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ABSTRACT

We investigate the relationship between the geometry of token embeddings and
their role in next token prediction within transformer models. Toward this goal,
previous studies have utilized metrics such as intrinsic dimension and neighbor-
hood overlap to probe the geometry of internal representations, where prompts are
summarized as a single point in representation space. We expand single points to
point clouds by investigating how models geometrically distribute tokens in their
internal representations. We measure the intrinsic dimension, neighborhood over-
lap, and cosine similarity on these point clouds for a large number of prompts.
To validate our approach, we compare these metrics to a dataset where the tokens
are shuffled, which disrupts the syntactic and semantic structure. Our analysis re-
veals a correlation between the geometric properties of token embeddings and the
cross-entropy loss of next token predictions, implying that prompts with higher
loss values have tokens represented in higher-dimensional spaces.

1 INTRODUCTION

In the context of interpretability of transformer models, a set of analytic approaches have been
developed with the goal of modeling transformer architectures as dynamical systems of particles
(Vuckovic et al., 2020; |Geshkovski et al., 2024bj (Cowsik et al., 2024). In this perspective, the
transformers are viewed as evolving a mean-field interacting particle system where the evolution of
tokens across layers is controlled by their empirical measurd'| (Agrachev & Letrouit, 2024). Under a
set of assumptions such as time-independent weights, this interpretation is used to show that tokens
tend to cluster in the later layers (Geshkovski et al.,[2023)). This clustering behavior can be associated
with the empirically observed rank collapse phenomenon in transformer models (Anagnostidis et al.,
2022;Shi et al.| 2022; 'Wu et al., [2023; [He et al., [2023; Wu et al., [2024]).

An important insight from |Geshkovski et al.| (2024b)) in the context of next token prediction is that
the output measure of tokens encodes the probability distribution of the next token, and its clustering
indicates a small number of possible outcomes. A complementary perspective to the evolution of
token representations across layers can be gained by studying the latent predictions of transformer
models (Belrose et al.| 2023) from the perspective of iterative inference [Jastrzebski et al.| (2018)
which indicates that the probabilities of the next tokens are incrementally updated layer by layer.
The work by |nostalgebraist| (2020) suggests that causal LLMs appear to develop a reasonably accu-
rate prediction regarding the next token in the middle layers, with subsequent layers refining these
predictions. This means we should expect the empirical measures of the internal layers to reflect this
trend, i.e. a rapid change of the empirical measure in the early layers and a more refined change to-
wards the later layers. Since the latent predictions are obtained by unembedding the residual stream
(Elhage et al.;,|2021)), and our methods understand the geometric properties of the residual stream, we
can expect the statistical properties (eg. entropy) of the latent prediction probabilities to be encoded
in the geometry of the internal representations of the tokens.

In this work, we combine these viewpoints to examine the empirical measure of the internal layers
from a geometric perspective. To observationally probe the empirical measure, we draw inspiration
from previous works using intrinsic dimension and neighbourhood overlap to study the geometry

'In this context, the empirical measure and the output measure are used to characterize the distribution of
tokens in the internal layers and the output layer respetively
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of internal representations |Ansuini et al.| (2019); Doimo et al.| (2020a); [Pope et al.| (2021); [Valeriani
et al.| (2023); |Cheng et al.| (2023} 2024); |Cheng & Antonello| (2024). In these works, an important
difference is that point clouds are built as a collection of prompts represented as a single point (the
last token), not from the full sequence of tokens in a prompt, thereby lacking a direct link to the
empirical measure. Additionally, we also calculate cosine similarity as a general probe of pairwise
relations among tokens.

To test how the geometric properties of token representations change as a function of the model’s
internal dynamics, we probe it in a regime where the syntactic and semantic structures of the prompts
are disrupted through systematic token shuffling. Our analysis achieves these main results:

* Token-Level Intrinsic Dimension and Cosine Similarity: We observe that the intrinsic
dimension (ID) of token representations generally exhibits a peak, whose height increases
with the degree of token shuffling. This peak is located at early to middle layers of the mod-
els. On the other hand, cosine similarity among tokens increases with shuffling, indicating
increased alignment of token vectors.

* Neighborhood Overlap Consistency: The neighborhood overlap (NO) metric shows that
token relationships around the ID peak become less consistent as the amount of shuffling
increases. This highlights that structured data retains more coherent token neighborhoods
through the model layers compared to shuffled data.

* Correlation with Model Loss: We find a statistical relation between the geometry of to-
kens and the probability distribution of the next token: the intrinsic dimension of the token
representations across hidden layers is correlated to the average cross-entropy loss of the
next token probability distribution for a given prompt. This suggests that prompts with a
higher cross-entropy loss have token representations lying in higher dimensional manifolds.

2 RELATED WORK

Broader context of mechanistic interpretability in transformers. Mechanistic interpretability in
transformers explores how transformer models encode and utilize information, focusing on seman-
tic and algorithmic interpretations. Semantic interpretation investigates what latent properties are
learned by models and how individual neurons may code for specific concepts (Hamrick & Mo-
hamed, 2020). Structural probing (Rogers et al., [2020; Belinkov, 2022} Belinkov et al., [2020) and
dictionary learning (Lewicki & Sejnowskil, [2000; [Lee et al., 2006} [Faruqui et al.l 2015) offer in-
sights into how features are represented and reconstructed in transformer architectures. Relevant
to this work, is the approach of the logit lens (nostalgebraist, 2020). This method offers insight
into a model’s predictive process by applying the final classification layer, which converts the resid-
ual stream activation into logits/vocabulary space, to intermediate residual stream activations. This
reveals how prediction confidence evolves throughout the computational stages. This is feasible be-
cause transformers typically construct their predictions iteratively across layers (Geva et al., [2022)).
Building on this concept, the tuned lens (Belrose et al.| |2023) employs affine probes to translate in-
ternal representations into probability distributions over the vocabulary. Similarly, the Future Lens
(Pal et al., 2023) examines how individual representations encode information about forthcoming
tokens.

Analytic Approaches to Transformer Models Recent analytical works (Geshkovski et al., 2023}
Cowsik et al., [2024)) indicate that analyzing geometric properties of token representations and their
dynamics can offer meaningful insights into how transformers function. |Geshkovski et al.| (2023)
introduced the novel perspective of viewing the evolution of tokens in the transformer layers as
particles in a dynamical system. They predict clustering behavior in transformer models in a simpli-
fied setting which was later extended to include causally masked attention (Karagodin et al., [2024).
(Cowsik et al., |2024) adopts the above perspective and examines particle geometry in the presence
of MLP layers. This perspective not only offers insights into the geometric dynamics of tokens but
also addresses the trainability of transformers based on initialization hyperparameters, including the
strength of attentional and MLP residual connections. Further studies (Geshkovski et al., [2024cal)
theoretically investigate the expressive power of transformers as maps from arbitrary input measures
to output measures and prove the appearance of dynamic metastability, i.e. the particles cluster in
the infinite time limit but they resemble a configuration of several clusters for a long period of time.
This behavior aligns more closely with practical observations than the clustering dynamics. This
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analytical framework highlights the significance of studying the distribution of the internal repre-
sentations of the tokens (referred to as the empirical measure) by i) suggesting a relation between
the empirical measure to the next token prediction loss (Geshkovski et al.||2024b) ii) understanding
the role of the empirical measure in governing the token dynamics (Agrachev & Letrouit, [2024).

Geometric Approaches to Transformer Models. The manifold hypothesis posits that real-
world high-dimensional data often lie on or near a lower-dimensional manifold within the high-
dimensional space (Goodfellow et al.,|2016). The dimension of this approximating manifold is usu-
ally named the intrinsic dimension of the data. Several studies have demonstrated that the intrinsic
dimension of data representations in deep networks shows a remarkable dynamic range, character-
ized by distinct phases of expansion and contraction (Ansuini et al., 2019} Doimo et al.,|2020a}; [Pope
et al., 2021). Data manifolds created by internal representations in deep networks have been also
explored from the perspective of neuroscience and statistical mechanics (Chung et al., 2018}, |Cohen
et al.| 2020). In LLMs, a geometric analysis of representations has uncovered a rich set of phenom-
ena. Geometric properties, such as intrinsic dimension and the composition of nearest neighbors,
evolve throughout the network’s sequence of internal layers. These changes mark distinct phases in
the model’s operation, signal the localization of semantic information (Valeriani et al., 2023} |Cheng
et al.,|2023). While the aforementioned works analyze internal representations in linguistic process-
ing, the geometry of context embeddings has been linked to language statistics (Zhao et al., [2024)
and used to highlight differences between real and artificial data (Tulchinskii et al.| 2023).

3 METHOD

Transformer models take as input a sequence of vectors embedded in d-dimensions of varying length
N, {x;} ie[n] € RN Each element of the sequence is called a token, while the entire sequence is

a prompt. A transformer is then a sequence of maps:
{fi(l)}ie[N] - {xi(2)}i€[N] g {wi(NlayerS)}ie[N] ) (M

where z;({) € R4xN represents the i-th token at layer £, Nyayers the total number of model layers
and N is the number of tokens.

In transformer models, prompts can vary based on the specific application, representing protein
sequences, image pixels, or sentences. In this study, we focus on causal language models and use
sentences as our input prompts, though the technique can be extended to other input types as well.
The prompt size can significantly vary depending on the dataset considered: sentences can be O(10)
- O(1000) tokens long. Given that our goal is to study and interpret the geometrical behavior at the
token level across model layers, we select prompts with a sufficient number of tokens, i.e. N > 1024
tokens, to ensure reliable estimates of our observables.

Empirical measure. Given n points at positions z1, ..., z, € R (a point cloud), their empirical
measure is the probability measure p = }L Z?Zl Jz,, 1.€., the empirical measure encodes the distri-

bution of points in the embedding space. In the context of transformers (Geshkovski et al., [2024b)),
the empirical measure characterizes the distribution of the tokens at each layer of the sequence
The empirical measure for the last layer is the output measure. The dynamical evolution of tokens
in this framework, as described by Equation (1) in |Agrachev & Letrouit (2024), indicates that the
change in the token representation of token ¢ is controlled by a layer-dependent kernel K, and de-
pends purely on the current token representation x;(¢) and the empirical measureﬂ To probe the
empirical measure across layers, we use cosine similarity, intrinsic dimension, and neighborhood
overlap, as defined below.

Intrinsic Dimension. A substantial body of literature focuses on developing precise estimators for
the intrinsic dimension of manifolds (Facco et al.l 2017). In particular, nearest-neighbors-based
algorithms are robust to high dimensionality and capture the non-linear structure of the manifold. In
addition, it has been argued that a scale-sensitive algorithm can provide a stable estimation of the
dimension, as it allows us to find the proper range of scale where the dimension is constant.

GRIDE (Denti et al.,[2021) is a likelihood-based ID estimator that estimates the intrinsic dimension

d (n1,n2) using the ratios ft = ; py n, = where 7; j, is the Euclidean distance between point

Timg
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’the dynamics of a token i depends on the position of all the tokens z;(£) but not on their labels, which is
an assumption in the mean-field interacting particle framework.
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7 and its k-th nearest neighbour and 1 < n; < ng. Under the assumption of local uniform density,
the distribution of f; ,, n, is given by,

Gy
T 2= DAdHB (ng —ny,ny)’

Fitivny g (115 d) fp>1 2)

where B(-, -) is the beta function. The ID estimate d(n1,ns) is obtained by maximizing the above
likelihood with respect to d assuming that the ratios ; »,, », are independent for different points.

The conventional choice for the GRIDE algorithm is to set no = 2n; and examine the variation of d
for ny € {2,4,8..}, where the parameter no is known as the range scaling parameter. In this work,
we mainly work with range scaling = 2 unless explicitly mentioned.

In the following analysis, we exploit the result for the TWO-NN estimator (Facco et al.l 2017):
N -1
S log (pit2)

which relates ID to the generic ratios ;1,2 thereby implying that there is an inverse relation be-
tween the dimension estimate and the generic ratios (u;1,2). Intuitively, we can expect a higher
dimensional estimate to imply a lower (u;,1,2) on average.

3)

drwo-NN =

Neighborhood Overlap. The neighborhood overlap Xﬁ;’m was introduced in |[Doimo et al.| (2020b)
to measure similarity between representations in different layers ¢, m at a given scale k. Given the

representations of IV tokens in layers ¢ and m, we can define Xﬁ’m as

1 1
= 2 LU EMTE) 4)
)

? JENE(

where N{(i) is the set of k-nearest neighbors of a token i in layer . Intuitively, it measures the
average number of shared k-nearest neighbors in layers ¢, m. In our context, we set m = £ + 1,
i.e. we calculate the neighborhood overlap between adjacent layers. By doing so, we measure the
change in pairwise relations among tokens between successive layers.

4 EXPERIMENTS

4.1 MODELS AND DATASETS

Models. In this work, we analyze 3 different pre-trained decoder-only LLMs of similar dimensions:
Llama 3 8B (Metal 2024)), Mistral 7B (Jiang et al., 2023)), Pythia 6.9B(Biderman et al.}|2023)), each
of them featuring 32 hidden layers. For brevity, we call them LLAMA, MISTRAL, and PYTHIA from
now on. In the plots, layer O represents the embedding layer, with the hidden layers starting from
layer 1. We extract internal representations of these models using a public library’, where the token
representations correspond to the representations in the residual stream (Elhage et al.l [2021) after
one attention and one MLP update.

Datasets. As a dataset representative of text in an extensive way, we use the Pile dataset which
comprehends text from 22 different sources (Gao et al.,|2020). We remark that Pile was used to train
PYTHIA, a key consideration for the results discussed in Section [d.3] For computational reasons,
we opted for the reduced size version Pile-10K (Nanda, [2022). We further filter only prompts of
sequence length N > 1024 according to the tokenization schemes of all the above models. This
choice ensures a reliable ID estimate. This results in 2244 prompts after filtering. We truncate
the prompts by keeping the first N = 1024 tokens to eliminate the length-induced bias of our ID
estimates if it were to be present.

3Note that the main assumption of the estimator is local homogeneity (Poisson distributed points within the
local neighborhood of the point), which is generally true on a wide range of datasets.
*The library can be found in https://huggingface.co/docs/transformers/en/index
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Algorithm 1 Shuffling algorithm

Require: tokens, S > S is the shuffle index
Output: permutedT okens
nBlocks « 4°
n < tokens.length()
B < [n/nBlocks] > B is the block size
blocks <« splitInBlocks(tokens, nBlocks, B) > Split list into n Blocks sublists of size B
permutedBlocks < randomPermutation(blocks)
permutedT okens < mergeBlocks(permutedBlocks)

‘ This | paper |is | titled || the |geornetry| of |t0ken5| in | internal | representations |0f| large Ilanguagel models| S=0
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Figure 1: The shuffling algorithm with an example. Top Panel: Algorithmic description of the
shuffling procedure described in Section[4.2] Bottom Panel: An example of the shuffling algorithm
using /N = 16 tokens. The first row (S = 0) corresponds to the unshuffled sequence. When S = 1,
the tokens are split into 41 blocks first and then, the blocks are shuffled. The last row S = 2 shows
the fully shuffled case where the tokens are randomly permuted.

4.2 THE GEOMETRY OF SHUFFLED AND UNSHUFFLED PROMPTS

Evaluating geometric observables at the token level directly probes the model’s internal dynamics.
As a way of quantifying geometric changes, we compare in-distribution data to various levels of
token shuffling. By progressively disrupting the syntactic and semantic structure while preserving
unigram frequency distribution, we observe the incremental effects on our observables across layers.

Shuffling method. We define the shuffling of tokens in the following way: given a prompt with N
tokens, X = {x;};c|n}, we split the sequence into nBlocks blocks of size B such that nBlocks x
B = N and take one random permutation of the blocks, as schematically presented in Figure [I]
Note that the shuffle index for the fully shuffled case (9) corresponds to the value of S when the
number of tokens N = 4$ .In Figure we have S = 2 since we consider 16 tokens, whereas in the
experiments, we have S = 5 because we have 1024 = 45 tokens.

In most of our experiments, we show two main results: i) the effect of various degrees of shuffling
on our metrics for a single, random prompt and ii) the qualitative behavior of the unshuffled and the
fully shuffled prompts on average. For the former observable, we consider the the 3218" prompt
from the Pile-10K dataset, with the Pile set name: ArXiv. This prompt is shuffled to six different
levels labeled by (S = 0,1,...,5) where the shuffle index S quantifies the degree of shuffling:
S = 0 represents the unshuffled state, while .S = 5 corresponds to the fully shuffled case. We study
the representations of this prompt using representations from LLAMA. ﬂ For the average behavior,
we find the averages of the geometric quantities (cosine similarity, ID and NO) over 2244 prompts.

The qualitative behavior discussed in this section holds in general for other prompts and models. We show
this in the case of intrinsic dimension by looking at the ID profile of other prompts using LLAMA (Figure [[T)
and the ID profile of 3218'" prompt in other models (Figure
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4.2.1 COSINE SIMILARITY

As a first step into investigating the geometry of internal representations at the token level, we
compute the cosine similarity among tokens for each layer. In Figure[2] we show the average cosine
similarity for different levels of shuffling as a function of model layers on a single prompt (Left
Panel) and for the average over all prompts (Right Panel) for the LLAMA model. We can see that
the cosine similarity increases with increasing shuffling and increasing layers. This implies that
tokens are distributed along the same direction towards the last layers. For the structured prompts,
the average cosine similarity is closer to zero, indicating that their directions are more orthogonal.

These results seem related to earlier works: |[Ethayarajh|(2019) computes the average cosine similar-
ity of randomly sampled words from BERT, GPT-2 and ELMo models across layers, finding high
cosine similarity, in agreement with our shuffled case. In|Liang et al.|(2022) average cosine similar-
ity was also computed on pre-trained text transformers, finding an average value of ~ 0.5 in the last
layer.
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Figure 2: Average Cosine Similarity. Left Panel: average cosine similarity among tokens for a
single prompt as a function of model layers. Right Panel: average cosine similarity averaged over
2244 prompts as a function of layers for the full shuffle (S = 5) and the structured case (S = 0).
The color bar indicates the shuffle index S. The shaded regions indicate the standard deviation from
the mean. All curves have been calculated for the LLAMA model.

4.2.2 INTRINSIC DIMENSION

Next, we examine the intrinsic dimension (ID) profile of tokens as a function of layers. Figure 3]
displays the ID calculated for a range scaling of 2 for LLAMA. The Left Panel shows the ID profile
of a single prompt at various levels of shuffling, while the Right Panel presents the average ID
across 2244 prompts for both fully shuffled and structured cases. In all scenarios, we observe a
peak in ID in the early to middle layers. Additionally, the height of this peak increases with the
degree of shuffling, indicating a correlation between the two. Previous work focusing on studies of
the geometry of internal representations at the prompt-level have investigated similar metrics. We
devote a detailed comparison to Appendix [A]

Distribution of tokens at the ID peak. We consider the relation in equation [3] between ID and
the generic ratios 7; 2/7; 1, i.e. the ratio of the distance of the second neighbor over the one of the
first neighbor to the 4-th point. According to equation 3] as ID grows we expect the ratio to tend to
unity on average, implying that the first two nearest neighbors are roughly at equal distance from
the reference token. On the other hand, if ID decreases we expect the two nearest neighbors to be at
more varying distances. Therefore, a higher ID at the peak means that the nearest neighbors tend to
be more equidistant for the shuffled prompts.

Furthermore, we can look at the angular distribution of nearest neighbors of a given point. Hence,
we compute the cosine similarity between x;; — x; and x; » — x; for each token 7 to determine
the distribution of the angle formed by the first two nearest neighbors centered at token 2E| We
visualize this in FigureEl In the left panel, we show the histogram of the angles between z; 1 — ;

®In this paragraph, z; . denotes the k*® nearest token to token 4 and 74,k 1s the distance between token 7 and
its k'™ nearest token.
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Figure 3: Intrinsic Dimension. Left Panel: intrinsic dimension for a single random prompt as
a function of model layers. Right Panel: intrinsic dimension averaged over 2244 prompts as a
function of layers for the full shuffle (S = 5) and the structured case (S = 0). The shaded regions
indicate the standard deviation from the mean. The color bar indicates the shuffle index S. All
curves have been calculated for the LLAMA model.

and x; » — x; for each token 7 of a random prompt, at layer 10 of LLAMA, i.e. around the ID
peak. In the right panel, we show the histogram of means over 2244 prompts for the full shuffle
and structured cases. The distributions of mean angles differ between the two cases, with the mean
angle between the nearest tokens being closer to 60 degrees for shuffled prompts. Combined with
the earlier observation that the ratio r; o /7; 1 is closer to unity, this suggests that the triangle formed
by z;, ;1 and z; o is more equilateral in the full shuffle case at the ID peak. These findings suggest
a distinguishable arrangement of tokens for shuffled prompts that deserve further investigation.
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Figure 4: Angle distribution between nearest neighbors. Left Panel: histogram of the angles
between the first and second nearest neighbor at layer 10 of the LLAMA model for a single prompt
for the full shuffle case and structured case. The dotted vertical lines indicate the average angle
between the nearest neighbors in both cases. Right Panel: histogram of the average angle between
the first and second nearest neighbor at layer 10 of the LLAMA model in the fully shuffled (orange)
and structured case (blue). The histograms are computed from 2244 prompts in each case.

4.2.3 NEIGHBORHOOD OVERLAP

We compute the neighborhood overlap at knyx = 1 as a function of layers for the Llama 3 8B model.
We choose knn = 1 because we would like to examine a similar range of scales with ID computed
using GRIDE at range scaling = 2. As a consistency check, we also calculate NO for kxyny = 2
and kxn = 4 finding similar results (see Appendix [B). In Figure[5] we show a random prompt for
different levels of shuffling (left panel) and the average over all prompts for the full shuffle and the
structured case (right panel). The NO of the shuffled cases is lower than structured case around the
layers corresponding to the ID peak, while being statistically similar away from the peak. Again,
we can explain this behavior with the help of the generic ratios. On average, if r; o / 75,1 1s closer to
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unity, which is the case for the shuffled case in correspondence of the ID peak, it implies that the
first nearest neighbor is more susceptible to swap with the second nearest neighbor in the next layer,
resulting in a smaller neighborhood overlap. Neighborhood overlap has been used as a metric in
previous studies working at the prompt-level, see Appendix [A]for a comparison.
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Figure 5: Neighborhood Overlap. Left Panel: neighborhood overlap for a single random prompt
as a function of model layers for kxy = 1. The colorbar indicates the shuffle index S. Right
Panel: neighborhood overlap averaged over 2244 prompts as a function of layers for the full shuffle
(S = 5) and the structured case (S = 0). The shaded regions indicate standard deviation from the
mean. All curves have been calculated for the LLAMA model.

4.3 COMPARING TOKEN GEOMETRY OF PROMPTS IN DIFFERENT MODELS

In the previous section, we noted that the geometry of internal representations is highly sensitive
to shuffled inputs. Having focused on the representations from LLAMA model, we now extend our
analysis to include two additional models: MISTRAL and PYTHIA. As described in Section [4.1]
we note that PYTHIA was trained entirely on the Pile dataset. Hence, the dataset we consider for
experiments, Pile-10K, is a subset of the same dataset on which PYTHIA was trained. While we do
not know on which datasets LLAMA and MISTRAL were trained, we can assume that, if present,
Pile was not the only dataset used. Therefore, we might expect PYTHIA to have a mildly different
signature on our observables compared to MISTRAL and LLAMA. According to what we found in
the previous section, we might expect a lower ID peak and a higher NO for PYTHIA.

Intrinsic Dimension. We check the ID behaviour for LLAMA, MISTRAL and PYTHIA as a function
of layers in Figure [} On the left panel, we have the ID curve for a random prompt, while on the
right panel, we show the mean ID profile across 2244 prompts. We observe that PYTHIA has a lower
ID peak on average than the other two models, though the significance is low.

Neighborhood Overlap. Similarly, we calculate NO and show it in Figure[7)as a function of layers
for a random prompt (Left Panel) and the average over 2244 prompts (Right Panel). In this case,
we observe that NO is generally higher for PYTHIA with respect to the other two models. The
combined behavior of a lower ID peak and a higher NO in PYTHIA is similar to the structured case
in the previous section. This might be a consequence of the fact that Pile is more in-distribution for
PYTHIA than the other models. However, we note that a more comprehensive analysis would be
required to confirm this statement, for instance by performing the analysis on PYTHIA using another
dataset.

4.4 UNDERSTANDING THE CORRELATION BETWEEN ID AND LOSS

In the previous sections, we have probed the empirical measure across layers through geometric
quantities like intrinsic dimension, neighborhood overlap and cosine similarity. This analysis aimed
to gather insight on model behaviour, specifically on the relationship of our observations with next
token prediction. In this section, we argue that we should expect a positive correlation between the
ID of internal representations (a physical quantity defined on the token representations) and loss (an
information-theoretic quantity defined on the next token prediction probabilities). This correlation
is built through 3 steps: first of all, we expect the ID of the final layer, which probes the output
measure in the framework of |Geshkovski et al.| (2024b)), to be strongly correlated to the ID of the
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Figure 6: Intrinsic Dimension. Left Panel: intrinsic dimension for a single random prompt as a
function of layers. Right Panel: intrinsic dimension averaged over 2244 prompts as a function of
layers. The shaded regions indicate standard deviation from the mean. The three curves correspond
to LLAMA (orange), MISTRAL (magenta) and PYTHIA (blue).
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Figure 7: Neighborhood Overlap. Left Panel: neighborhood overlap for a single random prompt as
a function of layers. Right Panel: intrinsic dimension averaged over 2244 prompts as a function of
layers. The shaded regions indicate standard deviation from the mean. The three curves correspond
to LLAMA (orange), MISTRAL (magenta) and PYTHIA (blue).

logits, since the unembedding is a linear transformation. |Z| Secondly, we expect that the logits ID
should be correlated to the average entropy of the next token probabilities S(X ), which we refer
to as the softmax entropy for brevity. Since this is a non-trivial connection, we elaborate on this in
detail in Appendix [D] Thirdly, when we consider a large number of tokens as in our case, we can
expect the softmax entropy to be almost equal to the cross-entropy loss as seen in Figure[T7]

| N
loss(X) = N Zlogpg (zi | 2<i) )

To quantitatively verify the ID-loss correlation, we use the Pearson correlation coefficient (p), which
is defined as the ratio between the covariance of two variables and the product of their standard
deviations. We compute the Pearson correlation coefficient between the ID and the model’s loss
across layers for the population of 2244 prompts and show the result in Figure 8] We find a high
correlation in all three models, particularly around the ID peak. The connection between the loss
(log perplexity) and ID was discussed in (Cheng et al., [2023) where the correlation was calculated
between the maximum ID of the dataset of the last token representations and the log of dataset
perplexity in Fig. 2 of (Cheng et al.| 2023)). We get a correlation in a similar spirit, however at the
finer level since it reveals a correlation at the prompt level, see more details in Appendix [A]

"We have verified this statement quantitatively, see Appendix@ Even though we sketch an argument as to
why we expect a positive correlation between ID and loss, we don’t yet comment on why ID around the peak
is more correlated to the loss than the output ID. We leave this for future work.
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Figure 8: Correlation between intrinsic dimension and loss. Pearson coefficient between intrinsic
dimension and model loss for different models as a function of layers. The shaded regions indicate
standard deviation from the mean. The three curves correspond to LLAMA (orange), MISTRAL
(magenta) and PYTHIA (blue). The p-values for the Pearson coefficients in this plot are below 0.01
except the last layer in PYTHIA.

5 CONCLUSIONS

The primary aim of this study was to connect different approaches to the interpretability of LLMs.
Our strategy towards this goal was to examine the geometric structure of token-level representations
across the layers of these models and to connect it to the probability distribution of the next token
prediction. We employed three key metrics: cosine similarity, intrinsic dimension, and neighbor-
hood overlap, to capture different aspects of this geometric structure. Our findings revealed that the
intrinsic dimension of token representations peaks in the early to middle layers, with higher peaks
in shuffled data, i.e. when syntactic and semantic structures are disrupted. Additionally, cosine
similarity among tokens increases with shuffling, suggesting greater alignment of token vectors.
The neighborhood overlap metric showed that structured data maintains more coherent token neigh-
borhoods across layers, while increased shuffling reduces this consistency, reflecting the model’s
sensitivity to the input structure. We observe these features consistently across different models. All
these analyses converge into the key finding of this paper, which is the correlation of the ID of token
representations to the model’s loss, implying that ID could be an important metric for evaluating
model performance across different models.

This correlation should be notably significant during the training process. As demonstrated at the
prompt level in previous research |(Cheng et al.| (2024), and confirmed by our findings at the token
level, see Appendix [E] ID remains largely constant and low in the early training stages and is not
correlated with loss, but it increases as training progresses. At the token level, we observe that the
ID tends to rise due to enhanced model expressivity, while there is also a tendency for ID to decline
as the minimization of loss improves. Indeed, as seen in Figure[I9] ID initially rises and then shows
a slight decrease after checkpoint 64K. We believe it would be intriguing to explore these aspects in
greater depth, but we defer this investigation to future work.

Experiments could be improved in several directions: first, we computed our observables at low
ranges of nearest neighbors. For a more holistic approach, a multiscale analysis can reveal further
relations among these observables. Secondly, the differences in distribution patterns for structured
versus shuffled data, as suggested by cosine similarity and ID studies, might encode essential infor-
mation on how tokens are distributed in space in the two cases. It is interesting to consider other
geometric observables and understand their relation to the next token probabilities. These targeted
explorations could provide practical applications for the design and training of LLMs, potentially
leading to more interpretable and efficient models. While we show that the geometry of tokens en-
codes the next token prediction loss, we also potentially provide an unsupervised tool to interpret
how the model processes a given prompt. An interesting avenue in this regard can be a more in-depth
analysis of the lower ID peak in PYTHIA which we reserve for future work.

10
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6 REPRODUCIBILITY

The experiments were run on an NVIDIA H100 GPU with 94 GB memory. All the results con-
tained in this work are reproducible by means of an anonymized repository that can be found at
https://anonymous.4open.science/r/token_geometry-DB87.

REFERENCES

Andrei Agrachev and Cyril Letrouit. Generic controllability of equivariant systems and applications
to particle systems and neural networks, 2024. URL https://arxiv.org/abs/2404.
08289.

Sotiris Anagnostidis, Luca Biggio, Lorenzo Noci, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
1d=FxVH71ToXS.

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207-219, March 2022. doi: 10.1162/coli_a_00422. URL https://
aclanthology.org/2022.cl1-1.7.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie Pavlick. Interpretability and analysis in neu-
ral NLP. In Agata Savary and Yue Zhang (eds.), Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics: Tutorial Abstracts, pp. 1-5, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-tutorials.1. URL
https://aclanthology.org/2020.acl-tutorials.1l

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens, 2023. URL https://arxiv.org/abs/2303.08112.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Emily Cheng and Richard J. Antonello. Evidence from fmri supports a two-phase abstraction pro-
cess in language models, 2024. URL https://arxiv.org/abs/2409.05771.

Emily Cheng, Corentin Kervadec, and Marco Baroni. Bridging information-theoretic and geometric
compression in language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 12397—
12420, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.762. URL https://aclanthology.org/2023.emnlp-main.762.

Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Jade Yu, Alessandro Laio, and
Marco Baroni. Emergence of a high-dimensional abstraction phase in language transformers,
2024. URL https://arxiv.org/abs/2405.15471.

SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Classification and geometry of general
perceptual manifolds. Physical Review X, 8(3):031003, 2018.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of
object manifolds in deep neural networks. Nature communications, 11(1):746, 2020.

Aditya Cowsik, Tamra Nebabu, Xiao-Liang Qi, and Surya Ganguli. Geometric dynamics of signal
propagation predict trainability of transformers, 2024. URL https://arxiv.org/abs/
2403.02579.

11


https://anonymous.4open.science/r/token_geometry-DB87
https://arxiv.org/abs/2404.08289
https://arxiv.org/abs/2404.08289
https://openreview.net/forum?id=FxVH7iToXS
https://openreview.net/forum?id=FxVH7iToXS
https://aclanthology.org/2022.cl-1.7
https://aclanthology.org/2022.cl-1.7
https://aclanthology.org/2020.acl-tutorials.1
https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2409.05771
https://aclanthology.org/2023.emnlp-main.762
https://arxiv.org/abs/2405.15471
https://arxiv.org/abs/2403.02579
https://arxiv.org/abs/2403.02579

Under review as a conference paper at ICLR 2025

Francesco Denti, Diego Doimo, Alessandro Laio, and Antonietta Mira. Distributional results for
model-based intrinsic dimension estimators, 2021. URL https://arxiv.org/abs/2104.
13832.

Diego Doimo, Aldo Glielmo, Alessio Ansuini, and Alessandro Laio. Hierarchical nucleation in deep
neural networks. In H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 7526-7536. Curran Associates, Inc.,
2020a.

Diego Doimo, Aldo Glielmo, Alessio Ansuini, and Alessandro Laio. Hierarchical nucleation in
deep neural networks. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020b. Curran Associates Inc. ISBN
9781713829546.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
jun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 55-65, Hong Kong, China, November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1006. URL https://aclanthology.org/D19-1006,

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic di-
mension of datasets by a minimal neighborhood information. Scientific Reports, 7(1):12140, Sep
2017. ISSN 2045-2322. doi: 10.1038/s41598-017-11873-y.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah A. Smith. Sparse over-
complete word vector representations. In Chengqing Zong and Michael Strube (eds.), Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1491-1500, Beijing, China, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1144. URL https://aclanthology.org/P15-1144|

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. = The emer-
gence of clusters in self-attention dynamics. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 57026-57037. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
b2b3e1d9840ebal’7ad9bbf073e009afe-Paper—-Conference.pdf.

Borjan Geshkovski, Hugo Koubbi, Yury Polyanskiy, and Philippe Rigollet. Dynamic metastability
in the self-attention model, 2024a. URL https://arxiv.org/abs/2410.06833.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical per-
spective on transformers, 2024b. URL https://arxiv.org/abs/2312.10794l

Borjan Geshkovski, Philippe Rigollet, and Domenec Ruiz-Balet. Measure-to-measure interpolation
using transformers, 2024c. URL https://arxiv.org/abs/2411.04551,

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods

12


https://arxiv.org/abs/2104.13832
https://arxiv.org/abs/2104.13832
https://aclanthology.org/D19-1006
https://aclanthology.org/P15-1144
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2b3e1d9840eba17ad9bbf073e009afe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2b3e1d9840eba17ad9bbf073e009afe-Paper-Conference.pdf
https://arxiv.org/abs/2410.06833
https://arxiv.org/abs/2312.10794
https://arxiv.org/abs/2411.04551

Under review as a conference paper at ICLR 2025

in Natural Language Processing, pp. 30-45, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
https://aclanthology.org/2022.emnlp-main. 3.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Jessica B. Hamrick and Shakir Mohamed. Levels of analysis for machine learning. CoRR,
abs/2004.05107, 2020. URL https://arxiv.org/abs/2004.05107.

Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L. Smith,
and Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful
signal propagation. In The Eleventh International Conference on Learning Representations, 2023.
URLhttps://openreview.net/forum?id=NPrsUQgMjKK.

Stanistaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SJa9iHgAZ.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825/

Kerstin Johnsson, Charlotte Soneson, and Magnus Fontes. Low bias local intrinsic dimension es-

timation from expected simplex skewness. IEEE transactions on pattern analysis and machine
intelligence, 37(1):196-202, Jan 2015. ISSN 1939-3539. doi: 10.1109/TPAMI.2014.2343220.

Nikita Karagodin, Yury Polyanskiy, and Philippe Rigollet. Clustering in causal attention masking.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=0iVxYf9otrg.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms. In
B. Scholkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information Processing Sys-
tems, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_
files/paper/2006/file/2d71b2ael58c7¢c5912ccObbde2bb9d95-Paper.pdfl

Michael S. Lewicki and Terrence J. Sejnowski. Learning Overcomplete Representations.
Neural Computation, 12(2):337-365, February 2000. ISSN 0899-7667. doi: 10.1162/
089976600300015826. URL https://doi.org/10.1162/089976600300015826.
_eprint: https://direct.mit.edu/neco/article-pdf/12/2/337/814391/089976600300015826.pdf.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612-17625, 2022.

Meta. Introducing meta llama 3: The most capable openly available 1lm to date, 2024. URL
https://ai.meta.com/blog/meta-1lama-3/.

Neel Nanda. Pile-10k dataset, 2022. URL https://huggingface.co/datasets/
NeelNanda/pile—-10Kk.

nostalgebraist. interpreting  gpt: the logit lens. LessWrong,  2020.
URL https://www.lesswrong.com/posts/AcKRB8wDpdaNo6voru/
interpreting—-gpt-the-logit-1lens.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens: Antici-
pating subsequent tokens from a single hidden state. In Jing Jiang, David Reitter, and Shumin
Deng (eds.), Proceedings of the 27th Conference on Computational Natural Language Learn-
ing (CoNLL), pp. 548-560, Singapore, December 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.conll-1.37. URL https://aclanthology.org/2023.
conll-1.37.

13


https://aclanthology.org/2022.emnlp-main.3
https://arxiv.org/abs/2004.05107
https://openreview.net/forum?id=NPrsUQgMjKK
https://openreview.net/forum?id=SJa9iHgAZ
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=OiVxYf9trg
https://proceedings.neurips.cc/paper_files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf
https://doi.org/10.1162/089976600300015826
https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/datasets/NeelNanda/pile-10k
https://huggingface.co/datasets/NeelNanda/pile-10k
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://aclanthology.org/2023.conll-1.37
https://aclanthology.org/2023.conll-1.37

Under review as a conference paper at ICLR 2025

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=XJk19XzGg2d.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. Transactions of the Association for Computational Linguistics, 8:842-866,
2020. doi: 10.1162/tacl_a_00349. URL https://aclanthology.org/2020.tacl-1.
54.

Raphaél Sarfati, Toni J. B. Liu, Nicolas Boullé, and Christopher J. Earls. Lines of thought in large
language models, 2024. URL https://arxiv.org/abs/2410.01545,

Han Shi, JIAHUI GAO, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M. S.
Lee, and James Kwok. Revisiting over-smoothing in BERT from the perspective of graph. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=dUv9luaXm3.

Eduard Tulchinskii, Kristian Kuznetsov, Kushnareva Laida, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation
for robust detection of Al-generated texts. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=8u0zZ0kNji6,

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 51234-51252. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a0e66093d7168b40246aflcddc025daa-Paper—-Conference.pdf.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of atten-
tion, 2020. URL https://arxiv.org/abs/2007.02876.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
based graph neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Kg65gieiuB.

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of atten-
tion masks and layernorm in transformers. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
1TIH60Cdppgk

Yize Zhao, Tina Behnia, Vala Vakilian, and Christos Thrampoulidis. Implicit geometry of next-
token prediction: From language sparsity patterns to model representations, 2024. URL https:
//arxiv.orqg/abs/2408.15417.

A HOW IS TOKEN GEOMETRY DIFFERENT FROM PROMPT GEOMETRY?

Previous work |Ansuini et al.|(2019); Doimo et al.|(2020al); Pope et al.|(2021));|Valeriani et al.|(2023));
Cheng et al.| (2023 2024)); (Cheng & Antonello| (2024) have studied internal representations from a
geometric point of view by considering point clouds of last token representations as observable.
While the approach is similar in spirit, token-level and prompt-level measures of intrinsic dimension
probe different manifolds and thus different features of LLMs.

While prompt-level and token-level ID profiles exhibit similar behavior qualitatively, e.g. they peak
in early-middle layers, there is a notable difference in the shuffled and unshuffled prompts. At
the prompt level, we see that the unshuffled ID has a more prominent peak than the shuffied ID,
whereas it is the other way round at the token level. This difference between token and prompt level
ID curves offers a window to understand the difference between the token and prompt geometries.
The core reason for this diverging behavior is that we are looking at different manifolds and thus
observing two distinct behaviors: token level ID is correlated to the input perplexity (measured using
the cross-entropy loss) and the prompt level ID is a measure of the semantic information |Valeriani
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et al.| (2023); |Cheng et al.[(2024)). Given a dataset of the prompts with a high perplexity at the token
level such as in the shuffled case, we can expect the last token representations are less likely to share
semantic content, leading to a lower intrinsic dimension at the prompt level. At the token level, the
lesser prominence of the peak of the unshuffled case can be explained using the ID loss correlation.
Since the loss is expected to be lower for the unshuffled prompts, we can expect their ID peak to be
less prominent than that of the shuffled prompts. In the following section, we examine the prompt-
level and token-level geometries for both shuffled and unshuffled cases at the peak layer, where the
differences are most pronounced.

Token and prompt geometries of shuffled and unshuffled prompts at layer 11

For the prompt-level analysis, we use a corpus of 2242 prompts (the same corpus used for the token
level analysis), drawn from Pile-10K and consisting of prompts with at least 1024 tokens. The last
token representations are extracted from these prompts as follows - we choose tokens at positions
512 through 532 that result in a 20-token sequence for the unshuffled caseﬂ We randomly permute
aforementioned the 20-token sequences in the shuffled case and obtain the last token representations.
The token-level analysis is done on prompt number 3218 from the Pile-10K dataset.

In Figure 0] we plot the tSNE projections of the shuffled and unshuffled along with ID for differ-
ent scalings at both the prompt and token levels. We notice that in both levels, the shuffled and
unshuffled representations lie on separate manifolds Sarfati et al.[(2024)).

* Prompt level - We can’t learn much from the tSNE projections at the prompt level since
the data is very high dimensional O(30). However, we can see a clear difference in the ID
profiles - the unshuffled case has a higher ID from scaling = 16 onwards.

* Token level - In Figure [Ob] we see that the unshuffled prompts form a more continuous
manifold than the shuffled prompts, i.e. there are more "gaps" in the shuffled case. In
the unshuffled case, we can also see that the tokens tend to cluster by their position in the
sequenceﬂ i.e. if two tokens are nearby in a prompt, they are also close in the embedding
space (perhaps due to positional embedding). This happens in the shuffled case as well but
to a lesser degree. The intrinsic dimension for the unshuffled case is smaller at low scales
(until scaling = 8) and higher at large scales (scaling = 128 onwards) than the shuffled one.

Token level ID is more strongly correlated to surprisal Since there is an extensive amount of
work done for the case of Opt-6.7B at the prompt level, we compare the token level results to the
prompt level for Opt-6.7B. Before proceeding here is a summary of the prompt level results from
Cheng et al.|(2023) and |Cheng et al.|(2024) that are relevant for our comparison.

* In|Cheng et al.| (2023)), the authors show a positive Spearman correlation of 0.51 for Opt-
6.7B (Figure 2a in|Cheng et al.|(2023)) using the ID estimator Expected Simplex Skewness
(ESS) Johnsson et al.|(2015]).

» Using TwoNN, they do not get a statistically significant correlation (Figure E5 in [Cheng
et al. (2023)). This is expected if we extrapolate from the GRIDE scale analysis of Figure
[9a]since the shuffled and unshuffled prompts were not distinguishable at low range scalings
at the prompt level.

* An analysis at a higher range scaling is done in |Cheng et al.| (2024) where they show a
negative correlation with surprisal (Figure 6 in|Cheng et al.[(2024))) with a relatively less
statistical significance since it has a high p-value = 0.09.

On the other hand, using the token-level approach, we measure a layerwise positive correlation
with surprisa]'’} We summarize the results in Table

8This is a simplified setup of the experiments in|Cheng et al.| (2024).

Note that the last tokens do not cluster according to the prompt index at the prompt level and we do not
expect it to happen. This gives a rough idea of how representations should look in case they are not related to
the sequence position.

10Surprisal, cross-entropy loss, log-perplexity are used interchangeably in this context since we are mainly
providing a qualitative picture in this section.
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(b) Token level. Left and middle left panels: The tSNE projections for the token representations for the
unshuffled and shuffled case of prompt number 3218 from Pile-10K. Middle right panel: Token represen-
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Figure 9: Prompt geometry and token geometry. Comparing prompt level (top panel) and token
level (bottom panel) geometry at layer 11. All the plots are obtained using the representations from

LLAMA.
Promptlevel | Promptlevel | Prompt level Token level | Token level
(ESS) (2NN) (high scaling) (2NN) (scaling = 8)
(many models X corpus)
Spearman p 0.51 0.13 -0.46 0.69 0.73
p-value 0.01 0.5 0.09 < 0.01 < 0.01

Table 1: Summary of Spearman correlations between ID and loss from prompt and token level
analysis for Opt-6.7B. The results for token level are from Figure|[10[and the prompt level are from

Cheng et al.|(2023) and (Cheng et al.| (2024).

B CONSISTENCY CHECKS FOR THE SHUFFLE EXPERIMENT

In this section, we show the consistency of the results that were discussed in the Sectior@

Intrinsic Dimension. For the case of intrinsic dimension, we show the ID profiles of 6 random
prompts sampled. It can be seen from Fig. [TT] that the shuffled ID (orange) peak is always higher
than the structured ID peak (blue) even though the degree of difference varies across prompts. We
also verify that this behavior is consistent across models in Fig. [I2}

Neighborhood Overlap. We compute NO for the average over all prompts of the full shuffle and the
structured case using kxn = 2 (left panel) and kxn = 4. Results are consistent with what discussed

ind23
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Figure 10: Spearman correlation between ID and loss for Opt-6.7B for different range scalings at
the token level as a function of layers.
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Figure 11: Intrinsic dimension profiles of 6 random prompts for LLAMA. The prompts are taken
from the filtered version of Pile described in the dataset section[d.1} where the prompt numbers refer
to the Pile-10K dataset.

C SCALE ANALYSIS FOR GRIDE

In this section, we analyze the different choices of range scaling for the GRIDE algorithm discussed
in Section. 3] The prompts we analyze have N = 1024 tokens and in Fig. [T4] we check the de-
pendence of ID estimate on range scaling € {2,4, 8,..512} for a single prompt on different models.
This is to illustrate the scale dependence of a single prompt that we consider throughout the text.

In the main text, we focus on range scaling = 2 and here we extend the analysis to range scaling = 4
and 8. In Figure[T5a] we find that PYTHIA’s peak is more comparable to LLAMA and MISTRAL as
the range scaling increases. In Figure[8] we notice that the correlation to loss becomes stronger for
range scaling = 4 and 8.
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Figure 12: The ID profiles for prompt number 3218 from Pile-10K for different models. Lighter
colors represent a higher shuffle index and a darker color is closer to the structured prompt.
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Figure 13: Neighborhood overlap at kxy = 2 (left panel) and knn = 4 (right panel) as a function
of layer for the full shuffle and structured case for the average over all prompts for LLAMA.
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Figure 14: Scale analysis for GRIDE estimation across models for a single prompt (prompt number
3218) for different layers. The early layers are given by lighter colors and the late layers are given
by darker colors.
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Figure 15: Scale analysis for intrinsic dimension and neighborhood overlap. Top Panel: The ID
profile averaged over 2244 prompts for range scaling = 2,4, 8, with shaded regions indicating the
standard deviation from the mean. Bottom Panel: The neighborhood overlap profile averaged over
2244 prompts for range scaling = 2, 4, 8, with shaded regions indicating the standard deviation from
the mean.
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Figure 16: Correlation between intrinsic dimension and loss at different range scalings. Pearson
coefficient between intrinsic dimension and model loss for range scalings = 2, 4 and 8 for different
models.

D MORE DETAILS ON THE CORRELATION BETWEEN ID AND LOSS

In section[#.4] we have discussed 3 steps to correlate the ID of tokens in internal representations to
the model’s loss. We empirically verify these steps in Figure [I7}

o Layerwise ID correlation with the logit ID Logit ID vs Softmax Entropy Cross Entropy Loss vs Softmax Entropy
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Figure 17: Correlating Intrinsic Dimension at the hidden layers to Cross Entropy Loss The
points in the following plots are calculated using the 2244 prompts considered in this paper for the
LLAMA model. We use scaling = 4 to compute the ID for the logits and the hidden layers. We
understand the correlation in 3 parts - (a) Left Panel: finding the correlation between the logit ID
and ID at the hidden layers, (b) Middle Panel: correlating the logit ID to the softmax entropy and
(c) Right Panel: comparing the softmax entropy to the cross entropy loss.

D.1 ANALYTICALLY RELATING THE INTRINSIC DIMENSION AND THE SOFTMAX ENTROPY

Given the logits X = (x1, x2, ...z p) as the input to a softmax layer, we get the associated probability
distribution given by
evi

pPX)i=—p—— (6)
Z]‘D:I e

where p(X); is the probability of the i word (in the D-dimensional vocabulary) to be the next
token. We can now write the associated entropy S(X) of this probability distribution -

D D ZD—I l‘j@zj
S(X)=-> p(X)ilogp(X); = [log Y €™ — D . @
i=1 j=1 Zj:l “

Now we want to ask the following question - If X is sampled from a D-dimensional manifold M,
what is the expected value of the entropy S(X)? In the upcoming paragraph, we look at a simpler
case when the manifold we consider is the unit box, i.e. M = [0,1]".

Evaluating softmax entropy as a function of dimension for the unit box Here we take a simplified
example - the unit box and understand the trend of expected softmax entropy with respect to the
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Entropy Values and Log[Dimensions] vs Dimensions
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Figure 18: Comparing expected entropy (.S) for the unit box to log D until D = 20

dimension of the box -

1 1 D ZD x.eli
S :/ dXSX:/~-/ dX | lo et — ==t (8)
< >[0,1]D 0,12 ( ) ) o g; Zf:ﬁxj

where X = (1, 22, ...2 p). We numerically evaluate this integral using NIntegrate on Mathematica
and compare the result with log D in Figure (I8) and notice that log D is a good approximation to
the above integral. Hence we have related an information-theoretic quantity the expected softmax
entropy ((S)[0,1)») to a physical quantity D - the dimension of the unit box, where we have

(S),1yp ~log D )

E TOKEN-LEVEL ID DURING TRAINING
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Figure 19: Intrinsic Dimension profile over training for PYTHIA. Left Panel: intrinsic dimension
profile for a single random prompt as a function of layers for different levels of training. Right Panel:
intrinsic dimension averaged over 50 prompts as a function of layers for the untrained (orange) and
trained (blue) model. The shaded regions indicate the standard deviation from the mean.
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