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Abstract
We define the probability of tiered benefit in scenarios with a binary exposure and an outcome
that is either categorical with K ≥ 2 ordered tiers or continuous partitioned by K − 1 fixed
thresholds into disjoint intervals. Similarly to other pure counterfactual queries, this parameter is
not g-identifiable without additional assumptions. We demonstrate that strong monotonicity does
not suffice for point identification when K ≥ 3 and provide sharp bounds both with and without
such constraint. Inference and uncertainty quantification for these bounds are challenging tasks
due to potential nonregularity induced by ambiguities in the underlying individualized optimization
problems. Such ambiguities can arise from immunities or null treatment effects in subpopulations
with positive probability, affecting the lower bound estimate and hindering conservative inference.
To address these issues, we extend the available stabilized one-step correction (S1S) procedure by
incorporating stratum-specific stabilizing matrices. Through simulations, we illustrate the benefits of
this approach over existing alternatives. We apply our method to estimate bounds on the probabilities
of tiered benefit and harm from pharmacological treatment for ADHD upon academic achievement,
employing observational data from diagnosed Norwegian schoolchildren. Our findings indicate that
while girls and children with low prior test performance could have moderate chances of both benefit
and harm from treatment, a clear-cut recommendation remains uncertain across all strata.

Keywords: counterfactuals, benefit, identification, bounds, inference

1. Introduction

Counterfactual inference involves probabilistic assessments of events for which certain causal
antecedents or consequences are contrary to facts (Balke and Pearl, 1994a,b). An exemplar scenario
is determining the probability that a given student would have passed a math qualification test had
they taken ADHD medication, given that they did not actually take it and failed the test. The scope of
application of counterfactual queries spans across diverse domains such as epidemiology, economics,
legal deliberation, psychology, and AI (Pearl, 2009). Notably, it finds high utility in explainability
of machine learning (Beckers, 2022), event attribution (Hannart et al., 2016), impact assessment
(Possebom and Riva, 2022), fairness analysis (Plečko and Bareinboim, 2024), and personalized
decision-making (Mueller and Pearl, 2023a), among other tasks.

© 2025 J. de Aguas, S. Krumscheid, J. Pensar & G. Biele.



DE AGUAS KRUMSCHEID PENSAR BIELE

An important counterfactual parameter, in the context of a binary exposure and a binary outcome,
is the probability of necessity and sufficiency (PNS). This parameter quantifies the proportion of
compliers in the population, referring to units who would have benefited if and only if they had been
treated (Pearl, 1999). Typically, this parameter is not g-identifiable, meaning it cannot be determined
solely from any unconstrained combination of causal graphs, observational data and experiments
(Robins and Greenland, 1989; Pearl, 1999). While point identification may be achievable under
a monotonicity assumption (Balke and Pearl, 1997), such a constraint is often unrealistic, as it
presupposes the absence of unintended effects from the exposure. Several generalizations of the
PNS have been proposed for nonbinary categorical, continuous, and vector-valued exposures and
outcomes (Li and Pearl, 2024a; Kawakami et al., 2024). Yet, these have mainly focused on settings
with unordered categorical outcomes or on queries that are identifiable under monotonicity.

When g-identification is unfeasible, an alternative approach is partial identification. Bounds
can always be computed from population-level observational and experimental distributions, or
solely from the former under the assumption of conditional ignorability (Tian and Pearl, 2000). Yet,
conducting inference and uncertainty quantification for estimates of these bounds is challenging due
to potential sources of nonregularity or lack of smoothness in the involved functionals. This difficulty
stems from impossibility results indicating that if the target functional is not pathwise differentiable at
the true distribution, there exist no sequence of regular and locally unbiased estimators. Furthermore,
correction procedures may not fully eliminate bias and could cause the variance to diverge (Hirano
and Porter, 2012). Lack of regularity and differentiability not only affect the validity of asymptotic
inference but also compromise the interpretation of uncertainty quantification under the bootstrap
and the Bayesian frameworks (Dümbgen, 1993; Fang and Santos, 2019; Kitagawa et al., 2020).
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Figure 1: A setting with a continuous out-
come and K = 4, c1 = −1.0, c2 = 1.5,
c3 = 3.0. Here, PB(x) is the volume un-
der the joint PDF of potential outcomes
(Y 0, Y 1)|X = x enclosed above the bene-
fit region (gray area).

Settings: The studied scenario involves a categorical
pre-exposure covariate X ∈ X defining strata from the
population, a binary point exposure A ∈ {0, 1}, and
an ordered categorical outcome Ỹ with K ≥ 2 tiers
C = {Ck}Kk=1. We also consider the case of a continu-
ous outcome Y ∈ Y ⊆ R, with support partitioned into
K disjoint tiers given by intervals with fixed thresholds
c = {ck}K−1

k=1 . We define the x-specific probability of
tiered benefit PB(x) as the probability that an individual
in stratum x ∈ X would attain any outcome tier under no
treatment and, counterfactually, a higher outcome tier un-
der treatment. Sharp bounds for PB(x) follow organically
from the Fréchet inequalities (Fréchet, 1951). We examine
the problem of developing semiparametric estimators for
these bounds that are consistent, doubly-robust, and with
stable inference in potentially nonregular settings. Our
goal is to construct valid uncertainty regions for PB(x),
accounting for both systemic and aleatoric uncertainties.

Applied motivation: Educational and clinical fields are
prime domains of application for the probability of tiered benefit, as quantitative measurements
(e.g. test scores, blood pressure) are often aggregated into ordered tiers or assessed against fixed
thresholds for tasks such as preliminary diagnosis, evaluation, categorization, and summarization.
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For instance, in the Norwegian educational system, compulsory national tests assessing skills in
numeracy, reading, and English are administered during school grades 5, 8, and 9. The Norwegian
Directorate for Education has established fixed thresholds that group the test scores into mastery
tiers, ranging from tier 1 (poorest) to tier 5 (highest). Considering the population of Norwegian
schoolchildren diagnosed with ADHD and the context of treatment with stimulant medication, one
can ask: What is the probability that a child from a given subpopulation would achieve a higher
test mastery tier under treatment than their corresponding counterfactual mastery tier under no
treatment? This is a pure counterfactual query, different from an experimentalist’s investigation of
the sign and magnitude of the conditional average treatment effect (CATE). Although these two
approaches generally lead to similar conclusions regarding decision-making (Hedden, 2023), there
is currently an illuminating debate on their contrasts, limitations, and bioethical considerations for
personalized medicine. We refer the reader to Sarvet and Stensrud (2023, 2024) and Mueller and
Pearl (2023a,b) for this debate.

Main contribution: We offer contributions to the problems of identification, partial identification,
and doubly-robust, stable inference for the proposed probability of tiered benefit. This novel parameter
generalizes the PNS to cases where the outcome is either ordered categorical or continuous with
a fixed partition of its support. Unlike recent generalizations by Vlontzos et al. (2023), Li et al.
(2023), and Kawakami et al. (2024), our focus is not restricted to queries where strong monotonicity
ensures point identification. In fact, we show that this constraint does not suffice for identification
when K ≥ 3. We derive sharp bounds and introduce methods for estimation and inference for
these bounds. To address uncertainty quantification issues induced by potential nonregularity, we
adapt the stabilized one-step correction (S1S) approach by Luedtke and van der Laan (2018) with
two extensions. First, our target estimand is a bivariate array containing the bounds, so we employ
stabilizing 2× 2 matrices rather than scalar weights, and leverage a martingale structure that yields
a limiting bivariate Gaussian distribution for a linear transformation of the estimator’s asymptotic
bias. Second, we evaluate additive corrections using the next out-of-sample unit within each stratum,
ensuring valid stratum-specific inference while employing pooled data to estimate population-level
nuisance parameters efficiently.

Related literature: The probabilities of causation were formalized in counterfactual terms by Pearl
(1999) for scenarios with binary exposure and outcome. It was shown that point identification can
be achieved under a monotonicity assumption. Without this functional constraint, sharp bounds are
derived using a combination of observational and experimental data (Tian and Pearl, 2000). Covariate
information has been leveraged to define stratum-specific queries and to narrow the bounds through
a marginalization step (Mueller et al., 2022; Li and Pearl, 2022). Partial identification has been
extended to generalizations of the probabilities of causation in scenarios with nonbinary categorical
variables (Li and Pearl, 2024a,b). More recently, a further generalization was proposed for continuous
and vector-valued variables, where identification remains achievable under monotonicity constraints
(Kawakami et al., 2024). Bounds have also been established for the limiting case of the distribution
of individualized treatment effects (ITE) (Fan and Park, 2010), which is not g-identifiable due to the
fundamental problem of causal inference, as well as for some of its functionals (Firpo and Ridder,
2010; Russell, 2021).

Robust inference for set-valued or partially identified parameters is an active area of research
in statistics and econometrics. Given that bounds are often determined by extrema functionals of
distributions, the estimation and inference tasks often target transformations of value functions from
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individualized optimization problems. Complete conditions for pathwise differentiability of such
functionals have been characterized, enabling the development of regular asymptotically linear
(RAL) estimators in a broad class of distributions referred to as nonexceptional laws (Robins, 2004;
Luedtke and van der Laan, 2016). It has been shown that ambiguities and nonunique solutions in
such optimization problems can result in lack of pathwise differentiability, making it impossible
to obtain regular and locally unbiased estimators (Hirano and Porter, 2012). Nondifferentiability
also poses challenges for other inference frameworks, causing various bootstrap-based methods
to become inconsistent (Dümbgen, 1993; Fang and Santos, 2019), and making Bayesian credible
intervals fail to be asymptotically equivalent to confidence intervals (Kitagawa et al., 2020).

Various methodological approaches have been proposed to conduct robust semiparametric in-
ference in putative nonregular settings, including: (i) targeting thresholded or smoothed surrogates
(Chakraborty et al., 2010), (ii) employing data-adaptive or cross-validated surrogates (Bibaut and
van der Laan, 2017; van der Laan et al., 2018), and (iii) applying stabilizing weights to sequences of
one-step corrections (Luedtke and van der Laan, 2016, 2018). Other strategies stem from alternative
statistical optimality criteria, such as follows: (iv) median-bias correction for intersection bounds
(Chernozhukov et al., 2013; Possebom and Riva, 2022), and (v) solutions using asymptotic minimax
regret (Hirano and Porter, 2009; Song, 2014; Ponomarev, 2022; d’Adamo, 2023). Recently, the gen-
eral problem has also been framed in terms of robust inference for conservative bounds (Balakrishnan
et al., 2023) and Kantorovich dual bounds (Ji et al., 2023) from the optimal transport literature. In
this context, nonregularities could be potentially addressed via post-hoc feasibility procedures.

2. The probability of tiered benefit and its identification

Let X ∈ X represent a categorical pre-exposure variable indicating different strata within a popula-
tion, with minx∈X P(X = x) > 0.

Let A ∈ {0, 1} denote a binary point exposure, where A = 1 signifies treated and A = 0
signifies not treated, and mina∈{0,1} P(A = a | X = x) > 0 for all x ∈ X .

Let Y be the outcome variable and Y a denote the potential outcome under the intervention
do(A = a). This is the value that Y assumes when A is fixed to have value a ∈ {0, 1} within a
structural causal model (SCM)M. The potential outcome Y a is a random variable that varies based
on unit-level characteristics (Pearl, 2009; Bareinboim et al., 2022), and adheres to the consistency
axiom, meaning that if A = a and Y = y, then Y a = y (Robins, 1989).

Definition 1 Let Ỹ ∈ C = {Ck}Kk=1 be a categorical outcome with K ≥ 2 tiers, and ⪯ be a total
order on C, with ≻ defined accordingly. The x-specific probability of tiered benefit PB(x) is the
joint probability of attaining an outcome tier under no treatment Ỹ 0 and, counterfactually, a higher
outcome tier under treatment Ỹ 1, for stratum x ∈ X . That is:

PB(x) := P

(
K−1∨
k=1

[Ỹ 0 = Ck ∧ Ỹ 1 ≻ Ck] | X = x

)
=

K−1∑
k=1

P(Ỹ 0 = Ck, Ỹ
1 ≻ Ck | X = x). (1)

Definition 2 Let Y ∈ Y ⊆ R be an absolutely continuous outcome, with higher values being more
desirable. Let c be a partition of the outcome support with fixed thresholds: inf Y = c0 < c1 < · · · <
cK−1 < cK = supY , thereby producing K ≥ 2 tiers given by disjoint intervals Ik = (ck−1, ck],
k ∈ [K] := {1, · · · ,K}. The x-specific probability of tiered benefit PBc(x) is the joint probability
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of attaining an outcome value under no treatment Y 0 at any given tier and, counterfactually, an
outcome value under treatment Y 1 at any higher tier, for stratum x ∈ X . That is:

PBc(x) := P

(
K−1∨
k=1

[Y 0 ∈ Ik ∧ Y 1 > ck] | X = x

)
=

K−1∑
k=1

P(Y 0 ∈ Ik, Y 1 > ck | X = x). (2)

The representation as sum of joint probabilities arises from the mutual exclusion of the counter-
factual events involved. Without loss of generality, we will center on the given formulation within
the context of a continuous outcome (definition 2).

The probability of tiered benefit can be computed from a fully specified SCM following a
three-step procedure termed abduction-action-prediction (Pearl, 2009; Saha and Garain, 2022),
or via an augmented graphical model known as a twin network (Balke and Pearl, 1994b). Such
computations are sensitive to the specification of functional relationships in the SCM. Thus, in cases
of epistemic uncertainty regarding the causal mechanisms, PBc(·) cannot be directly computed from
the other components of the SCM (Pearl, 1999). Consequently, the probability of tiered benefit is not
g-identifiable from any unconstrained combination of inputs involving the causal graph, observational
data and subsidiary experiments (Robins and Greenland, 1989; Oberst and Sontag, 2019).

When K = 2, a single threshold c1 separates the tiers. In this context, PBc(x) returns the
x-specific PNS (Pearl, 1999; Mueller et al., 2022), given by P(Ỹ 0 = 0, Ỹ 1 = 1 | X = x) =
E[(1 − Ỹ 0)Ỹ 1 | X = x], with Ỹ a := I(Y a > c1). Although it is not g-identifiable, it can be
determined under a functional constraint known as strong monotonicity.

Assumption 1 (Strong monotonicity) The potential outcome Y a is strongly monotonic at stratum
X=x, i.e. P(Y 1−Y 0 ≥ 0 | X=x) ∈ {0, 1}.

This assumption implies that treatment either universally benefits or universally harms individu-
als within the stratum. This is sufficient for identification of PNS(x), yielding the value PNS(x) =
∆aP(Y a > c1 | X = x) for a nonharmful exposure (Tian and Pearl, 2000), where ∆a is the
difference operator relative to the binary term a.

For the general K ≥ 2 case with a nonharmful exposure, strong monotonicity ensures that
P(Y 0 > ck, Y

1 ∈ Ik | X = x) = 0, ∀k ∈ [K − 1] (Vlontzos et al., 2023). In other words,
the x-specific probability of tiered harm is zero (Mueller and Pearl, 2023c), where this is defined
analogously as PHc(x) :=

∑K−1
k=1 P(Y 0 > ck, Y

1 ∈ Ik | X=x).

Proposition 3 For K ≥ 3, strong monotonicity is not sufficient for point identification of the
probability of tiered benefit.

Justification of proposition 3 lies in the underdetermined nature of the linear system of coun-
terfactual probabilities P(Y 0 ∈ Ia, Y 1 ∈ Ib | X = x), where a, b ∈ [K]. This system involves
NK := (K − 1)K/2 null entries induced by strong monotonicity; MK := K(K + 1)/2 unknowns;
and LK := 2K − 1 constraints. The latter accounts for the K − 1 linearly independent marginal
interventional probabilities for each arm, as well as the joint constraint that all cells sum to one.
When K = 2, one has that M2 = L2 = 3, which allows for a unique solution for the system and
hence for PBc(x) = PNS(x). Yet, for K ≥ 3, one has that MK > LK , which prevents a unique
solution.

One consequence is that, when K ≥ 3, additional functional constraints on the causal mecha-
nisms beyond monotonicity are necessary to identify PBc(x) (Cinelli and Pearl, 2021). Yet, such
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constraints are hard to derive from domain expertise, and incorrect assumptions can lead to coun-
terintuitive results (Oberst and Sontag, 2019; Vlontzos et al., 2023). As an alternative, we provide
bounds Λ(x) ≤ PBc(x) ≤ Υ(x) both with and without the strong monotonicity constraint. We then
propose a semiparametric estimation strategy for these bounds, enabling doubly-robust inference and
valid asymptotic uncertainty quantification at both nonexceptional and potentially exceptional laws.

3. Partial identification

Let W ∈ W be a vector of pre-exposure variables such that the following two assumptions hold:

Assumption 2 (Conditional ignorability) Y a ⊥⊥ A |W,X, ∀a ∈ {0, 1}.
In the SCM framework, this assumption is implied by backdoor admissibility of {W,X}. That

is, if G is a causal graph on the system’s endogenous variables V containing {W,X,A, Y }, and
G[A] is the mutilated graph removing the arrows coming out of A, then the d-separation statement
Y ⊥⊥d A |W,X in G[A] implies conditional ignorability (Pearl, 2009).

Assumption 3 (Propensity score positivity) Let π(w, x) := P(A = 1 | W = w,X = x) be the
propensity score, then π(w, x) ∈ (0, 1), ∀(w, x) ∈ W ×X with pW (w | X = x)P(X = x) > 0.

Let Sk(w, x, a) and Rk(w, x, a) be, respectively, the conditional probability of surpassing
threshold ck and the conditional probability of being in tier Ik under treatment arm A = a given
(W = w,X = x). That is:

Sk(w, x, a) := P(Y > ck |W = w,X = x,A = a), (3)

Rk(w, x, a) := P(Y ∈ Ik |W = w,X = x,A = a) = Sk−1(w, x, a)− Sk(w, x, a). (4)

Proposition 4 For K ≥ 3, and under strong monotonicity (assumption 1) with a nonharmful
treatment, conditional ignorability (assumption 2), and propensity score positivity (assumption 3),
sharp bounds for PBc(x), with x ∈ X , are given by:

PBc(x) ≥ EW |X=x

[
S1(W,x, 1)−RK(W,x, 0)−

K−1∑
k=2

min{Rk(W,x, 0); Rk(W,x, 1)}

]
, (5)

PBc(x) ≤ EW |X=x

[
S1(W,x, 1)−RK(W,x, 0)−

K−1∑
k=2

max{0; Rk(W,x, 0)+Rk(W,x, 1)−1}

]
(6)

A detailed derivation is provided in appendix A.1.

In certain domains of application, strong monotonicity is an unrealistic assumption, as unintended
effects from treatment may occur for some groups of units with positive probability. Therefore, we
also provide a set of bounds not relying on strong monotonicity.

Proposition 5 For K ≥ 2, and under conditional ignorability (assumption 2), and propensity score
positivity (assumption 3), sharp bounds for PBc(x), with x ∈ X , are given by:

PBc(x) ≥ Λ(x) :=

K−1∑
k=1

EW |X=xmax {0; Rk(W,x, 0) + Sk(W,x, 1)− 1} , (7)

PBc(x) ≤ Υ(x) :=
K−1∑
k=1

EW |X=xmin {Rk(W,x, 0); Sk(W,x, 1)} . (8)
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A detailed derivation is provided in appendix A.2.

We now focus on estimation and inference for the stratum-specific bounds given by proposition 5.
Thus, the target estimand is a bivariate array containing these bounds:

Ψ[P ∗](x) := (Λ(x); Υ(x))⊤ for x ∈ X . (9)

Here, Ψ : P×X → [0, 1]2 is a functional that takes a distribution P in a semiparametric model
P, along with a stratum x ∈ X , and returns the value of the bounds for PBc(x). We denote with P ∗

the true joint distribution of the data O = (W,X,A, Y ).

4. Estimation and inference at a nonexceptional law

Certain distributions known as exceptional laws may carry ambiguities that lead to nonregularity in
the inference problem (Robins, 2004). Specifically, if for any k ∈ [K − 1], the two arguments of
either the max or min operators in equations (7) and (8) are equal under P ∗ with positive probability,
Ψ becomes nondifferentiable at P ∗. In such cases, the limiting distribution of the plug-in estimator
is nonstandard, and no regular and locally unbiased estimator for Ψ[P ∗] exists (Hirano and Porter,
2012). Consequently, standard methods —such as asymptotic, Bayesian, and most bootstrap-based
approaches— fail to yield valid uncertainty quantification (Dümbgen, 1993; Fang and Santos, 2019;
Kitagawa et al., 2020).

Proposition 6 Let x ∈ X and B(x) be the set containing all w ∈ W such that for at least one
k ∈ [K − 1] one has that either Rk(w, x, 0) + Sk(w, x, 1) = 1 or Rk(w, x, 0) − Sk(w, x, 1) = 0.
Then, P ∗ is nonexceptional and Ψ[·](x) is pathwise differentiable at P ∗ if and only if B(x) has
measure zero, i.e.

∫
I[w ∈ B(x)] dP ∗

W (w | X = x) = 0.

This proposition follows from the extended definitions of exceptional laws and pathwise differ-
entiability by Luedtke and van der Laan (2016).

At a nonexceptional law, estimation and inference can be conducted via a plug-in procedure
Ψ̂plug(x) := Ψ[P̂ ](x), where P̂ couples the empirical distribution of W | X = x with an estimated
semiparametric model for the conditional outcome distribution. For instance, the latter can be speci-
fied as a Bayesian model with Gaussian likelihood, conditional mean µ(W,X,A) and homoskedastic
variance σ2. This approach requires the correct specification of such a model for consistency and
valid uncertainty quantification. Alternatively, we propose a semiparametric doubly-robust method
that leverages the propensity score model as well. Under certain technical conditions, this approach
provides a consistent estimator even if either the outcome model or the propensity score model is
misspecified, as long as both are not incorrect simultaneously (Daniel, 2018).

Let {Oi}i∈J be a held-out dataset from the same population, then a doubly-robust estimator of
the bounds can be constructed using one-step corrections (1S) of the plug-in estimator as follows:

Λ̂1S(x) := Λ̂plug(x) +
1

|J(x)|
∑

i∈J(x)

K−1∑
k=1

(
D̂R

k (Oi) + D̂S
k (Oi)

)
· λk[P̂ ](Oi), (10)

Υ̂1S(x) := Υ̂plug(x) +
1

|J(x)|
∑

i∈J(x)

K−1∑
k=1

[
D̂R

k (Oi)−
(
D̂R

k (Oi)− D̂S
k (Oi)

)
· υk[P̂ ](Oi)

]
, (11)
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where J(x) denotes the subset of units within J for which X = x, and D̂R
k , D̂

S
k represent the

estimated components of the (uncentered) efficient influence functions (EIF) for the expectations of
Rk under no treatment and of Sk under treatment, respectively, and given by:

D̂R
k (Oi) :=

1−Ai

1− π̂(Wi, x)
·
(
I[Yi ∈ Ik]− R̂k(Wi, x, Ai)

)
, (12)

D̂S
k (Oi) :=

Ai

π̂(Wi, x)
·
(
I[Yi > ck]− Ŝk(Wi, x, Ai)

)
. (13)

Moreover, λk, υk are individualized rules λk, υk : P×W ×X → {0, 1} given by:

λk[P ](w, x) := I[Rk(w, x, 0) + Sk(w, x, 1)− 1 > 0], (14)

υk[P ](w, x) := I[Rk(w, x, 0)− Sk(w, x, 1) > 0]. (15)

A detailed derivation is available in appendix A.3.

Intuitively, these rules pick the solution index of the individual-level optimization problems. For
instance, λk[P ](w, x) = 1 indicates that the second term in max {0; Rk(w, x, 0) + Sk(w, x, 1)− 1}
is the maximum of the two inputs. They also determine the "derivatives" of the min and max
operators. These rules are well-defined and nonambiguous, even when the two terms being compared
equate.

The proposed 1S procedure is analogous to double/debiased machine learning (DML) (Cher-
nozhukov et al., 2018). Alternatively, at a nonexceptional law, an asymptotically equivalent sub-
stitution estimator can also be constructed using targeted minimum-loss estimation (TMLE) (van
der Laan and Rose, 2011, 2018). Confidence and uncertainty regions can be constructed using the
EIF-based estimator for the asymptotic covariance of Ψ̂1S(x) (Daniel, 2018), given by:

Ω̂1S(x) :=
1

|J(x)|
Côv

(
{Λ̂i + ∂Λ̂i; Υ̂i + ∂Υ̂i}i∈J(x)

)
, (16)

where Λ̂i and ∂Λ̂i denote the unit-level prediction from the plug-in estimator and its respective
correction for the lower bound; with Υ̂i and ∂Υ̂i serving analogous roles for the upper bound.

5. Estimation and inference at a potentially exceptional law

Example 1: Consider the case of an exposure having zero conditional risk difference for surpassing
the first threshold c1 for a subpopulation (w′, x′) ∈ W×X with positive probability. In this scenario,
the probability of being in the first tier is identical for both treated and untreated individuals in such a
group, so R1(w

′, x′, 0) = R1(w
′, x′, 1). Since S1(w′, x′, 1)− 1 = −R1(w

′, x′, 1), this produces a
nonregular behavior in the first sum component max{0;R1(w

′, x′, 0)−R1(w
′, x′, 1)} of the lower

bound.

Example 2: Suppose the exposure results in a zero conditional risk difference for surpassing the
last inner threshold cK−1, and that the probability of attaining either of the final two tiers, IK−1 and
IK , is the same under no treatment for some subpopulation (w′, x′) with positive probability. This
leads to RK−1(w

′, x′, 0) = RK(w′, x′, 0) = SK−1(w
′, x′, 0), which creates ambiguity in the last

sum term min{SK−1(w
′, x′, 0);SK−1(w

′, x′, 1)} and hence nonregularity in the upper bound.

8



THE PROBABILITY OF TIERED BENEFIT

The first example presents a more plausible concern, particularly when prior knowledge indicates
that the treatment effect could be zero or minimal, as it only necessitates a null conditional risk
difference for surpassing the first inner threshold. In this case, the lower bound is impacted, hindering
conservative or pessimistic inference (Balakrishnan et al., 2023). However, nonregularities may also
emerge from unforeseen factors, for instance, when subpopulations have varying immunity to the
exposure or when tiers are designed to meet specific balance or fairness criteria.

As demonstrated by Luedtke and van der Laan (2016, 2018), parametric-rate inference and valid
uncertainty quantification can still be achieved under certain technical conditions, even at potentially
exceptional laws. Here, we adapt and extend the stabilized one-step correction (S1S) procedure with
two key modifications. While the original approach is designed for population-level queries on the
real line and utilizes scalar stabilizing weights, we generalize it to handle bivariate, stratum-specific
queries, replacing scalar weights with stabilizing matrices. The adapted procedure is summarized in
the following steps and detailed in algorithm 1.

(i) Permute the units in the dataset. Select an initial data batch size l > 0.

(ii) Learn nuisance parameters P̂ from the initial batch. Identify the stratum for the next unit
x′ := Xl+1. Compute the plug-in values Λ̂(x′) and Υ̂(x′).

(iii) For the next unit and for each unit in the batch within the same stratum x′, compute their
one-step corrections as given by equations (10) and (11).

(iv) Calculate T : the inverse-root-square of the covariance matrix of the unit-level corrected
predictions within the stratum x′.

(v) Correct the plug-in estimates of the bounds for stratum x′ using the next unit’s individual
correction. Save it with T .

(vi) Add the next unit to the batch and repeat from (ii) until reaching the penultimate unit.

(vii) The final estimate is the matrix-weighted average of all corrected estimates, weighted by their
corresponding stabilizing matrices T .

A detailed derivation with conditions for asymptotic convergence is available in appendix A.4.

This procedure requires a sample size big enough to guarantee n(x) ≥ 2 for all strata, after
discounting the initial batch. Uncertainty regions can then be constructed using Monte Carlo
sampling from the asymptotic distribution. Let {(sΛ, sΥ)}Hh=1 represent samples from a bivariate
Gaussian distribution with zero mean and covariance matrix Ω̂S1S(x). Define ŝ(x) as the 97.5%
quantile of max{sΛ,−sΥ}. This yields a potentially conservative uncertainty region for PBc(x) that
incorporates both aleatoric and systemic uncertainties, as follows:

Λ̂S1S(x)− ŝ(x) ≤ PBc(x) ≤ Υ̂S1S(x) + ŝ(x), (17)

giving the following statistical guarantee:

lim inf
n→∞

P
(
Λ̂S1S(x)− ŝ(x) ≤ PBc(x) ≤ Υ̂S1S(x) + ŝ(x)

)
≥ 0.95. (18)

6. Simulations

We perform a simulation study in a simplified setup inspired by example 1 in section 5, to evaluate
the performance of various methods for conducting inference on the bounds of the probability of
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Algorithm 1 Estimation and inference for PBc(·) via S1S with stabilizing matrices

Input: data {Oi}ni=1, outcome thresholds c = {ck}K−1
k=1 , initial batch size 0 < l < n,

1: set of learners (and super-learning schemes)
Output: estimates Ψ̂S1S(·), and asymptotic covariance matrix Ω̂S1S(·)

2: Permute data indices; and initialize n(x)← 0, m(x)← (0, 0), and M(x)← 0 · Id2, ∀x ∈ X
3: for j ∈ {l, l + 1, . . . , n− 1}
4: Let D ← [j]; and learn nuisance parameters of P̂ (cond. outcome and propensity score) from D
5: Let x′ ← Xj+1, Λ̂(x′)← Λ[P̂ ](x′) and Υ̂(x′)← Υ[P̂ ](x′)

6: Λ̂i ←
∑K−1

k=1 max
{
0; R̂k(Wi, x, 0) + Ŝk(Wi, x, 1)− 1

}
, ∀i ∈ [j] : Xi = x′

7: Υ̂i ←
∑K−1

k=1 min
{
R̂k(Wi, x, 0); Ŝk(Wi, x, 1)

}
, ∀i ∈ [j] : Xi = x′

8: ∂Λ̂i ←
∑K−1

k=1

(
D̂R

k (Oi) + D̂S
k (Oi)

)
· λk[P̂ ;Oi], ∀i ∈ [j + 1] : Xi = x′

9: ∂Υ̂i ←
∑K−1

k=1

[
D̂R

k (Oi)−
(
D̂R

k (Oi)− D̂S
k (Oi)

)
· υk[P̂ ;Oi]

]
, ∀i ∈ [j + 1] : Xi = x′

10: T (x′)← Côv
(
{Λ̂i + ∂Λ̂i; Υ̂i + ∂Υ̂i}i∈D:Xi=x′

)− 1
2

11: m(x′)← m(x′) + T (x′)
[
(Λ̂(x′); Υ̂(x′))⊤ + (∂Λ̂j+1; ∂Υ̂j+1)

⊤
]

12: M(x′)←M(x′) + T (x′) and n(x′)← n(x′) + 1
end for

13: Ψ̂S1S(x)←M(x)−1m(x) and Ω̂S1S(x)← n(x)M−2(x), ∀x ∈ X
14: return Ψ̂s(·) and Ω̂S1S(·)

tiered benefit. Data are generated according to the following SCM:

W1 ∼ Unif(−1, 1),
W2 = I

[
v2 > 0.25

]
, X = I[v > 0], v ∼ Unif(−1, 1),

A = I [0.5 (W1 + 2X − 1) + uA > 0] , uA ∼ N(0, 1),

Y = (2A− 1) + (W1 +X) · [1 + 0.5(2A− 1)]−A ·W2 · (W1 +X + 2) + uY , uY ∼ N(0, 4).

Here Unif(a, b) denotes the continuous uniform distribution with support [a, b], and N(µ, σ2)

indicates the Gaussian distribution with mean µ and variance σ2. In this setup, we set K = 3, with
fixed thresholds at c1 = −1.42 and c2 = 1.09.

Since the outcome follows a homoscedastic Gaussian distribution, the conditional risk difference,
∆aP(Y > c |W1,W2, X,A = a), is zero whenever the CATE, ∆aE [Y |W1,W2, X,A = a], is zero,
for any value c in the outcome’s support. Consider the subpopulation with W2 = 1, which has
positive probability in both strata X ∈ {0, 1}. For this group, the conditional mean outcome is
E [Y |W1,W2 = 1, X,A = a] = 0.5 (W1 + X) − 1, which is independent of a, implying a null
CATE. This causes nonregularity in the sum component of the lower bound for the first threshold,
impacting the joint inference of the bounds. In other words, the joint distribution P ∗ governing the
SCM is exceptional due to the existence of a subpopulation, with positive probability, that is immune
to treatment.

We benchmark four types of estimators: (i) the naïve plug-in estimator, (ii) the one-step corrected
(1S) estimator from section 4, (iii) the stabilized one-step corrected (S1S) estimator detailed in
section 5, and (iv) the one-step corrected estimator with smooth surrogates. We use a sample
size of n = 5000 and, for the S1S procedure, we set an initial batch size of l = 2000. For the

10
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Table 1: Performance of proposed procedures and other methods in simulation setup in relation to marginal
coverage of confidence intervals for lower bound (Lo.) and upper bound (Up.) of the probability of tiered
benefit, joint coverage (Jo.) of bounds, and MSE results.

X = 0 X = 1

Coverage (%) MSE ×103 Coverage (%) MSE ×103

Estim. Lo. Up. Jo. Lo. Up. Lo. Up. Jo. Lo. Up.

Plug-in estimator 0.5 59.0 0.0 0.925 0.392 40.5 82.0 37.0 0.305 0.472
One-step (1S) corrected 95.0 77.5 75.0 0.257 0.839 96.0 93.0 91.5 0.356 0.331
1S with GELU(h = .05) 95.5 66.5 64.0 0.279 1.028 96.5 92.5 91.0 0.357 0.334
1S with GELU(h = .15) 70.5 46.0 28.0 0.784 2.029 91.0 85.5 75.5 0.497 0.702
S1S with stab. matices 95.5 95.5 92.5 0.607 0.654 97.0 98.0 95.5 0.589 0.522

surrogates, we replace nondifferentiable terms with a smooth variant, i.e., max{0, x} is approximated
by GELU(x, h) := x · Φ(x/h), where Φ denotes the Gaussian CDF and h > 0 is a smoothing
parameter (Lee, 2023). The outcome and propensity score models for all estimators are fit using
multivariate adaptive regression splines and logistic regression. The true values of PBc(·) and its
bounds are 0.30 with range 0.16–0.69 for X = 0, and 0.37 with range 0.25–0.66 for X = 1. Results,
averaged over 200 iterations, are presented in table 1.

The 1S procedure consistently outperforms the naïve plug-in estimator across all metrics,
especially in enhancing coverage for the lower bound. However, joint coverage remains below the
nominal 95% in both strata. The performance of the smooth surrogate estimator is highly sensitive
to the hyperparameter h: at h = 0.05, it performs similarly to the 1S procedure, but at h = 0.15,
most performance metrics worsen. The S1S estimator improves joint coverage across both strata,
particularly for stratum X = 0, though it is slightly conservative in its coverage for stratum X = 1

and exhibits higher MSE compared to the 1S estimator. However, coverage improvement comes at a
significantly higher computational cost, as it requires re-learning all nuisance parameters with each
new unit added to the data batch.

7. Application case

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder marked by persis-
tent inattention and impulsivity, negatively impacting social, academic, and occupational functioning
(World Health Organization, 2022). Affecting approximately 2–6% of children and adolescents
globally, ADHD is among the most common mental health conditions in youth (Cortese et al., 2023).
Individuals with ADHD often experience negative outcomes, including reduced quality of life and
academic underachievement (Faraone et al., 2021). While stimulant medication effectively alleviates
symptoms (Cortese et al., 2018), its impact on school-related outcomes is modest, with benefits
not always translating to improved learning or higher standardized test scores (Storebø et al., 2015;
Pelham et al., 2022).

In the Norwegian educational system, compulsory tests in numeracy, reading, and English are
administered during school grades 5, 8, and 9. Since 2014, test scores have been categorized by
the Norwegian Directorate for Education into mastery tiers, from tier 1 (poorest) to tier 5 (highest).
On average, 12% of all schoolchildren do not achieve tier 2, and 34% do not reach tier 3; these
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Figure 2: Uncertainty regions for the probability of tiered benefit (in blue) and for the probability of tiered harm
(in red) for different strata of the population of Norwegian schoolchildren diagnosed with ADHD, relative to
stimulant medication treatment and the mastery tiers for the numeracy national test at eighth school grade.
Vertical broken lines indicate 0% and 50%, and G5 indicates fifth school grade.

figures rise to 26% and 52%, respectively, for those with ADHD. Besides, methylphenidate, the most
common ADHD medication, can cause adverse side effects such as sleep disturbances and appetite
loss (Graham and Coghill, 2008), potentially affecting test performance and calling into question the
applicability of the monotonicity assumption in this context.

We apply the developed methods to estimate the probability of tiered benefit and harm from
pharmacological treatment for ADHD upon academic achievement, using the official thresholds
among mastery tiers 1, 2, and 3 in the Norwegian numeracy test at eighth grade. As prior evidence
suggests a small effect of stimulant medication on academic achievement, applying the stabilized one-
step correction (S1S) procedure from section 5 is well-suited to avoid regularity issues arising from
potential null treatment effects in some subpopulations. This analysis uses observational registry data
from 9 352 individuals and includes a comprehensive set of pre-exposure variables, covering school,
family, and child-level information, medical history, sociodemographics, and parental characteristics.
Estimated uncertainty regions by the S1S procedure are shown in figure 2, with additional details on
data sources and processing steps provided in appendix B.

These results can be translated into recommendations using the decision-making rules under
partial identification proposed by Cui (2021) and the utility functions defined by Li and Pearl (2022).
From a pessimistic perspective, the probability of benefit is uniformly small across all strata, peaking
at 8% for girls —meaning only 8% of girls would achieve a higher mastery tier with treatment than
they would without it—. Meanwhile, the probability of being harmed by stimulant medication can be
as high as 33% for girls, and even higher, reaching 46% for children who already had low numeracy
scores in fifth grade. In contrast, from an optimistic viewpoint, the probability of harm is nearly zero
across all strata. The groups with the greatest chances of benefiting from medication are children
with low numeracy scores in fifth grade (58%), girls (55%), and those who received prior ADHD
treatment (54%). From a strict opportunistic standpoint, a treatment recommendation cannot be
made, as in no group does the minimum benefit exceed the maximum harm.

The causal interpretation of these results hinges on several graphical and statistical assumptions,
some of which are untestable. The potential impacts of violations of some of these assumptions

12
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could, in principle, be explored through sensitivity analysis (Díaz et al., 2018) and extended partial
identification techniques (Ding and VanderWeele, 2016; VanderWeele and Ding, 2017).

8. Discussion

The proposed probability of tiered benefit extends the probability of necessity and sufficiency to
new contexts. Though application-agnostic, it can be especially relevant in education and clinical
sciences, where outcomes are often tiered and benchmarked against fixed thresholds for purposes
like summarization, diagnosis, and intervention evaluation. While partial identification strategies,
even when sharp, do not inherently guarantee informative bounds, they provide a more transparent
and robust approach compared to imposing strict functional assumptions that may be hard to justify
and verify.

The proposed 1S and S1S estimators yield doubly-robust inferential results that outperform the
plug-in estimator for bound functionals, even in nonregular scenarios. These approaches could be
extended to other bounds in causal inference, including assumption-free bounds for causal effects
(Pearl, 1999), instrumental variables (Balke and Pearl, 1997), sensitivity analyses (Díaz et al., 2018),
and latent confounding (Ding and VanderWeele, 2016; VanderWeele and Ding, 2017).

The S1S procedure provides more reliable results under exceptional distributions, which can
emerge from immunities or null treatment effects in certain subpopulations. However, it has some
limitations. Firstly, it is computationally intensive. Suppose flexible machine learning models and
schemes are implemented, and the running time of the 1S estimator is O(n log n) for a large sample
size n relative to the number of features. In this case, the running time of S1S estimator, with unit-
batch increases, would be O(n2 log n), which becomes prohibitively expensive for large n. Secondly,
because it is not a substitution estimator, it may produce estimates outside the parameter space. To
address this, computational efficiency could be improved by integrating and adapting methods from
the online learning paradigm (van der Laan and Lendle, 2014) along with TMLE-based solutions for
nondifferentiable parameters (van der Laan et al., 2018). We aim to explore these in future work.
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Appendix A. Proofs and derivations

A.1. Proof of proposition 4

Let qa,b(w, x) := P(Y 0 ∈ Ia, Y 1 ∈ Ib | W = w,X = x) for a, b ∈ [K]. This is, qa,b is the (w, x)-
specific joint probability of attaining outcome interval Ia under no treatment and, counterfactually,
attaining Ib under treatment. Let Q(w, x) be the matrix containing all these probabilities.

Under strong monotonicity (assumption 1) and a nonharmful treatment, one has that qa,b = 0 for
all a > b, and so Q(w, x) can be represented by a lower triangular matrix:

Q(w, x) =

q1,1 0 0 . . . 0 0

q1,2 q2,2 0 . . . 0 0

...
...

...
. . .

...
...

q1,K−2 q2,K−2 q3,K−2 . . . 0 0

q1,K−1 q2,K−1 q3,K−1 . . . qK−1,K−1 0

q1,K q2,K q3,K . . . qK−1,K qK,K



}

P(Y 0 ∈ IK |W = w,X = x)

}P(Y 1 ∈ I1 |W = w,X = x)

(19)

All entries in Q(w, x) add up to one and all off-diagonal entries add up to the (w, x)-specific
probability of tiered benefit PBc(w, x), thus:

1 = PBc(w, x) + traQ(w, x). (20)

Strong monotonicity implies q1,1(w, x) = P(Y 1 ∈ I1 | W = w,X = x) and qK,K(w, x) =

P(Y 0 ∈ IK |W = w,X = x) via fulfillment of the margin constraints. Moreover, under conditional
ignorability (assumption 2) and propensity score positivity (assumption 3), these quantities are
identified by R1(w, x, 1) and RK(w, x, 0) respectively. Therefore:

PBc(w, x) = 1− q1,1(w, x)− qK,K(w, x)−
K−1∑
k=2

qk,k(w, x) (21)

= [1−R1(w, x, 1)]−RK(w, x, 0)−
K−1∑
k=2

qk,k(w, x) (22)

= S1(w, x, 1)−RK(w, x, 0)−
K−1∑
k=2

qk,k(w, x). (23)

The quantities qk,k(w, x) are not identifiable for k ∈ {2, . . . ,K − 1}; however, they can be
bounded using the Fréchet inequalities (Fréchet, 1951).

qk,k(w, x) ≥ max{0; P(Y 0 ∈ Ik |W = w,X = x) + P(Y 1 ∈ Ik |W = w,X = x)− 1}, (24)

qk,k(w, x) ≤ min{P(Y 0 ∈ Ik |W = w,X = x); P(Y 1 ∈ Ik |W = w,X = x)}. (25)
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These bounds are sharp, meaning they can be attained and are the narrowest possible in the
absence of additional information or constraints. The final bounds for PBc(x) are given by marginal-
izing W out after replacing inputs by their identified quantities, resulting in:

PBc(x) ≥ EW |X=x

[
S1(W,x, 1)−RK(W,x, 0)−

K−1∑
k=2

min{Rk(W,x, 0); Rk(W,x, 1)}

]
, (26)

PBc(x) ≤ EW |X=x

[
S1(W,x, 1)−RK(W,x, 0)−

K−1∑
k=2

max{0; Rk(W,x, 0)+Rk(W,x, 1)−1}

]
(27)

The sharpness of these bounds is preserved through Jensen’s inequality, which ensures that
beginning with (w, x)-specific queries and subsequently applying a marginalization step yields
narrower bounds than those obtained by starting with x-specific queries, as demonstrated by (Mueller
et al., 2022).

A.2. Proof of proposition 5

Let qa,b(w, x) be defined as in appendix A.1. By the Fréchet inequalities, one gets:

qa,b(w, x) ≥ max{0; P(Y 0 ∈ Ia |W = w,X = x) + P(Y 1 ∈ Ib |W = w,X = x)− 1}, (28)

qa,b(w, x) ≤ min{P(Y 0 ∈ Ia |W = w,X = x); P(Y 1 ∈ Ib |W = w,X = x)}. (29)

Let Ia = Ik and Ib = (ck, cK). Under conditional ignorability (assumption 2) and propensity
score positivity (assumption 3), these bounds are identified by:

qa,b(w, x) ≥ max {0; Rk(w, x, 0) + Sk(w, x, 1)− 1} , (30)

qa,b(w, x) ≤ min {Rk(w, x, 0); Sk(w, x, 1)} . (31)

By marginalizing W out and summing over all k ∈ [K − 1], one gets:

PBc(x) ≥ Λ(x) :=

K−1∑
k=1

EW |X=xmax {0; Rk(W,x, 0) + Sk(W,x, 1)− 1} , (32)

PBc(x) ≤ Υ(x) :=

K−1∑
k=1

EW |X=xmin {Rk(W,x, 0); Sk(W,x, 1)} . (33)

A.3. Derivation of one-step corrected estimator

Consider a parametric submodel Pϵ ∈ P indexed by a small fluctuation parameter ϵ ∈ R and a point-
mass contamination Oi = (Wi, Xi, Ai, , Yi), such that P ϵ(O) = ϵ I(O = Oi) + (1− ϵ)P ∗(O). Under
some technical conditions involving (i) fully nonparametric or saturated model P, (ii) smoothness of
the paths within the model, (ii) positivity of the propensity score and of each stratum x ∈ X , and (iv)
boundedness of the outcome mean, the Gâteaux derivative, and their variances, we have that Λ[·](x)
is pathwise differentiable at nonexceptional law P ∗ ∈ P (Hines et al., 2022). Its efficient influence
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function (EIF) at P ∗ being evaluated at point Oi ∼ P ∗, with Xi = x, can be computed using the
chain rule and gradient algebra for the Gâteaux derivative. Thus:

d

dϵ
Λ[P ϵ](x)

∣∣∣∣
ϵ=0

=

K−1∑
k=1

d

dϵ
Eϵ
W |X=xmax {0; Rϵ

k(W,x, 0) + Sϵ
k(W,x, 1)− 1}

∣∣∣∣
ϵ=0

(34)

=

K−1∑
k=1

(
DR

k (Oi) +DS
k (Oi)

)
· λk[P ∗](Wi, x) (35)

+

K−1∑
k=1

max {0; R∗
k(Wi, x, 0) + S∗

k(Wi, x, 1)− 1} − Λ[P ∗](x).

The expression in line (35) is justified by the application of the chain rule at nonexceptional P ∗,
and so the term max {0; Rk(W,x, 0) + Sk(W,x, 1)− 1} is differentiable almost everywhere, with
the functional derivative being the Heaviside step λk(W,x) := I[Rk(W,x, 0) + Sk(W,x, 1)− 1 > 0].

Let DΛ(Oi) :=
d
dϵΛ[P

ϵ](x)
∣∣
ϵ=0

evaluated at P ∗ and observation Oi ∼ P ∗ with Xi = x. One
key property of the EIF is that it satisfies the moment condition EO|X=xD

Λ(O) = 0, making its
empirical counterpart suitable as an estimating equation for Λ[P ∗](x). Let P̂ be an initial estimator of
P ∗ and J an evaluation dataset. Then, a one-step corrected estimator of Λ[P ∗](x), denoted Λ̂1S(x),
can be constructed as a solution to the empirical moment condition of the EIF, namely:

1

|J(x)|
∑

i∈J(x)

D̂Λ(Oi) =
1

|J(x)|
∑

i∈J(x)

K−1∑
k=1

(
D̂R

k (Oi) + D̂S
k (Oi)

)
· λk[P̂ ](Oi)

+
1

|J(x)|
∑

i∈J(x)

K−1∑
k=1

max
{
0; R̂k(Wi, x, 0) + Ŝk(Wi, x, 1)− 1

}
︸ ︷︷ ︸

Λ̂plug(x)

−Λ̂1S(x) = 0,
(36)

where J(x) denotes the subset of indices within J for which X = x. By rearranging terms, one gets:

Λ̂1S(x) = Λ̂plug(x) +
1

|J(x)|
∑

i∈J(x)

K−1∑
k=1

(
D̂R

k (Oi) + D̂S
k (Oi)

)
· λk[P̂ ](Oi). (37)

A one-step corrected estimator formulation for the upper bound Υ̂1S(x) follows analogously.

A.4. Derivation of stabilized one-step corrected estimator

Even when the rules λk, υk are well-defined by enforcing a strictly positive condition, ambiguities
introduced by exceptional laws may cause their estimates to remain unstable, even as the sample size
grows indefinitely. If these rules were instead known and not estimated from the data, Ψ[·] would be
pathwise differentiable at any P ∈ P, given certain technical conditions presented in appendix A.3.

We handle the data-dependent nature of the estimated rules by building upon stabilized one-step
correction (S1S) approach by Luedtke and van der Laan (2016, 2018). This setup enables us to treat
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a sequence of rule estimates as known, allowing a martingale version of the central limit theorem
(CLT) to characterize the limiting distribution of the estimator.

To simplify the notation, assume that all functionals, distributions, and samples henceforth are
conditioned on a given stratum X = x. Let Ψ[P ;λ, υ] := (Λ[P ;λ]; Υ[P ; υ])⊤ be the evaluation of
Ψ[P ] when the rules are fixed at given λ = {λk}K−1

k and υ = {υk}K−1
k , with:

Λ[P ;λ] :=

K−1∑
k=1

EW |X=x [Rk(w, x, 0) + Sk(w, x, 1)− 1] · λk(w, x), (38)

Υ[P ; υ] :=

K−1∑
k=1

EW |X=x {Rk(w, x, 0)− [Rk(w, x, 0)− Sk(w, x, 1)] · υk(w, x)} . (39)

This reparametrization is consistent in the sense that Ψ[P ∗;λ∗, υ∗] = Ψ[P ∗], where the asterisk
indicates true values.

Let Pn denote the empirical distribution of O1:n = {Oi}ni=1, with each observation being an
independent sample from P ∗, and λn, υn the estimated rules from Pn. Let ∂Ψn(O) be the bivariate
one-step corrections given by equations (10) and (11) at Pn and observation O. Then, we can express
the bias of the corrected estimate ψ̂n as follows:

ψ̂n −Ψ[P ∗] = Ψ[Pn;λn, υn] + ∂Ψn(On+1)−Ψ[P ∗] (40)

= Ψ[P ∗;λn, υn] + ∂Ψn(On+1)−Ψ[P ∗] + Rem(Pn)− E∗ [Dn(O) | O1:n] . (41)

Here, Rem(Pn) := Ψ[Pn;λn, υn]−Ψ[P ∗;λn, υn] + E∗ [Dn(O) | O1:n] represents the second-
order remainder term from the von Mises expansion of the target at Pn with fixed rules. Under an
exceptional law, the variance of the estimated bias, minus the second-order remainder, is unstable,
as it fluctuates with each new observation due to underlying ambiguities. However, by fixing the
rules based on accumulated observations O1:n and deriving uncertainty from the next observation
On+1, a bivariate martingale structure is introduced. This setup enables the use of a generalized CLT
that applies weights determined by the inverse matrix standard deviation —the inverse square-root
covariance matrix— of each new realization, Tn = Côv(Ψn(On) + ∂Ψn(On))

−1/2. Hence, for
0 < l < n and Mn =

∑n−1
j=l Tj , one has that, as (n− l)→∞, (n− l)1/2M−1

n

∑n−1
j=l Tj(ψ̂

j −Ψ[P ∗])
converges to a bivariate Gaussian distribution with a unit covariance matrix under the following
consistency and boundedness conditions (Luedtke and van der Laan, 2016, 2018):

(i) (n− l)−
1
2
∑n−1

j=l Tj Rem(P j)
P→ (0, 0),

(ii) (n− l)−1
∑n−1

j=l

∣∣∣T 2
j Cov

(
{Ψj(Oi) + ∂Ψj(Oi)}ji=1

)
− Id2

∣∣∣ P→ 0 · Id2,

(iii) ∃ ξ <∞ : (n− l)−1
∑n−1

j=l P
(∥∥T (Ψj(Oj+1) + ∂Ψj(Oj+1))

⊤∥∥
2
< ξ | O1:j−1

) P→ 1.

The mean of this limiting distribution is influenced by the asymptotic behavior of Ψ[P ∗;λn, υn]−
Ψ[P ∗]. For the lower bound, however, this mean is guaranteed to be less than or equal to zero, as it
reflects the gap to the true maximum. To construct potentially conservative one-sided confidence
intervals from below for both bounds, one can either target the negative of the upper bound or invert
the sign of samples for the upper bound component from the asymptotic distribution.

In contrast to the 1S estimator discussed in section 4, the S1S approach eliminates the need for
sample splitting. This is due to the martingale process structure, which inherently depends on fixed
past data and out-of-sample evaluations (van der Laan and Lendle, 2014).
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Appendix B. Data details for application case

We assess the benefits from pharmacological treatment with stimulant medication upon the numeracy
test performance at grade 8 obtained by Norwegian children diagnosed with ADHD. By integrating
information from national registries, we compile data on the medication history and national test
scores of all children diagnosed with ADHD born between 2000 and 2007 in Norway, who would go
to take the national test up to 2021. We exclude those with severe comorbid disorders and those with
missing test scores at grade 5 and impute the missing values at grade 8 (totaling 9 352 individuals).
Variables at the student, family, and school levels are linked from the Norwegian Prescription
Database (NorPD), the Norwegian Patient Registry (NPR), the Database for Control and Payment of
Health Reimbursement (KUHR), Statistics Norway (SSB), and the Medical Birth Registry of Norway
(MBRN). We leverage data on students’ and parents’ diagnoses and their consultations with medical
services during pre-exposure and post-exposure periods. Indicators of post-exposure medical status
serve as proxies for adverse effects of treatment and its consequences. To operationalize relevant
variables, we employ the following grouping:

• pre-exposure covariates W,X: sex at birth, birth year/month cohorts, birth parity number,
raw scores at grade 5 national test for numeracy and reading, missingness indicator for scores
at grade 5 English national test, mother’s education level, mother’s age at birth, student’s
and parents’ diagnoses and medical consultations for related comorbid disorders, school
identification (fixed effect), prior dispensations of ADHD stimulant medication for at least 90
days, and duration of prior treatment.

• Exposure A: having received dispensations of ADHD stimulant medication for at least 75%
of the prescribed treatment period between the start of grade 6 and the national test in grade 8.

• Outcomes Y : raw scores at grade 8 national test for numeracy and corresponding official
thresholds for tiers 1, 2 and 3.
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