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Structured Neural Decoding With Multitask Transfer
Learning of Deep Neural Network Representations

Changde Du, Changying Du , Lijie Huang, Haibao Wang, and Huiguang He , Senior Member, IEEE

Abstract— The reconstruction of visual information from
human brain activity is a very important research topic in
brain decoding. Existing methods ignore the structural infor-
mation underlying the brain activities and the visual features,
which severely limits their performance and interpretability.
Here, we propose a hierarchically structured neural decoding
framework by using multitask transfer learning of deep neural
network (DNN) representations and a matrix-variate Gaussian
prior. Our framework consists of two stages, Voxel2Unit and
Unit2Pixel. In Voxel2Unit, we decode the functional magnetic
resonance imaging (fMRI) data to the intermediate features of a
pretrained convolutional neural network (CNN). In Unit2Pixel,
we further invert the predicted CNN features back to the
visual images. Matrix-variate Gaussian prior allows us to take
into account the structures between feature dimensions and
between regression tasks, which are useful for improving decod-
ing effectiveness and interpretability. This is in contrast with the
existing single-output regression models that usually ignore these
structures. We conduct extensive experiments on two real-world
fMRI data sets, and the results show that our method can predict
CNN features more accurately and reconstruct the perceived
natural images and faces with higher quality.

Index Terms— Deep neural network (DNN), functional mag-
netic resonance imaging (fMRI), image reconstruction, multiout-
put regression, neural decoding.
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I. INTRODUCTION

THE advance in sensory neuroscience could lead to new
insights into brain function and aid efforts to improve

the artificial intelligence [1]. One of the critical aspects to
the research is neural decoding, which aims to build the
relationship between visual contents and the corresponding
functional magnetic resonance imaging (fMRI) brain record-
ings. The most accurate visual stimulus reconstruction meth-
ods in existence rely on convolutional neural network (CNN)
[2], [3], which are pretrained on the large-scale image data
set for visual recognition tasks. In recent years, many studies
have used the intermediate features of pretrained CNN as
the medium for neural decoding. For example, researchers
have tried to reconstruct human faces [4], handwritten charac-
ters [5], or natural images [3] using the CNN features predicted
from the multivariate fMRI data.

In the neural decoding task of using pretrained CNN,
the most important point is how to model the mapping relation-
ship between fMRI voxels and CNN features. Existing neural
decoding methods assume that different intermediate features
of CNN are independent of each other, and they establish a
separate prediction model for each CNN feature to decode the
fMRI voxels [2], [6]. However, multiple intermediate features
of CNN are not independent of each other, and they are
usually correlated with each other through some potential
structures. In addition, there is also some correlation between
the voxel features of fMRI data, which can reflect the visual
stimulus information perceived by subjects to a certain extent.
Finally, taking the learning of the single-output prediction
model of each CNN feature as a task, there are also some
dependencies among multiple tasks. Constructing multitask
learning method (by applying appropriate constraints to the
regression weights) is also helpful to improve the accuracy
of fMRI decoding. We refer to the aforementioned dependen-
cies between data dimensions and between learning tasks as
structured information. Because of ignoring these structural
information, the performance and interpretability of traditional
neural decoding methods are limited. Therefore, we advocate
that these structured information should be fully utilized in the
neural decoding process using CNN intermediate features.

On the other hand, it is also a very important problem how
to accurately reconstruct the corresponding visual images by
using the intermediate features of CNN obtained by fMRI
data decoding. In the literature, this problem is solved by
the maximum a posterior (MAP) estimation strategy. For
example, gradient-based optimization methods can be applied
to find an optimal solution in the image space, so that the CNN
features corresponding to the optimal image are as close as
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possible to the target CNN features. In the image optimization
process, some constraints can be imposed to speed up the
convergence process, such as total variation (TV) regular-
izer [7] or pretrained deep image generative model [3], [8].
In another way, a deconvolutional neural network (De-CNN)
can also be trained based on a large number of image-CNN
feature data pairs to predict the corresponding image according
to the input CNN feature [9]. Unfortunately, both of these
solutions have their drawbacks. The inference process in the
first solution is very slow, while the second solution tends to
produce blurry, low-quality images, which we do not want
to see. Recently, it is an exciting way to use the conditional
deep generative models (DGMs) such as conditional varia-
tional autoencoders (CVAEs) [10] and conditional generative
adversarial nets (CGANs) [11], [12] to invert the CNN features
back to visual images. In particular, thanks to the great success
of adversarial learning in high-fidelity image synthesis [13],
[14], we believe that conditional adversarial image synthesis
method will also greatly improve the effect of visual image
reconstruction.

In this article, we propose a novel structured neural decod-
ing framework for the perceived image reconstruction. The key
idea is to use features derived from a CNN trained on plentiful
image data to improve the reconstruction of images from
fMRI data (where data are scarce). This process can transfer
information from deep neural network (DNN) representations
to brain activity data with the goal of image reconstruction.
Specifically, our framework consists of two stages, Voxel2Unit
and Unit2Pixel (see Fig. 1). In Voxel2Unit, we first use the
structured multioutput regression (SMR) model to decode
the fMRI voxel features to the intermediate CNN features.
In Unit2Pixel, we further use the introspective conditional
generation (ICG) model to invert the predicted CNN features
back to the visual images. Our main contributions include

1) We use matrix-variable Gaussian prior to establish an
SMR model to decode the multivariate fMRI data to the
CNN features.

2) We use variational adversarial learning to build an ICG
model to reconstruct high-quality images based on the
decoded CNN features.

3) For validating the performance of the proposed frame-
work, we collected a new fMRI data set1 evoked by
800 different face stimuli.

4) We studied the relationship between different feature
layers of three CNN architectures and different brain
visual areas and found that there is a homology between
computer and human vision.

5) The experiments demonstrate that the proposed approach
can accurately reconstruct the perceived natural images
and human faces from brain activity.

II. RELATED WORK

A. DNN-Based Neural Decoding

Neural decoding studies can be divided into three
categories, i.e., semantic classification [15]–[19], image

1available at https://figshare.com/articles/dataset/FaceBold/13019966

identification [6], [20], and image reconstruction [21]–[23].
Although a lot of DNN-based neural decoding methods
have been proposed for image reconstruction in recent
years [2]–[5], their performances still need to be improved.
For example, Wen et al. [2] first used linear regression to
transform fMRI data into higher-level semantic features of
CNN, and then trained a separate image decoding network to
reconstruct natural images. Du et al. [5] proposed a multiview
deep generative model (DGMM), in which they first used
the sparse linear model to map the brain activities to the
latent representation of the variational autoencoder (VAE), and
then used the VAE decoder to reconstruct the image. But it
is difficult to use DGMM to reconstruct the natural images
clearly due to the natural shortcomings of VAE. More recently,
Shen et al. [3] also used linear regression to decode the fMRI
data into the semantic feature vector of CNN, and then used
the gradient descent method to iteratively find the optimal
image for each test sample.

Most of the above methods are based on a common
assumption that the internal units of CNN are independent
of each other. Therefore, they need to fit many independent
single-output linear regression (SLR) models, each of which
is used to predict the feature of a CNN unit. Unlike them, our
two-stage decoding framework first adopts an SMR model to
decode the multiple CNN features from fMRI data, and then
uses an ICG model to reconstruct the visual image from the
decoded CNN features.

B. Multioutput Regression

Our SMR model is a more general multioutput regres-
sion framework, and many existing models [24]–[27] can
be regarded as the special cases of it. Rothman et al. [24]
proposed a multivariate regression with covariance estima-
tion (MRCE) model, in which only the correlation between
outputs is considered. In [25], the MRCE model is extended
by simultaneously exploiting the correlation between outputs
and tasks, but the correlation between inputs is ignored. Fur-
thermore, many previous multitask learning lie in discovering
the relationship among the tasks by mining the common input
structures shared by the tasks [28]–[30]. The regularization
method is widely used to discover the relationship among the
tasks [31]–[33]. Argyriou et al. [31] penalized the regression
weights by using the spectral functions to learn the feature
structure shared across the tasks. Chen et al. [33] penalized
the regression weights by combining the nuclear norm and
the �p,q norm to simultaneously learn the sparsity of the
regression weights and the correlation among the tasks. The
structural constraints between different regression tasks and
between different output dimensions are considered at the
same time via the inverse-covariance regularization in [26].
The above multitask learning approaches assume that the rel-
evant inputs corresponding to each output are identical. This is
unreasonable in neural decoding applications because previous
study has shown that there is a corresponding relationship
between the hierarchical visual representation of images and
the neural expression in various stages of human visual
processing [34]–[36].
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Fig. 1. Overview of the proposed hierarchically structured neural decoding framework. It involves two cascaded stages, 1) Voxel2Unit: decoding the CNN
features from fMRI activity and 2) Unit2Pixel: reconstructing the perceived image using the decoded CNN features.

C. Deep Generative Models

VAEs [37] and generative adversarial nets (GANs) [38]
are the most popular DGMs, and they have shown great
success in generating high-quality images [13], [14], [39].
Recently, some research studies have applied VAEs and GANs
to neural decoding [4], [40]–[42]. For example, Du et al. [40]
proposed a VAE-based image reconstruction framework, and
Güçlütürk et al. [4] proposed a GAN-based framework. Both
VAE-based and GAN-based neural decoding methods have
their own strengths and limitations in image reconstruction.
VAE-based neural decoding methods are theoretically elegant
and easy to train but the reconstructed images are often blurry.
GAN-based neural decoding methods usually produce much
clearer reconstructions but face challenges in training stability.
Our image reconstruction model can be seen as a hybrid of
VAE and GAN, which combines the best of both worlds.

III. HIERARCHICALLY STRUCTURED NEURAL DECODING

Let Y = [y1, . . . , yN ]� ∈ R
N×M represent the visual

images, H = [h1, . . . , hN ]� ∈ R
N×K represent the inter-

mediate CNN features (we use the pretrained AlexNet [43]
model) of Y, and X = [x1, . . . , xN ]� ∈ R

N×D represent the
corresponding multivariate fMRI data. Here, N is the number
of training data, M , K , and D are the corresponding data
dimensions, respectively. The commonly used symbols and
their definitions are listed in Table I. The correlation between
distinct CNN features is called output structure, the corre-
lation between distinct fMRI voxel features is called input
structure, and the correlation between distinct single-output
regression tasks is called task structure. The proposed hier-
archically structured neural decoding framework is illustrated
in Fig. 1.

A. Voxel2Unit: SMR

In order to improve the accuracy and interpretability
of neural decoding, a structured multiple output regres-
sion (SMR) model was established in this stage to simultane-
ously model the three structural information mentioned above.
As shown in Fig. 2, the learning goal of multioutput regression
model is to establish the linear mapping relationship between
multivariable input xn ∈ R

D and multivariable output hn ∈ R
K

via

hn =W�xn + b+ εn ∀n = 1, . . . , N. (1)

Here, W = [w1, . . . , wK ] ∈ R
D×K is the regression coef-

ficient matrix where its column wk ∈ R
D is the coefficient

of the kth output and its row wd ∈ R
K is the corresponding

TABLE I

DEFINITION OF FREQUENTLY USED SYMBOLS

Fig. 2. Voxel2Unit: SMR. The red and blue dashed rectangles represent the
possible dependencies between the inputs and the outputs, respectively.

coefficient of the dth input. b = [b1, . . . , bK ]� ∈ R
K is the

bias vector for the K outputs, and εn = [εn1, . . . , εnK ]� ∈ R
K

is the Gaussian noise vector.
1) Prior With Input and Task Structures: Considering the

dependence between fMRI voxels and the dependence between
single-output regression tasks, we apply the following struc-
tural prior to W:

p(W) =
(

K∏
k=1

N (wk |0, ID)

)
MN (W |0D×K ,�r ,�c) (2)
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where ID is a D×D identity matrix i.e., its diagonal elements
are one and all the other elements are zero, 0 ∈ R

D is a D-
dimensional vector with zero entries, MN (M, A, B) denotes
a matrix-variate Gaussian distribution [44] with mean M ∈
R

D×K , row covariance matrix A ∈ R
D×D and column covari-

ance matrix B ∈ R
K×K . In (2), N (wk |0, ID) regularizes the

weight vector wk individually, while MN (W |0D×K ,�r ,�c)
couples the D rows of W by the covariance matrix �r , and
the K columns of W by the covariance matrix �c. As a result,
we can model the input structure and task structure by learning
�r and �c, respectively.

2) Likelihood With Output Structure: However, due to the
limited expression capacity of the linear regression function,
the multioutput model based on the above matrix-variable
Gaussian prior may not be able to fully characterize the corre-
lation between K outputs. In order to completely characterize
the potentially remaining structural information among the K
outputs that is not explained by the task structure, we impose
a full covariance matrix � ∈ R

K×K on the output Gaussian
noise distribution. For N training instances, the likelihood
function can be written as

p(H|X, W, b) =
N∏

n=1

N (hn |W�xn + b,�). (3)

Note that most previous neural decoding methods [2], [3], [6]
assume the output Gaussian noise distribution has a diagonal
covariance (i.e., � = I). Therefore, they cannot effectively
utilize the output structure information in the K outputs.

Given the structural prior in (2) and the likelihood function
in (3), the posterior distribution of W can be written as

p(W|X, H, b,�,�r ,�c)

∝
(

N∏
n=1

N (
hn|W�xn + b,�

))

·
(

K∏
k=1

N (wk |0, ID)

)
MN (W |0D×K ,�r ,�c). (4)

It is intractable to use Bayesian estimation for the above
posterior distribution, and we apply the point estimation to
the regression coefficient matrix W. Taking the log of (4) and
ignoring the constants, we can solve W by MAP estimation.
Specifically, the negative log-posterior of W can be written
as

J = tr((H− XW− 1b�)�−1(H− XW− 1b�)�)

− N log |�−1| + λtr(WW�)+ λ1tr
(
�−1

r W�−1
c W�

)
− K log

∣∣�−1
r

∣∣− D log
∣∣�−1

c

∣∣ (5)

where tr(·) denotes matrix trace, 1 denotes a N × 1 vector
of all 1 s, and | · | denotes matrix determinant. Here, λ
and λ1 are the regularization hyperparameters. Note that the
tr(�−1

r W�−1
c W�) term captures the dependencies among the

rows of W by learning the feature inverse covariance matrix
�−1

r , and the dependencies among the columns of W by
learning the task inverse covariance matrix �−1

c .

3) Sparse Covariance Selection: The inverse covariance
matrices �−1, �−1

r and �−1
c are expected to be sparse

for two reasons: 1) sparsity leads to improved robust esti-
mates of them [45] and 2) sparsity supports the assumption
that dependencies between features/outputs/tasks tend to be
sparse, i.e., not all pairs of voxels/units/tasks are related. For
example, when �−1

r is sparse, a zero entry in it indicates
no direct interaction between the two corresponding voxels
in the multioutput regression. For sparse �−1

c and �−1,
we have similar explanations. Therefore, we impose sparsity
constraints on �−1, �−1

r and �−1
c via the �1 penalty. Let

� = {W, b,�−1,�−1
r ,�−1

c }, the �1 regularized objective
function can be written as

min
�

Js = J + λ2||�−1||1 + λ3
(∥∥�−1

r

∥∥
1 +

∥∥�−1
c

∥∥
1

)
(6)

where || · ||1 denotes the �1-norm, and {λ2, λ3} are the
hyperparameters, which control the sparsity of the inverse
covariance matrices.

B. Unit2Pixel: ICG

In this stage, our goal is to reconstruct the preferred image
for the CNN features decoded from the first stage. Typically,
this problem can be regarded as an optimization problem, that
is, using gradient descent method to find an optimal image,
so that its CNN features are the closest to the target [3], [7].
However, this approach is very slow because it needs to be
optimized independently for each sample.

1) Conditional DGMs: Recently, it is an exciting method
to directly generate the corresponding visual images by using
conditional DGMs such as CVAEs [10] and CGANs [11], [12]
under the condition of given CNN features. For example, treat-
ing the predicted CNN features H as condition, the objective
function of CVAE can be written as

LCVAE = −Eqφ(z|y,h)[log pθ (y|z, h)]︸ ︷︷ ︸
LAE

+KL(qφ(z|y, h)||p(z))︸ ︷︷ ︸
DKL

(7)

where pθ (y|z, h) denotes the generative network with parame-
ter θ , qφ(z|y, h) denotes the inference network with parameter
φ, y is the visual images, z is the latent variables, and h is
the given condition. The overview of CVAE is shown in the
gray sub-panel of Fig. 3. In (7), the first term LAE denotes the
image reconstruction error, and DKL is a regularization term
that narrows the distance between the approximate posterior
qφ(z|y, h), and the prior p(z). However, both CVAEs and
CGANs have their own significant strengths and limitations
in image generation. CVAE has stable training process, but its
generated images are relatively blurry. In contrast, CGANs can
produce relatively high-quality images, but its training process
is prone to lose stability

2) Introspective Adversarial Learning: To address these
problems, we build an ICG model, and the illustration is shown
in Fig. 3. Recall that, in CVAE, DKL is minimized along
with LAE on the observable data points (see 7). Nevertheless,
in introspective adversarial training, DKL is adversarially opti-
mized along with LAE. Specifically, for real images, we still
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Fig. 3. Unit2Pixel: ICG. In the training phase, y comes from large-scale image data (including images without fMRI), and h is the correspondingly true CNN
features. Network parameters are shared between the decoder and the generator, and similarly for the two encoders. In the test phase, we use the generator
pθ (y|z, h) to obtain the image reconstructions, where z ∼ p(z) and h is the decoded CNN features.

minimize DKL, but for the reconstructed or generated (we call
them fake images) ones, we maximize DKL. The encoder and
decoder play an adversarial learning game, where the encoder
attempts to minimize DKL for real images while maximize
it for the fakes, while the decoder attempts to mislead the
encoder by minimizing DKL for the fakes. The parameters of
the decoder and encoder can be iteratively optimized by the
following two formulas:

θ̂ = arg min
θ
[LAE + αDKL(qφ(z|y f , h)||p(z))] (8)

φ̂ = arg min
φ
[LAE + β DKL(qφ(z|y, h)||p(z))

− αDKL(qφ(z|y f , h)||p(z))] (9)

where y f denotes the fake images sampled from pθ (y|z, h).
Equation (8) and (9) form a specific hybrid model of CVAE
and CGAN. α and β are hyperparameters, balancing the
impact of CVAE and CGAN. Our method will degrade to
standard CVAE when α = 0, β = 1, and to a regularized
CGAN when α = 1, β = 0.

Cooperative learning and adversarial learning coexist in
the procedure of optimizing (8) and (9). For the real
images, (8) and (9) cooperatively minimize LAE and
DKL(qφ(z|y, h)||p(z)), which is equivalent to the optimization
of CVAE. For the fake images, (8) and (9) form the CGAN-like
adversarial learning game, in which (8) attempts to minimize
DKL(qφ(z|y f , h)||p(z)) while (9) attempts to maximize it.
Here, qφ(z|y, h) plays two different roles simultaneously.
On the one hand, it acts as the encoder of CVAE, on the other
hand, it acts as the discriminator of CGAN. Compared with
other VAE and GAN hybrid models [46], [47], our method
does not require additional discriminators (since the encoder
also played the role of discriminator), which reduced the
number of model parameters.

IV. OPTIMIZATION

End-to-end training the proposed two-stage framework
requires a large amount of paired image-fMRI data, which
cannot be satisfied in most cases. Instead, we train each
stage individually, which has two advantages: 1) after the first
stage of training, we can select some CNN units with high
decodability for the second stage of training and 2) we can
use a large amount of additional image data in the second
stage to augment the training data set.

A. Training SMR Model

We adopt an alternating optimization strategy to learn the
proposed SMR model. In each iteration, we alternatively
optimize one variable with others fixed.

1) Update W: We solve the following subproblem to update
W with b,�−1,�−1

r and �−1
c fixed:

min
W

LW = tr((H− XW− 1b�)�−1(H− XW− 1b�)�)

+ λtr(WW�)+ λ1tr
(
�−1

r W�−1
c W�

)
. (10)

The following proposition characterizes its optimal solution.
Proposition 1: The optimal solution of (10) satisfies

vec(Ŵ) = U−1V, where U = �−1⊗(X�X)+λIK D+λ1�
−1
c ⊗

�−1
r and V = vec(X�(H− 1b�)�−1).
See Appendix A for detailed proof. Here, ⊗ denotes the

Kronecker product and vec(W) denotes the vectorization of
W. When faced with relative large K and D, we use gradient
descent method with ∇WLW = X�(H − XW − 1b�)�−1 +
λW + λ1�

−1
r W�−1

c to solve it.
2) Update b: Given W,�−1,�−1

r and �−1
c , the bias vector

b can be obtained by

min
b

tr((H− XW− 1b�)�−1(H− XW − 1b�)�). (11)

The result is b̂ = (1/N)(H − XW)�1.
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Algorithm 1 SMR Training (Voxel2Unit Stage)

Input: X ∈ R
N×D , H ∈ R

N×K , λ, λ1, λ2, λ3 and η.

1: Initialize W = 0, �−1 = IK , �−1
r = ID , �−1

c = IK and
b = 1

N H�1
2: while not converged do
3: while not converged do
4: Update W by W←W − η∇WLW
5: end while
6: Update b by b̂ = 1

N (H− XW)�1
7: Update �−1 by (13)
8: Update �−1

r by (16)
9: Update �−1

c by (17)
10: end while
11: Output: W, b,�−1,�−1

r ,�−1
c

3) Update �−1: Given W, b,�−1
r and �−1

c , the inverse
covariance matrix �−1 can be obtained by

min
�−1

tr((H− XW− 1b�)�−1(H− XW− 1b�)�)

− N log |�−1| + λ2||�−1||1. (12)

The above optimization problem can be solved by using

the basic graphical lasso solver [45], i.e., �̂
−1 =

GraphLasso((1/N)(H−XW− 1b�)�(H−XW− 1b�), λ2).
However, its computational cost becomes prohibitive in
high-dimensional output settings where K is large. Here,
we employ a linear-time algorithm Thresh-max-det matrix
completion (MDMC) proposed in [48] for large-scale sparse
inverse covariance estimation

�̂
−1 = Thresh-MDMC(1/N · (H− XW− 1b�)�

× (H− XW− 1b�), λ2). (13)

4) Update �−1
r and �−1

c : Given W, b and �−1, the inverse
covariance matrices �−1

r and �−1
c can be estimated by solving

the following subproblems, respectively:
min
�−1

r

λ1tr
(
�−1

r W�−1
c W�

)− K log
∣∣�−1

r

∣∣+ λ3
∥∥�−1

r

∥∥
1

(14)

min
�−1

c

λ1tr
(
�−1

r W�−1
c W�

)− D log
∣∣�−1

c

∣∣+ λ3
∥∥�−1

c

∥∥
1.

(15)

As in (13), we can estimate �−1
r and �−1

c , as follows:
�̂
−1
r = Thresh-MDMC

(
1/K ·W�−1

c W�, λ3/λ1
)

(16)

�̂
−1
c = Thresh-MDMC

(
1/D ·W��−1

r W, λ3/λ1
)
. (17)

The entire optimization procedure is summarized in Algo-
rithm 1. Because each of the above subproblem is convex w.r.t.
one variable, our algorithm can at least find a locally optimal
solution by optimizing each subproblem alternatively.

B. Training ICG Model

The entire optimization procedure of ICG model is sum-
marized in Algorithm 2. We alternately optimize (8) and (9),
which correspond to updates to the generator and encoder,

Algorithm 2 ICG Training (Unit2Pixel Stage)
Input: Training images Y, conditions H, hyperparameters α
and β.

1: Initialize network parameters θ and φ
2: while not converged do
3: Update the generator by (18) and (19) :

θ̂ = arg minθ [L AE + αDK L (qφ(z|y f , h)||p(z))]
4: Update the encoder by (18) and (19) :

φ̂ = arg minφ[L AE + β DK L(qφ(z|y, h)||p(z))
−αDK L (qφ(z|y f , h)||p(z))]

5: end while
6: Output: θ̂ and φ̂

respectively. In each iteration, the generator parameter θ and
encoder parameter φ can be optimized using the stochastic
gradient variational Bayes (SGVB) [49] method. We assume
p(z) ∼ N (0, I), and the encoder qφ(z|y, h) is designed to
output two individual variables, μ and σ , and the approx-
imated posterior qφ(z|y, h) ∼ N (μ, diag(σ 2)). Then, the
KL-divergence term in (8) and (9) can be computed as

DKL(qφ(z|y, h)||p(z))

= 1

2

N∑
i=1

dz∑
j=1

(
1+ log

(
σ 2

i j

)− μ2
i j − σ 2

i j

)
(18)

where dz denotes the dimension of z. The image reconstruction
error term LAE in (8) and (9) is computed using the mean
squared error (MSE) loss

LAE(y, yr ) = 1

2

N∑
i=1

M∑
j=1

‖yr,i j − yi j ‖22 (19)

where yr denotes the reconstructed image.

V. EXPERIMENTS

A. Experimental Setup

1) Data Sets:
a) Vim-1: Vim-1 is a publicly available fMRI data set.2 It

contains two subjects’ blood-oxygen-level dependent (BOLD)
signals evoked by thousands of grayscale natural images
(500 × 500 pixels) [20]. The fMRI voxels come from V1,
V2, V3, V4, V3a, V3b, and lateral occipital (LO) visual brain
areas. Each subject has five scan sessions, and each scan
session consisted of seven runs, where five runs were used
for model training and the rest two runs for model testing.
See [20] for more details about Vim-1.

b) FaceBold: Our newly collected fMRI data set,3 which
contains six subjects’ BOLD signals evoked by 800 grayscale
face stimuli. The face stimuli (330 × 380 pixels) come from
several public emotion data sets such as the Radboud Faces
Database [50]. During the acquisition, we recorded the BOLD
responses (repetition time (TR) = 2 s, voxel size = 3× 3×
4 mm3, whole-brain coverage) of six subjects (three female

2Data are available at https://crcns.org/datasets/vc/vim-1
3Data are available at https://figshare.com/articles/dataset/FaceBold/

13019966
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TABLE II

DETAILS OF THE DATA SETS USED IN OUR EXPERIMENTS

and three males, 20–30 years old) as they were fixating on a
small dot superimposed on the stimuli (15◦ × 15◦). Each face
was presented at a frequency of 5 Hz for 2 s, followed by a
gray background for 6 s. Each subject has two scan sessions.
The first session consisted of five runs, which were used for
model training totally. The second session also consisted of
five runs, but only four runs were used for model training
and the rest one for model testing. For each run, we randomly
select 80 different face stimuli and ensure that the face stimuli
in each run do not overlap.

c) ImageNet-1k: The ImageNet-1k [51] data set contains
approximately 1 280 000 natural images. Before using it to
augment the training set, we do some preprocessing on it.
First, the image size of ImageNet-1k was downsampled to
128 × 128 using the method proposed in [52]. Second,
similar to [20], we converted all the images to grayscale and
enhanced their contrast. Finally, to make images look like the
ones in Vim-1, we finally applied the circular mask [20] to
them. The preprocessed ImageNet-1k images together with the
downsampled (128 × 128) Vim-1 images were used to train
our ICG model.

d) CelebA: The CelebA [53] data set4 contains approxi-
mately 203 000 face images. We use the aligned and cropped
version (i.e., the “img_align_celeba.zip” file) in our experi-
ments. The face images in CelebA were center-cropped to
128 × 128 to align them with the images in FaceBold. Finally,
all face images were converted to gray scale to augment the
training set.

We summarized the properties of these data sets in Table II.
2) Compared Methods: In Voxel2Unit, we compare our

SMR with 1) SLR: [6]; 2) BCCA: Bayesian canonical correla-
tion analysis [54]; 3) various special cases of our SMR model,
e.g., SMR-O: SMR with only output structure, i.e., �−1

r = I
and �−1

c = I [24]; SMR-IT: SMR with only input and task
structures, i.e., �−1 = I [27]. In Unit2Pixel, we compare
our ICG model with 1) CVAE [5], [10]; 2) CGAN: [4],
[42]; 3) Grad-TV: gradient-based optimization with a TV
regularizer [7]; 4) De-CNN [9]; 5) VAEGAN [55].

3) Parameter Settings: Depending on whether sparse con-
straints are imposed on the inverse covariance matrices,
we consider the nonsparse and sparse two variants of SMR.
The hyperparameter λ = 0.001 for both cases. For nonsparse
SMR, we fix λ2 = λ3 = 10−6, and λ1 is selected using
five-fold cross-validation within the range [10−5, 103]. For
sparse SMR, we use the same value of λ1 that was selected
for nonsparse case, and only λ2 and λ3 are selected by cross-
validation. Due to the large number of CNN units, it is difficult
to put all of them into memory for multioutput regression
training. To overcome this problem, we use segment-training

4Data are available at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

methods. Specifically, we first divide all CNN units into many
segments in order, so that the number of CNN units in each
segment was about 40 000. Then, we train the SMR on each
segment of data.

For the proposed ICG model, the top 5000 decodable CNN
units (according to the rank of each unit’s decodability) were
treated as the condition, and we set {α = 0.5, β = 1} to
combine the advantages of both CVAE and CGAN. We use
ICG model with {α = 0, β = 1} to implement CVAE and
ICG model with {α = 1, β = 0} to implement CGAN. The
latent variable z is randomly drawn from N (0, I), with the
dimension set to 512 and 256 on the Vim-1 and FaceBold data
sets, respectively. For optimizing the proposed ICG model,
we used the Adam optimizer (β1 = 0.9, β2 = 0.999) [56]
with a batch size of 32 and a fixed learning rate 0.0001.

B. Experimental Results

In the test phase, we first need to predict the CNN features
from the brain activity and then invert the decoded CNN
features back to the visual images.

1) CNN Feature Decoding: We first perform Voxel2Unit
analysis to decode the AlexNet [43] features from the fMRI
activities. The experimental results on the Vim-1 and FaceBold
data sets are displayed in Table III. From Table III, we can
find that SMR consistently achieves lower normalized MSEs
(NMSEs) on the test set among all the methods. First, by com-
paring our SMR against the baseline methods, we see that the
performance of the sparse SMR are significantly (p < 0.05)
better than SLR and BCCA. The biggest advantage of SMR is
that it can leverage the covariance structures over fMRI voxels,
regression tasks and CNN units simultaneously, whereas SLR
and BCCA cannot. Second, the results of comparing SMR
against its six special cases (SMR-T, SMR-OT, etc.) show
that the averaged NMSEs are increasing as we impose more
structural constraints, although the results were not statisti-
cally significant ( p > 0.05). Due to the learned structural
constraints also have a certain interpretability, it is a reasonable
way to apply them in the stage of CNN feature decoding.
Finally, we also see that the sparse performance is better
than nonsparse performance in most cases. This shows that
explicitly encouraging zero entries in the inverse covariance
matrices leads to better estimations of the structures. More
comparisons on each individual subject can be found in
Appendix C.

The experiments of Table III are conducted on the
default test data sets. To assess whether the effectiveness of
our approach depends on data splits, we perform fivefold
cross-validation over all of the fMRI runs. In fivefold cross-
validation, only one of the five folds (iterate through each five
different folds) is used as the test set while the rest is used
for training. The results are listed in Table IV. It can be seen
that the performance difference of SMR under different folds
is small.

2) Analyze the Performance Layer by Layer: To explore the
value of different layers in neural decoding tasks, we analyzed
the prediction accuracy of each AlexNet layer on the Vim-
1 data set (see Fig. 4). Here, we use the Pearson correlation

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on February 22,2022 at 11:34:56 UTC from IEEE Xplore.  Restrictions apply. 



DU et al.: STRUCTURED NEURAL DECODING WITH MULTITASK TRANSFER LEARNING 607

TABLE III

AVERAGE NMSE ACROSS ALEXNET LAYERS, UNITS AND SUBJECTS WITH MEAN ± STD (t -VALUE, p-VALUE) FORMAT. • INDICATES THAT SMR IS
SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHOD ( p < 0.05), WHERE THE p-VALUES HAVE BEEN CORRECTED WITH BONFERRONI

METHOD FOR MULTIPLE COMPARISONS

TABLE IV

NMSE OF THE PROPOSED SMR METHOD ON EACH FOLDS. RESULTS ARE

AVERAGE ACROSS CNN (ALEXNET) LAYERS, UNITS, AND SUBJECTS

Fig. 4. Decoding accuracy for individual AlexNet layer. The results have
been averaged over subjects. The blue bars represent the average prediction
accuracy of all units in each layer.

Fig. 5. Examples of preferred images for randomly selected units. Adapted
from [6].

coefficient (PCC) between the true CNN feature and the pre-
dicted ones (by using our SMR model) as a metric. The results
show that the decoding effect of different layers is obviously
different, and the differences of distinct CNN units in the
same layer are also great. Furthermore, the generalization
performance of the deep features (conv3 to fc8) is better
than that of the shallow features (conv1, conv2). This may
be because deep layers have larger receptive fields and richer
structural information (as shown in Fig. 5). Logically, selecting
CNN features with higher prediction accuracy for image
reconstruction will be beneficial to improve the generalization
performance of the model.

3) Relationship Between CNN Layer and ROI of Brain:
As shown in Fig. 5, the feature complexity in a forward
CNN is hierarchically organized. Previous studies [34] have
shown that the visual pathway of the human brain is also
hierarchical in feature processing. In order to explore the
relationship between different CNN layer and brain regions-
of-interest (ROI), we visualized the relative contribution of
different ROIs to the prediction of features at different CNN
layers by using the regression weights of the trained SMR
model. The results are shown in Fig. 6, from which we can
see that the primary visual regions (V1, V2) make greater
contribution to the decoding of the shallower CNN layer and
smaller contribution to the decoding of the deeper CNN layer.
On the contrary, the decoding contribution of the downstream
visual regions (V4, LO) to the shallow CNN layer is relatively
small, while the decoding contribution to the deep CNN layer
is relatively large. These experimental results show that there
is homology between deep CNN and human visual pathway
in visual feature processing, and also confirm the rationality
of neural decoding using CNN intermediate features.

4) Performance by Different CNN Architectures: The above
decoding results are obtained using the intermediate features
of AlexNet [43]. Compared to more modern CNN archi-
tectures [57], [58], the diversity of AlexNet’s hierarchical
features is not rich enough. By contrast, due to the large
difference in the receptive field range of units at differ-
ent depth, the hierarchical features of ResNet have richer
expression ability. It is assumed that the use of this rich
hierarchical feature information may be more conducive to
neural decoding. In Fig. 7, we show the decoding results of
VGG16 [57] and ResNet18 [58] on the Vim-1 test set. Surpris-
ingly, we do not find that the choice of CNN architecture has
a significant effect on neural decoding performance. However,
the computational time of decoding is greatly increased, since
VGG16/ResNet18 has many more intermediate features than
AlexNet.

5) Differences Between Subjects: To evaluate the decoding
performance differences between subjects, we compared the
decoding results of two subjects in the vim-1 data set unit
by unit, and the scatter plots are shown in Fig. 8. The vertical
and horizontal coordinates of each unit represent the decoding
accuracy of Subject-1 and Subject-2, respectively. The PCCs
are displayed in the lower right corner of each panel. We see
that, points are densely distributed along the diagonal, and the
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TABLE V

RECONSTRUCTION ACCURACY MEASURED BY PCC AND SSIM WITH MEAN ± STD (t -VALUE, p-VALUE) FORMAT. • INDICATES THAT ICG IS
SIGNIFICANTLY BETTER THAN THE CORRESPONDING METHOD ( p < 0.05), WHERE THE p-VALUES HAVE BEEN CORRECTED

WITH BONFERRONI METHOD FOR MULTIPLE COMPARISONS

TABLE VI

MEAN ± STD (t -VALUE, BONFERRONI CORRECTED p-VALUE) RESULTS ON THE BOTH DATA SETS. SIGNIFICANT THRESHOLD IS p = 0.05

De-CNN in most cases. Compared with the other baselines
(CVAE, CGAN, and VAEGAN), although the results were
not statistically significant (p > 0.05), our approach is more
flexible in the learning framework and it produce higher visual
quality reconstructions. In addition, we show the examples of
ICG reconstructed results for each subject (S1–S2 for the Vim-
1 and S1–S6 for the FaceBold) in Figs. 13 and 14 based on
the predicted CNN features of each subject using our SMR
model.

VI. CONCLUSION

To tackle the perceived image reconstruction problem,
we have proposed a structured neural decoding method based

on multitask transfer learning of DNN representations. Our
method involves two cascaded stages. In the first stage,
we use matrix-variable Gaussian prior established an SMR
model to decode the multivariate fMRI data to the CNN
features. The SMR can simultaneously take into account the
covariance structures between the data dimensions and the
regression tasks. In the second stage, we built an ICG model,
which can be trained easily to produce high-fidelity image
reconstructions. We studied the relationship between different
feature layers of three CNN architectures (AlexNet, VGG16,
ResNet18) and different brain visual areas, and found that
there is a homology between computer and human vision.
The experimental results demonstrate that our method can
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