d = clog n.

Following the technique of the proof of Theorem [C.8] we consider A7, A+! ™47 for each i € [r]
as a 2IP instance, and reduce it to n°(*) many instances of e-GaplP having two sets n vectors of
dimension dy. For the final instance of e-Gap-IP-DIR-rCYC, we create vectors having 7 blocks,
each block having the dimension dy. The ((¢ — 1) mod r)-th block and the i-th block in the final
instances of the reduction will contain vectors from each of the instances of e-GaplP obtained from
the instances of 2IP from A(+1) modr i and At AG+1) mod 7 regpectively, while the other blocks
will be zero, exactly similar to the proof of Theorem [C.8] This hardness result is also true when all
the target inner products are the same. O

Therefore, for proving the hardness of the entry-wise approximation of poly-attention based on
Max-2SAT conjecture, it is sufficient to start with a hard instance of e-Gap-IP-DIR-rCYC. Further,
we prove the lower bound for poly-attention for all polynomials that are not tree polynomials (since
we already know that tree polynomials have exact computational complexity O(n?)). If a polynomial
is not a tree polynomial, the graphical representation must contain at least one cycle.

Lemma E.18 (¢-Gap-IP-DIR-rCYC to APAC(h)). For every constant ¢ > 0, every § €
(0,0.01), every ¢, M > 0, given an attention polynomial h(x1,...,x:) of degree 2 having
s monomials, such that its graphical representation contains a cycle of size r, where t,s,r
are constants, there exist constants C, > 0 and C, > 0 such that if APAC(h)(Zn, (r +
Dclogn,T' = Cy\/Togn,y = n~%) (Definition @) with query-key matrices QW ..., Q" ¢
[T, T2 (st elosn and value matrices V), ... V) ¢ R2x(+tDelosn can pe solved in

48

Under review as a conference paper at ICLR 2026

time O(n“~°%), then -Gap-IP-DIR-rCYC,, .\, , (Definition with target inner product
m = M logn can also be solved in O(n“~°) time for any constant M.

Proof. In our final part of Theorem we reduce Max-2SAT to entry-wise approximate com-
putation of poly-attention. We start with an instance of e-Gap-IP-DIR-rCYC,, d clogns Since

we know that this is at least as hard as Max-2SAT (Theorem [E.17} Lemma [E.16), consisting

of sets of vectors A!,..., A" C {0,1}¢, where A’ for all i € [t] has n vectors {at,...,a}}

each. The target inner product is M logn, and the constant approximation factor is € for the

gap condition. This is equivalent to checking if there exists a; € Alla 52 € A% ..., aj € A"
a2 2 3 1 1

such that (aj ,a3,) + (an,aj%> + 4 (a) Lag) 4 (@) aj,) = Mylogn, or, due to the

promise, if (a jl,ai) + <a?2,a§3> +o 4 (a] ! ,ai)+ (aj - 11,aJ11> < (1 — eg) My logn, where

My =0O(M),e0 = O(e).

For the graph G of the polynomial, we consider a vertex v, where the cycle of length r starts. If
there are multiple cycles, we consider any one.

Let the cycle be of length r be given by (vt,, Vtg+1), (Vtg+15Vtg42), - -« » (Vtgpr—1, Ve,), Without
loss of generality. When we construct the matrices Q(7)’s, the idea is to construct the instance of
e-Gap-IP-DIR-rCYC from vy, (i.e., from Q(*0)), and make every other query-key matrix corre-
sponding to variables outside the cycle to be zero.

Similar to as before, we construct query-key matrices such that for all ¢4, ..., ¢; € [n],

1 r T
MO, Q) = Mlat, af,)+ lap e,) e, el), (19)

for a scaling factor A.

Constructing the matrices. We form the matrices QV),...,Q® € [-T,T]"*4, fi = 2n,d =
(r 4 1)d as follows, using a scaling factor B = w(1):

1. For QU)s,if j < tgorj > r+tg— 1, we just make the entire matrix zero Ogy, x (r41)d-

2. For defining Q(*0), we define the first column block (starting of the cycle) as,

(to) ay,
Q(102n1d) B 04)

- 2nxd
the 7-th column block (end of the cycle) as,

(to) an,
Qii2n, (r—1)d+1:ma) = B 0, ;

~ 2nxd
the final block that balances the inner product as

(to)
Q12n,rdt1s(r+1)a) = Blanxd,

and all the other remaining blocks as 02, x 4.

49

Under review as a conference paper at ICLR 2026

3. Now, for the matrices inside the cycle, i.e., j € [to + 1,to + r — 1], we define QY as
follows. For ¢ = j — 1, j (which is the traversal inside the cycle from v;_; to v;, and v; to
v;_1 respectively), we define that block as,

’aj—(to—l)'

j (to—1)
j—(to—
)

(4) _ J
Q(j1:2n,(i—1)d+1:i.d) =B |dn

- Od - 2nxd

the final block as,

Qv {Onxd}
(1:2n,r.d+1:(r+1)d) — |1, %4 onxd

and all other blocks as 02,,% 4.

For the value matrices V() € RCx(r+1)d 5 [t) +, + r — 1], we define the first column as,

() 1,
V(1jzn 1) — {Oﬂ)

and for all other j’s, we define the first column as,

) 1
‘/(lJQn 1) — Lﬂ)

with every other columns 07 .

Correctness of construction. We prove that indeed Equation[19)is satisfied when ¢1, ..., ¢, € [n].
When we consider £, all the monomials containing variables z; for j < to or j > to + r — 1 vanish
since Q/)’s are zero. Whenever we have a monomial of the form TjTjt1,J € [to,to +r —1], it
j—to+1 a(] to+2) mod r >

survives and gives (aj ety Ao) o

These query-key and value matrices can be computed in O(n!*+°(1)) time.

Approximation yields gap property. We again consider the entry-wise approximation of Attl(zil?l
as xy,, and we have

£

Ry

|1'Z1 - ‘ <7,

1

for

Py= Y exp(h(QSY, Q@%...,QZ))),

La,... . Le€[n]
Ro= 3 eo(Geel0f),
La,....L €[2n]

when the (£1, 1)-th element of Att(") is %
1

Bounds on P, Ry,. For the lower bound on Ry, , using a calculation exactly similar to that of the
proof of Lemma [E.§| gives us

nto*le(%) < Ry, < 2t°71nt°716(%)

50

Under review as a conference paper at ICLR 2026

When a positive certificate for the given e-Gap-IP-DIR-rCYC exists, we will have some
0 40 0 : 1,2 r—1 r r 1y _
0y 1y 03 4y € [n] for which <a€§’0’afi’0+1> +...+ <a4?0+7\71’af?0+r> + <af?0+r’ aego) =
My logn. This would give
Mo 2
Py, > (2n)t0_r—1e(<r+1>cB),

which implies

P, 6(32(%0 =)/4n)

Re, v > (@) -7 (20)

Otherwise, if no positive certificate for IP-Dir-rCYCLE exists, then

Ty, >

(1—50)32&)

to—r—1,_to—1 p 3
Py, < 2% nto=Tel (rFiye/

and therefore,
P, p2((d=e0)Mq .
xe, < 4 +y< 2750—7"—16((c)/(+1))

. 21
Re, + 2D

Note that if a positive instance of e-Gap-IP-DIR-rCYC exists, then x, is the greater than the
lower bound (it is greater for all ¢; if ty # 1, otherwise we choose only that ¢; for which the
e-Gap-IP-DIR-rCYC instance contains aél), otherwise always lesser than the lower bound.

Wrapping up. In order to maintain a gap between the cases of a positive instance of
e-Gap-IP-DIR-rCYC existing, we require the lower bound (Equation must be less than the
upper bound (Equation 20)

1 2to—r—1 1

_ _
o) (OB o) T g (R)

Now, there exist large enough constants Cy,, C, > 0 such that this inequality is satisfied for y < n~%
and B > Cy+/logn.

This proves that any algorithm for an entry-wise y-approximation of A¢t(") having maximum value
of the entries I' = B = Q(+/log n) requires time Q(n*), assuming the Max-2SAT conjecture, since
if APAC™ could be solved in O(n*~?) time, then that would imply that would imply Max-2SAT
could be solved in 2(+/3=2()7 time (Corollary , which can not be true for an absolute constant
0 > 0 (Hypothesis|3). O

F PROOFS OF SECTION 3.1 FUNCTION COMPOSITION

In this section, we describe a poly-attention mechanism whose one attention head can simulate ¢-fold
function composition. In order to study the representational powers, it is important to also consider
the number of bits stored for each entry for the matrices, denoted as precision, p. Since the entries
are usually considered to be polynomial in n, it is safe to assume p = n°1). Furthermore, as usual,
we consider the embedding dimension d = O(logn).

Before showing the representational strength of poly-attention, we first show that Strassen-attention
and 3-tensor attention cannot simulate 3-fold function composition. For this limitation result, we
require a communication lower bound proved in a previous work of |Chakrabarti| (2007)) on myopic
pointer jumping.

Definition F.1 (Myopic pointer jumping). For everyt > 2, myopic pointer jumping can be seen as
similar to function composition, where we are interested in computing t-fold function composition, for
inputs as functions f1,..., f: : [n] = [n] and a value x € [n]. There are t players and a coordinator

C, such that:

* Player 1 has as inputs x and fo,
* Playerifori € [2:t — 1] have inputs x and f1, ..., fi—1, fit+1,
* Playert has inputs x and f1, ..., fi_1.

51

Under review as a conference paper at ICLR 2026

The Players i € [t] can only send messages to C, and the goal of the protocol is for C to compute the

value of ft(fi—1... fr(x)).

Now, the lower bound due to|Chakrabarti| (2007) for myopic pointer jumping is given as below.

Lemma F.2 ((Chakrabarti, 2007, Theorem 1)). To solve the myopic pointer jumping problem, the
players need to send at least Q(n/t) bits to C' in order for C to compute fi(fi—1 ... f1(x))).

We want to study the representational strengths and limitations in terms of function composition.
We say that an attention mechanism simulates t-fold function composition, if, given the input
X € R +1)xd containing descriptions of f1, ..., f; and an = € [n] , the attention mechanism is
able to output the value of fi(f:—1 ... f1(x)). As before, the input function f; will be given as the
i-th block of X, in X ((;_1)p+1:4.n) for all i € [t], and = will be given in Xy, 1, and we want the
attention mechanism to output the value of f;(fi—1 ... f1(z) in the (¢n 4 1)-th entry of the output.

The first limitation result, Strassen-attention can not simulate 3-fold function composition is given by:

Theorem F.3. One layer of Strassen-attention requires at least H > n*~°W) heads to simulate 3-fold
function composition.

Proof. Let us consider an instance of 3-fold function composition where, given f1, fa, f3 : [n] — [n],
and z € [n], we want to compute f5(f2(f1(2))). As usual, the input X contains N = 3n + 1 rows
of embedding dimension d = O(log n), where X ;.,,) corresponds to the values of fi(1),..., fi(n),
X (n+1:2n) corresponds to the values of f>(1),..., fo(n), X(2n+1:30) corresponds to the values of
f3(1),..., f3(n) and finally X3, corresponds to .

The main idea for proving this lower bound is by assuming that Strassen-attention can simulate
3-fold function composition using H heads. We are given the query-key and value matrices for
H Strassen-attention heads such that the output of mechanism contains the value of f3(f2(f1(z))).
Using these, we define a communication problem which will use computations required for outputting
the matrix Att(S), that gives the value of f3(f2(fi(z))). Next, we will use existing lower bounds
(Lemma@]) to contradict this statement, which would give a lower bound on the minimum number
of heads of Strassen-attention required to compute f5(f2(f1(x))).

We now define the communication problem to capture this setting. Consider 3 players with inputs,

* Player 1 has z, fo,
* Player 2 has z, f1, f3,
e Player 3 has z, fi, fo,

and a coordinator C'. The communication channel is such that only the 3 players can send messages
to the coordinator. The communication complexity is the total number of bits sent by the players to
the coordinator such that the coordinator can compute the value of f5(f2(f1(z))).

As defined before, this communication setting is an instance of myopic pointer jumping for ¢t = 3,
and the lower bound from Lemma implies that at least {2(n) bits are need to be communicated.

Now, let us assume that there exists a Strassen-attention mechanism that computes 3-fold function
composition using H heads, where we will denote the index of the head as a superscript u € [H].
The weight matrices for query-key are W), W@, Woe! € R%%4 and the value weights are
Wy @, Wy @t € R4 for the attention head u € [H]. Let the precision of the values be p. These
matrices and the functions computed by the first and last MLP layers are known to all the 3 players
and the coordinator. Assuming that Strassen-attention can simulate 3-fold function composition, we
devise a communication protocol for the above problem using the value of Att(S) to obtain lower
bounds on H using a proof inspired by works of |[Peng et al.|(2024); Sanford et al.| (2024b)).

The output matrix of the u-th head of Strassen-attention, Att(S*, for u € [H], is given as
i ke T (X Wy e) © (Xi Wy o)

24 'rN“
J,kE€[N] " 5,k

At = : (22)

52

Under review as a conference paper at ICLR 2026

where we have N = 3n + 1, which is the row of Att(S) where we want the value of f3(f2(f1())),
and

1
Tgku = exp (E(X3n+1 WQ(UU(WQ@)U)TXf + Xj WQ(Q)M(WQ(s)u)TXg

+ X, W@(S)“(WQu)u)TX:»,TnH)))

for all heads u € [H]. The players have parts of X, i.e., for f; they have X(;.,,, for f; they have
X(n+1:2n), for f3 they have X (2,413, and for = they have X3, 11.

The communication protocol proceeds as follows, where the player sends the values for each Strassen-
attention head u € [H]:

1. Player 1 sends z\f‘ and L “, where f/;“ is an O(p log log n)-bit approximation of the binary
expression of L", and L} is an O(p loglog n)-bit approximation of the binary expression

of L"*, where
(2 N u
L= Z Tjk

JES1,kES?
S1,52€{{3n+1},[n+1:2n]}

and
LY = L—lu(Z T;qu(XjWV@)u) ©) (Xkaw)u)),

jE€S1,kESS
S1,52€{{3n+1},[n+1:2n]}

forall u € [H], to C.

2. Player 2 sends Z;“ and L} ‘', where f;“ is an O(ploglog n)-bit approximation of the binary
expression of Lo", and L4 is an O(ploglog n)-bit approximation of the binary expression

of L4, where
L2’U« = Z r;\fku’
JES1,kESS
S1,52€{{3n+1},[n],[2n+1:3n]}
(S1,82)#({3n+1},{3n+1})

and

1
L/Qu = ﬁ(Z Tj[-\’]ku(XjWV(z)u) ® (—Xk;WV(S)u))7
j€S1,kES2
S1,82€{{3n+1},[n],[2n+1:3n]}
(S1,S2)#({3n+1},{3n+1})

forall u € [H], to C.

3. Player 3 sends L3* and L, where L3" is an O(ploglog n)-bit approximation of the binary
expression of Lg*, and L% is an O(plog log n)-bit approximation of the binary expression

of L, where
L3 = Tj,k ;

JES1,kESS
S1,52€{[n],[n+1:2n]}
S1#8S2
and
1
Ly = ﬁ(> (X W) © (X/est)")),
3 .
JjES1,kES2
S1,S2€{[n],[n+1:2n]}
S1#8S2

forall u € [H], to C.
4. C computes
Zie[3] E“fz“
Eie[3] Eu
as the N-th row of the At¢(5)* matrix.

e RY, (23)

53

Under review as a conference paper at ICLR 2026

Note that Equationis the correct value of the approximation of Attg\}g)“, for all u € [H], since the
values of Ln", Ly" are simply the partial sums, all of which amount to Equation with the given
bounds on each of the summations. |Sanford et al.|(2024b) showed that using O(p log log n) bits of
precision is sufficient in this approximation, and this gives us the correct value of f3(f2(f1(z))) upto
p bits of precision. The number of bits communicated is equal to O(dpH loglog n), and using the
lower bound from Lemma we must have dpH > Q(n/(loglogn)). Since we usually choose
d = O(logn), p = n°M, we must have, the number of heads, H > n'~°(1), O

Corollary F.4. One layer of 3-tensor attention requires at least n'~°") heads to simulate 3-fold
function composition.

Proof. The proof is very similar to that of Theorem where again we have 3 players and a
coordinator in a myopic pointer jumping instance. Using the construction of 3-tensor attention, we
can again infer that the communication complexity will be O(dpH loglog N), which needs to be
greater than Q(n) from Lemma This gives our result. O

In fact, we can show a stronger result.

Theorem E.5. If h can be written as a variable separable polynomial, where each branch (see
Deﬁnition has < to variables, then one layer of poly-attention for h requires at least H > n'—°(1)
heads to solve to-fold function composition.

Proof. We use the same proof as of Theorem [F.3] by constructing a communication protocol for
to-fold function composition if poly-attention for h can solve it, and using the lower bound result of
Lemmal[F2] The input X contains N = ton + 1 tokens, and we want the output to be in the last row
of Att") for each head u € [H].

We define a communication problem again as that of myopic pointer jumping, with ¢, players and
a coordinator C' who wants to compute fi,(fi,—1 - .. f1(z)) (Definition|[F.I). Since ¢, is constant,
Lemma[F2]states that this requires {2(n) bits of communication.

Now, we develop a communication protocol for function composition using the Att("* matrices,
Vu € [H], which will have a communication complexity of O(Hdploglog N). In computing the

output of the poly-attention mechanism at the last row of Att(")*, we have the numerator term as
1 2 2
Z exp(h(Sv)u7Qé2)uv7QZz)u))‘/€(2>u® "'Q‘/E(:;O)u)
fg,u.,zto E[N]
and the denominator term as

Yo ep(h(@V QP Q).

La,....Lyo €[N]

If the polynomial / is variable separable and has r branches, where each branch is given by the
polynomial g;(z1,2?) having < ty variables each, i.e., h(xy,...,2:) = Zie[r] gi(x1, "), then
players devise a protocol to separately compute the (£on + 1)-th row of Att(9¢) for all i € [r]. Similar
to the proof of Theorem the summation of lo, ..., ¢, € [N] will be broken down to partial
summations, which correspond to computations performed from the inputs of each player.

In computing the poly-attention output of each branch (both numerator and denominator as in
the proof of Theorem , let the corresponding variables of that branch be z,, ..., z,, . Now,

Player 1 would send the summations of ¢,.,...,¢,, € [n+1:2n] U {¢ton + 1}, Player 2 would

3 treg
send the summations over £,,..., ¢y, € [n] U [2n 4 1 : 3n] U {ton + 1} except the tuples that
have already been sent, and so on until Player ¢ would send the summations over £, , ..., ¢, €

[(i—1Dn+1]Ufin+1: (i+ 1)n]U{ton + 1} except the tuples that have already been sent. Since
there are ¢y — 1 variables that are not fixed (¢; is fixed to N) and all the ¢y players with their given
inputs completely cover the summation required in the softmax computation of Att(").

In this way, the players can communicate O(Hdp loglog N) bits as before to compute the value of
Att9% for all i € [r] and u € [H], and given the poly-attention outputs for all these branching
polynomials, the coordinator can compute the value of At¢(") using Lemma

54

Under review as a conference paper at ICLR 2026

Therefore, with a total of O(Hdp log log N) bits (since the number of branches, 7, of the polynomial
h is constant), the coordinator will be able to solve y-fold function composition. By Lemma|[F.2]
Hdploglog N > Q(n), and considering d = O(log n), p = n°1), we require H > n'=°(1), O

Next we prove that a certain class of tree-attention, given by polynomials of the form
he(z1,...,Tt41) = T122 + o3 + ... + T4x441 can simulate ¢-fold function composition. This
proves Theorem [3.4} which is also the generalization of Theorem 3.1]

Theorem F.6. For every integer t > 2, poly-attention for the polynomial
hi(x1,...,2¢) = 2102 + X2w3 + ...+ TpXe
can simulate t-fold function composition using one poly-attention head.

Proof. For solving the problem of ¢-fold function composition, we consider the ¢ functions f1,. .., f; :
[n] — [n]. The input (before the first MLP layer) is a sequence of numbers ¢(1),. .., ¢(tn+1) € [n],
such that for £ € [n], j € [t], we have ¢(£ + (j — 1)t) = f;(¢), and finally ¢(3n + 1) = 2. Our task
is to compute the value of f;(fi—1 ... f1(x)), and we give a construction of the MLPs, the query-key
weights and the value weights of poly-attention for h;, such that this Transformer layer can compute
the same using only one head. We adopt the construction of |Kozachinskiy et al.|(2025) due to its
simplicity, and use it to define the parameters of poly-attention.

We define the first MLP layer such that its output, i.e., the positional encoding of the ¢-th entry of the
input to poly-attention, is given by:

Xi=[1 i 2 () (6()° Osis]y g,

for i € [tn + 1]. Here, a precision of p = ©(logn) can be used. Next, we construct the weight
matrices WQ<1) ey WQ@).

Our goal is to create a them such that

M@ QD) =~ Alogn((6(02) — 2" + (b5 —n — 9(12))’

iy

(=20 9) + o (B — (1 D 6(6)?),
(24)
for a constant A > 1. For ¢; = tn + 1, this is maximized when
by =¢(ty) = ¢(tn +1) = =,
ly=n+¢(l2) =n+¢(x) =n+ fi(z) = f2(fr(2)),

b1 =0t—1n+¢(li—1) = —1n+ fi1(fi—z ... fi(x)) = fe(fic1 ... f1()),

which is precisely our required value.

For constructing QU) € R™*3t for j € [t + 1], with such properties, we can define each row as:

1. fori =1: ’
o(£)?

QY = aviogn | A
ngS 3kx1
2. forj > 2:
03(j—2)

QP = aviogn | TR

t—3) 4 3kx1

Under review as a conference paper at ICLR 2026

for all £ € [n].

Note that, for any j € [¢],
, 1
(@Y, QUTY) = —A2logn(tj1 —n — 6(())?,
which is consistent with Equation While computing the softmax entries for /1, = tn + 1, the

value of ht(QETlL)Jrl, QE? ceey Qgij) for all 4o, . .., ¢;+1 that do not maximize this value, will be a

factor of n~* less than the maximum value. Since while computing softmax, we take a sum over all
lo,...,ly1 € [tn + 1], as long as we choose A > Q(+/%), the maximum value will be obtained in
the correct setting of ¢;’s.

For outputting the value, we set the first column of all the Vg, j €]2 : t], as ones, and the rest as
zeros; and for V+1) we define the first column as Vz(,tjl) = (, for all £ € [tn + 1], and the rest as

zeros. The error in the final output will be nt=4 and as long as this is less than the number of bits
of precision, we have the correct output. O

As we will see, even though poly-attention for h,; will be able to solve ¢-fold function composition,
the previous theorem, Theorem shows that not only poly-attention for h;_; can not simulate
t-fold function composition, but neither can the poly-attention for the polynomial h(x1, ..., xt12) =
T1To + o3 + ... Ty 1Ty + T1T441T44+2, Which is a polynomial in ¢ + 2 variables!

Remark 2. From Theorem we saw that poly-attention for ha(x1, 22, 23) = X12Z9 + Toxs can
simulate 3-fold function composition just as Strassen-attention. Again, Strassen-attention is poly-
attention for the polynomial h(x1,x2,x3) = x1T2 + Tox3 + x321, which is just one monomial
different from ho. However, even though they might seem similar, the cost of this one monomial is
huge— Att("2) can be computed in O(nz) time, while computing Att'S) requires at least Q(n*) time.

G PROOFS OF SECTION [3.4: POLYNOMIAL ROOT-FINDING

In this final section of the proofs, we prove the strong characterization of representational strength
of poly-attention introduced in Section [3.4] We show this by giving a construction of the weight
matrices of a poly-attention mechanism which solves polynomial root-finding (Theorem [3.7).

In this problem of polynomial root-finding, for a fixed polynomial p(z1,...,z;) and given as
input a set S C R™, we are interested in finding if there are elements y1,...,y: € S such that
p(y1,--.,y:) = 0. For the output, if ¢, ...,y is aroot of p and S[j] = 3, then in the row j of the
output, we want to output an encoding of that root.

Theorem G.1 (Polynomial root-finding). For a polynomial p(x1, ..., x¢) of degree ko, and given
an input S C R", for any integers k, s if a polynomial h(x1, ..., x;) of degree k and sparsity s is
such that all the monomials of the polynomial p? divide at least some degree k monomial of h, then
poly-attention for h with 2 attention heads can perform polynomial root-finding for p with the input.

Proof. We give a construction of the MLP layers, query-key weights and the value weights such that
the Transformer can find a root of the polynomial from S?, and output it. First, given .S, considering

so as the sparsity of p2, we set the embedding dimension as d = sg.s. For the input X € R"*(s0-5),
let the embedding of X; after the first MLP layer be

Xi=[g v} ...y Oso.s—zko_ﬂlx(

s9.5) "’

where we require sg.s > 2kg + 1.

Construction of first head. Now, our goal is to define the weight matrices such that after computing
the query-key matrices Q1. ..., Q) the value of h(Qg), e QZ)) will yield —n?p(ye,, - - -, ye,)?
where y; = S[i], and ¢y, ..., 4 € [n].

Choose a h(x1,...,x;) of degree k (where k is a number greater than the maximum number of

variables in each monomial of p?), and is of any sparsity s (satisfying so.s > 2kg), where each
monomial of p? divides at least some degree k monomial of h. We assign each of these monomials

56

Under review as a conference paper at ICLR 2026

of p? to exactly one degree k monomial m; of h for i € [s], and we associate a set T; which stores all
the monomials of p? that are assigned to this monomial m; of h.

Now, define QP ..., Q") e R™*(50-5) where each column block is of size s, as:

1. For the i-th column block, where for each column j € [sq] of the block, we consider the
exponents of the variables of p such that h(Qéi), ceey Qg)) will give evaluations of the j-th

monomial of —p? at (y,, ..., ye,), forall £1, ..., ¢; € [n]. For these values of 4, j, we will
simply denote these terms as the monomial corresponding to this column (i — 1)sg + j.

(a) If the j-th monomial of p2, for j € [sg], consists of k; variables, and is in T; for some

dr,.
i € [s], let C’jxf{'l . azrk:’ be this monomial where z,, is the highest preference
variable. Then, we define the j-th column of the i-th column block of Q") as

dry
(r1) e
T .
Ql:vlz,(ifl)sc)«kj =n :)
dry
—Cjyn
and for 1 < g < k;,
dr,
Y1
(rq) ._ .
Ql:;IL,(ifl)SQJrj =nagos
dr,
Yn

For all r € [t] such that z,. is a variable of m; and the j-th monomial of p* does not
contain x,- but is present in 7;, we define

() —
Ql:n,(ifl)sowtj =n.ly,

and otherwise, if z,. is not present in m;

(r) _
Qlin(i-1)s0+j = On-

(b) If the j-th monomial of p?, for j € [s0], is not in T}, then we define

(r) _
Qtin,(i-1)s0+5) = Ons
for all r € [t].

2. Fixing an ¢ such that m; is of degree < k, we define the query-key matrices as before, to
cancel out the terms which were defined in the degree k. Each degree k term had s(terms
which could lead to non-zero values, and now for the block ¢, corresponding to the monomial
1, the r-th column in that block will cancel out the j-th columns of each block obtained from
the degree k-terms, for j € [so].

Let si be the integer which is the number of occurrences of j-th monomial of p? while com-

puting the monomial containing variables 1, . .., x; corresponding to m;(2), cee QZ)),
when we consider each of the monomials m, ordered higher preference than 4, (i.e., £ <),
and is divisible by m;.

As before, SZ is the sum defined by adding:
* —C; whenever ¢ < 1, m; divides m, degree of m, is exactly k, and the highest priority

variable of my is present in m;.

J —si whenever ¢ < i, m; divides my, degree of my is less than k, and the highest
priority variable of my is also present in m;.

¢ —1 otherwise when the above conditions are not met but m, divides m;.

¢ 0 in all other cases.

57

Under review as a conference paper at ICLR 2026

For every j € [so], if x,. is not present in monomial j of p? for r € [t], we just set
(r)
Q(l n,(i—1) soJr]) =0y,
otherwise, for the highest preference x,., variable of the j-th monomial of p?, we define:
Cd,
sz Y !
Q) $iYp"

(Lin,(i—1)so+4) — =n : ’

siy"n nxsg.s
and for all other r such that x,- divides this monomial,

d,

Y1

(r) Ya'
Q(ln (i—1)so+j) — =n :
;ir

y’ﬂ nXsg.s

Notice that in these constructions, we have only used linear combinations of y2’s for r € [¢] and

q € [2ko]. Therefore, weight matrices W) € R(s0-5)x(s0-5) exist for every fixed polynomial p such
that

. T
1oyl ygzo 0 ... 0
Y S y2° 0 ... 0
W,
Q)
1oyl . yiko 0 ... 0
S0-S

yield the required Q(")’s. For defining the value matrices, for the first coordinates, the r-th coordinate

of V) r e [2 : t] stores the corresponding value of .., and all the other entries are of the coordinates
in [2 : ¢]\{r} are one, and the first coordinate is zero. More specifically, we define

01 ... 1 ypp 1 ... 1 0 ... 0O
01 ... 1 gy 1 ... 1 0 ... 0
v = | : |

o1 ...1wy, 1 ... 1 0 ... 0
where the r-th column has the values of the y;’s
Using the construction defined above, we have h(Qe ey QZ)) = —nFp2(ys,, ..., ye,) since the
degree k monomials of i are what contribute to —p?(yg,, . . ., ye,) from the corresponding column
blocks. Inside each of these column blocks corresponding to degree k¥ monomials of h, the j-th
column for j € [so] gives the value of the j-th monomial of —p? at (y,,- ..,y). Due to our
construction, all the values of ml(Qe S ,QZ)) are zeros when m;’s are of degree < k, which

finally gives us the required result.

Now, for each fixed /1, the value of h(Qx), . ,QZ)) = —p*(Yey, - - - Yo,) Which is maximized

for some indices £3, ..., (9, is at least e"’ factor larger than all the other values in the summation
@ ()

Zzg,...,lte[n] M@ @) With the given construction of V(")s, the values of Yegs - -5 Yy for

)

which —p?(y, , *) is maximized, will be present in the first ¢ coordinates of the output Atté? .

Construction of second head. Finally, we need to verify that if there exists some £} such that the

values of xo, ..., x; encoded in Att%) indeed is a root of the polynomial. For this, we need the value
1

of y,’s for each of the ¢;-th coordinate, and we incorporate this by using a second attention-head,

whose output matrix contains the vector [y1 ... yn]T in the first column and all zeros elsewhere.

Therefore, when we add the two attention heads, the ¢ -th row will contain the values of (e, , ..., ye,)

which maximizes the value of —p?(yy, , *). Finally, we can check using the output MLP layer if
indeed the value is a root of the polynomial. [

58

Under review as a conference paper at ICLR 2026

H EXPERIMENTAL DETAILS

H.1 FUNCTION COMPOSITION

In this section, we explain the experimental setup behind Figure 2] We train a transformers that
uses self-attention for one layer, a transformer that uses self-attention for two layers, as well as
a transformer that uses tree-attention for one layer, for the attention polynomial h(xy,xe,x3) =
x122 + xox3. (This is the polynomial from Theorem [3.T]above.) We infer from the experimental
findings that tree-attention is better: it is faster, more learnable, and uses less space compared to its
representational counterpart, the two layer self-attention.

In the remainder of this subsection, we first explain the details behind Figure [2] which shows that
despite having less trainable parameters than two layer self-attention tree-attention is more learnable.
Note that two layer self-attention requires two query matrices, two key matrices, and two MLP layers,
while tree-attention requires only three query-key matrices and one MLP layer. Second, we show that
the time to compute tree-attention is comparable to the runtime to compute two-layer self-attention.

Problem set-up. We solve the task of function composition, where, for an integer n, given two
functions f1, f2 : [n] — [n] and a value x € [n], we are interested in computing the value of

f1(f2(2)).

We know that a two layer transformer using self-attention can solve function composition but one
layer can not|Peng et al.| (2024)), and we further proved in Theorem@] that tree attention can solve it
as well. We show that these theoretical results are in line with practice, where transformers with two
layer self-attention as well as transformers with one layer tree-attention can both solve O-function
composition for n = 25 (which means the number of tokens is 2n + 1 = 51).

Input generation. As described above, we train the transformers to learn fi(f2(x)) where f1, fo :
[n] = [n], and = € [n], for n = 25. The inputs are given as a tuple (i — 1 + (j — 1).n, f;(¢)), for
j €{1,2},7 € [n], and a final token (2n + 1, z), on which the output will be encoded. This requires
a vocabulary size of 2n + 1 +n = 3n + 1. The functions f1, fo, and z, are generated uniformly at
random from the set [n] for each batch in each epoch.

Architecture details. We choose a sequence length of 51. The transformer has an embedding
dimension d = 32, number of heads H = 4, followed by an MLP layer which uses ReLU activation
with one hidden layer of size 128. We also use the standard sinusoidal positional encoding from
Vaswani et al.|(2017), given by

. 2
Py =sin 5557

2
PEiayes = o 557

,fori € [n], 7 € {0,...,d/2}, which is added to the i-th token.

Training details. For learning, we use a batch size of 64, a learning rate of 0.001 and train the
model using an Adam optimizer. The model is trained for 100, 000 epochs on a 2024 Apple Macbook
Air with an M3 Chip, and the evaluations have been shown in Figure [2|and Figure

59

Under review as a conference paper at ICLR 2026

Train Loss Comparison

—— Tree-attention
—— 1llayerSA
— 2-ayersa |

20000 40000 60000 80000
Epochs

Figure 3: Training loss per epoch, averaged over 10 seeds, for learning f;(f2(x)) for sequence
length 51, on a single layer of tree-attention, one layer self-attention and two layer self-attention.
Tree-attention learns faster and has less fluctuations.

Test Accuracy Comparison

—— Tree-attention

004 — llayersa
— 2-layersA

0.0 02 0.4 0.6 0.8 10 12
FLOPs 1e13

Figure 4: Accuracy per FLOP, averaged over 10 seeds, for tree-attention, 1-layer self-attention
and 2-layer self-attention for learning function composition. Notice that tree-attention learns more
efficiently and the learning is stable.

Observed inference running time. We plot the running time of computing various attention
schemes for sequence lengths in {20, 50, 100}. We use vocabulary size v = 32, embedding dimension
d = 64, number of heads H = 4, and hidden layer width 256 for the transformers, and evaluate it on
a batch of size B = 64.

With this architecture, we randomly choose query, key and value weights in R%*?, and random
weights and biases for the MLP layer. Then we randomly generate 1000 sets of inputs X € RBxnxv
and compute the running time of the attention mechanisms. The average running time has been
depicted in the following table.

Seqlen 1-layer SA (ms) 2-layer SA (ms) 1-layer tree (ms) 1-layer 3-tensor (ms) 1-layer Strassen (ms)

20 1.076 £ 0.057 1.775 £ 0.085 1.367 £ 0.057 1.442 4+ 0.062 1.593 £ 0.086
50 1.079 £ 0.048 1.757 £ 0.060 1.363 £ 0.055 2.911 £0.044 1.594 £ 0.088
100 1.080 £ 0.048 1.781 £ 0.097 1.374 &£ 0.060 13.813 +0.051 3.395 £ 0.081

Figure 5: Average running time of various attention schemes implemented on NVIDIA A100 GPU.
Tree-attention performs as fast as self-attention, implying that hidden constants in the time complexity
computations are small.

Discussion. We obtain the following conclusion about tree-attention from these experiments.

* One layer tree-attention can successfully learn function composition, despite having only
three query-key matrices and only one MLP layer (compared to two-layer self-attention that
has two query matrices, two key matrices and two MLP layers).

60

Under review as a conference paper at ICLR 2026

* One layer tree-attention exhibits better learnability for function composition than two layer
self-attention as in Figure 2] since accuracy increases faster for tree-attention.

* Tree-attention has an efficient inference time. From Table 5] we infer that it has a running
time comparable to self-attention, and in our cases, even outperforms two layer self-attention.

H.2 COGS DATASET

To give further evidence of the practical advantage of tree-attention, we evaluate two simple models
(one with self-attention and one with tree-attention) on a benchmark NLP task, the COGS dataset
Kim & Linzen|(2020). We compare the two models, which differ only in which attention mechanism
they use, and evaluate the difference.

COGS is a dataset which challenges the model to perform a composition based task, in which it must
parse sentences into fragments, and understand the relationships of the different fragments throughout
the sentence. In our experiment, the words of the sentences, along with special characters, are input
to the transformer after encoding by a pre-trained tokenizer, and the error is computed on the output
which is expected to be a semantically parsed sentence.

Example 1. Input: A melon was given to a girl by the guard .
Target: * guard (x _9); melon(x _1)AND give. theme (x _3,x_1)AND give. recipient (x _
3,x_6)AND give. agent (x _3,x_9)AND girl (x _6)

From the above example, the transformer is supposed to figure out that ‘guard’ is the subject, and is
present at position 9 of the sentence, where indexing starts from 0. The other nouns are ‘melon’ and
‘girl’, in positions 1 and 6 respectively. The verb ‘give’, present at position 3, has logical forms given
by a theme ‘melon’ (position 1), recipient ‘girl’ (position 6), and agent ‘guard’ (position 9).

We trained both tree-attention and self-attention on the training set of COGS, and tested them on
in-distribution test set as well as a generalization test set. Including a generalization test set is
important to make sure the model is not just memorizing the distribution. We compare the exact
token match accuracy for both, and infer that tree-attention performs better in the generalization
set than self-attention. This gives strong evidence of the inherent ability of tree-attention to solve
composition-related tasks.

Figure [6] shows the table for the final accuracy results. The learning plots have been described in
Figure[7] where tree-attention almost always out-performs self-attention. The training was performed
over 10 randomly chosen seeds, and we see in Figure 8] that tree-attention achieves considerable
performance of around 30-50% accuracy on almost half of the seeds.

Implementation details. We use simple 3 layer encoder-only transformers, having embedding
dimension 64 having 4 heads, and an MLP with a hidden layer of size 256. Both transformer models
(using tree-attention and self-attention), were trained for 200 epochs with a batch size of 32 (755
batches per epoch) with a learning rate of 0.001, and tested on the in-distribution test set and the
generalization test set. The results for in-distribution test token accuracy were similar, both giving an
exact match of around 97.5%. The generalization set accuracies have been plotted as follows.

Tree-attention Self-attention
Generalization token accuracy | 0.727691 +0.013486 0.723993 £ 0.008649
Generalization exact match 0.264919 £ 0.127609 0.239024 £ 0.087350
Figure 6: Table for mean accuracies and standard deviation over 10 random seeds.

61

Under review as a conference paper at ICLR 2026

Generalization Test Token Accuracy Generalization Test Exact Match Accuracy

0.74 1 0.4

0.72

o
w
L

o
¥
N

0.70

Token Accuracy
Exact Match Accuracy

o
=
L

0.68

—— self-attn token —— self-attn exact
0.66 | —— Tree-attn token 0.0 4 —— Tree-attn exact
25 50 73 100 125 150 175 200 25 50 75 100 125 150 175 200

Epochs Epochs

Figure 7: Plots for mean & one standard deviation over 10 random seeds for token accuracy and exact
match accuracy on the generalization set. Tree-attention has higher accuracy than self-attention.

06 Tree-attention: Gen Exact Match per Seed Self-attention: Gen Exact Match per Seed
' Seed 1 Seed 6 — Seedl Seed 6
Seed 2 Seed 7 Seed 2 Seed 7
Seed 3 Seed 8 Seed 3 Seed 8
057 — seedd Seed 9 — Seed4 Seed 9

Seed 5 Seed 10 Seed 5 Seed 10

o
kS

2

/ 2 /,-\\/
LT

Exact Match Accuracy
°
W

o
N
<

1 ~ 4 P 'S
01 » y . e ’/ﬁ
7 AT \
0.0 = . ; . ; . . . = : . , : : . ,
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 8: Exact match accuracies with each seed on the generalization set for tree-attention and
self-attention. Tree-attention reaches ~ 40% accuracy for 4 out of 10 random seeds.

Conclusion. From the learning experiments, we infer that tree-attention is more expressive when
it is used to solving composition based task. As can be inferred in Figures[7]and[8] tree-attention
noticeable performance benefits for several seeds, which calls for future work to explore learning
heuristics for further strengthening the results.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models have been used to find related works, and to polish the code for experiments.

62

	Introduction
	Running time considerations
	Poly-attention is all you need

	The poly-attention mechanism
	Beyond self-attention: the power of poly-attention
	An example: function composition
	Tree-attention: polynomials leading to efficient poly-attention
	Computational complexity of non-tree poly-attention
	Representational strength of poly-attention
	Implications of poly-attention

	Technique overview
	Experimental validation
	Ethics statement
	Reproducibility statement
	Preliminaries
	Roadmap
	Notation and background
	Conjectured hard problems

	Related works
	Warm-up: Strassen-attention upper and lower bounds
	Algorithm for Strassen-attention
	Hardness of Strassen-attention
	Conditional hardness of -Gap-IP
	Hardness of approximating Strassen-attention

	Proofs of Section 3.2: tree-attention
	Proofs of Section 3.3: computational complexities of poly-attention
	Polynomial method for poly-attention
	Time lower bounds for poly-attention
	Time lower bounds based on degree of polynomial using SETH
	Time lower bounds based on substructure of polynomial using Max-kSAT conjecture
	Time lower bounds for degree 2 polynomials using Max-2SAT conjecture

	Proofs of Section 3.1: function composition
	Proofs of Section 3.4: polynomial root-finding
	Experimental details
	Function composition
	COGS Dataset

	The use of Large Language Models (LLMs)

