
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks

Nicholas H. Barbara 1 Ruigang Wang 1 Ian R. Manchester 1

Abstract
This paper presents a study of robust policy net-
works in deep reinforcement learning. We in-
vestigate the benefits of policy parameterizations
that naturally satisfy constraints on their Lipschitz
bound, analyzing their empirical performance and
robustness on two representative problems: pen-
dulum swing-up and Atari Pong. We illustrate
that policy networks with small Lipschitz bounds
are significantly more robust to disturbances, ran-
dom noise, and targeted adversarial attacks than
unconstrained policies composed of vanilla multi-
layer perceptrons or convolutional neural net-
works. Moreover, we find that choosing a policy
parameterization with a non-conservative Lips-
chitz bound and an expressive, nonlinear layer
architecture gives the user much finer control over
the performance-robustness trade-off than exist-
ing state-of-the-art methods based on spectral nor-
malization.

1. Introduction
Deep reinforcement learning (Deep RL) has been the driving
force behind many recent successes in learning-based con-
trol, including in discrete game-like problems (Mnih et al.,
2015), robotic manipulation (Kalashnikov et al., 2018), and
locomotion (Rudin et al., 2021). However, the applicabil-
ity of Deep RL to performance- and safety-critical systems
is currently limited by questions of its robustness (Huang
et al., 2017). It is well known that neural networks can be
highly sensitive to small input perturbations, making policy
networks learned via Deep RL potentially unrobust to dis-
turbances, noise, and targeted adversarial attacks (Szegedy
et al., 2013; Chakraborty et al., 2018). Despite sharing
similar sensitivity issues to neural classifiers, for which
many robust neural networks have recently been developed
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(Bernd & Lampert, 2022; Trockman & Kolter, 2021; Wang
& Manchester, 2023), the use of robust policy architectures
in Deep RL has not been widely studied.

Most common approaches to improving policy robustness
in Deep RL are based on adversarial training, where ad-
versarial attacks on a policy’s inputs are optimized during
training to encourage the network to perform well under
perturbations (Pattanaik et al., 2017). While this works
well in applications where the structure of the perturbations
is always similar to those seen during training, adversarial
training only certifies a lower bound on a policy’s robustness.
It is therefore possible to find new, out-of-sample attacks
that cause the policy to fail (Russo & Proutiere, 2021). An
alternative strategy is to learn control policies with a certi-
fied upper bound on their sensitivity to perturbations using
methods like randomized smoothing (Kumar et al., 2022;
Wu et al., 2022) and loss-function regularization (Oikarinen
et al., 2021; Nie et al., 2024). These methods bound the
sensitivity of a learned policy during the training process. It
is interesting to ask whether, via careful choice of a policy’s
architecture and parameterisation, we can directly bound
the sensitivity of a policy independently of how it is trained.

One promising approach is to use neural network policies
that are certifiably robust to perturbations by construction.
This can be achieved by constraining the Lipschitz bound
of the network. A neural network f : Rn → Rm is said to
have an ℓ2 Lipschitz bound of γ if

∥f(x1)− f(x2)∥2 ≤ γ∥x1 − x2∥2, ∀x1, x2 ∈ Rn. (1)

The true ℓ2 Lipschitz constant Lip(f) is the smallest γ satis-
fying (1). Lipschitz-bounded networks are then “smoother”
and less sensitive to input perturbations since small varia-
tions to their inputs will induce only small variations in their
outputs. Despite the wealth of recent work on constructing
Lipschitz-bounded deep networks (Bernd & Lampert, 2022;
Trockman & Kolter, 2021; Wang & Manchester, 2023), to
the best of our knowledge, the only method tested so far
in Deep RL is spectral normalization (Bjorck et al., 2021;
Takase et al., 2022) which is known to give conservative
bounds on the true Lipschitz constant of the network. This
paper therefore investigates the following questions:

1. Can Lipschitz-bounded networks improve the empiri-
cally-observed robustness of policies in deep RL?
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2. If so, does the policy network architecture matter? That
is, do more sophisticated policy parameterizations with
less-conservative Lipschitz bounds give finer control
over the performance-robustness trade-off?

We provide an initial empirical study of Lipschitz-bounded
policy networks in Deep RL on two representative prob-
lems: pendulum swing-up, a classical benchmark problem
in control and RL; and Atari Pong, a simple proxy for vision-
based autonomous decision-making tasks. To the best of
our knowledge, our comparison of Lipschitz-bounded policy
architectures in Deep RL is the first of its kind.

2. Background and Prior Work
In this section, we first introduce the concepts of deep rein-
forcement learning and adversarial attacks. We then provide
an overview of recent developments in robust neural net-
works with certifiable Lipschitz bounds.

2.1. Deep Reinforcement Learning

We introduce RL from a control-theoretic perspective
(Fig. 1). Consider a discrete-time nonlinear dynamical sys-
tem

xt+1 = f(xt, ut, wt) (2)

with state vector xt ∈ Rn, controlled inputs ut ∈ Rm, and
disturbances wt ∈ Rp. The task is to learn feedback control
policies of the form ut = κ(xt; θ) parameterized by θ ∈ Rq

which (locally and approximately) solve

max
θ

R := E

[ ∞∑
t=0

ρtrt(xt, ut)

]
s.t. xt+1 = f(xt, ut, wt), ut = κ(xt; θ),

(3)

where rt is the instantaneous reward, ρ ∈ (0, 1) is a “dis-
count factor,” R is the total expected reward, and the ex-
pectation E[·] is taken over some known distributions of
disturbances wt and initial conditions x0. In Deep RL, the
controller κ is a deep neural network (DNN) parameterized
by θ. In this paper we take Proximal Policy Optimization
(PPO) (Schulman et al., 2017) as our training method due
to its simplicity, speed, and performance.

 

 

 

 

  

Figure 1: Reinforcement learning and adversarial attacks.

2.2. Adversarial Attacks for RL

Given a learned policy κ(· ; θ), an adversarial attack is an
input sequence v = (v0, v1, . . .) with some restricted “at-
tack size” ϵ > 0 that is designed to reduce the expected
cumulative reward of the policy as much as possible. While
attacks can be designed to change the closed-loop behavior
in many ways, the most common structure is an additive
perturbation to the policy input (i.e., perturbations to the
state measurements, Fig. 1) (Huang et al., 2017; Pattanaik
et al., 2017). The problem can be formulated as

min
v

R s.t. xt+1 = f(xt, κ(xt + vt; θ), wt),

∥vt∥ ≤ ϵ, ∀t,
(4)

where ∥·∥ can be any p-norm with 1 ≤ p ≤ ∞. If the reward
function rt and dynamic model f are both differentiable and
known to the attacker, (4) can be solved by gradient descent
methods. If part of the dynamical system is unknown or not
differentiable, solving (4) is difficult or impossible and it is
common instead to solve the simplified problem:

max
vt

∥κ(xt + vt; θ)− κ(xt; θ)∥ s.t. ∥vt∥ ≤ ϵ. (5)

That is, find an admissible attack vt which leads to large
policy output perturbation at each time step, regardless of its
effect on the final reward (Huang et al., 2017). Problem (5)
can be solved by attack methods like Projected Gradient
Descent (PGD) (Madry et al., 2018).

2.3. Lipschitz-Bounded Deep Networks

The adversarial attack problem in (5) is exactly the calcula-
tion of the (local) Lipschitz constant of the policy network
κ. We can therefore control the effect of adversarial attacks
everywhere in state space by bounding the global Lipschitz
constant Lip(κ) ≤ γ. Policy networks with smaller γ are
then “smoother” and are likely to be more robust to small
attacks than those with a large γ.

In deep RL, the policy network κ is often parameterized by
a multi-layer perceptron (MLP) or a convolutional neural
network (CNN) of the form of

κ = gL ◦ σ ◦ gL−1 ◦ · · · ◦ σ ◦ g1 (6)

where σ is a fixed monotone and 1-Lipschitz scalar activa-
tion (e.g., ReLU, tanh, sigmoid, etc.) and gk is a linear layer
gk(x) = Wkx+ bk with Wk, bk as the weights and biases,
respectively. The Lipschitz constraint for (6) is then

Lip(κ) = sup
J2,...,JL

∥WLJLWL−1 · · · J2W1∥2 ≤ γ (7)

where Jk is a diagonal matrix with 0 ≤ Jk,ii ≤ 1. Since it is
NP-hard to compute the exact Lipschitz constant (Virmaux
& Scaman, 2018), a practical approach is to find an upper
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bound γ for Lip(κ) and then impose the constraint γ =
γ. There are many bound estimation methods resulting
in different constructions of Lipschitz networks. A metric
to measure the expressive power of Lipschitz networks is
tightness, which is defined as γ/γ (Wang & Manchester,
2023) with γ as the empirical lower Lipschitz bound:

γ := max
x∈X,∥v∥2≤ϵ

∥κ(x+ v)− κ(x)∥2
∥v∥2

(8)

where v ∈ Rn and X ⊂ Rn is some compact region. Note
that Lip(κ) ∈ [γ, γ].

A simple Lipschitz bound estimation is the layer-wise spec-
tral norm bound γs =

∏L
k=1 ∥Wk∥2. This approach utilizes

the fact that common activation functions σ are 1-Lipschitz.
Thus, we can construct Lipschitz policy networks via scaling
factors and 1-Lipschitz linear layers, where three represen-
tative examples are given as follows.

• (SN) The spectral normalization (SN) layer (Miyato
et al., 2018) is a linear layer with weight W = (1/ρ)A
where A is a learnable weight, and ρ is its maximal
singular value (i.e., ∥W∥2 = 1). Lipschitz networks
composed of SN layers often have quite loose Lipschitz
bounds such that γ/γ is very small.

• (AOL) The almost orthogonal Lipschitz (AOL) layer
(Bernd & Lampert, 2022) is a linear layer with weight
W = AD where A is a learnable matrix and D is
a diagonal matrix with Dii =

√∑
j |A⊤A|ij . The

experimental results in Bernd & Lampert (2022) show
that the learned weight W tends to have singular values
close to 1, which helps to improve the model tightness.

• (Cayley) To obtain an even tighter Lipschitz bound, an
orthogonal layer was proposed in Trockman & Kolter
(2021) by leveraging the Cayley transform. Specifi-
cally, given a free learnable weight P ∈ Rn×n, one
first obtains a skew symmetric matrix A = P − P⊤

and then constructs the weight matrix by W = (I −
A)(I +A)−1. It is easy to verify that W⊤W = I and
so all singular values of W are 1.

A much tighter bound estimation method was recently pro-
posed in Fazlyab et al. (2019), which explores both the
monotonicity and Lipschitz properties of the activation σ
by leveraging the integral quadratic constraint (IQC) frame-
work (Megretski & Rantzer, 1997). Direct (i.e. uncon-
strained) parameterizations based on IQC were proposed in
Revay et al. (2020) for deep equilibrium networks, in Araujo
et al. (2023) for residual networks, and in Wang & Manch-
ester (2023) for deep MLPs and CNNs. In particular, Wang
& Manchester (2023) shows that the IQC-based approach
can lead to a 1-Lipschitz nonlinear layer as follows.

• (Sandwich) The Sandwich layer is a 1-Lipschitz non-
linear layer of the form

g(x) =
√
2A⊤Ψσ

(√
2Ψ−1Bx+ b

)
(9)

where Q =
[
A B

]
is a semi-orthogonal matrix

(QQ⊤ = I) parameterized by the Cayley transforma-
tion, and Ψ is a positive diagonal matrix parameterized
via an exponential mapping. Based on the above 1-
Lipschitz layer, we can construct the γ-Lipschitz policy
network κ via

κ(x) =
√
γgL ◦ gL−1 ◦ · · · ◦ g1(

√
γx). (10)

Note that (10) can be transformed back to the MLP
form (6). In Wang & Manchester (2023), experimental
results on image datasets show that (10) can achieve
better performance than 1-Lipschitz linear layers such
as AOL (Bernd & Lampert, 2022) and Cayley (Trock-
man & Kolter, 2021). It is natural to ask whether
similar results hold true for Deep RL.

3. Experimental Setup
We study two classic RL problems — pendulum swing-
up and Atari Pong — to investigate the research questions
outlined in Section 1. Our code and training details are
available on GitHub1,2 and in Appendix A, respectively.

Pendulum Swing-up aims to swing a physical pendulum
to its upright equilibrium based on the quadratic reward
rt = −(α2

t + 0.1α̇2
t + 0.001u2

t ), where αt is the pendulum
angle (wrapped to [−π, π]) and ut is the pendulum torque.
The optimal policy is well-known to have sharp decision
boundaries which make it susceptible to chattering and in-
stability under small measurement perturbations, delays,
or uncertainty. We trained MLP policies (6) without any
bounds on the network Lipschitz constant, and Lipschitz-
bounded policies using the Sandwich parameterization (9).
We investigated the robustness of each policy to two sources
of perturbations: a) sample delays; and b) adversarial at-
tacks with constrained ℓ2 norm. Adversarial attacks were
computed by solving (4) over a sequence of four 50-sample
windows with gradient descent.

Atari Pong is a video game in which two players each
control a paddle that can move up and down and try to
deflect a puck into their opponent’s goal (Fig. 6). The reward
is the net game score, with a maximum score of 21 goals
to nil. An automated “computer” player controls the left
paddle and the RL policy controls the right paddle. It is
a commonly-studied benchmark in Deep RL (Mnih et al.,
2015; Russo & Proutiere, 2021). The game can be written
as an RL problem (3) where the states xt are grayscale

1
https://github.com/nic-barbara/Lipschitz-RL-MJX

2
https://github.com/nic-barbara/Lipschitz-RL-Atari
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gameplay images and the control actions ut are discrete
paddle movements. We trained a classic, unconstrained
CNN model (6) and four different Lipschitz-bounded policy
architectures (SN, AOL, Sandwich, Cayley) with various
Lipschitz bounds. We compared the robustness of each
policy network to: a) uniform random noise; b) PGD attacks
(5) with constrained ℓ2 norm; and c) PGD attacks (5) with
constrained ℓ∞ norm.

4. Results and Discussion
We first study the advantages of Lipschitz-bounded policy
networks in terms of robustness to perturbations and adver-
sarial attacks, using pendulum swing-up as an illustrative
example (Sec. 4.1). We extend this study to vision-based
feedback control in Pong (Sec. 4.2) and compare the bene-
fits of different Lipschitz-bounded policy architectures. In
Figures 4 and 5 and Table 1, Lipschitz lower bounds γ were
computed for each policy by performing gradient ascent on
the model inputs to maximize the local Lipschitz constant.

4.1. Illustrative Example — Pendulum Swing-up

Let us first consider the effect of small Lipschitz bounds
on unperturbed policy networks. Figure 2 compares the
policy landscape and (empirically-estimated) local Lipschitz
constant in phase space for an unconstrained MLP policy
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(b) Lipschitz-bounded.
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(c) Unconstrained.

°4 °2 0 2 4

Angular position (rad)

°7.5

°5.0

°2.5

0.0

2.5

5.0

7.5

A
n
gu

la
r

ve
lo

ci
ty

(r
ad

/s
)

0.0

0.9

1.8

2.7

3.6

4.5

5.4

L
oc

al
L
ip

sc
h
it

z
b
ou

n
d

°4 °2 0 2 4

Angular position (rad)

°7.5

°5.0

°2.5

0.0

2.5

5.0

7.5

A
n
gu

la
r

ve
lo

ci
ty

(r
ad

/s
)

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

12.8

L
oc

al
L
ip

sc
h
it

z
b
ou

n
d

(d) Lipschitz-bounded.

Figure 2: Contours in phase space of control actions (a,b)
and local Lipschitz bounds (c,d) for an unconstrained (MLP)
and a Lipschitz-bounded (Sandwich, γ = 4) policy show
how Lipschitz bounds control a policy’s smoothness.
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Figure 3: Pendulum trajectories generated by unconstrained
(MLP) and Lipschitz-bounded (Sandwich, γ = 4) policies
in nominal operation, with sample delays, and with ℓ2 ad-
versarial attacks. Red dashed lines indicate the target.

and a Lipschitz-bounded policy composed of Sandwich
layers with γ = 4. The unconstrained policy has sharp
decision boundaries, either side of which is flips the sign
of the control torque (limited to ±1N.m). While these
sharp changes are optimal in the unperturbed case, it is
clear that any small uncertainty in the pendulum’s position
or velocity will cause the network to apply a drastically
different control action, potentially driving the system to
instability. In contrast, imposing a bound on the Lipschitz
constant with Sandwich layers visibly smooths the decision
boundaries with negligible penalty to the final test reward
(−153 for unconstrained and −157 for Lipschitz-bounded,
see Figure 8).

Figure 3 illustrates the effect of this smoothing on each pol-
icy’s robustness to sample delays and ℓ2-optimal adversarial
attacks. The unperturbed trajectories in Figure 3 indicate
that both the unconstrained and Lipschitz-bounded policy
networks perform similarly in nominal operation. However,
when introducing a small sample delay (2 time samples,
0.1 s) or a small adversarial attack (ϵ = 0.11), the uncon-
strained policy is unable to hold the pendulum stable and
upright, whereas the Lipschitz-bounded policy is successful
and only exhibits minor oscillations about the equilibrium
under adversarial attacks.

We find that this improvement in robustness is highly corre-
lated with the policy’s Lipschitz bound. Comparing uncon-
strained policies to Lipschitz-bounded policies with various
γ in Figure 4, there is a smooth transition from high to
low robustness to sample delays and ℓ2-optimal adversarial
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Figure 4: Robust performance of unconstrained (MLP) and
Lipschitz-bounded (Sandwich) policies on pendulum swing-
up under sample delays and ℓ2-optimal adversarial attacks.
Panels (b,d) show cross-sections of (a,c) as a function of
each model’s empirically-estimated Lipschitz lower bound.
Bands and error bars show one standard deviation over 10
random model initializations. Sample time is 0.05 s.

attacks as the policy’s Lipschitz bound increases. Interest-
ingly, it appears that there is a “best choice” for γ, and
that restricting it to very small values (γ = 3) harms the
closed-loop performance. This is to be expected, since the
optimal policy for pendulum swing-up is known to be non-
smooth, hence with excessive regularization it is likely that
the network’s parameter space does not contain any high-
performing policies. Aside from the policies with γ = 3,
all models were successfully trained to approximately the
same final reward, as shown in Figure 8. It is therefore clear
from Figures 2 to 4 that, at least in the context of pendulum
swing-up, Lipschitz-bounded policy networks significantly
improve robustness to disturbances and adversarial attacks
over standard, unconstrained networks.

4.2. Comparing Architectures — Atari Pong

In the game of Pong, we expect small amounts of image
noise to make very little difference to the state of the game
and the optimal action. We would therefore hope that
smooth, Lipschitz-bounded policies can improve robustness
to perturbations like random noise and adversarial attacks.
We see this immediately in Figure 5, where we compare the
robustness of unconstrained CNN policies and Lipschitz-
bounded Sandwich policies to uniform random noise, ℓ2
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(c) ℓ2 PGD attacks.
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(e) ℓ∞ PGD attacks.
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(f) Cross-section at ϵ = 1.05.

Figure 5: Robust performance of unconstrained (CNN)
and Lipschitz-bounded (Sandwich) policies for Atari Pong.
Bands and error bars show one standard deviation over 4
random model initializations.

PGD attacks, and ℓ∞ PGD attacks. The same qualitative
results observed for the pendulum in Figure 4 can be seen
in Figure 5: there is a smooth transition from high to low ro-
bustness as γ decreases; robustness is improved not just for
ℓ2-constrained attacks (which we expect for policies with
a small ℓ2 Lipschitz bound), but also for random noise and
ℓ∞-constrained attacks; and if γ is too small (e.g., γ = 5
here), the policy’s nominal performance and robustness to
perturbations is degraded. In this case, it is possible that the
γ = 5 models have not finished training and could perform
better if trained over more epochs (Fig. 7d).

It is interesting to look deeper into the effect of adversarial
attacks on these models. Figure 6 shows just how much
of an improvement Lipschitz-bounded policy networks pro-
vide in Pong over a standard, unconstrained CNN. The
CNN loses the game when subject to very small amounts
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Figure 6: Adversarial examples showing the smallest attacks
required to make an unconstrained (CNN) and a Lipschitz-
bounded (Sandwich, γ = 10) policy lose the game. In each
image, the “computer” controls the paddle on the left, while
the policy controls the paddle on the right. All attacked
frames show scenarios where the policy is about to concede
a goal (puck moving to the right).

of random noise and almost imperceptible adversarial at-
tacks. In contrast, the Lipschitz-bounded policy is only
beaten with a level of random noise that would even make
the game difficult for a human. Moreover, highly-structured
ℓ2-constrained attacks are required to beat the Lipschitz-
bounded policy. Looking closely at Figure 6, successful ℓ2
PGD attacks try to trick the policy into thinking the oppo-
nent’s paddle is higher than it actually is while also trying to
hide the exact location of the puck. The ℓ2 attacks also seem
to focus on the white boundary walls of the game. It is less
clear why the policies should be sensitive to these features,
but we hypothesize that the straight lines of the walls may
appear similar to a paddle in feature space after passing
through convolutional layers. There is no clear structure
to the ℓ∞ PGD attacks and they remain rather small, since
the Lipschitz-bounded policies have a constrained ℓ2 Lips-
chitz bound, and the ℓ2 norm is only a loose upper bound
of the ℓ∞ norm in high-dimensional spaces. The additional
robustness to ℓ∞ PGD attacks over CNN policies is a nice
bonus.

So far, we have compared Lipschitz-bounded policy net-
works constructed from Sandwich layers with unconstrained
networks to illustrate that smoother policies can improve
robustness in Deep RL. It turns out that in addition to tuning
its upper bound γ, the layer architecture we use to bound
the Lipschitz constant Lip(κ) of a policy κ is extremely
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Figure 7: Test reward during training on Atari Pong for all
layer architectures. Bands show one standard deviation over
4 random model initializations.

important. Figure 7 compares the training curves of all
four Lipschitz-bounded policy architectures introduced in
Section 2.3 with unconstrained CNN policies, while Ta-
ble 1 summarizes their nominal and robust performance.
It is immediately clear from Figures 7a and 7b that the
two layer architectures known to have conservative bounds
on Lip(κ), SN and AOL, perform poorly when γ is small.
When γ ≤ 20, neither architecture ever produces a winning
policy. For larger γ, the SN and AOL policies can learn
to win the game, but the training dynamics are extremely
slow in comparison to the CNN (this is a known problem for
AOL, see Bernd & Lampert (2022, Sec. 7)). Interestingly,
Table 1 shows that the estimated lower bound γ on Lip(κ)
for these policies is very small when γ is small. This sug-
gests that the conservative parameterization of SN and AOL
layers restricts their parameter spaces to a small set of very
smooth models which does not include high-performing
policy networks. In contrast, Figures 7c and 7d show that
the two layer architectures with much tighter bounds on
Lip(κ), Cayley and Sandwich, perform quite well even for
small choices of γ. The choice of γ still seems to have
a strong impact on the training dynamics for these layers
— as γ increases, so too does the speed at which the poli-
cies converge on a winning strategy. This raises interesting
questions about the coupling between a policy’s Lipschitz
constant and the exploration of its parameter space, which
we leave for future work.

Looking closer at Table 1 reveals that simply having a tight
Lipschitz bound (i.e., close lower and upper bounds γ and γ)
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Table 1: Averaged results (4 random model initialisations and 20 random game and attack seeds) on performance and
robustness of policy networks trained on Atari Pong. γ is the certified Lipschitz upper-bound for a network and γ is its
empirically-estimated lower-bound. The unperturbed reward is the final mean test reward achieved during training. Results
for each attack strategy are the smallest average attack size ϵ required to beat the policy (i.e., reward < 0). Attack results are
not provided for policies that did not learn a positive reward. Bold values indicate the overall best performing models in
each column. Values with an * indicate the best performing models for each γ.

Policy Lipschitz Reward Smallest winning attack size ϵ (↑)

γ γ Unperturbed Uniform ℓ2 PGD ℓ∞ PGD

CNN - 738 20.1 18.7 19.5 0.38

SN

5 1.14 -20.2 - - -
10 2.78 -19.4 - - -
20 6.05 -18.7 - - -
60 24.7 1.21 15.0 9.80 0.21
100 42.4 14.8 21.5 21.3 0.49

AOL

5 1.40 -18.9 - - -
10 2.95 -16.9 - - -
20 7.62 -9.28 - - -
60 15.3 1.31 12.4 19.2 0.52
100 17.4 8.85 23.6∗ 42.3 1.20∗

Cayley

5 4.56 13.6 23.7 106 1.52
10 8.99 17.8 28.7 154 1.59
20 16.6 20.0 23.1 129∗ 1.36
60 34.8 20.6∗ 20.9 67.4∗ 0.98∗

100 47.0 20.4∗ 17.1 54.0∗ 0.76

Sandwich

5 4.16 17.5∗ 33.4∗ 183∗ 2.01∗

10 6.90 19.5∗ 35.0∗ > 200∗ 2.08∗

20 12.4 20.2∗ 30.8∗ 99.2 1.53∗

60 28.0 20.6∗ 23.9∗ 58.1 0.94
100 42.5 20.2 20.1 43.3 0.63

is not the only factor contributing to a policy’s performance
and robustness. Instead, there appears to be an advantage
to using “expressive” policy networks, particularly when
high robustness (small γ) is required.Table 1 indicates that
both the Sandwich and Cayley policies exhibit strong perfor-
mance and robustness for γ ≥ 20. Either layer architecture
is therefore a suitable choice for reasonable improvement
over existing methods in robust RL like SN. For smaller
γ < 20, however, Sandwich policies are far superior, and
with γ = 10 they are the most robust of any policy across
all three input perturbations while still achieving a strong
unperturbed reward of 19.6. This is despite the fact that
Cayley policies often have a tighter Lipschitz bound than
the Sandwich policies (take γ = 10 as an example). We
suggest that this is due to the less conservative parameteri-
zation of the Sandwich layers. Each of the SN, AOL, and
Cayley policies are composed of linear layers with a spectral
norm of approximately 1 (exactly 1 for Cayley). In contrast,
Sandwich layers are nonlinear, have no direct restriction
on their spectral norm (Wang & Manchester, 2023, Fig. 4),
and instead constrain Lip(κ) via a composition of nonlinear
layers which are a complete parameterization of the tightest
known bounds on the Lipschitz constant of DNNs (Fazlyab

et al., 2019). This allows the Sandwich models to converge
on policy networks that are both performant and robust even
when their parameter space is restricted by a small value of
γ, allowing finer control over the performance-robustness
trade-off in Deep RL.

5. Conclusions
This paper has studied the robustness benefits of Lipschitz-
bounded policy networks in Deep RL. We have found that
policy networks with small Lipschitz bounds are signifi-
cantly more robust to perturbations such as disturbances, ran-
dom noise, and targeted adversarial attacks. Moreover, we
have observed that choosing a policy with non-conservative
Lipschitz bounds and an expressive, nonlinear layer archi-
tecture gives the user finer control over the performance-
robustness trade-off than existing methods based on spectral
normalization. This raises interesting questions for future
study, such as whether Lipschitz-bounded policy networks
can augment or alleviate the need for adversarial training,
and whether the observed benefits can be transferred to
real-world robotic systems.
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A. Training Details
A.1. Pendulum Swing-up Experiments

The pendulum was modeled in MuJoCo XLA (MJX), a fully-differentiable implementation of the MuJoCo physics simulator
(Todorov et al., 2012) written in JAX (Bradbury et al., 2018) that allows users to take gradients through the entire closed-
loop system. We trained unconstrained MLP and Lipschitz-bounded (Sandwich) policies using the PPO implementation
in Freeman et al. (2021), which leverages the scalability of JAX to massively multi-thread parallel physics simulations
on a single workstation GPU. Hyperparameters were tuned by varying each parameter one at a time and choosing the
best-performing parameters for an unconstrained MLP. The same hyperparameters were used to train Lipschitz-bounded
policies without any further tuning. Our chosen hyperparameters can be found on our GitHub repository3. We trained 10
policies for each model architecture and choice of γ, each with a different random seed for model initialization. Results
showing robust performance to sample delays and adversarial attacks in Figure 4 were averaged over the 10 policies and
1024 pendulum environments starting from random initial states. MLP networks were composed of 4 linear layers of 32
hidden nodes. Lipschitz-bounded policies were composed of 4 Sandwich layers of 21 hidden nodes to ensure the two model
architectures had a similar number of trainable parameters. We chose tanh activations for all policies in accordance with
Andrychowicz et al. (2021).

A.2. Atari Pong Experiments

We trained unconstrained CNN models and the Lipschitz-bounded policy architectures (SN, AOL, Sandwich, Cayley) across
4 random model initialisations using the PPO implementation in Huang et al. (2022) and the ALE/Pong-v5 environment
from Weng et al. (2022). We used the default hyperparameters chosen for CNN policies in Huang et al. (2022) for all policy
architectures. We could not use the reward gradient to directly optimize (4) as the Pong environment is not differentiable,
hence we implemented attacks with the PGD method from Ding et al. (2019). Robust performance to noise and adversarial
attacks in Figure 5 and Table 1 were averaged over the 4 policies and 20 games of Pong, each with a different random seed.
Further details on the network architecture for each layer type can be found on our GitHub repository4.

B. Additional Results
Figure 8 contains additional results showing the training dynamics for unconstrained and Lipschitz-bounded policy networks
on the pendulum swing-up task. All policies successfully learned to swing and hold the pendulum upright. As with Figure 7,
restricting γ also leads to slower training dynamics (e.g., γ = 3). The effect is less extreme in Figure 8 than in Figure 7.
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Figure 8: Mean test reward during training on pendulum swing-up for unconstrained (MLP) and Lipschitz-bounded
(Sandwich) policies. Bands show one standard deviation over 10 model initializations.

3
https://github.com/nic-barbara/Lipschitz-RL-MJX/blob/main/scripts/pendulum/train_2_train_models.py

4
https://github.com/nic-barbara/Lipschitz-RL-Atari/blob/main/liprl/atari_agent.py
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