
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PDE: ENABLING WHITE-BOX METHODS TO USE
PROPRIETARY MODELS FOR ZERO-SHOT LLM-
GENERATED TEXT DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) can generate text almost indistinguishable from
human-written one, highlighting the importance of machine-generated text detec-
tion. However, current zero-shot techniques face challenges as white-box methods
are restricted to use weaker open-source LLMs, and black-box methods are lim-
ited by partial observations from stronger proprietary LLMs. It seems impossible
to enable white-box methods to use proprietary models because the API-level ac-
cess neither provides full predictive distributions nor inner embeddings. To break
this deadlock, we propose Probability Distribution Estimation (PDE), estimat-
ing full distributions from partial observations. Despite the simplicity of PDE,
we successfully extend white-box methods like Entropy, Rank, Log-Rank, and
Fast-DetectGPT to latest proprietary models. Experiments show that PDE (Fast-
DetectGPT, GPT-3.5) achieves an average accuracy of about 0.95 across five latest
source models, improving the accuracy by 51% relative to the remaining space of
the baseline (as Table 1). It demonstrates that the latest LLMs can effectively de-
tect their own outputs, suggesting advanced LLMs may be the best shield against
themselves. We release our codes and data at https://github.com/xxx/xxxxxx.

Table 1: Detection accuracy measured in AUROC across five latest LLMs, where the baseline Fast-
DetectGPT uses an open-source model but our PDE (Fast-DetectGPT) uses a proprietary model. The
methods are evaluated on the diverse Mix3 dataset, combining XSum, Writing, and PubMed, with
details presented in the main results (Table 2). The notion “↑” indicates the improvement relative to
the remaining space, calculated by (new − old)/(1.0− old), following Bao et al. (2023).

Method ChatGPT GPT-4 Claude-3 Gemini-1.5 Avg.Sonnet Opus Pro

Fast-DetectGPT 0.9487 0.8999 0.9260 0.9468 0.8072 0.9057(Open-Source: GPT-Neo-2.7B)

PDE (Fast-DetectGPT) 0.9766 0.9411 0.9576 0.9689 0.9244 0.9537
(Proprietary: GPT-3.5) (↑ 54%) (↑ 41%) (↑ 43%) (↑ 42%) (↑ 61%) (↑ 51%)

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2022; Team et al., 2023; Anthropic, 2024) can produce
fluent and cogent text content, which is almost indistinguishable from human-written content (Ip-
polito et al., 2020; Shahid et al., 2022; Dugan et al., 2023). It powers the productivity of various
industries such as journalism (Christian, 2023), social media (Yuan et al., 2022), and education
(M Alshater, 2022), but at the same time causes various risks such as misinformation, disinforma-
tion, and plagiarism (Pan et al.; Weidinger et al., 2021; Meyer et al., 2023), thereby urging automatic
detection tools for building trustworthy AI systems (Kaur et al., 2022; Sun et al., 2024). However,
as long as the LLMs increase their ability, the detection of their generations becomes more difficult
(Mireshghallah et al., 2023; Sadasivan et al., 2023; Tang et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Passage 𝒙𝒙:
“President Joe Biden
claimed in an
interview with The
Weather Channel…”

Fast-DetectGPT with PDE
𝑥𝑥 from GPT

𝑥𝑥 from other

Yes

No

(1) Sample (2) Score (3) Compare

… …�𝐺𝐺𝐺𝐺𝐺𝐺�𝐺𝐺𝐺𝐺𝐺𝐺

GPT

�𝑮𝑮𝑮𝑮𝑮𝑮

PDE

Partial Observation Full Distribution
(e.g., President ___)

Top-3 choices for the blank:
rank token probability
1 Joe 37%
2 Biden 24%
3 Donald 11%

rank token probability
1 Joe 37%
2 Biden 24%
3 Donald 11%
4 Trump 8%
5 Obama 3%
6 Barack 2%
… … …

API return
Algorithm
estimated

probabilities

log𝑝𝑝(𝑥𝑥) − �μ
�σ

Figure 1: Fast-DetectGPT as an example to apply Probability Distribution Estimation (PDE). The
notion G̃PT refers to the model with estimated distribution, where the partial observation (top-K
probabilities) returned by the model API is completed into a full distribution. The ‘token’ column is
just for reference, which is not necessary for calculating the metric (conditional probability curva-
ture).

The most powerful LLMs are generally proprietary models, which only provide limit access through
API. Consequently, the existing white-box methods that require ‘full access’ cannot be applied to
these models, and instead, various black-box methods are developed. The black-box methods, such
as DetectGPT (Mitchell et al., 2023) and DNA-GPT (Yang et al., 2023a), demonstrate competitive
detection accuracies on advanced LLMs like GPT-3, ChatGPT, and GPT-4. However, these meth-
ods are less efficient and less robust compared to their white-box counterparts (Bao et al., 2023),
because they rely on knowing the source model and need multiple evaluations or generations of text
sequences. Instead of improving these black-box methods like Su et al. (2023), we turn back to
white-box methods to see the potential of combining their strength with the power of latest LLMs. 1

For example, Fast-DetectGPT (Bao et al., 2023) uses a fixed surrogate model to detect text from
various source models including ChatGPT and GPT-4. The basic idea is to use a surrogate model
to obtain token distributions to calculate a metric of conditional probability curvature, where the
higher the metric, the more likely the input is machine-generated. Despite its simplicity, it achieves
higher detection accuracies than the black-box methods. However, its detection accuracy on GPT-
4 (AUROC 0.91) is significantly lower than on open-source models (an average of 0.99 on five
models). We speculate that the lower accuracies on latest models are caused by the distribution
mismatch between the small surrogate model and the large source models, which can potentially be
addressed by using latest large models as the surrogate.

To enable white-box methods on proprietary models, we propose Probability Distribution Estima-
tion (PDE) to estimate the full distribution from partial observation returned by model API. This ob-
servation includes the probabilities (logprobs) of the input tokens and a few (at least 1) top-ranking
tokens on each token position, which we assume that a proprietary model gives. 2 Specifically, take
Fast-DetectGPT as an example, illustrated in Figure 1. We first obtain the top probabilities from the
GPT model, and then use these probabilities to estimate the distribution across the entire vocabu-
lary. The basic idea is to find empirical correlation between the top probabilities and full vocabulary
probabilities. To this end, we consider parameterized Geometric distribution, Zipfian distribution,
and a MLP model trained over data to model the correlation. Using PDE, we also extend methods
like Entropy, Rank, and LogRank to proprietary models.

Experiments show exceptionally strong results of these white-box methods using latest LLMs, where
Rank, LogRank, and Fast-DetectGPT using PDE outperform their versions using open-source LLMs
with a significant margins (more than 25% relative to the remaining space). We achieve the best
detection accuracies for five source models, obtaining an accuracy of 0.98 for ChatGPT, 0.94 for

1By ‘latest’, we refer to the most powerful proprietary models that are widely used, like ChatGPT.
2Provided by Completion API of popular models like Google’s PaLM-2 (Anil et al., 2023), OpenAI’s GPT-3

(Brown et al., 2020), GPT-3.5 (OpenAI, 2022), and GPT-4 (OpenAI, 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GPT-4, 0.96 for Claude-3 Sonnet, 0.97 for Claude-3 Opus, and 0.92 for Gemini-1.5 Pro in the
stimulated white-box setting. These results indicate that latest LLMs can detect their generations
with high accuracy.

To our knowledge, we are the first to investigate white-box detection methods on proprietary models,
achieving new state-of-the-art detection accuracies among zero-shot methods, demonstrating that the
most powerful LLMs may be the strongest ‘shield’ against themselves.

2 METHOD

We use the state-of-the-art Fast-DetectGPT (Bao et al., 2023) as an example to illustrate how to
apply PDE to existing white-box methods in Section 2.2, and present three specific PDE algorithms
in Section 2.3. We further discuss three more white-box methods with PDE in Section 2.4.

2.1 TASK AND SETTINGS

We are concentrating on the zero-shot detection of LLM-generated text, which we frame as a binary
classification problem: determining whether a given text was created by a model or a human. A
zero-shot detector usually uses a scoring model to produce a detection metric and makes a decision
by comparing this metric to a predetermined threshold. The scoring model can either be the same
as the source model or a different one, for example a fixed delegate model. The access level to this
scoring model can vary, and methods can be categorized into black-box or white-box methods based
on this (similar to Tang et al. (2024),).

Black-box methods use API-level access to interact with the scoring model, for example propri-
etary GPT-3.5, while white-box methods assume full access to the scoring model, for example
open-source Neo-2.7B. In this definition, methods like Fast-DetectGPT (Bao et al., 2023) and PHD
(Tulchinskii et al., 2024), which employ a delegate open-source model to identify generations from
proprietary LLMs, are categorized as white-box methods. It is crucial to note that this definition
differs from Yang et al. (2023b), which defines black-box and white-box based on the access level
to the source model.

2.2 FAST-DETECTGPT WITH PDE

PDE does not change the overall framework of the baseline but only replaces the model distribu-
tion pθ with estimated distribution p̃θ when the missing part of pθ is required. In the following
description, we rehearsal the framework with the updated distribution.

Fast-DetectGPT posits that human and machine language generation differs in word selection based
on context. While machines favor words with higher model probabilities, humans do not necessar-
ily demonstrate such tendency. This discrepancy is quantified using a metric, naming conditional
probability curvature. And we decide if a text is machine-generated by comparing the metric with a
threshold ϵ, which is chosen according to specific scenarios.

Formally, given a text passage x, a proprietary model pθ, and an estimated distribution p̃θ, the
conditional probability function defined by Fast-DetectGPT is expressed as

pθ(x̃|x) =
∏
j

pθ(x̃j |x<j), (1)

which denotes the predictive distribution of the model taking x as the input. As a special case,
when x̃ equals to x, pθ(x|x) = pθ(x). Take the second word position (j = 2) of the passage
in Figure 1 as an example. Its context is x<2 = ‘President’, and the probabilities for possible
choices x̃2 ∈ [‘Joe’, ‘Biden’, ‘Donald’, ...] are [0.37, 0.24, 0.11, ...]. The tokens x̃j for different j
are independent from each other given the input. Such conditional independence allows for efficient
calculation in the algorithm.

Using the conditional probability function, the conditional probability curvature defined by Fast-
DetectGPT is written as

d(x, pθ) =
log pθ(x)− µ̃

σ̃
, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the token likelihoods pθ(xj |x<j) are provided directly by the proprietary model, like pθ(x2 =
‘Joe’|x<2 = ‘President’) = 0.37, no matter whether xj is among the top-K choices. The expected
score µ̃ and the expected variance σ̃2 are computed using the estimated distribution p̃θ as

µ̃ = Ex̃∼p̃θ(x̃|x) [log p̃θ(x̃|x)] =
∑
j

Ex̃j∼p̃θ(x̃j |x<j) [log p̃θ(x̃j |x<j)] =
∑
j

µ̃j ,

σ̃2 = Ex̃∼p̃θ(x̃|x)
[
(log p̃θ(x̃|x)− µ̃)2

]
=

∑
j

Ex̃j∼p̃θ(x̃j |x<j)

[
(log p̃θ(x̃j |x<j)− µ̃j)

2] = ∑
j

σ̃2
j .

(3)

In the expectations, x̃ ∼ p̃θ(x̃|x) denotes the sampling step while log p̃θ(x̃|x) denotes the scoring
step as illustrated in Figure 1. The expectations over the whole sequence is calculated by accumu-
lating all token-level expectations.

The token-level mean µ̃j signifies the entropy of the predictive distribution at the j-th token. We
calculate it analytically by enumerating all possible choices

µ̃j = Ex̃j∼p̃θ(x̃j |x<j) [log p̃θ(x̃j |x<j)] =
∑
x̃j

p̃θ(x̃j |x<j) log p̃θ(x̃j |x<j), (4)

such as µ̃2 = 0.37 · log 0.37 + 0.24 · log 0.24 + 0.11 · log 0.11 +

The token-level variance σ̃2
j is also computed analytically as

σ̃2
j = Ex̃j∼p̃θ(x̃j |x<j)

[
(log p̃θ(x̃j |x<j)− µ̃j)

2] = ∑
x̃j

p̃θ(x̃j |x<j) log
2 p̃θ(x̃j |x<j)− µ̃2

j , (5)

where the summation over x̃j is similarly achieved by enumerating all possible choices, like σ̃2
2 =

0.37 · log2 0.37 + 0.24 · log2 0.24 + ...− µ̃2
2.

2.3 PROBABILITY DISTRIBUTION ESTIMATION (PDE)

Formally, given a text sequence x, the proprietary model pθ(x̃|x) provides us the likelihood
pθ(xj |x<j) and the top-K token probabilities pθ(x̃

k
j |x<j)|Kk=1 on each token position j, where k

denotes the rank. The problem is then formulated as estimating pθ(x̃j |x<j) over the whole vocabu-
lary according to the given information.

However, we do not need token-probability pairs for metric calculation in general. Take Fast-
DetectGPT as an example. The mean µ̃j and variance σ̃2

j only depend on the probability values
in the distribution. That is to say, we can calculate them using only the ‘probability’ column in the
full distribution in Figure 1, where the ‘token’ column is not necessary. Such an advantage is not
specific to Fast-DetectGPT. Other methods like Entropy, Rank, and Log-Rank can also be calculated
from the probabilities only.

To simplify the discussion below, we denote the probabilities as p(k), omitting the expression of the
token x̃k

j and position j. Using the top-K (K = 3 typically) probabilities p(k)|Kk=1, we estimate the
rest p(k)|Mk=K+1, where M denotes the size of the list. It is worth noting that M is not necessarily
to be as large as the vocabulary size, because large ranks generally correspond to low probabilities.
When the probabilities are small enough, their effects on the metric are ignorable.

Consequently, µ̃j and σ̃2
j are rewritten as

µ̃j =
∑
x̃j

p̃θ(x̃j |x<j) log p̃θ(x̃j |x<j) =
∑
k

p(k) log p(k),

σ̃2
j =

∑
x̃j

p̃θ(x̃j |x<j) log
2 p̃θ(x̃j |x<j)− µ̃2

j =
∑
k

p(k) log2 p(k)− µ̃2
j ,

(6)

where the summation over all possible tokens x̃j is thus converted into the summation over all
possible ranks k.

The probability distribution across ranks generally follows a decaying pattern, where the larger
models tend to have a higher top-1 probability and a bigger decay factor demonstrating a sharper
distribution (Appendix A). We approximate the pattern using parameterized distributions, allocating
the remaining probability mass (excluding top-K probabilities) to ranks larger than K.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Each parameterized distribution represents a family of distributions controlled by some parameters.
Traditionally, we fit the distribution to data points to estimate the parameter, where we could use
the top-K probabilities as the data points. However, this approach may under-utilize the observed
information and infer top-K probabilities different from the real ones.

In this study, we consider the estimation problem in constraints. The basic constraints include:
1) total probability constraint – a summation of the probabilities equals 1. 2) monotonic decrease
constraint – the probability of a larger rank is lower. Using the total probability constraint, we decide
the probability mass to allocate to ranks larger than K. Using the monotone decrease constraint, we
decide a suitable family of distributions. We discuss three specific estimation algorithms as follows.

Estimation Using Geometric Distribution. As the simplest decaying pattern, we consider ex-
ponential decay with a fixed decay factor, resulting in a Geometric distribution. We extend the
distribution to multiple top probabilities and a limited range of k. We express the probabilities for
ranks larger than K in near-Geometric distribution that

p(k) = pk, for k ∈ [1..K]

p(k) = pK · λk−K , for k ∈ [K + 1..M]∑M
k=1 p(k) = 1,

(7)

where λ is a decay factor in (0, 1), and M is the size of the rank list. We solve λ under the constraints
as detailed in Appendix A.1.

Estimation Using Zipfian Distribution. Frequencies of words in natural languages usually adhere
to Zipf’s law (Zipf, 1946; 2013), where the word frequency and word rank follow a Zipfian distribu-
tion. Assuming that the word frequencies in a given context also comply with this law, we consider
it as an alternative distribution for our estimation. Given the top-K probabilities pk, we compute the
probabilities of tokens with a ranking greater than K in a Zipfian distribution

p(k) = pk, for k ∈ [1..K]

p(k) = pK · (β
k−K+β)

α, for k ∈ [K + 1..M]∑M
k=1 p(k) = 1,

(8)

where α and β are two positive parameters. M is the rank-list size. To solve the two parameters, we
introduce an additional loss function to minimize their deviations from typical values. We identify
the best α and β by searching a loss table Loss(α, β) as detailed in Appendix A.2.

Estimation Using a MLP Model. The Geometric and Zipfian algorithms both work on assumptions
about the distributions. An alternate approach that does not rely on these assumptions involves
modeling the distribution within a neural network. We consider the simple Multi-Layer Perceptron
(MLP) model with a single hidden layer, which accepts the top-K probabilities and predicts the
probabilities for the rest of the ranks. The distribution is expressed as

p(k) = pk, for k ∈ [1..K]

p(k) = prest · pMLPθ
(k −K), for k ∈ [K + 1..M]∑M

k=1 p(k) = 1,

(9)

where prest = 1 −
∑K

k=1 pk and pMLPθ
represents the MLP predictive distribution. The MLP is

defined in detail, including training and inference, in Appendix A.3.

2.4 UNIVERSALITY OF PDE

PDE can also be used by other zero-shot detection methods like Entropy, Rank, and LogRank.
For Entropy, the calculation is straight-forward by summing p(k) · log p(k) over all items in the
rank list. For Rank and LogRank, we decide the rank of current token by searching the closest
p(k) compared to current token probability pθ(xj |x<j). In this study, we only examine the basic
white-box methods, leaving the integration of more sophisticated white-box methods and additional
estimation algorithms to future research.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 3 5 7 9
Top-K

0.0

0.1

0.2

0.3

0.4

D
KL

Neo-2.7
Geometric
Zipfian
MLP

Figure 2: KL divergence
against real distributions
from Neo-2.7B.

0.0 0.1 0.2 0.3
DKL

0.60
0.65
0.70
0.75
0.80
0.85
0.90

AU
RO

C

Fast-Detect

0.0 0.1 0.2 0.3
DKL

LogRank

0.0 0.1 0.2 0.3
DKL

Rank
Real
Geometric
Zipfian
MLP

Figure 3: Correlation between AUROC and KL divergence, evaluated
on XSum produced by GPT-4. We use the open-source model Neo-
2.7B as the scoring model for PDE algorithms.

3 EXPERIMENTS

3.1 SETTINGS

We evaluate our methods on four datasets covering seven languages, five source models covering
three model families, and four scoring models from small to large. We run each main experiment
three times and report the median. The metrics used are described in Appendix B.1.

Datasets. We follow studies (Mitchell et al., 2023; Bao et al., 2023; Yang et al., 2023a; Zeng et al.,
2024a) on the evaluation datasets and their settings: XSum for news (Narayan et al., 2018), Writing
for story (Fan et al., 2018), and PubMed for technical question answering (Jin et al., 2019) , where
for each dataset 150 human-written samples are randomly selected and corresponding LLM texts
are generated using the same prefix (30 tokens for articles or questions for QAs). Additionally,
we use M4 (Wang et al., 2024) to incorporate various languages such as Chinese, Russian, Urdu,
Indonesian, Arabic, and Bulgarian , where for each language 150 pairs are randomly selected from
the ChatGPT subsets. To evaluate the detectors ability to handle diverse domains and languages,
we combine XSum, Writing, and PubMed into a single dataset called Mix3, and the six language
datasets into another called Mix6.

Source Models. We evaluate our detector on five latest LLMs from different companies, includ-
ing ChatGPT (gpt-3.5-turbo) (OpenAI, 2022), GPT-4 (gpt-4) (OpenAI, 2023), Claude3 Sonnet
(claude-3-sonnet-20240229) and Opus (claude-3-opus-20240229) (Anthropic, 2024), Gemini-1.5
Pro (gemini-1.5-pro) (Team et al., 2023), where Opus is supposed at the same level as GPT-4 and
Sonnet at the same level as ChatGPT. We use ChatCompletion API 3 of these models to prepare the
datasets.

Scoring Models. A good scoring model can detect generations from a wide range of source models.
We use OpenAI GPT series (from small to large) as the scoring model, inlcuding Babbage (babbage-
002, 1.3B) and Davinci (davinci-002, 175B) (Brown et al., 2020), GPT-3.5 (gpt-35-turbo-0301 or
gpt-35-turbo-1106 almost equally, 175B) (OpenAI, 2022), and GPT-4 (gpt-4-1106) (OpenAI, 2023)
as scoring models using AzureOpenAI (see Appendix B.2). For comparison, we use Neo-2.7 (gpt-
neo-2.7B) (Black et al., 2021), Phi2-2.7B (Javaheripi et al., 2023), Qwen2.5-7B (Yang et al., 2024;
Team, 2024), and Llama3-8B (Dubey et al., 2024) as representatives of open-source models, run
locally on a Tesla A100 GPU.

Baselines. Among zero-shot detectors, we compare our methods with existing solutions such as
Fast-DetectGPT (shortly Fast-Detect) (Bao et al., 2023), DetectGPT (Mitchell et al., 2023), DNA-
GPT (Yang et al., 2023a), and simple baselines such as Likelihood, Entropy, Rank, and Log-Rank
(Gehrmann et al., 2019; Solaiman et al., 2019; Ippolito et al., 2020). For other detectors, we compare
our methods to commercial GPTZero (Tian & Cui, 2023).

Hyper-Parameters. By default, we use top-5 probabilities, a rank-list size of 1000 for Geometric
and 100 for Zipfian and MLP, prompt4 from Table 7 for GPT-4 and prompt3 for other scoring
models. These settings are ablated in Section 3.4 with one hyper-parameter changed each time,
where we report the average accuracy over XSum, Writing, and PubMed.

3
https://platform.openai.com/docs/guides/text-generation/chat-completions-api

6

https://platform.openai.com/docs/guides/text-generation/chat-completions-api

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Main results using PDE, where the columns ‘GPT-4’, ‘Claude-3’, and ‘Gemini-1.5’ display
the AUROCs on the diverse Mix3 dataset, with the detailed results for GPT-4 and Gemini-1.5 in
Table 4 and Claude-3 in Table 5 in Appendix C. We mark the best in each column in bold. Methods
marked with ♢ require multiple evaluations or generations to detect one passage, thereby, consuming
multiple times of cost and time. Additionally, we make a comparison of ACC in Table 6.

Method ChatGPT ChatGPT GPT-4 Claude-3 Gemini-1.5 Avg.
XSum Writing PubMed Mix3 Mix3 Sonnet Opus/Mix3 Pro/Mix3 Mix3

GPTZero 0.9843 0.9303 0.8403 0.9143 0.9009 - - - -

Zero-Shot Detectors Using White-Box Open-Source LLMs
Likelihood (Neo-2.7) 0.9578 0.9740 0.8775 0.9071 0.7690 0.8661 0.9030 0.7416 0.8373
Entropy (Neo-2.7) 0.3305 0.1902 0.2767 0.3136 0.4114 0.3466 0.3265 0.3959 0.3588
Rank (Neo-2.7) 0.7494 0.8064 0.5979 0.7044 0.6448 0.6888 0.7056 0.6260 0.6739
LogRank (Neo-2.7) 0.9582 0.9656 0.8687 0.9059 0.7626 0.8654 0.9042 0.7353 0.8347
DNA-GPT (Neo-2.7) ♢ 0.9124 0.9425 0.7959 0.7192 0.6430 0.7080 0.7326 0.6438 0.6893
DetectGPT (T5-11B/Neo-2.7) ♢ 0.8416 0.8811 0.7444 0.7826 0.6136 0.7967 0.7776 0.7406 0.7422
Fast-Detect (GPT-J/Neo-2.7) 0.9907 0.9916 0.9021 0.9487 0.8999 0.9260 0.9468 0.8072 0.9057
Fast-Detect (Phi2-2.7B) 0.8096 0.7245 0.8121 0.7627 0.5742 0.6957 0.7450 0.6164 0.6788
Fast-Detect (Qwen2.5-7B) 0.7808 0.8117 0.7887 0.7655 0.6862 0.7813 0.8119 0.6839 0.7458
Fast-Detect (Llama3-8B) 0.8508 0.8446 0.7941 0.7796 0.7269 0.8212 0.8510 0.7552 0.7868

Zero-Shot Detectors Using Black-Box Proprietary LLMs
Likelihood (GPT-3.5) 0.9203 0.9925 0.9544 0.9246 0.8029 0.9023 0.9295 0.8043 0.8727
DNA-GPT (GPT-3.5) ♢ 0.9260 0.9329 0.9304 0.8369 0.7748 0.7871 0.8383 0.7107 0.7896
PDE using Geometric

Entropy (GPT-3.5) 0.3188 0.0463 0.1793 0.2160 0.4074 0.2582 0.2339 0.4144 0.3060
Rank (GPT-3.5) 0.8577 0.9845 0.8383 0.8533 0.7395 0.8473 0.8645 0.7406 0.8090
LogRank (GPT-3.5) 0.9240 0.9931 0.9532 0.9277 0.7870 0.9062 0.9336 0.7872 0.8683
Fast-Detect (Babbage) 0.9908 0.9904 0.9570 0.9764 0.8974 0.9438 0.9698 0.8083 0.9191
Fast-Detect (Davinci) 0.9900 0.9976 0.9421 0.9763 0.9131 0.9606 0.9742 0.8601 0.9369
Fast-Detect (GPT-3.5) 0.9808 0.9972 0.9702 0.9766 0.9411 0.9576 0.9689 0.9244 0.9537
Fast-Detect (GPT-4) 0.9815 0.9935 0.9564 0.9735 0.9647 0.9623 0.9817 0.8947 0.9554

PDE using Zipfian
Fast-Detect (GPT-3.5) 0.9826 0.9956 0.9639 0.9647 0.9319 0.9475 0.9588 0.9161 0.9438
Fast-Detect (GPT-4) 0.9885 0.9917 0.9461 0.9768 0.9719 0.9613 0.9792 0.8991 0.9576

PDE using MLP
Fast-Detect (GPT-3.5) 0.9819 0.9959 0.9676 0.9702 0.9342 0.9526 0.9634 0.9184 0.9478
Fast-Detect (GPT-4) 0.9869 0.9930 0.9528 0.9771 0.9705 0.9631 0.9807 0.9001 0.9583

3.2 THE EFFECTIVENESS OF PDE

We assess the effectiveness of PDE by comparing the estimated distributions to the real distributions,
using Neo-2.7B as the scoring model. As Figure 2 shows, their Kullback–Leibler (KL) divergence
decreases as long as more top probabilities are used. Overall, MLP obtains the lowest divergence
while Geometric distribution has the highest divergence, suggesting the most accurate estimation
of MLP. However, the correlation between the KL divergences and detection accuracies varies for
different detection methods and estimation algorithms. As Figure 3 illustrates, the AUROC declines
when the divergence increases for PDE (Fast-Detect and LogRank) with any of the estimation al-
gorithms, while the AUROC inclines for PDE (Rank). Although Geometric distribution has larger
divergences in general, it achieves higher or equal detection accuracies than other algorithms, sug-
gesting the effect of PDE is beyond the similarity of estimated distributions.

It is worth noting that the accuracies achieved by PDE are not significantly lower than the base-
line using real distribution for Fast-Detect and LogRank, and are even significantly higher than the
baseline for Rank, suggesting the effectiveness and potential of PDE.

3.3 MAIN RESULTS

Accuracy and Efficiency. We first compare PDE with existing black-box methods on their de-
tection accuracy, speed, and cost. As Table 2 shows, Fast-Detect (GPT-3.5) surpasses both Likeli-
hood (GPT-3.5) and DNA-GPT (GPT-3.5) with a significant margin across five source models (in
AUROC). The basic method LogRank (GPT-3.5) also outperforms DNA-GPT on four-fifth source
models, demonstrating the effectiveness and universality of PDE. Furthermore, PDE methods spend
significantly less time and cost than DNA-GPT during detection process. Specifically, DNA-GPT
takes a total of 1911 seconds across the three datasets, while PDE takes just 462 seconds, making
the detection process 4.1 times faster. Since DNA-GPT creates 10 completions per passage but PDE

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GPT-3.5 GPT-4
Scoring Model

0.90
0.92
0.94
0.96
0.98
1.00

AU
RO

C

XSum

GPT-3.5 GPT-4
Scoring Model

Writing

GPT-3.5 GPT-4
Scoring Model

PubMed

Geometric Zipfian MLP

Figure 4: Ablation on estimation algorithm,
where the AUROC is averaged across the five
source models. Each dataset has its own pre-
ferred algorithm.

1 3 5 7 10
Top-K

0.75
0.80
0.85
0.90
0.95
1.00

AU
RO

C

Geometric

1 3 5 7 10
Top-K

Zipfian

1 3 5 7 10
Top-K

MLP

Fast-Detect (GPT-4) Fast-Detect (GPT-3.5) LogRank (GPT-4) LogRank (GPT-3.5)

Figure 5: Ablation on top-K, where the AUROC
is averaged across the datasets produced by GPT-
4. Each line represents a combination of methods
and scoring models.

merely echos the probabilities of the input, DNA-GPT ends up costing about 10 times more than
PDE based on current pricing (where the cost per output token is twice of input token)4.

Here, we skip comparison with DetectGPT in the black-box setting, because it requires 100x times
API calls and is affirmed of inferior accuracies compared to DNA-GPT (Yang et al., 2023a) and
Fast-Detect (Bao et al., 2023), which are already our baselines.

Latest LLMs are more accurate detectors. We then compare our method with other existing
methods. Powered by PDE, the white-box methods such as Rank, LogRank, and Fast-Detect using
GPT-3.5 significantly outperforms their open-source version using Neo-2.7, with a relative improve-
ment of 41%, 21%, and 51%, respectively. PDE methods with smaller models also show competitive
results. Fast-Detect (Babbage) outperforms Fast-Detect (Neo-2.7) on all five source models, even
though Babbage (1.3B) is smaller than Neo-2.7 (2.7B). These results demonstrate that the latest
LLMs with PDE are strong detectors.

Larger LLMs can be universal detectors. A recent study (Mireshghallah et al., 2023) reports
that smaller LLMs are more efficient universal detectors, which can detect generations from various
source models. However, our experimental results suggest that larger models can also be universal
detectors, which perform better than smaller proprietary and open-source models across various
source models. Specifically, GPT-3.5 (175B) reach an average AUROC of about 0.95, outperforming
smaller Babbage (1.3B) by about ↑ 43% and Neo-2.7 (2.7B) by about ↑ 51%. These findings suggest
that larger LLMs, when equipped with a right technique, can also serve as universal detectors.

3.4 ABLATION STUDY

Necessity of PDE. Readers may wonder the necessity of these estimation algorithms, given that the
top-K probabilities provide the major information. To testify it, we consider a Naive approach to es-
timate the full distribution, where we assign zero probability to ranks larger than K. Using the Naive
distribution, the average AUROC of Fast-Detect (GPT-3.5) downgrades from 0.9630 (Geometric) to
0.9311 (Naive), indicating the necessity of a proper estimation algorithm.

Ablation on Estimation Algorithm. As the main results in Table 2 shows, PDEs using Geomet-
ric, Zipfian, and MLP distributions do not show significant differences in their average accuracies.
However, when we look into each dataset, we see different patterns as Figure 4 demonstrates. Specif-
ically, Geometric distribution performs the best on Writing and PubMed, while Zipfian performs the
best on XSum. MLP is more balanced, which performs the median on three datasets. These pat-
terns hold with both GPT-3.5 and GPT-4 as the scoring model. These results suggest that different
estimation algorithms may suit for different situations, which is also supported by experiments on
languages shown in Table 3.

Ablation on Top-K. Intuitively, the greater the K value is, the more precise the estimated dis-
tribution is likely to be. We conduct an ablation study on two representative methods with two
scoring models as shown in Figure 5. The results generally corroborate the intuition, particularly
with Geometric distribution. However, Zipfian and MLP show exceptions, where LogRank (GPT-4
and GPT-3.5) with Zipfian and Fast-Detect and LogRank (GPT-4) with MLP obtain their highest
accuracies with the top-1 setting. The results indicate that even with limited top-1 probabilities,
PDE can still work effectively when a proper estimation algorithm is used.

4
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/

8

https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10 2 10 1 100

False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ChatGPT

10 2 10 1 100

False Positive Rate

GPT-4

10 2 10 1 100

False Positive Rate

Claude-3 Sonnet

10 2 10 1 100

False Positive Rate

Claude-3 Opus

10 2 10 1 100

False Positive Rate

Gemini-1.5 Pro

Likelihood (GPT-3.5) Fast-Detect (GPT-J/Neo-2.7) Fast-Detect (Babbage) Fast-Detect (GPT-3.5) Fast-Detect (GPT-4)

Figure 6: Robustness on low false alarms, where the red lines indicate false alarms of 1% and 10%.
We draw the curves using Mix3 to simulate the real scenarios of using a single threshold to detect
different domains. The dash lines denote the random classifier.

Table 3: Robustness over languages, where we use the same settings as the main experiments. Mix6
denotes the diverse mixture of the six languages.

Method Chinese Russian Urdu Indonesian Arabic Bulgarian Mix6(Web QA) (RuATD) (News) (News) (Wikipedia) (News)

Fast-Detect (GPT-J/Neo-2.7B) 0.9319 0.8158 0.9630 0.9876 0.9121 0.9422 0.8862
Fast-Detect (Phi2-2.7B) 0.8024 0.6710 0.9049 0.9313 0.9155 0.7500 0.8205
Fast-Detect (Qwen2.5-7B) 0.5345 0.7065 0.9970 0.9687 0.8404 0.8992 0.8063
Fast-Detect (Llama3-8B) 0.8729 0.7984 0.9962 0.9922 0.9282 0.9723 0.8713

PDE using Geometric
Fast-Detect (Babbage) 0.9814 0.7673 0.9894 0.9857 0.9916 0.9628 0.8950
Fast-Detect (Davinci) 0.9938 0.8030 0.9996 0.9991 0.9982 0.9842 0.9369
Fast-Detect (GPT-3.5) 0.9913 0.8555 1.0000 0.9996 0.9999 0.9925 0.9774

Ablation on Rank-List Size and Prompt. The size of the rank list is a crucial hyper-parameter
affecting Geometric and Zipfian distributions. Larger size typically results in higher accuracy, but
it varies between estimation algorithms (see Appendix D.1). In addition, We examine how different
prompts affect text detection accuracy in large models. The most sensitive model is GPT-4, in
contrast to less sensitive GPT-3.5 and least sensitive Babbage and Davinci (see Appendix D.2).

3.5 ANALYSIS AND DISCUSSION

Robustness across Source Models and Domains. In real scenarios, we tend to use a constant
threshold to detect text from various sources and domains. We evaluate the stability of PDE and
other baselines across the source models and datasets using thresholds found on “out-of-domain”
datasets. The results show that PDE consistently provides the highest accuracy across the source
models and domains, showcasing its stability. See Appendix E.1 for detailed setup and discussion.

Robustness on Low False Alarms. In real scenarios, an effective detector is expected to have a
high recall (true positive rate) with a low false alarm (false positive rate), thereby allowing it to
identify most machine-generated text without misclassifying human-written text. We evaluate the
capacity of the methods by contrasting their ROC curves. As illustrated in Figure 6, for a false alarm
in the range of (0.01, 0.1), Fast-Detect (GPT-4) performs the best except on ChatGPT generations,
where Fast-Detect (Babbage) has the highest recalls. For a false alarm lower than 0.001, Fast-Detect
(Babbage) performs consistently better than other methods, suggesting the advantage of it for low
false alarm setting. Compared to baseline Likelihood (GPT-3.5) and Fast-Detect (Neo-2.7), PDE
versions of Fast-Detect show consistent advantage.

Robustness over Languages. We assessment PDE methods on M4 datasets with six languages. As
Table 3 shows, Fast-Detect (GPT-3.5) consistently outperforms the baselines as well as other propri-
etary LLMs. The system almost flawlessly identifies Urdu, Indonesian, and Arabic texts. However,
the detection accuracy for Russian texts is much lower, indicating a potential under-training of the
LLMs on this particular language. These findings imply that PDE with latest LLMs can be effective
and reliable detectors across languages.

Robustness under Paraphrasing Attack. We test the performance of PDE against paraphrasing
attack using DIPPER, with two settings: high lexical diversity and high order diversity. Fast-Detect
(Babbage) outperforms Fast-Detect (Neo-2.7) in both, but is more affected by diverse lexicons. An
unusual behavior of DIPPER is observed on XSum, which causes exceptionally low accuracy of
Likelihood (GPT-3.5) baseline. PDE surpasses Fast-Detect (Neo-2.7) and trained detectors, prov-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ing its effectiveness. Larger LLMs are more vulnerable to increased diversity, which also reduce
readability. See Appendix E.2 for detailed comparison and discussion.

Limitations. PDE does not support all white-box methods, especially the rare methods who use
the inner embeddings instead of predictive distributions, like PHD (Tulchinskii et al., 2024). Addi-
tionally, not all proprietary models provide Completion API, therefore, PDE cannot use them as the
scoring model.

Broader Impact. The estimation methods can potentially be applied to other scenarios. For ex-
ample, ChatCompletion API also provides top-K probabilities. Using PDE, we can estimate the
predictive distribution, which could be used to calculate some statistical metrics about the generated
content. Such metrics could potentially be used to indicate, for instance, the level of hallucination
in the content. Despite the effectiveness and potential of PDE, unsupervised use can lead to poten-
tial unfairness towards certain groups. For instance, detectors might display bias against non-native
writers (Liang et al., 2023).

4 RELATED WORK

In terms of using a proprietary model for scoring, our method is in line with existing black-box
methods. However, it inherits existing white-box approaches.

Black-Box Methods for Zero-Shot Detection. Zero-shot detection in the black-box setting is chal-
lenging due to the restricted access of the model. DetectGPT (Mitchell et al., 2023) and its improve-
ment NPR (Su et al., 2023) requires multiple evaluations of text sequences, while DNA-GPT (Yang
et al., 2023a) requires multiple generations of text sequences, resulting in low speed and high cost.
Another line of approaches treats detection as a question-answering task, but fail to reliably discern
text generated by ChatGPT and GPT-4 (Bhattacharjee & Liu, 2024). These methods generally pre-
sume the knowing of the source model and use it to ascertain if a text was produced by it, which
limits their usage to texts from uncertain origin. Unlike these approaches, our method minimizes
the cost and dependence on known source.

White-Box Methods for Zero-Shot Detection. Zero-shot methods in the white-box setting analyze
a variety of metrics from the model predictive distributions or output embeddings, including Entropy
and Perplexity (Lavergne et al., 2008), Likelihood (Hashimoto et al., 2019; Solaiman et al., 2019),
Rank and Log-Rank (Gehrmann et al., 2019), LRR (Su et al., 2023), Fast-DetectGPT (Bao et al.,
2023), PHD (Tulchinskii et al., 2024), FourierGPT (Xu et al., 2024), and Binoculars (Hans et al.).
These methods, except PHD requires output embeddings, can all be applied to proprietary models
using PDE. However, in this study we focus on very basic Entropy, Rank, and Log-Rank, together
with recent Fast-DetectGPT, leaving the rest for future exploration.

Other Detection Methods. Trained classifiers are the majority of black-box methods, which
rely human-authored texts along with LLM-generated content for training (Bakhtin et al., 2019;
Uchendu et al., 2020; Solaiman et al., 2019; Ippolito et al., 2020; Fagni et al., 2021; Solaiman et al.,
2019; Fagni et al., 2021; Yan et al., 2023; Li et al., 2023; Zeng et al., 2024b) (Verma et al., 2024;
Kushnareva et al., 2024). But they can become overly specialized to their training conditions such
as specific domains, languages, or source models. White-box approaches like watermarking provide
a different strategy, altering the LLMs decoding process to include unique text signatures (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2023; Christ et al., 2024; Zhao et al., 2023b;a). However, they
require proactive text generation injection, which is not allowed by proprietary models. In this paper,
we investigate techniques that do not need training or proactive injection.

5 CONCLUSION

We proposed probability distribution estimation (PDE) to estimate full distributions from partial
observations, enabling white-box text detection methods to proprietary models. Experiments show
that PDE with latest LLMs performs significantly better than its counterparts in terms of accuracy,
efficiency, and robustness, highlighting the benefits of using latest LLMs as detectors. Additional
results on various white-box methods underscore the effectiveness of PDE, which may lead to a new
direction of zero-shot detection in the black-box setting. To our knowledge, we are the first to enable
white-box methods to proprietary LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICAL STATEMEMT

High efficient and accurate machine-generated text detector can potentially contribute to trustworthy
AI techniques, which can mitigate the risks bringing by the uncontrolled usage of LLMs. Such
technology can potentially benefit text readers, policy makers, and media platforms in wide.

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.
com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_
3.pdf, 2024.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
Real or fake? learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351, 2019.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Effi-
cient zero-shot detection of machine-generated text via conditional probability curvature. In The
Twelfth International Conference on Learning Representations, 2023.

Amrita Bhattacharjee and Huan Liu. Fighting fire with fire: can chatgpt detect ai-generated text?
ACM SIGKDD Explorations Newsletter, 25(2):14–21, 2024.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, March 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Jon Christian. Cnet secretly used ai on articles that didn’t disclose that fact, staff say. Futurusm,
January, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Liam Dugan, Daphne Ippolito, Arun Kirubarajan, Sherry Shi, and Chris Callison-Burch. Real or
fake text?: Investigating human ability to detect boundaries between human-written and machine-
generated text. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
12763–12771, 2023.

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, and Maurizio Tesconi.
Tweepfake: About detecting deepfake tweets. Plos one, 16(5):e0251415, 2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, 2018.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 111–116, 2019.

Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot
detection of machine-generated text. In Forty-first International Conference on Machine Learn-
ing.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical evaluation
for natural language generation. arXiv preprint arXiv:1904.02792, 2019.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection
of generated text is easiest when humans are fooled. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 1808–1822, 2020.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 1:3, 2023.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
for biomedical research question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2567–2577, 2019.

Davinder Kaur, Suleyman Uslu, Kaley J Rittichier, and Arjan Durresi. Trustworthy artificial intelli-
gence: a review. ACM Computing Surveys (CSUR), 55(2):1–38, 2022.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36, 2024.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Laida Kushnareva, Tatiana Gaintseva, German Magai, Serguei Barannikov, Dmitry Abulkhanov,
Kristian Kuznetsov, Eduard Tulchinskii, Irina Piontkovskaya, and Sergey Nikolenko. Ai-
generated text boundary detection with roft. In 1st Conference on Language Modeling (COLM),
volume 2024, 2024.

Thomas Lavergne, Tanguy Urvoy, and François Yvon. Detecting fake content with relative en-
tropy scoring. In Proceedings of the 2008 International Conference on Uncovering Plagiarism,
Authorship and Social Software Misuse-Volume 377, pp. 27–31, 2008.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang, Longyue Wang, Linyi Yang, Shuming
Shi, and Yue Zhang. Mage: Machine-generated text detection in the wild. arXiv e-prints, pp.
arXiv–2305, 2023.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Zou. Gpt detectors are biased
against non-native english writers. Patterns, 4(7), 2023.

Muneer M Alshater. Exploring the role of artificial intelligence in enhancing academic performance:
A case study of chatgpt. Available at SSRN, 2022.

Jesse G Meyer, Ryan J Urbanowicz, Patrick CN Martin, Karen O’Connor, Ruowang Li, Pei-Chen
Peng, Tiffani J Bright, Nicholas Tatonetti, Kyoung Jae Won, Graciela Gonzalez-Hernandez, et al.
Chatgpt and large language models in academia: opportunities and challenges. BioData Mining,
16(1):20, 2023.

Niloofar Mireshghallah, Justus Mattern, Sicun Gao, Reza Shokri, and Taylor Berg-Kirkpatrick.
Smaller language models are better black-box machine-generated text detectors. arXiv preprint
arXiv:2305.09859, 2023.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint
arXiv:2301.11305, 2023.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pp. 1797–1807, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. ChatGPT. https://chat.openai.com/, December 2022.

OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav Nakov, Min-Yen Kan, and William Yang Wang.
On the risk of misinformation pollution with large language models. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21:1112–1130, 2014.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Wajiha Shahid, Yiran Li, Dakota Staples, Gulshan Amin, Saqib Hakak, and Ali Ghorbani. Are
you a cyborg, bot or human?—a survey on detecting fake news spreaders. IEEE Access, 10:
27069–27083, 2022.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank informa-
tion for zero-shot detection of machine-generated text. arXiv preprint arXiv:2306.05540, 2023.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wen-
han Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language models.
arXiv preprint arXiv:2401.05561, 2024.

Kaito Taguchi, Yujie Gu, and Kouichi Sakurai. The impact of prompts on zero-shot detection of
ai-generated text. arXiv preprint arXiv:2403.20127, 2024.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting llm-generated text. Com-
munications of the ACM, 67(4):50–59, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Edward Tian and Alexander Cui. Gptzero: Towards detection of ai-generated text using zero-shot
and supervised methods, 2023. URL https://gptzero.me.

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation
for robust detection of ai-generated texts. Advances in Neural Information Processing Systems,
36, 2024.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. Authorship attribution for neural text genera-
tion. In Proceedings of the 2020 conference on empirical methods in natural language processing
(EMNLP), pp. 8384–8395, 2020.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwrit-
ten by large language models. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), pp. 1702–1717, 2024.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mahmoud, Toru Sasaki, et al. M4: Multi-generator,
multi-domain, and multi-lingual black-box machine-generated text detection. In Proceedings of
the 18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1369–1407, 2024.

13

https://chat.openai.com/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://gptzero.me

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359, 2021.

Yang Xu, Yu Wang, Hao An, Zhichen Liu, and Yongyuan Li. Detecting subtle differences
between human and model languages using spectrum of relative likelihood. arXiv preprint
arXiv:2406.19874, 2024.

Duanli Yan, Michael Fauss, Jiangang Hao, and Wenju Cui. Detection of ai-generated essays in
writing assessment. Psychological Testing and Assessment Modeling, 65(2):125–144, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Xianjun Yang, Wei Cheng, Linda Petzold, William Yang Wang, and Haifeng Chen. Dna-gpt:
Divergent n-gram analysis for training-free detection of gpt-generated text. arXiv preprint
arXiv:2305.17359, 2023a.

Xianjun Yang, Liangming Pan, Xuandong Zhao, Haifeng Chen, Linda Petzold, William Yang
Wang, and Wei Cheng. A survey on detection of llms-generated content. arXiv preprint
arXiv:2310.15654, 2023b.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. Wordcraft: story writing with large
language models. In 27th International Conference on Intelligent User Interfaces, pp. 841–852,
2022.

Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou Chen, Yiyou Sun, Yao Li, Haifeng Chen, Wei
Cheng, Dongkuan Xu, et al. Dlad: Improving logits-based detector without logits from black-box
llms. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a.

Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou Chen, Yiyou Sun, Yao Li, Haifeng Chen, Wei
Cheng, Dongkuan Xu, et al. Improving logits-based detector without logits from black-box llms.
arXiv preprint arXiv:2406.05232, 2024b.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023a.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. In International Conference on Machine Learning, pp. 42187–42199. PMLR,
2023b.

George Kingsley Zipf. The psychology of language. In Encyclopedia of psychology, pp. 332–341.
Philosophical Library, 1946.

George Kingsley Zipf. The psycho-biology of language: An introduction to dynamic philology.
Routledge, 2013.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROBABILITY DISTRIBUTION ESTIMATION (PDE)

As indicated in Figure 7a, the probability distribution across ranks generally follows a decaying
pattern, where the larger models tend to have a higher top-1 probability and a bigger decay factor
demonstrating a sharper distribution. We approximate the pattern using parameterized distributions,
allocating the remaining probability mass (as ‘*’ indicates) to ranks larger than K. We discuss three
specific estimation algorithms with decaying patterns like Figure 7b.

1 2 3 4 5 *
Rank

10 2

10 1

100

Pr
ob

ab
ilit

y

Neo-2.7

1 2 3 4 5 *
Rank

GPT-3.5

1 2 3 4 5 *
Rank

GPT-4

(a) Top-5 probabilities, where ‘*’ indicates the
remaining probability mass.

5 20 40 60 80 100
Rank

10 6
10 5
10 4
10 3
10 2
10 1
100

Pr
ob

ab
ilit

y

Geometric

5 20 40 60 80 100
Rank

Zipfian

5 20 40 60 80 100
Rank

MLP

(b) Full distribution completing the top-5 probabilities from
GPT-3.5, estimated using the three algorithms.

Figure 7: Decaying patterns of averaged probability distribution over ranks, where the probabilities
are shown in log scale and evaluated on XSum.

A.1 ESTIMATION USING GEOMETRIC DISTRIBUTION

As the simplest decaying pattern, we consider exponential decay with a fixed decay factor, resulting
in a Geometric distribution. Considering only the top-1 probability p1, the whole distribution could
be estimated from p1 using

p(k) = p1 · (1− p1)
k−1, for k ∈ [1..∞], (10)

where the probability decays with a factor of λ = (1 − p1). However, this standard Geometric
distribution only considers the top-1 probability and is defined over infinite k, which is not suit for
a finite vocabulary.

Consequently, we extend the distribution to multiple top probabilities and a limited range of k. We
express the probabilities for ranks larger than K in near-Geometric distribution that

p(k) = pk, for k ∈ [1..K]

p(k) = pK · λk−K , for k ∈ [K + 1..M]∑M
k=1 p(k) = 1,

(11)

where λ is a decay factor in (0, 1), and M is the size of the rank list.

Using the total probability constraint, we calculate the remaining probability mass for allocating
M∑

k=K+1

p(k) = 1−
K∑

k=1

pk = prest, (12)

Expanding p(k) in the left expression, we obtain

pK ·
M−K∑
k=1

λk = prest, (13)

and rewritten as
M−K∑
k=1

λk =
(λ− λM−K+1)

1− λ
=

prest

pK
. (14)

Assuming λM−K+1 is close to zero, we reach an approximate solution

λ ≈ prest

pK + prest
. (15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In practice, we first calculate the approximate solution, naming λ0, and then check if λ0
M−K+1 was

close to zero. If it is not, we follow an iterative process to adjust λ until it converges

λt+1 = 1− (λt − λM−K+1
t) · pK
prest

. (16)

A.2 ESTIMATION USING ZIPFIAN DISTRIBUTION

Frequencies of words in natural languages usually adhere to Zipf’s law (Zipf, 1946; 2013), where
the word frequency and word rank follow a Zipfian distribution

p(k) ∝ 1

(k + β)α
, for k ∈ [1..∞]. (17)

The parameters α and β are fitted to a specific corpus, with typical values of α = 1 and β = 2.7 for
English (Piantadosi, 2014).

Assuming that the word frequencies in a given context also comply with this law, we consider it
as an alternative distribution for our estimation. Given the top-K probabilities pk, we compute the
probabilities of tokens with a ranking greater than K in a Zipfian distribution

p(k) = pk, for k ∈ [1..K]

p(k) = pK · (β
k−K+β)

α, for k ∈ [K + 1..M]∑M
k=1 p(k) = 1,

(18)

where α and β are two positive parameters. M is the rank-list size.

Using the total probability mass as a constraint, we determine the probability mass for allocating.
M∑

k=K+1

p(k) = 1−
K∑

k=1

pk = prest, (19)

After expanding p(k), we get

pK ·
M∑

k=K+1

(
β

k −K + β
)α = prest, (20)

rewritten as
M∑

k=K+1

(
β

k −K + β
)α =

M−K∑
k=1

(
β

k + β
)α =

prest

pK
. (21)

The equation has two unknown parameters, thereby having multiple possible solutions. Thus, we
solve the parameters by minimizing a loss function

Loss(α, β) =

(
M−K∑
k=1

(
β

k + β
)α − prest

pK

)2

+ 1.0 · (α− 1)2 + 0.001 · (β − 2.7)2. (22)

As an additional constraint, we expect the parameters not vary from their typical values too much.
We determine a coefficients of 1.0 for α and a coefficient of 0.001 for β empirically.

To accelerate the optimization process, we construct a table T [α, β], which stores the pre-calculated
summation values for each pair of α and β as

T [α, β] =

M−K∑
k=1

(
β

k + β
)α. (23)

We enumerate α ∈ (0, 10) with a step of 0.1 and β ∈ (0, 20) with a step of 0.2, resulting in a
table with 10000 values. The ranges are empirically decided, which balance the coverage of the
possible choices and the size of the table. During inference, we can efficiently compute the loss
table Loss(α, β) from T [α, β] given prest/pK . We then search the loss table to identify the best α
and β that lead to the smallest loss.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 ESTIMATION USING A MLP MODEL

The Geometric and Zipfian algorithms both work on assumptions about the distributions. An alter-
nate approach that does not rely on these assumptions involves modeling the distribution within a
neural network. We consider the simple Multi-Layer Perceptron (MLP) model with a single hidden
layer, which accepts the top-K probabilities and predicts the probabilities for the rest of the ranks.
The distribution is expressed as

p(k) = pk, for k ∈ [1..K]

p(k) = prest · pMLPθ
(k −K), for k ∈ [K + 1..M]∑M

k=1 p(k) = 1,

(24)

where prest = 1 −
∑K

k=1 pk and pMLPθ
represents the MLP predictive distribution. The MLP is

defined as

pMLPθ
= SOFTMAX(MLPθ(x)), (25)

where θ denotes the model parameters. The model inputs a vector with a size of K and outputs a
distribution with a size of M −K. The input vector x is calculated from the top probabilities using

xk = log pk, for k ∈ [1..K]. (26)

Training. We train the MLP model on probability distributions from an open-source LLM (e.g.,
GPT-Neo-2.7B), using the cross-entropy loss

Loss = −
M∑
k=1

pk log p(k) = −
M∑

k=K+1

pk log pMLPθ
(k −K) + C, (27)

where pk for k ∈ [1..M] is the target distribution and p(k) is the model distribution. C is the
constant part.

Inference. We predict the distributions using the top-K probabilities from the proprietary LLMs,
obtaining estimated distributions on all token positions. We do not enforce the monotonic decrease
constraint during inference, but it generally follows the constraint because the training target is
monotonic decrease distribution.

B EXPERIMENTAL SETTINGS

B.1 EVALUATION METRICS

AUROC. We measure the detection accuracy mainly in the area under the receiver operating charac-
teristic (AUROC), which gives an overview of the detectors across all possible thresholds. AUROC
values can range from 0.0 to 1.0, and this value mathematically signifies the likelihood of a randomly
chosen machine-generated text having a higher predicted probability of being machine-generated
compared to a randomly selected human-written text. An AUROC of 0.5 is indicative of a random
classifier, while an AUROC of 1.0 suggests a flawless classifier.

Accuracy (ACC). As a complement, we report the ACC for some of the experiments. ACC denotes
the ratio of the number of correct predictions to the total number of input samples, which works well
only if there are equal number of positive and negative samples.

True Positive Rate (TPR) and False Positive Rate (FPR). In depth, we compare methods in TPR
vs FPR on various thresholds. A high TPR indicates that the algorithm is effective at identifying
positive cases, while a high FPR indicates that the algorithm often misclassifies negative cases as
positive.

B.2 AZUREOPENAI SETTINGS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We use Completion API 5 6 of these models via AzureOpenAI platform 7, with the following de-
ployment settings. We echo the model to return the top probabilities of the provided texts, without
producing any new tokens.

Different models are supported by different regions of Azure platform. We deploy babbage-002 and
davinci-002 on the region of North Central US, gpt-35-turbo-0301 on the region of East US, and
gpt-35-turbo-1106 and gpt-4-1106 on the region of West US. In addition, we also tried babbage-002
from OpenAI API endpoint, obtaining the same results as the one on AzureOpenAI endpoint.

C MAIN RESULTS

Table 4: Main results on GPT-4 and Gemini-1.5 generations, with the best AUROC marked in bold.

Method GPT-4 Gemini-1.5 Pro
XSum Writing PubMed Mix3 XSum Writing PubMed Mix3

GPTZero 0.9815 0.8838 0.8193 0.9009 - - - -

Zero-Shot Detectors Using Open-Source LLMs
Likelihood (Neo-2.7) 0.7980 0.8553 0.8104 0.7690 0.8013 0.8364 0.7064 0.7416
Entropy (Neo-2.7) 0.4360 0.3702 0.3295 0.4114 0.4170 0.2945 0.3838 0.3959
Rank (Neo-2.7) 0.6644 0.7146 0.5965 0.6448 0.6711 0.6719 0.5688 0.6260
LogRank (Neo-2.7) 0.7975 0.8286 0.8003 0.7626 0.8022 0.8102 0.7006 0.7353
DNA-GPT (Neo-2.7) 0.7347 0.8032 0.7565 0.6430 0.7996 0.8133 0.6376 0.6438
DetectGPT (T5-11B/Neo-2.7) 0.5660 0.6217 0.6805 0.6136 0.7838 0.8256 0.6222 0.7406
Fast-Detect (GPT-J/Neo-2.7) 0.9067 0.9612 0.8503 0.8999 0.8571 0.8650 0.7075 0.8072
Fast-Detect (Phi2-2.7B) 0.4636 0.6463 0.6083 0.5742 0.6454 0.6324 0.5976 0.6164
Fast-Detect (Qwen2.5-7B) 0.6476 0.8202 0.6391 0.6862 0.7082 0.7723 0.6296 0.6839
Fast-Detect (Llama3-8B) 0.6615 0.8491 0.7556 0.7269 0.7786 0.9085 0.7065 0.7552

Zero-Shot Detectors Using Proprietary LLMs
Likelihood (GPT-3.5) 0.6468 0.9570 0.9152 0.8029 0.7130 0.9644 0.8516 0.8043
DNA-GPT (GPT-3.5) 0.7952 0.8302 0.9092 0.7748 0.8036 0.6829 0.7738 0.7107
PDE using Geometric

Entropy (GPT-3.5) 0.6353 0.2694 0.2376 0.4074 0.6237 0.2276 0.3361 0.4144
Rank (GPT-3.5) 0.6245 0.8719 0.8283 0.7395 0.6480 0.8793 0.7768 0.7406
LogRank (GPT-3.5) 0.6319 0.9323 0.9060 0.7870 0.7102 0.9421 0.8329 0.7872
Fast-Detect (Babbage) 0.9033 0.9264 0.9195 0.8974 0.8797 0.8316 0.7887 0.8083
Fast-Detect (Davinci) 0.9141 0.9798 0.8864 0.9131 0.9062 0.9516 0.7612 0.8601
Fast-Detect (GPT-3.5) 0.9035 0.9957 0.9467 0.9411 0.9221 0.9840 0.9112 0.9244
Fast-Detect (GPT-4) 0.9673 0.9901 0.9534 0.9647 0.9188 0.9506 0.8477 0.8947

PDE using Zipfian
Fast-Detect (GPT-3.5) 0.9123 0.9931 0.9429 0.9319 0.9289 0.9809 0.9070 0.9161
Fast-Detect (GPT-4) 0.9797 0.9884 0.9436 0.9719 0.9303 0.9447 0.8336 0.8991

PDE using MLP
Fast-Detect (GPT-3.5) 0.9076 0.9930 0.9464 0.9342 0.9257 0.9810 0.9103 0.9184
Fast-Detect (GPT-4) 0.9759 0.9893 0.9496 0.9705 0.9272 0.9495 0.8453 0.9001

5
https://platform.openai.com/docs/guides/text-generation/completions-api

6Completion API with gpt-35-turbo-1106 and gpt-4-1106 require an AzureOpenAI API version of ‘2024-02-15-preview’ or later, while
others require ‘2023-09-15-preview’ or later.

7
https://azure.microsoft.com/en-us/products/ai-services/openai-service

18

https://platform.openai.com/docs/guides/text-generation/completions-api
https://azure.microsoft.com/en-us/products/ai-services/openai-service

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Main results on Claude-3 generations, with the best AUROC marked in bold.

Method Claude-3-Sonnet Claude-3-Opus
XSum Writing PubMed Mix3 XSum Writing PubMed Mix3

Zero-Shot Detectors Using Open-Source LLMs
Likelihood (Neo-2.7) 0.8862 0.9484 0.8360 0.8661 0.9322 0.9734 0.8603 0.9030
Entropy (Neo-2.7) 0.4146 0.2156 0.2989 0.3466 0.3871 0.1792 0.2910 0.3265
Rank (Neo-2.7) 0.7019 0.7812 0.6017 0.6888 0.7333 0.7950 0.6080 0.7056
LogRank (Neo-2.7) 0.8867 0.9401 0.8296 0.8654 0.9357 0.9679 0.8508 0.9042
DNA-GPT (Neo-2.7) 0.8558 0.9415 0.7647 0.7080 0.9424 0.9653 0.7806 0.7326
DetectGPT (T5-11B/Neo-2.7) 0.8150 0.8675 0.7347 0.7967 0.7718 0.8335 0.7752 0.7776
Fast-Detect (GPT-J/Neo-2.7) 0.9514 0.9763 0.8634 0.9260 0.9779 0.9832 0.8947 0.9468
Fast-Detect (Phi2-2.7B) 0.7536 0.6773 0.7144 0.6957 0.8080 0.7545 0.7322 0.7450
Fast-Detect (Qwen2.5-7B) 0.8595 0.8600 0.7346 0.7813 0.9097 0.8967 0.7572 0.8119
Fast-Detect (Llama3-8B) 0.9243 0.9198 0.7936 0.8212 0.9640 0.9377 0.8251 0.8510

Zero-Shot Detectors Using Proprietary LLMs
Likelihood (GPT-3.5) 0.8364 0.9918 0.9299 0.9023 0.9191 0.9955 0.9467 0.9295
DNA-GPT (GPT-3.5) 0.7934 0.8587 0.8988 0.7871 0.9040 0.9362 0.8926 0.8383
PDE using Geometric

Entropy (GPT-3.5) 0.4685 0.0565 0.1985 0.2582 0.4310 0.0381 0.1852 0.2339
Rank (GPT-3.5) 0.7801 0.9724 0.8476 0.8473 0.8263 0.9809 0.8524 0.8645
LogRank (GPT-3.5) 0.8502 0.9927 0.9265 0.9062 0.9302 0.9966 0.9414 0.9336
Fast-Detect (Babbage) 0.9508 0.9705 0.9111 0.9438 0.9874 0.9865 0.9298 0.9698
Fast-Detect (Davinci) 0.9659 0.9939 0.9084 0.9606 0.9940 0.9946 0.9262 0.9742
Fast-Detect (GPT-3.5) 0.9433 0.9930 0.9552 0.9576 0.9899 0.9829 0.9686 0.9689
Fast-Detect (GPT-4) 0.9523 0.9910 0.9424 0.9623 0.9930 0.9917 0.9580 0.9817

PDE using Zipfian
Fast-Detect (GPT-3.5) 0.9455 0.9920 0.9510 0.9475 0.9914 0.9798 0.9627 0.9588
Fast-Detect (GPT-4) 0.9581 0.9889 0.9308 0.9613 0.9958 0.9901 0.9496 0.9792

PDE using MLP
Fast-Detect (GPT-3.5) 0.9457 0.9925 0.9548 0.9526 0.9911 0.9811 0.9664 0.9634
Fast-Detect (GPT-4) 0.9574 0.9901 0.9382 0.9631 0.9953 0.9909 0.9543 0.9807

Table 6: A comparison of ACC in PDE and the major baselines on generations from ChatGPT,
where we employ the optimal threshold either for each dataset or across all three datasets. The
smaller average drop scales on PDE methods indicate that PDE offers a more consistent metric
across datasets. In addition, we also assess optimal threshold across datasets and source models,
which yields ACCs nearly identical (deviation less than 0.006 except Likelihood and DNA-GPT) to
the optimal threshold across datasets.

Method Best Threshold per Dataset Best Threshold across Datasets Drop
XSum Writing PubMed Avg. XSum Writing PubMed Avg. Avg.

Fast-Detect (GPT-J/Neo-2.7) 0.9600 0.9633 0.8267 0.9167 0.9400 0.9367 0.7567 0.8778 -0.0389
Fast-Detect (Phi2-2.7B) 0.7467 0.6967 0.7600 0.7344 0.6767 0.6967 0.7467 0.7067 -0.0277
Fast-Detect (Qwen2.5-7B) 0.7367 0.7600 0.7267 0.7411 0.6433 0.7600 0.6867 0.6967 -0.0444
Fast-Detect (Llama3-8B) 0.8000 0.7700 0.7267 0.7656 0.6900 0.7667 0.6567 0.7044 -0.0612
Likelihood (GPT-3.5) 0.8767 0.9933 0.8933 0.9211 0.7533 0.9900 0.8633 0.8689 -0.0522
DNA-GPT (GPT-3.5) 0.8750 0.8592 0.8833 0.8725 0.8108 0.5986 0.7467 0.7187 -0.1538

PDE using Geometric
Fast-Detect (Babbage) 0.9600 0.9433 0.9033 0.9356 0.9600 0.9100 0.8833 0.9178 -0.0178
Fast-Detect (Davinci) 0.9667 0.9800 0.8867 0.9444 0.9333 0.9700 0.8633 0.9222 -0.0222
Fast-Detect (GPT-3.5) 0.9633 0.9967 0.9200 0.9600 0.9033 0.9967 0.9167 0.9389 -0.0211
Fast-Detect (GPT-4) 0.9367 0.9733 0.8933 0.9344 0.9367 0.9400 0.8833 0.9200 -0.0144

D ABLATION STUDY

D.1 ABLATION ON RANK-LIST SIZE

The size M of the rank list is another important hyper-parameter. We assess its effects on Geomet-
ric and Zipfian distributions (skipping MLP because it requires a heavy training process for each
setting). As demonstrated in Figure 8, overall PDE with a larger size obtains a higher accuracy.
Geometric distribution shows a monotonic increasing trends, while Zipfian shows decreasing trends
for Fast-Detect but increasing trends for LogRank, demonstrating an inconsistent pattern. Roughly,
experiments with MLP on the sizes of 100 and 1000 suggest that it has the similar pattern as Zipfian.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: The prompts that we test for the ablation, from the empty prompt0 to simple prompt1 until
complex prompt3 and prompt4. The changes are marked in italic.

Prompt Content

prompt0 (Empty)

prompt1 You serve as a valuable aide, capable of generating clear and persuasive pieces of writing
given a certain context. Now, assume the role of an author and strive to finalize this article.

prompt2

You serve as a valuable aide, capable of generating clear and persuasive pieces of writing
given a certain context. Now, assume the role of an author and strive to finalize this article.
I operate as an entity utilizing GPT as the foundational large language model. I function in
the capacity of a writer, authoring articles on a daily basis. Presented below is an example
of an article I have crafted.

prompt3

System: You serve as a valuable aide, capable of generating clear and persuasive pieces of
writing given a certain context. Now, assume the role of an author and strive to finalize this
article.
Assistant: I operate as an entity utilizing GPT as the foundational large language model. I
function in the capacity of a writer, authoring articles on a daily basis. Presented below is an
example of an article I have crafted.

prompt4

Assistant: You serve as a valuable aide, capable of generating clear and persuasive pieces of
writing given a certain context. Now, assume the role of an author and strive to finalize this
article.
User: I operate as an entity utilizing GPT as the foundational large language model. I function
in the capacity of a writer, authoring articles on a daily basis. Presented below is an example
of an article I have crafted.

100 300 500 700 900
Rank List Size

0.7

0.8

0.9

1.0

AU
RO

C

Geometric

Fast-Detect (GPT-4)
Fast-Detect (GPT-3.5)
LogRank (GPT-4)
LogRank (GPT-3.5)

100 300 500 700 900
Rank List Size

Zipfian

Figure 8: Ablation on rank-list size,
where the AUROC is averaged across the
three datasets produced by GPT-4.

0 1 2 3 4
Prompt

0.6
0.7
0.8
0.9
1.0

AU
RO

C 0.8921 0.9034 0.9205 0.9299 0.9251

Fast-Detect(Babbage)

0 1 2 3 4
Prompt

0.9071
0.9589 0.9541 0.9545 0.9511

Fast-Detect(GPT-3.5)

0 1 2 3 4
Prompt

0.7289

0.8239
0.8775

0.9341
0.9682

Fast-Detect(GPT-4)

Figure 9: Ablation on prompt, where the AUROC is aver-
aged across the three datasets produced by GPT-4. GPT-4
is most sensitive to prompts.

D.2 ABLATION ON PROMPT

Large models are sensitive to text context, necessitating a suitable prompt for optimal detection
accuracy (Taguchi et al., 2024). We analyze the prompts featured in Table 7 in Appendix to ascertain
their effect. We draft the prompts manually, starting with prompt3. Then we replace the ‘System’
and ‘Assistant’ roles with ‘Assistant’ and ‘User’ to produce prompt4 and we remove the roles to
produce prompt2. We simplify prompt2 by removing its second paragraph to produce prompt1 and
removing all content to produce the empty prompt0. In this study, we only experiment with several
manually-drafted prompts, leaving a systematic exploration of the prompts for future.

As Figure 9 shows, GPT-4 is the most sensitive model among the four scoring models, with detection
accuracy fluctuating between 0.7289 (prompt0) and 0.9682 (prompt4). In contrast, GPT-3.5 is less
sensitive, with a detection accuracy increasing from 0.9071 (prompt0) to 0.9589 (prompt1), but
maintaining stability for the rest. The base model Babbage and Davinci are less influenced by the
prompt, and we do not show them in the figure.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: Robustness across source models measured in ACC, where we evaluate all source models
using a threshold determined according to ChatGPT. All experiments are run on Mix3.

Method ChatGPT GPT-4 Claude-3 Gemini-1.5 All
Sonnet Opus Pro Avg.

Fast-Detect (GPT-J/Neo-2.7) 0.8778 0.7933 0.8389 0.8822 0.6867 0.8158
Fast-Detect (Phi2-2.7B) 0.7067 0.5500 0.6378 0.6622 0.6011 0.6316
Fast-Detect (Qwen2.5-7B) 0.6967 0.6222 0.6811 0.7011 0.6256 0.6653
Fast-Detect (Llama3-8B) 0.7044 0.6556 0.7244 0.7467 0.6844 0.7031
Likelihood (GPT-3.5) 0.8689 0.6806 0.8326 0.8605 0.6703 0.7826
DNA-GPT (GPT-3.5) 0.7187 0.6176 0.6942 0.7540 0.6372 0.6843

PDE using Geometric
Fast-Detect (Babbage) 0.9178 0.7373 0.8461 0.9176 0.6562 0.8150
Fast-Detect (Davinci) 0.9222 0.8085 0.8973 0.9131 0.7363 0.8555
Fast-Detect (GPT-3.5) 0.9389 0.8650 0.8985 0.9197 0.8554 0.8955
Fast-Detect (GPT-4) 0.9200 0.9043 0.9041 0.9276 0.7973 0.8906

Table 9: Robustness across domains measured in ACC, where we cross-validate each dataset using
a threshold determined according to other two datasets for each source model.

Method ChatGPT GPT-4
XSum Writing PubMed Avg. XSum Writing PubMed Avg.

Fast-Detect (GPT-J/Neo-2.7) 0.8633 0.9300 0.7000 0.8311 0.7867 0.8833 0.6600 0.7767
Fast-Detect (Phi2-2.7B) 0.6800 0.6967 0.7467 0.7078 0.4767 0.6267 0.5667 0.5567
Fast-Detect (Qwen2.5-7B) 0.6200 0.7300 0.6167 0.6556 0.5733 0.7433 0.5500 0.6222
Fast-Detect (Llama3-8B) 0.6567 0.7500 0.5767 0.6611 0.5967 0.6933 0.5800 0.6233
Likelihood (GPT-3.5) 0.6933 0.9833 0.8233 0.8333 0.5503 0.8020 0.8300 0.7274
DNA-GPT (GPT-3.5) 0.5000 0.5106 0.7067 0.5724 0.4966 0.5000 0.6933 0.5633

PDE using Geometric
Fast-Detect (Babbage) 0.9133 0.9100 0.8800 0.9011 0.8154 0.8033 0.8333 0.8174
Fast-Detect (Davinci) 0.8767 0.9633 0.8500 0.8967 0.8087 0.7800 0.8033 0.7974
Fast-Detect (GPT-3.5) 0.8833 0.9967 0.8267 0.9022 0.7819 0.9396 0.8667 0.8627
Fast-Detect (GPT-4) 0.9367 0.9367 0.8167 0.8967 0.9200 0.9195 0.8467 0.8954

E ANALYSIS AND DISCUSSION

E.1 ROBUSTNESS ACROSS SOURCE MODELS AND DOMAINS

In practice, we need to fix the decision threshold and detect text from various sources and domains.
However, distributions of detection metric might be shifted between different source models or
domains, resulting in high detection accuracy in one but low accuracy in another. In this section, we
evaluate the robustness of PDE along with other strong baselines across different source models and
domains.

Firstly, we examine the detection accuracy (in ACC) for each source model utilizing an optimal
threshold identified on ChatGPT Mix3 dataset. As illustrated in Table 8, PDE consistently provides
the highest ACCs across all source models. While the accuracy of Fast-Detect (GPT-3.5) and Fast-
Detect (GPT-4) fluctuates between source models, their overall ACCs are closely matched. Fast-
Detect (GPT-3.5) delivers the greatest ACC, which is approximately 8 points above the top baseline.
This demonstrates the stability of PDE across numerous source models.

Subsequently, we assess the accuracy on each dataset using an optimal threshold established on
the remaining two datasets for each source model. As exhibited in Table 9, we employ the source
models of ChatGPT and GPT-4 as examples. PDE also delivers the highest ACCs on all datasets,
further evidence of its robustness across various domains.

E.2 ROBUSTNESS UNDER PARAPHRASING ATTACK

We assess the performance of PDE uder paraphrasing attack, utilizing DIPPER (Krishna et al., 2024)
to rephrase the output generated by ChatGPT. Our testing encompasses two paraphrasing settings:
high lexical diversity (60 L) and high order diversity (60 O). As indicated in Table 10, Fast-Detect
(Babbage) surpasses Fast-Detect (Neo-2.7) in both settings, but is more significant influenced by
diverse lexicons than by diverse orderings.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Robustness under paraphrasing attack with diverse lexicons and orders, where we report
the TPR (%) at an FPR level of 1%.

Method ChatGPT + DIPPER (60 L) ChatGPT + DIPPER (60 O)
XSum Writing PubMed Avg. XSum Writing PubMed Avg.

Fast-Detect (GPT-J/Neo-2.7) 48.7 65.3 38.0 50.7 52.7 66.0 34.0 50.9
Fast-Detect (Phi2-2.7B) 6.7 15.3 8.0 10.0 0.7 0.7 5.3 1.8
Fast-Detect (Qwen2.5-7B) 16.0 35.3 8.0 19.8 5.3 10.7 6.0 7.3
Fast-Detect (Llama3-8B) 34.0 50.0 13.3 32.4 17.3 12.7 10.7 13.6
Likelihood (GPT-3.5) 0.7 11.3 9.3 6.9 0.7 71.3 18.7 30.2

PDE using Geometric
Fast-Detect (Babbage) 64.0 58.7 39.3 54.0 83.3 80.0 42.0 68.4
Fast-Detect (Davinci) 16.7 48.0 28.7 31.1 51.3 88.7 33.3 57.8
Fast-Detect (GPT-3.5) 0.7 62.0 12.0 24.9 18.0 95.3 22.7 45.3

However, we also note unusual behavior of DIPPER on XSum, where the diverse lexical paraphras-
ing results in a surprisingly low detection accuracy for Likelihood (GPT-3.5) baseline. This is caused
by the atypical trend that the paraphraser replaces common words with rare expressions, thus reduc-
ing the readability of the content. This odd distribution could be the cause of the unusually low
accuracy of Fast-Detect (GPT-3.5) on XSum (60 L). PDE outperforms Fast-Detect (Neo-2.7) and
the trained detectors, proving its efficacy in withstanding a paraphrasing attack.

Additionally, we find that larger LLMs are more susceptible to increased lexical and order diversity.
Nonetheless, our review of the paraphrased articles indicates that this increased diversity also lowers
the readability due to excessive use of unusual words and sequences, implying that there are some
drawbacks of the attack.

22

	Introduction
	Method
	Task and Settings
	Fast-DetectGPT with PDE
	Probability Distribution Estimation (PDE)
	Universality of PDE

	Experiments
	Settings
	The Effectiveness of PDE
	Main Results
	Ablation Study
	Analysis and Discussion

	Related Work
	Conclusion
	Probability Distribution Estimation (PDE)
	Estimation Using Geometric Distribution
	Estimation Using Zipfian Distribution
	Estimation Using a MLP Model

	Experimental Settings
	Evaluation Metrics
	AzureOpenAI Settings

	Main Results
	Ablation Study
	Ablation on Rank-List Size
	Ablation on Prompt

	Analysis and Discussion
	Robustness across Source Models and Domains
	Robustness under Paraphrasing Attack

