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Abstract

Out-of-Domain (OOD) generalization is the ability of a model trained on one
or more domains to generalize to unseen domains. In the ImageNet era of com-
puter vision, evaluation sets for measuring a model’s OOD performance were
designed to be strictly OOD with respect to style. However, the emergence of
foundation models and expansive web-scale datasets has obfuscated this evaluation
process, as datasets cover a broad range of domains and risk test domain contam-
ination. In search of the forgotten domain generalization, we create large-scale
datasets subsampled from LAION—LAION-Natural and LAION-Rendition—that
are strictly OOD to corresponding ImageNet and DomainNet test sets in terms of
style. Training CLIP models on these datasets reveals that a significant portion
of their performance is explained by in-domain examples. This indicates that the
OOD generalization challenges from the ImageNet era still prevail and that training
on web-scale data merely creates the illusion of OOD generalization. Furthermore,
through a systematic exploration of combining natural and rendition datasets in
varying proportions, we identify optimal mixing ratios for model generalization
across these domains. Our datasets and results re-enable meaningful assessment of
OOD robustness at scale—a crucial prerequisite for improving model robustness.

1 Introduction

Foundation models have revolutionized our world, demonstrating remarkable capabilities in solving
grade school math problems, writing creative essays, generating stunning images, and comprehending
visual content [27, 37, 30]. One notable example is CLIP [29], a vision-language model pretrained on
a vast dataset of image-text pairs, which forms the backbone of numerous other foundation models
[30, 20]. CLIP has achieved unprecedented performance across a wide range of benchmarks spanning
many domains—a sharp contrast to models from the ImageNet era, which struggled to generalize
from a training domain mostly consisting of natural photographs to stylistically different domains
such as ImageNet-Sketch [41], ImageNet-R [15], and DomainNet [28].

Domains, while often challenging to quantify in practice [5], emerge from collecting data from
specific sources and conditions. Some domains, like natural images or renditions, are better delineated,
allowing the creation of datasets like the ones mentioned above. Out-of-domain (OOD) generalization
refers to a model’s ability to perform well on data from domains other than its training domain(s) [42].
In this work, we collectively refer to the domain represented by ImageNet-Sketch, ImageNet-
R, DomainNet-Painting, DomainNet-Clipart, DomainNet-Sketch, and DomainNet-Quickdraw as
the rendition domain, since it contains images that are renditions of natural objects and scenes.
Generalization to the rendition domain (especially OOD) is crucial for aligning models with human
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Figure 1: Evaluated correctly, CLIP’s OOD performance on renditions drops significantly.
A: Models used to be trained on a single domain like natural images from ImageNet [33] and
evaluated for out-of-domain (OOD) generalization on a different domain like renditions from test sets
such as ImageNet-R [15], ImageNet-Sketch [41]. B: Today, large foundation models like CLIP [29]
are trained on web-scale datasets such as LAION-400M [36] containing images from many domains.
Tested on a specific domain like renditions, CLIP exhibits unprecedented performance and appears
robust. C: We subsample from a deduplicated LAION-400M [1] to obtain LAION-Natural, a web-
scale dataset containing only natural images, which re-enables a meaningful assessment of CLIP’s
generalization performance to renditions. D: CLIP trained on LAION-Natural performs noticeably
poorer on renditions, suggesting that its OOD performance has been previously overestimated. The
models are evaluated on refined test datasets containing samples only from their intended domains.

perception, as humans can interpret abstract visual renditions, while machines tend to rely heavily on
textural cues [15, 13].

CLIP’s strong performance in several domains, including renditions, is attributed to its vast training
distribution, rather than its contrastive learning objective, language supervision, or dataset size [10].
However, Fang et al. [10] do not specify what characteristics of the training distribution drive this
performance. CLIP could be learning more robust representations due to the diversity of natural
images in its training set—or it may simply have been exposed to many datapoints from the (assumed
to be OOD) test domains during training. Indeed, Mayilvahanan et al. [22] revealed that CLIP’s
training data contains exact or near duplicates of samples of many OOD datasets. Yet, they showed
that CLIP still generalizes well when this sample contamination is corrected. However, their analysis
failed to account for domain contamination.

In contrast to sample contamination, domain contamination does not focus on duplicates of specific
datapoints but rather examines whether critical aspects of a test domain are present in the training
domain, such as images with different content but similar style to test samples. For example, after the
correction by Mayilvahanan et al. [22], many other rendition images, while not duplicates, remained
in CLIP’s training set (refer to Tab. 8). Prior works often assume that CLIP is capable of generalizing
OOD [29, 2, 25, 10, 19, 38]; however, it remains unclear whether this is truly the case or if its
performance is primarily driven by training on images from the test domain. This leads us to our
central question:

To what extent does domain contamination explain CLIP’s performance on renditions?

We address the central question with the following contributions:

• Constructing Clean Single-Domain Datasets: To rigorously test whether CLIP’s success in
the rendition domain stems from their exposure during training, we first train a domain classifier
to distinguish natural images from renditions (Sec. 3.1). By applying the domain classifier to
a deduplicated version of LAION-400M, we create and release two datasets: LAION-Natural
contains 57M natural images; LAION-Rendition consists of 16M renditions of scenes and objects.
Additionally, we refine existing rendition OOD benchmarks (ImageNet-R, ImageNet-Sketch, etc.)
by removing samples that do not belong to the corresponding domain (Sec. 3.3).

• Refining the Evaluation of CLIP’s OOD Performance: Using LAION-Natural, we demon-
strate that CLIP trained only on natural images significantly underperforms on rendition domain
shifts (Sec. 4). This suggests that its original success stems from domain contamination, not from
an intrinsic OOD generalization ability (see Fig. 1 for a summary).
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• Investigating Domain Mixing and Scaling Effects: Our single-domain datasets enable analyzing
the effects of training on controlled mixtures of natural and rendition images across scales (Appx. D).
We identify the optimal mixing ratio for the best overall performance and show the degree to which
training on one domain enables some generalization to the other.

Through this work, we aim to shed light on the limitations of foundation models like CLIP in handling
OOD generalization and provide valuable datasets and tools to the community for further exploration.
Fig. 1 illustrates our core methodology.

2 Abridged Related Work

On gauging the OOD generalization performance of CLIP, Mayilvahanan et al. [22] remove images
that are highly similar to the test sets to show that data contamination and high perceptual similarity
between training and test data does not explain generalization performance. While their data pruning
technique removes some samples from LAION-400M that are somehow close to the test datapoints
they give no guarantee that all images of a given domain were removed. We refer the reader to Sec. C
for a thorough literature review.

3 Distinguishing Image Style Domains

Our work hinges on filtering out datapoints that belong to specific domains from web-scale datasets.
As noted above, no precise definition exists for what constitutes a domain in general. Still, the
community has come to agree on an implicit demarcation of the natural image and renditions domains
by virtue of ImageNet compared to ImageNet-Sketch and ImageNet-R as well as DomainNet-Real
compared to DomainNet-Sketch, -Quickdraw, -Infograph, -Clipart, and -Painting.

We describe our labeling procedure based on this demarcation in App. F Sec. F.1 and explore different
ways to train a domain classifier on the resulting dataset in Sec. 3.1. In Sec. 3.2, we employ the
best-performing classifier to analyze the composition of different training and test sets and finally use
it to subsample LAION-Natural and LAION-Rendition in Sec. 3.3.

3.1 Training and Choosing the Domain Classifier

With the domain-labeled dataset, we can train a domain classifier to partition all of LAION-200M
into natural images, renditions, or ambiguous images. Since we aim to obtain datasets containing
only images from a single domain, we need a domain classifier that is as precise as possible. To this
end, we train classifiers on 13 000 labeled LAION-200M images, retaining 3000 samples each for a
validation and test set. From the domain classification literature discussed in Sec. C, we evaluate four
methods with publicly available code that we outline below. All methods build on CLIP ViT-L/14
pre-trained on LAION-2B, which we choose for its balance between accuracy and inference speed.

Contrastive Style Descriptors (CSD) [39] fine-tune pre-trained backbones via multi-label supervised
contrastive learning and self-supervised learning with only style-preserving augmentations (random
flips, resize, rotation). The resulting final-layer embeddings serve as style descriptors: During
inference, they find the k stylistically nearest neighbors in a database of labeled images (e.g., the
training set) by computing pairwise embedding-similarities to the test images. An image is classified
as belonging to a style if at least one of the k neighbors has that style. We can directly set up their
method using the 13 000 labeled LAION-200M images as both the training set and the database for
inference. From that, we obtain two binary classifiers, CSD-N (classifying natural vs. non-natural)
and CSD-R (classifying renditions vs. non-renditions), which jointly can be used for our ternary
classification.

For further details on Density Ratios, Centroid Embeddings, Fine-Tuning, check out Appx. F.8.

3.2 Analyzing the Domain Make-Up of Different Data Sets

Both ImageNet and DomainNet are web-scraped datasets that were refined through extensive human
annotation. In contrast, LAION-400M is obtained purely through web scraping without subsequent
human domain filtering. Since human annotators can make mistakes, and LAION-200M’s domain
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Table 1: We chose the best natural classfier and the best rendition classifier amongst binary
classifiers based on Contrastive Style Descriptors (CSD) [39] and Density Ratios (DR) [8] as well
as ternary classifiers using a linear readout based on either each domain’s centroid embedding (CE)
or a fine-tuned CLIP (FT). All models use CLIP ViT-L/14 pretrained on LAION-2B. We report
precision and recall on for the natural class (top) and rendition class (bottom) on ImageNet (IN) and
DomainNet (DN) test sets and average performance across all test sets. Model hyperparameters are
chosen for a validation precision of 98% if possible. For each class, we select the classifier with the
highest recall on the validation.
cls=natural Val Test IN-Val IN-v2 IN-A ON DN-R Average
Model P R P R P R P R P R P R P R P R

CSD-N k=1 0.61 0.85 0.58 0.85 0.96 0.93 0.97 0.92 0.98 0.91 0.93 0.94 0.92 0.88 0.85 0.90
CSD-R k=23 0.98 0.26 0.99 0.29 1.00 0.22 1.00 0.27 1.00 0.27 1.00 0.59 0.99 0.32 0.99 0.32
DR-N 0.98 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00
DR-R 0.98 0.08 0.72 0.08 1.00 0.00 1.00 0.00 1.00 0.00 0.95 0.20 1.00 0.00 0.95 0.05
CE 0.98 0.35 0.89 0.33 0.95 0.02 1.00 0.04 1.00 0.02 0.99 0.16 0.99 0.11 0.97 0.15
FT 0.98 0.41 0.95 0.44 1.00 0.36 0.99 0.40 1.00 0.46 0.99 0.53 1.00 0.42 0.99 0.43

cls=rendition Val Test IN-R IN-S DN-S DN-Q DN-P DN-C DN-I Average
Model P R P R P R P R P R P R P R P R P R P R

CSD-N k=6 0.98 0.26 0.99 0.24 1.00 0.20 1.00 0.18 1.00 0.25 0.00 0.00 1.00 0.24 1.00 0.22 0.98 0.34 0.88 0.21
CSD-R k=1 0.64 0.56 0.68 0.60 0.93 0.62 0.98 0.63 0.98 0.62 0.00 0.00 0.92 0.59 0.98 0.63 0.82 0.46 0.77 0.52
DR-N 0.98 0.20 0.98 0.23 1.00 0.29 1.00 0.20 1.00 0.27 1.00 0.01 1.00 0.28 1.00 0.28 0.98 0.11 0.99 0.21
DR-R 0.98 0.35 0.98 0.41 1.00 0.60 1.00 0.71 1.00 0.74 1.00 0.33 0.99 0.60 1.00 0.65 0.98 0.39 0.99 0.53
CE 0.98 0.11 0.99 0.12 0.99 0.43 1.00 0.39 1.00 0.30 1.00 0.09 0.98 0.47 1.00 0.38 1.00 0.01 0.99 0.26
FT 0.98 0.27 0.95 0.26 1.00 0.38 1.00 0.57 1.00 0.61 1.00 0.68 1.00 0.21 1.00 0.50 1.00 0.30 0.99 0.42

Table 2: Domain composition of training sets. We apply our natural and rendition domain classifiers
with their strict thresholds at 98% validation precision to get a lower bound of samples from each
domain and with their default thresholds to obtain a more balanced estimate. ImageNet-Train has a
much smaller fraction of rendition samples than LAION-200M. We also note that ‘combined-pruned’,
the training set from Mayilvahanan et al. [22] that corrected for test set contamination still contains a
large fraction of renditions.

Classifier Precision

Dataset # Samples Natural Rendition Natural Ambiguous Rendition

LAION-200M 199 663 250 0.79 0.77 60.74 % 25.41 % 13.86 %
0.98 0.98 28.40 % 63.70 % 7.90 %

ImageNet-Train 1 281 167 0.79 0.77 89.20 % 9.62 % 1.18 %
0.98 0.98 36.00 % 63.60 % 0.40 %

combined-pruned 187 471 515 0.79 0.77 62.98 % 25.18 % 11.83 %
0.98 0.98 29.58 % 64.02 % 6.40 %

composition is inherently unknown, we use our domain classifiers to understand it. To this end, we
deploy the chosen classifiers from Sec. 3 and label a sample ambiguous if the natural and rendition
classifier disagree. We apply the classifiers both with their strict thresholds at 98% validation precision
which yields a strong lower bound for the number of samples in each domain, as well as with their
default thresholds which yields a more rounded estimate. From Tab. 8, it is clear that LAION-200M
contains a considerable portion of strictly rendition images (at least 7.90% corresponding to 16
million images), and potentially many more images with some rendition elements are contained in the
ambiguous group. In contrast, for ImageNet, we find a much smaller fraction of renditions (at least
0.4% of samples). Additionally, we observe that many evaluation datasets are considerably domain-
contaminated (at least 5% of samples stem from the opposite domain), especially ImageNet-R,
DomainNet-Real, DomainNet-Clipart, DomainNet-Painting, and DomainNet-Infograph (see Tab. 7,
Appx. F.5). Both observations suggest that previous domain-generalization performance for models
trained or evaluated on those datasets needs to be taken with a grain of salt: It is highly likely that
their scores are inflated and the models’ true generalization capability is lower.

We also analyze the domain composition of datasets from Mayilvahanan et al. [22] in Appx. F.9.
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LAION-Rendition  ~16 million samples

LAION-Natural  ~57 million samples

Figure 2: Random samples from LAION-Natural and LAION-Rendition.

Table 3: Performance on the rendition domain is driven by renditions in the training data. We
compare the top-1 accuracy of CLIP trained without renditions on LAION-Natural to CLIP trained
on datasets of the same size with renditions: LAION-Mix-nM contains n million renditions, LAION-
Rand is a random subset of LAION-200M with an estimated fraction of 7.9-13.86% renditions
(see Tab. 8). Training with renditions greatly impacts performance on the rendition domain.

Standard Datasets top-1 Acc. Clean Datasets top-1 Acc.

Dataset Natural Rendition Natural Rendition

LAION-Natural 36.88 % 21.98 % 39.72 % 17.81 %
LAION-Mix-13M 37.28 % 40.48 % 38.97 % 40.78 %
LAION-Mix-16M 36.92 % 41.46 % 38.58 % 42.07 %
LAION-Rand-57M 37.62 % 40.66 % 36.99 % 39.58 %

3.3 Creating Single-Domain Datasets

We now use our domain classifiers at 98% validation-precision to subsample LAION-200M. We
obtain LAION-Natural with roughly 57 million samples and LAION-Rendition with roughly 16
million samples. Fig. 2 shows random samples from both datasets, more samples are shown in Fig. 19
and 20. We also deploy the domain classifiers on the ImageNet and DomainNet test sets to remove
the domain-contamination reported above. The exact number of datapoints and the number of classes
for each test set are detailed in Tab. 10. These datasets enable us to fairly assess CLIP’s domain
generalization performance in the following sections.

4 Measuring CLIP’s OOD performance

Training Details For all our experiments, we train CLIP ViT-B/32 [9] from scratch for 32 epochs
with a batch size of 16 384 on one node with either four or eight A100 GPUs (training takes several
days, depending on dataset size). We use the implementation and hyperparameters provided by
Ilharco et al. [17].

We first train CLIP on the 57M LAION-Natural and random subsets of it with 45M, 30M, and 16M
samples. We compare the classification accuracy of these models to that of CLIP models trained
on random subsets of LAION-200M of the same sizes by reporting the accuracy ratio, which we
refer to as relative corrected OOD accuracy. We measure this quantity on the original ImageNet and
DomainNet test sets and our cleaned versions of them (see Sec. 3.3). Fig. 3 summarizes the results.

Across the board, we find that the relative corrected OOD accuracy on the clean datasets is around or
above 1.0 for natural test sets but drops to around 0.4 for most rendition test sets. This demonstrates
that, without domain-contamination of the training distribution, CLIP does not generalize across
domains nearly as effectively as previously assumed. Notably, the relative corrected OOD accuracy
is very consistent across dataset scales, allowing us to conjecture that this result also holds for CLIP
models trained on even larger data sizes.

To further reinforce this observation, we build LAION-Mix-nM by replacing n million samples
from LAION-Natural with samples from LAION-Rendition. We show in Tab. 3 that adding 13 or
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Figure 3: Across scales, CLIP fails to generalize to unseen domains. The relative corrected
OOD accuracy shows performance losses or gains of a CLIP model trained exclusively on the
natural domain via LAION-Natural to a CLIP model trained on a domain-contaminated dataset like
LAION-200M. We evaluate models on the standard ImageNet and DomainNet test sets (left) and
our cleaned versions of them (right, see Sec. 3.3). When training only on samples from the natural
domain we see a decrease in performance for both standard and cleaned test datasets (i.e., relative
performance < 1). This means that without samples from the rendition domain, CLIP’s domain
generalization ability suffers significantly and consistently across scales.

16 million renditions has little effect on performance on the natural domain but greatly improves
performance on the rendition domain, highlighting the effect of domain-contamination.

To put the corrected OOD accuracy in context, we evaluate effective robustness on the natural and
rendition domains. Fig. 4 shows the top-1 classification accuracy of multiple CLIP models trained on
LAION-200M, LAION-Natural, LAION-Rendition, LAION-Mix, and ResNets trained on ImageNet
(see Appx. H for details). We use the 13M version of LAION-Mix since it matches the effective
robustness results for LAION-200M most closely. As usual, models with the same training regimen
lie on a line and the y offset of a model to the ImageNet line indicates its effective robustness. While
all LAION-trained models achieve a similar effective robustness on the natural domain (Fig. 4 left),
effective robustness on the rendition domain varies greatly and is notably lowest for LAION-Natural-
trained models. Effective robustness plots on the individual datasets can be found in App. I. Together,
the findings in this section demonstrate that CLIP’s unprecedented OOD generalization performance
directly results from the domain-contamination of its training distribution. Appx. D contains an
analysis on understanding how different ratios of domains in the training data affect downstream
performance. We defer a detailed discussion of Comparison of LAION training to ImageNet-training,
Short-cut Learning, Domain Classification and Ambiguous Datapoints to Appx. E.

5 Conclusion

With the emergence of models trained on enormous web-scale datasets containing abundant samples
from seemingly all possible domains, the study of domain generalization mostly came to a halt.
Hence, the question of how dataset scale actually affects the ability of models to generalize between
domains remains mostly unanswered. Here, we try to answer this question thoroughly by fully
controlling the domain of training samples models are trained on. By creating clean subsets of
LAION containing either natural images or renditions, and by training models on various mixtures
and dataset sizes, we show that the generalization performance of CLIP trained on only one domain
drops to levels similar to what we observe for ImageNet-trained models. Hence, we conclude that
the domain generalization problem remains unsolved even for very large-scale datasets. We release
all training set splits as well as pre-trained models and encourage the field to re-consider domain
generalization as a central benchmark for future progress on model architectures, inductive biases,
and learning objectives.
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Figure 4: CLIP’s effective robustness to renditions is driven by domain-contamination. We
evaluate effective robustness [10, 40] for models trained on different LAION-200M subsets. Most
notably, CLIP trained on LAION-Natural matches the effective robustness of a LAION-200M-trained
CLIP on the natural domain (left), but has significantly lower effective robustness on the rendition
domain, indicating that CLIP requires rendition samples in its training distribution to perform well on
this domain.

C Related Work

Measuring the OOD Generalization of CLIP Models. We aim to understand the OOD gener-
alization capabilities of CLIP from a data-centric viewpoint. While multi-modal training with rich
language captions does seem to contribute to robustness against distribution shifts [45], Fang et al.
[10] demonstrated that the nature of CLIP’s training distribution (as opposed to its mere size, its
specific training objective, or natural language supervision) causes strong performance on various
distribution shifts.

However, it is unclear what aspects of the data distribution drive the robustness gains. Mayilvahanan
et al. [22] remove images that are highly similar to the test sets to show that data contamination and
high perceptual similarity between training and test data does not explain generalization performance.
While their data pruning technique removes some samples from LAION-400M that lie outside
the natural image domain, they do not address domain generalization: They only account for the
part of a domain covered by existing test sets and give no guarantee that all images of a given
domain were removed. In another line of work, Nguyen et al. [26] discover that a model’s effective
robustness [10, 40] on a test set interpolates when training data is compiled from various sources.
While they combine different training datasets covering a mixture of domains, the authors have not
analyzed the changes in effective robustness on a distributional similarity level. In this work, we take
their analysis further and show that mixing two data sources similar to the test datasets interpolates
the effective robustness. Our study’s title is inspired by Gulrajani and Lopez-Paz [14], who studied
generalization from multiple distinct source domains. In contrast, we focus on generalization from
single or mixed source domains to unseen domains.

Domain Classification. The primary goal of our work necessitates creating web-scale datasets of
different domains. This entails building a robust domain classifier that can reliably distinguish natural
images from renditions. This task can be regarded as classifying the style of an image, which Gatys
et al. [12] proposed to measure using Gram Matrices and which has been widely explored since then
[34, 23, 35, 18, 11, 6, 3]. More recently, Cohen-Wang et al. [7] use a fine-tuned CLIP model from
OpenCLIP [17] to distinguish between ImageNet and domain-shifted versions of ImageNet, such as
ImageNet-Sketch, ImageNet-R, and ImageNet-V2 [31]. Wang et al. [43] and Somepalli et al. [39]
develop a dataset classifier using a backbone trained by self-supervised learning and classification
through retrieval via a database. Liu and He [21] report high performance when training image
classifiers to distinguish between different large-scale and diverse datasets.
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D Understanding Domain Mixtures

We now expand on the experiment from Tab. 3 to understand how different ratios of domains in
the training data affect downstream performance, and whether this effect transfers across scales.
To this end, we show performance on the natural and rendition domain for models trained on
LAION-Mix of different proportions and scales in Fig. 5, left and middle. The possible mixing
ratios at larger scales are limited by the size of LAION-Rendition (16 million images), but we can
nonetheless observe that the optimal mixing ratio is consistent across scales. Interestingly, starting
from purely rendition/natural datasets, the performance steeply increases on natural/renditions shifts
while remaining stable on the other domain as we slowly increase the fraction of natural/renditions
samples.
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Figure 5: Optimal data mixture transfers across scales. We show the average accuracy on the
natural and rendition domains for models trained with LAION-Mix of different absolute sizes and
ratios. As expected, performance on each domain increases with the number of samples from that
domain (left). The optimal mixing ratio for each scale is found at the intersection with the highest
overall average accuracy iso-line. This ratio seems to be consistent across scales at 0.25, but our
analysis is limited by the number of LAION-Rendition samples used for mixing (16 million images).

E Discussion

Comparison to ImageNet To the best of our knowledge, this work is the first to cleanly transfer
the evaluation of domain generalization from the ImageNet era into the era of foundation models.
While we do observe a somewhat similar generalization gap, it is difficult to quantitatively compare
models trained on LAION and ImageNet for (at least) two reasons: For one, the distribution shifts
from ImageNet-Val to LAION and ImageNet-Train are very different. Second, we are comparing a
very noisy unsupervised learning method (CLIP + LAION) with a clean supervised learning method
(CE + ImageNet), which is why LAION-trained models need 50×–100× more samples to reach the
same ImageNet-Val accuracy as ImageNet-trained models.

Short-cut Learning Parts of the domain generalization gap of ImageNet models has been attributed
to short-cut learning: models learn to solve a given task (like image classification) using features
(like textures) that are misaligned to how humans solve the same task (like focusing on shape). The
widely echoed notion of emergent abilities that models acquire at larger model and dataset sizes have
fueled hopes that some parts of short-cut learning get mitigated simply by training on much larger
and more diverse data. While some effect cannot be ruled out, our results also show that just adding
more natural samples is unlikely to mitigate the effects of short-cut learning.

Domain Classification By labeling a small subset of images, we built a classifier that separates im-
ages into three categories: natural, artificial renditions, and ambiguous images. While our classifier’s
accuracy and recall are high, it should be noted that we did no further controls of potential biases
(like favoring specific classes within domains) or the overall class distribution across all training and
test sets. We also leave it to future work to study domain classifiers that distinguish between more
domains, thus enabling a more fine-grained study of domain generalization.
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Our work examines changes in style as one specific type of distribution shift between train and
test sets. Other distribution shifts exist that are harder to define and, thus, harder to annotate and
might not be easily captured by a domain classifier. Despite these challenges, we expect our main
conclusion—that domain contamination explains much of the OOD performance but is generally not
controlled for—to hold.

While the scale of our training sets is limited by the amount of natural/rendition samples we can
find, we expect our insights drawn from over one order of magnitude of training data size to scale to
even larger datasets [24, 10, 22], especially since domain contamination is a problem for rigorous
evaluation independent of scale.

Ambiguous Datapoints Our work does not examine the impact of ambiguous samples, i.e., samples
exhibiting elements of both natural and rendition. To gain a clearer understanding of their effect, it is
essential to distinguish between such ambiguous samples and those that exhibit neither. We anticipate
that the former category significantly enhances performance and sample efficiency, while the latter
does not contribute substantially. A more thorough analysis of this distinction is left for future work.

F More Details on the Domain Classifier

We describe our labeling procedure based on this demarcation in Sec. F.1 and explore different
ways to train a domain classifier on the resulting dataset in Sec. 3.1. In Sec. 3.2, we employ the
best-performing classifier to analyze the composition of different training and test sets and finally use
it to subsample LAION-Natural and LAION-Rendition in Sec. 3.3.

LAION-200M. For the remainder of this work, we substitute LAION-400M by LAION-200M,
which we obtain by de-duplicating LAION-400M based on perceptual similarity as introduced
by Abbas et al. [1]. Both Abbas et al. [1] and Mayilvahanan et al. [22] demonstrate that CLIP
trained on LAION-200M obtains comparable downstream performance while greatly reducing the
computational burden of analyzing the dataset and training models from scratch.

F.1 Labeling

LAION-200M contains diverse images from a multitude of sources. The images vary from naturally
occurring to synthetically generated. We encourage the reader to glance at Fig. 19 to get a sense of
the dataset and the difficulty of determining the domain of each image. As explained above, we aim
to classify images from the natural or rendition domain. We also add an ambiguous class for images
with elements of both domains and edge cases.

We manually label images based on a codebook derived from analyzing the existing OOD test
sets, which we outline in Appx. F.2. In general, we adopt a texture-centric approach to distinguish
renditions of a scene or object from their natural depictions. That is, depictions where fine-grained
texture information is preserved are generally considered natural, while depictions with simplified or
flat textures are considered renditions. Fig. 6 illustrates this demarcation on samples from LAION-
200M, ImageNet test sets and DomainNet test sets.

To further ease the labeling procedure, we first build a rough binary classifier by fine-tuning CLIP ViT-
L/14 with a linear readout to differentiate between some of the natural ImageNet and DomainNet test
sets (namely, ImageNet-Val, ObjectNet [4], ImageNet-V2, ImageNet-A [16], and DomainNet-Real)
and stylistic test sets (namely, ImageNet-Sketch, ImageNet-R, DomainNet-Painting, DomainNet-
Sketch, and DomainNet-Clipart). We use this classifier to roughly pre-label samples before they are
annotated by a human. The annotator verifies and potentially updates pre-labels for 25 images from
the same group at a time (see Fig. 7).

Overall, we label 19 000 random images from LAION-200M and 1000 images from each of the
ImageNet and DomainNet distribution shifts (12 000 in total). Notably, almost all ImageNet and
DomainNet test sets that are usually assumed to contain only images of a single domain exhibit some
domain contamination. We discuss this in detail in Sec. 3.2. Tab. 4 contains a detailed breakdown
of labels for each data set. We show more samples grouped by domain for each data set in Fig. 22
and 33.
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Figure 6: Labeled Natural, ambiguous, and rendition samples from different data sets. Natural
images are photos or high-quality renders with minor filters that preserve fine-grained textures, while
renditions are typically sketches, paintings, or graphics with flat or simplified textures. Images with
elements of both, such as collages or natural images with large stylized elements, and images mainly
containing text are labeled as ambiguous.

F.2 Labeling

As mentioned in Sec. F.1, we take a texture-centric approach in domain labeling. We resolve further
ambiguities with respect to labeling in the following way:

• Natural objects with watermark or text, infographs with natural objects, signs with human
symbol (eg. walking signal), objects with common logos (eg. Nike), naturalistic books
or movie covers, images that are retro / low resolution / blurry / grainy / or with fake
background but with texture information preserved, graphically altered natural images with
significant texture information, and real objects with fake backgrounds are all classified as
natural.

• Stylistic: Infographs with stylized objects, stylized books or movie covers, retro / low
resolution / blurry / grainy /graphically altered images with significant loss in texture
information, stylized objects on plain or common natural background (eg. wall, bedsheet
etc.) are all classified as stylistic.

• Ambiguous: Tattoos where hand / back is very visible, sculpture with real objects around,
real images with distinct drawing of logos with objects, images that are retro / low resolution
/ blurry / grainy / or with fake background but with little texture information preserved are
all classified as ambiguous.

The labeling was done by one labeler who labeled about 750-1000 images per hour. The labeler also
did a checking of these labels by regrouping and going over them again. Below we visualize our
labeling setup:

Final labeled images breakdown:

F.3 Training Details for the Domain Classifiers

As mentioned in Sec.3.1, we train several domain classifiers with several different training procedures.
For the baselines [8, 39], we simply use the training code detailed in their works and their public code.
For the FT (Finetuning) model, as mentioned in Sec. 3.1, we finetune a CLIP ViT-L/14 pretrained on
LAION-2B with a linear readout. We finetune all models on 4 A100 GPUs, using a batch size of
256, weight decay of 5e− 4, using an SGD optimizer, with step scheduler (0.1 every 20 epochs), at a
learning rate of 0.1, for 50 epochs. All models converge. Each model took about 2 A100 GPU hours
to train, therefore all the models took around 30 A100 GPU hours. The storage requirement for these
datasets were less than 100 GB memory.
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Figure 7: Labeling setup. By clicking on the image, the border changes to red, green, or blue, each
representing natural, ambiguous, or rendition. By pressing the right or the left button the previous or
next set of 25 images are rendered and the labels of the previous images are updated in a json file.

We train these models on the 13K LAION domain dataset or subsets of it with 2 or 3 classes. To
compare with the models from Cohen-Wang et al. [8], we train binary classifiers where we club
natural with ambiguous and differentiate it from rendition (we name this FT-R), or we club rendition
with ambiguous and differentiate it from natural (we name this FT-N). Further, we create several
subsets for each of the ternary and the binary classification problem by balancing the number of
datapoints in each class. We add the prefix ’(balanced)’ to these models.

F.4 Raw Domain Classifier Performance on labeled sets

In the main text in Sec.3.1 we only compute the precision and recall obtained from the threshold
at which we get 98% precision on LAION-200M Val domain dataset. We here report the accuracy
of these classifiers on these test sets at their own standard precision of these models. We also train
additional classifiers binary and ternary classifiers and by balancing the dataset sizes.
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Table 4: Number of labeled data points from several datasets and their domain-wise breakdown.
For training our domain classifier, we use the LAION-200M (Train), and LAION-200M (Val) for
validation, and everything else to evaluate the final test performance.

Dataset Natural Stylistic Ambiguous Total
LAION-200M (Train) 7268 2978 2754 13000
LAION-200M (Val) 1000 1000 1000 3000
LAION-200M (Test) 1000 1000 1000 3000

ImageNet-A 974 7 19 1000
ObjectNet 917 2 81 1000
ImageNet-R 22 859 119 1000
ImageNet-Sketch 49 937 14 1000
ImageNet-V2 945 5 50 1000
ImageNet-Val 934 16 50 1000

DomainNet-Clipart 48 933 19 1000
DomainNet-Infograph 134 720 146 1000
DomainNet-Painting 101 795 104 1000
DomainNet-Quickdraw 0 1000 0 1000
DomainNet-Real 836 111 53 1000
DomainNet-Sketch 24 942 34 1000

Table 5: Accuracy on each of the natural test sets on class natural without thresholding. Some
classifiers give the illusion of being good but have very low precision or recall(see Sec. 3.1).

Model (Val) (Test) IN-Val IN-V2 IN-A ON DN-R DN-I
FT 0.90 0.89 0.93 0.94 0.96 0.95 0.94 0.72
CE 0.75 0.78 0.80 0.84 0.86 0.95 0.81 0.19
FT-N 0.89 0.90 0.94 0.95 0.97 0.97 0.93 0.49
DR-N (balanced) 0.89 0.91 0.94 0.94 0.95 0.98 0.92 0.50
DR-R 0.98 0.97 0.99 0.99 1.00 1.00 0.97 0.90
FT (balanced) 0.78 0.82 0.84 0.86 0.86 0.88 0.83 0.46
FT-R 0.96 0.95 0.93 0.95 0.97 0.98 0.96 0.90
FT-N (balanced) 0.85 0.85 0.92 0.95 0.96 0.95 0.91 0.43
DR-R (balanced) 0.93 0.92 0.93 0.94 0.95 0.99 0.90 0.75
FT-R (balanced) 0.86 0.86 0.88 0.88 0.90 0.89 0.88 0.84
DR-N 0.93 0.92 0.94 0.95 0.94 0.99 0.92 0.76

Table 6: Accuracy on each of the rendition test sets on class natural without thresholding. Some
classifiers give the illusion of being good but have very low precision or recall(see Sec. 3.1).

Model (Val) (Test) IN-R IN-S DN-S DN-Q DN-P DN-C DN-I
DR-R 0.77 0.80 0.93 0.98 0.98 0.96 0.92 0.93 0.88
FT (balanced) 0.78 0.88 0.82 0.94 0.94 0.91 0.80 0.85 0.77
FT 0.76 0.75 0.75 0.91 0.90 0.95 0.73 0.80 0.74
DR-N 0.89 0.92 0.99 0.99 0.99 0.98 0.97 0.97 0.94
FT-R 0.69 0.68 0.69 0.81 0.80 0.79 0.65 0.72 0.67
DR-N (balanced) 0.93 0.94 0.97 0.99 0.99 1.00 0.95 0.94 0.99
FT-R (balanced) 0.86 0.84 0.80 0.92 0.91 0.90 0.75 0.83 0.88
CE 0.61 0.62 0.95 0.90 0.89 0.96 0.95 0.93 0.32
DR-R (balanced) 0.90 0.93 0.99 0.99 0.99 0.99 0.98 0.97 0.96
FT-N 0.84 0.83 0.72 0.83 0.82 0.48 0.63 0.77 0.97
FT-N (balanced) 0.87 0.86 0.75 0.93 0.91 0.96 0.64 0.88 0.98
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F.5 Domain composition at different precision

We provide a detailed overview over the domain composition of datasets at standard precision in
Table 7, and over the domain composition of datasets at 98% precision in Table 8.

Table 7: Domain composition of datasets at standard precision (without thresholding). The first
three columns show the fraction of samples in the original dataset classified as natural, stylistic, or
ambiguous, respectively, while the latter column shows the dataset’s total number of samples.

Dataset Natural [%] Stylistic [%] Ambiguous [%] Total
LAION-200M 60.74 13.86 25.41 199 663 250

ImageNet (Train) 89.2 1.18 9.62 1 281 167
ImageNet (Val) 89.1 1.18 9.72 50 000
ObjectNet 90.22 0.1 9.68 18 574
ImageNet-V2 88.49 1.38 10.13 10000
ImageNet-A 93.79 0.52 5.69 7 500
ImageNet-R 9.75 64.42 25.83 30 000
ImageNet-Sketch 3.69 85.34 10.97 50 889

DomainNet-Real 80.07 7.59 12.34 175 327
DomainNet-Quickdraw 1.35 93.27 5.38 172 500
DomainNet-Clipart 8.28 75.89 15.83 48 833
DomainNet-Painting 13.97 56.33 29.7 75 759
DomainNet-Sketch 3.1 84.18 12.71 70 386
DomainNet-Infograph 11.17 53.41 35.41 53 201

Table 8: Domain composition of datasets at 98% precision. The first three columns show the
fraction of samples in the original dataset classified as natural, stylistic, or ambiguous, respectively,
while the latter column shows the dataset’s total number of samples.

Dataset Natural [%] Stylistic [%] Ambiguous [%] Total
LAION-200M 28.4 7.9 63.7 199 663 250

ImageNet (Train) 36.0 0.4 63.6 1 281 167
ImageNet (Val) 35.73 0.37 63.9 50 000
ObjectNet 50.32 0.0 49.68 18 574
ImageNet-V2 36.04 0.29 63.67 10000
ImageNet-A 43.25 0.16 56.59 7 500
ImageNet-R 3.56 52.82 43.61 30 000
ImageNet-Sketch 1.21 67.92 30.87 50 889

DomainNet-Real 34.31 3.98 61.71 175 327
DomainNet-Quickdraw 0.09 34.41 65.5 172 500
DomainNet-Clipart 3.46 62.53 34.01 48 833
DomainNet-Painting 5.3 47.55 47.15 75 759
DomainNet-Sketch 1.38 69.58 29.04 70 386
DomainNet-Infograph 1.59 28.11 70.3 53 201

F.6 On the Domain Composition of [22]

Please find in Tab. 9 the exact number of rendition examples calculated by deploying our domain
classifier on each the 3 datasets (pruned using rendition test sets) from Mayilvahanan et al. [22].
We see that at least 11-13M images are not pruned away from the datasets, therefore explaining the
insignificant drop in performance.
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Table 9: Number datapoints within the dataset vs number of datapoints pruned away in
Mayilvahanan et al. [22].

Dataset Size Within Pruned
sketch-pruned 191 481 491 24 016 047 3 654 180
r-pruned 194 088 525 24 304 991 3 365 236
combined-pruned 187 471 515 22 173 006 5 497 221

sketch-pruned (98% precision) 19 1481 491 13 266 999 2 482 751
r-pruned (98% precision) 194 088 525 13 338 759 2 410 991
combined-pruned (98% precision) 187 471 515 11 999 276 3 750 474

F.7 Preparing clean datasets

In Sec. 3.3, we created several train and test sets from LAION-200M and ImageNet / DomainNet
shifts respectively, by deploying our classifier at 98% precision. The exact number of samples and
the number of (remaining) classes are in Tab. 10.

Table 10: Clean datasets composition. Obtained by deploying the domain classifiers from Sec.3.1 at
98% precision.

Dataset Classes Size
LAION-Natural - 56 685 759
LAION-Stylistic - 15 749 750

ImageNet-Val 985 17 864
ImageNet-V2 926 3 604
ImageNet-Sketch 991 34 564
ImageNet-R 200 15 847
ImageNet-A 197 3 244
ObjectNet 113 9 347

DomainNet-Real 339 60 148
DomainNet-Quickdraw 344 59 353
DomainNet-Infograph 345 14 957
DomainNet-Clipart 345 30 536
DomainNet-Sketch 344 48 974
DomainNet-Painting 345 36 020

F.8 Details on Training and Choosing the Domain Classifier

Density Ratios Cohen-Wang et al. [8] aim to estimate the probability that a given sample is drawn
from a reference distribution pref. Since high dimensional density estimation is challenging, they
build a classifier to distinguish between a reference and a shifted distribution and compute the density
ratio pref

pshifted
which they threshold at 0.2 to classify a given sample. We deploy their method unchanged

to our task. Again, we obtain two binary classifiers, DR-N and DR-R, that distinguish natural from
non-natural samples and renditions from non-renditions, respectively.

Centroid Embeddings Inspired by the baselines used by Somepalli et al. [39], we implement a
simple model (embedding model plus linear readout). Here, we take the pre-trained CLIP ViT-L/14 as
the embedding model and create a linear readout by comparing embeddings to the centroid embedding
of each domain. We use this as a ternary untrained nearest-neighbor classifier, dubbed CE.

Fine-Tuning We fine-tune the pre-trained CLIP ViT-L/14 with a linear readout on the training dataset
to obtain a ternary classifier, dubbed FT.

We use the validation set to determine the two best domain classifiers, one for natural images and
one for renditions. Since the domain classifier should maximize precision above all else, we set the
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confidence threshold for each model such that it achieves 98% per-class precision. For CSD, we
instead choose k to reach this precision. We then pick the classifier with the highest per-class recall
to minimize the number of datapoints that are discarded when subsampling LAION-200M to build
LAION-Natural and LAION-Rendition. We choose FT, the fine-tuned ternary classifier, and DR-R,
the binary classifier using density ratios, to detect natural and rendition images, respectively. We use
these classifiers for all subsequent experiments. Tab. 1 reports each model’s precision and recall on
the natural and rendition class across ImageNet and DomainNet test sets. For raw accuracy numbers
of all models, which in general are high for most, please refer to Tab. 5 and 6 in Appx. F.4.

F.9 Analysis of domain composition from Mayilvahanan et al. [22]

We also analyze the domain composition of datasets from Mayilvahanan et al. [22], who created
several subsets of LAION-200M that do not contain samples that are perceptually highly similar
to ImageNet OOD test sets. These removed images are expected to be (near-) duplicates of test
images in terms of both content and style. Their dataset ‘combined-pruned’ is a subset of LAION-
200M where highly similar images to ImageNet-Sketch, ImageNet-R, ImageNet-Val2, ImageNet-Val,
ImageNet-A, and ObjectNet were pruned. In their work, it remained unclear whether pruning also
effectively removed all images of the rendition domain, which we can now answer. Tab. 8 reveals
that a considerable number of renditions remains in the pruned dataset (at least 6.4% corresponding
to around 11 million images). These remaining renditions might have played a significant role in the
generalization performance of their CLIP models, especially on ImageNet-Sketch and ImageNet-R.
As a result, CLIP’s domain generalization performance is yet to be evaluated fairly.

G Notes on the CLIP Models

G.1 Resources spent

We train about 28 CLIP ViT-B/32 models on several subsets of LAION-200M. These models took
about 8000 A100 GPU hours. We also needed about 18 TB of memory to store these datasets.

G.2 Raw Accuracy Numbers of CLIP Trained on LAION-N vs LAION

In Sec. 4, in Fig. 3, we only reported the relative numbers. Here, in Fig. 8, 10, 9, 11, we report the
actual numbers as a function of dataset size.

Figure 8: CLIP trained on LAION v LAION-N performance on standard natural test sets.
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Figure 9: CLIP trained on LAION v LAION-N performance on standard rendition test sets.

Figure 10: CLIP trained on LAION v LAION-N performance on clean natural test sets.

H Training ResNets on ImageNet

We deploy our natural domain classifier from Sec/ 3 at 90% precision (threshold obtain from LAION
13K Val set) on ImageNet-Train to obtain about 1M datapoints belonging to the natural domain
(dubbed ImageNet-N). We create several datasets of smaller sizes subsampling from ImageNet-N.
We also create randomly sampled datasets of similar sizes from the original ImageNet. We train
ResNet-50 models on all of these datasets. We follow the training recipe A3 of Wightman et al. [44]
and train the models for 200 epochs. We then evaluate these models on standard test sets and clean
test sets from Sec.3.3. The accuracies of ResNets trained on subsets of original ImageNet is used for
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Figure 11: CLIP trained on LAION v LAION-N performance on clean rendition test sets.

the effective robustness plots in Sec. 4, I. Further, the comparison of accuracies between the models
trained on subsets from ImageNet-N and ImageNet is in Fig. 12, 14, 13, 15. As such there is no
significant performance difference anywhere, thus indicating that ImageNet does not have substantial
domain leakage.

Figure 12: Resnets trained on ImageNet v ImageNet-N performance on standard natural test
sets.
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Figure 13: Resnets trained on ImageNet v ImageNet-N performance on standard rendition test
sets.

Figure 14: Resnets trained on ImageNet v ImageNet-N performance on clean natural test sets.
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Figure 15: Resnets trained on ImageNet v ImageNet-N performance on clean rendition test
sets.

23



I Detailed Effective Robustness plots on individual shifts

In Fig. 4 in the main manuscript, we report aggregated results where we average over natural and
stylistic ImageNet distribution shifts. We display the results on the individual distribution shifts in
Fig. 16. On ImageNet-R and ImageNet-Sketch (bottom row), we observe that the effective robustness
of the CLIP models can be modulated by training it on the different dataset splits, i.e. LAION-
Natural, LAION-Rendition, LAION-Mix. The model trained on LAION-Natural is much closer
to the ImageNet trained model in terms of effective robustness compared to the model trained on
LAION-Rendition. In contrast, effective robustness is barely affected on the natural splits (top row).
This can be explained by the final data distributions of the different training splits: Our filtering
procedure does not affect natural images which are most responsible for the performance on natural
datasets which explains the consistency in performance.

We also investigate effective robustness on the DomainNet shifts in Fig. 17. We note that the
ImageNet model’s accuracy numbers on DomainNet are not comparable to the CLIP models because
the ImageNet model has been evaluated on a subset of DomainNet (ImageNet-D, 32) which is
compatible with ImageNet classes. DomainNet has many classes which are not present in ImageNet,
such as for example “The Great Wall of China” or “paper clip” which have been removed in ImageNet-
D to enable evaluating ImageNet trained models without the need for training an additional readout
layer. In contrast, we evaluate the CLIP trained models on the full DomainNet splits following
standard zero-shot evaluation procedure. We will add a Figure where we control for the missing
classes and evaluate the CLIP models on ImageNet-D in the next version of the manuscript.

On DomainNet, we similarly observe strong changes in effective robustness of the CLIP trained
models when evaluating on the stylistic domains (all domains except for DomainNet-Real), and
barely any changes when evaluating on the DomainNet-Real domain.

Figure 16: Effective Robustness of different models on different ImageNet distribution shifts.
On ImageNet-R and ImageNet-Sketch (bottom row), we observe that the effective robustness of the
CLIP models can be modulated by training it on the different dataset splits, i.e. LAION-Natural,
LAION-Rendition, LAION-Mix. The model trained on LAION-Natural is much closer to the
ImageNet trained model in terms of effective robustness compared to the LAION-Rendition model.
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Figure 17: Effective Robustness of different models on different DomainNet distribution shifts.
On the stylistic domains, we observe that the effective robustness of the CLIP models can be modu-
lated by training it on the different dataset splits, i.e. LAION-Natural, LAION-Rendition, LAION-
Mix. Effective robustness barely changes when evaluating different CLIP models on DomainNet-Real.

J Visualization of Errors made by the domain classifier

We show images which have been misclassified by our domain classifier Fig. 18. We observe that the
errors are interpretable. For example, the “natural” images which have been classified as “ambiguous”
are indeed ambiguous: We see a sculpture in one image, a large woodwork of an ant in another and a
pencil drawing of an airplane with a partly visible human hand drawing it in a third image.

K Visualization of samples from the LAION dataset

We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from
LAION in Figs. 19-21.

L Visualizations of ImageNet Distribution Shifts

We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from
the considered ImageNet shifts datasets in Figs. 22-27. We show 20 images per split; occasionally,
there are fewer than 20 images in some of these splits, such as e.g. there are very few renditions in
ImageNet-A. In that case, we plot all images from that split and leave the remaining subplots blank.

M Visualizations of DomainNet Distribution Shifts

We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from
different DomainNet datasets in Figs. 28-33. We show 20 images per split; occasionally, there are
fewer than 20 images in some of these splits, such as e.g. no natural images in the Quickdraw domain.
In that case, we plot all images from that split and leave the remaining subplots blank.
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Figure 18: Confusion matrix of example images which have been misclassified by our domain
classifier.
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Figure 19: Random samples from LAION-200M. We omit NSFW images and images of humans.
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Figure 20: Random samples from LAION-Natural. We omit NSFW images and images of
humans.
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Figure 21: Random samples from LAION-Rendition. We omit NSFW images and images of
humans.
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Figure 22: Random samples of ImageNet-A grouped by domain. We omit NSFW images and
images of humans.
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Figure 23: Random samples of ObjectNet grouped by domain. We omit NSFW images and images
of humans.
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Figure 24: Random samples of ImageNet-R grouped by domain. We omit NSFW images and
images of humans.
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Figure 25: Random samples of ImageNet-Sketch grouped by domain. We omit NSFW images
and images of humans.

33



Figure 26: Random samples of ImageNet-V2 grouped by domain. We omit NSFW images and
images of humans.
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Figure 27: Random samples of ImageNet-Val grouped by domain. We omit NSFW images and
images of humans.
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Figure 28: Random samples of DomainNet-Clipart grouped by domain. We omit NSFW images
and images of humans.
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Figure 29: Random samples of DomainNet-Painting grouped by domain. We omit NSFW images
and images of humans.
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Figure 30: Random samples of DomainNet-Real grouped by domain. We omit NSFW images
and images of humans.
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Figure 31: Random samples of DomainNet-Infograph grouped by domain. We omit NSFW
images and images of humans.
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Figure 32: Random samples of DomainNet-Quickdraw grouped by domain. We omit NSFW
images and images of humans.
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Figure 33: Random samples of DomainNet-Sketch grouped by domain. We omit NSFW images
and images of humans.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main goals of our work as stated in the abstract or introduction is: 1.
create web-scale datasets and test datasets of single domains, 2. train and test CLIP models
on them and show that they do not generalize well to the test datasets, and 3. analyze the
performance on mixtures of the created datasets. In Sec.3 we train, test, and deploy domain
classifiers to create large datasets of several millions. In Sec. 4, we train these models on
the created datasets, especially the natural version and show that CLIP model struggle to
generalize. In Sec. D, we train CLIP models on mixtures of the natural and rendition datasets
and state some observations. Therefore, we believe that the claims stated in the abstract and
introduction are justified.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section ??, we identify several limitations, including potential biases in our
domain classifiers, the impact of class data distribution, and the influence of ambiguous data
points. These limitations are acknowledged, but they do not invalidate our core conclusions,
which we believe remain significant.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the methodology to create all of the datasets we use in
Sec. 3.3, F.1, F.2. We also sketch the training details of all our models in Sec. 3.1,4, H, F.3.
This should be sufficient to reproduce all our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have attached the code in the supplementary material and the training
details are in Sec. 3.1,4, H, F.3. These together should enable anyone to reproduce all our
experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and evaluation details of all our models is described in
Sec. 3.1,4, H, F.3. We describe the methodology to create all of the used train and test
datasets we use are in Sec. 3.3, F.1, F.2. This should be sufficient to understand all our
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The models we train are significantly expensive, therefore we are unable to
train several of them and report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation and memory resources spent for each of the training experi-
ments are in Sec.F.3,G.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We uniformly conform to the Code of Ethics and, in particular, all data-related
concerns about our datasets curated from LAION. We will communicate the details of the
curated datasets with a license upon release, allow access to research artifacts, make our
work reproducible, carefully consider all societal impacts and harmful consequences of our
research output. Note that we use the LAION-400M dataset. LAION-400M has not been
shown to contain any harmful child-sexual abuse material (CSAM).
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work is aimed to promote better understanding of the generalization
capabilities of foundation models. We claim that performance on downstream tasks is
directly related to (distributional) similarity between the task and the training data. We think
that better understanding of whether, when and why our models generalize can enable us to
build more reliable and fair models. However, of course, we cannot exclude the possibility
of dual-use where malicious agents would train models on even more biased and unfair
datasets to further increase the model’s harmful behavior.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We train CLIP models on subsets of the LAION-400M dataset. We do not
consider our models to be more unsafe than the open-source OpenCLIP models which are
publicly available.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite OpenCLIP following the guidelines on their website. We cite all
baselines for training the domain classifier which we have compared our domain classifier
against.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets generated by this paper are the datasets LAION-N, LAION-S and
LAION-Mix, as well as the CLIP models trained on these datasets. We describe in detail
how the dataset splits have been created and will release the code as well as the trained
checkpoints upon acceptance of this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Our work does not paper does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not paper does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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