
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LARM: LARGE AUTO-REGRESSIVE MODEL FOR
LONG-HORIZON EMBODIED INTELLIGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the need of interacting with the world, embodied agents are required to
possess comprehensive task-relevant knowledge, long-horizon planning capabil-
ity, and a swift response speed. Large language models (LLMs), owing to their
rich general knowledge, recently achieve promising results in open-world em-
bodied tasks, like the world exploration in Minecraft. However, the outputs of
LLMs are descriptive sentences or code, which are slow to generate and not end-
to-end, as a translator is required to translate the LLM outputs into actions to per-
form. To address these limitations, we introduce the large auto-regressive model
(LARM). LARM leverages environment observations as input and predicts subse-
quent actions in an auto-regressive manner. Compared with LLM based methods,
LARM directly predicts the next skill for execution according to the current ob-
servation. In addition, considering that the commonly adopted training paradigms
do not reflect the mutual influence and dependency between actions and obser-
vations, we develop a novel data format named auto-regressive node transmis-
sion structure and assemble a corresponding dataset to train LARM. Combining
these techniques, LARM successfully harvests enchanted equipment in Minecraft,
which demands significantly more complex decision-making chains than the high-
est achievements of prior best methods. Besides, the speed of LARM is 6.8×
faster than LLMs with similar parameter volume.

1 INTRODUCTION

In recent years, remarkable progress has been achieved in various artificial intelligence (AI) fields
LeCun et al. (2015) like computer vision He et al. (2016) and natural language processing Kenton
& Toutanova (2019), but most of them lack the capacity to physically interact with the real world.
To address this disconnect, the concept of embodied AI is introduced Chrisley (2003). Early em-
bodied agents are predominantly developed on simulation platforms for specific tasks such as object
grasping and indoor navigation Savva et al. (2019). While notable advancements are achieved, these
agents tend to be specialist models confined to isolated tasks Huang et al. (2023). To overcome
this limitation, recent studies, including this work, employ Minecraft Baker et al. (2022); Fan et al.
(2022); Guss et al. (2019) as a benchmark to explore embodied agents with open-ended objectives
and long-horizon reasoning chains.

The early methods for developing such agents primarily rely on reinforcement learning, the explo-
ration of which is inefficient and results in limited performance Yuan et al. (2023). Recent works
begin to investigate the use of large language models (LLMs) Brown et al. (2020). Owing to the
extensive general knowledge and formidable reasoning capabilities of LLMs, these methods demon-
strate promising results with significantly reduced domain-specific engineering efforts Wang et al.
(2023a). Nevertheless, LLMs continue to exhibit a number of limitations, rendering them ill-suited
for embodied AI tasks. First of all, the outputs of LLMs are usually sentences or code Zhao et al.
(2023), which are generated through iterative token prediction. This prediction mode necessitates N
inference operations for N tokens, resulting in sluggish response speed, which is critical for embod-
ied applications. Secondly, recent research suggests that a huge model size is important for an LLM
to master the ability to generate correct descriptions or code Achiam et al. (2023). Nevertheless, the
computing resource for deploying embodied agents is usually very limited. Moreover, LLMs are
commonly trained through web data based text completion, which does not reflect how the actions
affect the environment and how the environment update alters the optimal action.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

LLM

LARM
(Ours)

Target: Get leather 
by combating cows

Output: A description sentence

Output: The actions to execute

Equip the 
iron sword Find cows Combat cows

The agent should equip the iron sword and then proceed to 
locate and approach cows. Once the cows are within range, 
the agent should combat cows until get leather.

Get leather

Previous SOTA

LARM
More Advanced Achievements 

Figure 1: LARM is the first method that achieves enchanted diamond equipment in Minecraft.
Different from LLMs, LARM directly predicts subsequent skills in an end-to-end manner.

To address the limitations of LLM, we propose Large Auto-Regressive Model (LARM). Taking both
text information and vision observation as input, LARM engages in real-time interaction with the
environment and predicts subsequent actions in an auto-regressive manner. Instead of generating
a descriptive sentence composed of multiple tokens, LARM directly produces a single token to
determine the next action. In addition, LARM shares a similar basic network architecture with
existing LLMs, enabling us to utilize LLM weights to initialize the parameters of LARM. In this
way, LARM is equipped with both rich general knowledge and high inference efficiency.

For training, we first employ a 34G multi-modal dataset Fan et al. (2022), sourced from Wiki
Minecraft webpages, to provide LARM with general knowledge about the Minecraft world. How-
ever, this web dataset does not sufficiently describe the mutual dependency relations among the
environment, observations, and actions. To bridge this gap, we introduce a unique data organization
structure termed as Auto-Regressive Node Transmission Structure (ARNTS). Within ARNTS, each
data sample is conceptualized as a node, encompassing text information, multi-view images, and the
expected subsequent action. A chronological dependency exists among these nodes. The process of
accomplishing a complex target can be interpreted as transmissions between different nodes. Ad-
hering to this data structure, we manually collect an ARNTS dataset comprising 2,589 data samples,
which cover diversified targets, weathers, and biomes. Leveraging this dataset to train the LARM
agent, the agent can effectively learn the dependency knowledge among various information types.

Through integrating the aforementioned efforts, we develop an agent capable of crafting enchanted
diamond tools. As shown in Fig. 1, crafting enchanted diamond tools requires a far more intricate
step chain compared to existing state-of-the-art (SOTA) methods Wang et al. (2023a); Zhao et al.
(2023), which are only capable of crafting standard diamond tools. Besides, the inference speed of
LARM is 6.8× faster on average compared to an LLM with comparable parameter volume. This
work reveals a new path of developing data-driven embodied intelligence.

2 RELATED WORK

Embodied benchmarks. Embodied AI recently garners significant attention due to its potential
to bridge the gap between virtual algorithms and physical interactions Bredeche et al. (2018). The
works in embodied AI primarily focus on enhancing the interaction of agents with the environment,
and many benchmarks are established Duan et al. (2022). Existing benchmarks can be catego-
rized into two classes, simulator-based and game-based. Simulator-based benchmarks are estab-
lished upon popular simulation platforms, such as MuJoCo Todorov et al. (2012) and Isaac Gym
Makoviychuk et al. (2021). Through complex engineering efforts on dynamics modeling, these sim-
ulation platforms mimic the interaction kinematics between agents and manipulated objects in the
real world well. Some recent benchmarks designed based on these simulation platforms include

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

RLbench James et al. (2020), HumanoidBench Meser et al. (2024), etc. Nevertheless, running these
simulation platforms could take much computing resources even though only simulating a very lim-
ited range of the environment. Due to this problem, existing works conducted on these benchmarks
usually only focus on low-level motion control Zhuang et al. (2023). By contrast, we mainly study
the high-level and long-horizon embodied tasks in this work and assume the low-level policies have
been well developed. Another line of embodied AI benchmarks is the game-based ones. Different
from simulator-based benchmarks, game-based benchmarks do not pay much attention to simulating
motion dynamics Anderson et al. (2018). Alternatively, they mainly focus on providing environ-
ments for performing high-level actions Savva et al. (2019). Hence, this category of benchmarks is
more suitable for exploring how to develop agents with complex decision-making capabilities.

Minecraft agents. Minecraft is an open-ended platform suitable for exploring building agents with
long-horizon planning capabilities Fan et al. (2022). It simulates diverse weathers, biomes, and
mobs in an unlimited 3D virtual world and provides well-designed low-level APIs of basic actions
PrismarineJS (2013). According to the output formats of models, we classify existing works into two
categories, i.e., atom-based and skill-based. Early methods mostly adopt the atom-based paradigm,
which means the output of the model is directly a low-level atom action, e.g., a short movement,
a mouse click, or a keyboard press Frazier & Riedl (2019). The advantage of this paradigm is
its control flexibility. However, due to the huge potential decision space, such atom-based agents
are quite challenging for optimization, and thus these works pay their main attention to devising
strategies for alleviating the optimization complexity Scheller et al. (2020).

Instead of using atom actions, the output of methods based on the skill-based paradigm is directly
the skill, such as chopping down a tree or crafting a table. The skill could be a well-trained policy
based on reinforcement learning or provided APIs. As the available skills help agents avoid the need
to learn low-level skills, the training difficulty is greatly alleviated. Therefore, the works based on
this paradigm concentrate better on how to boost the long-term scheduling ability of agents. Voyager
Wang et al. (2023a) is representative among the skill-based methods. It successfully crafts diamond
tools using a training-free system based on GPT-4 Achiam et al. (2023). Similarly, DEPS Wang et al.
(2023b) develops a more comprehensive LLM system, yielding satisfactory results. However, these
methods rely heavily on existing knowledge of LLMs. If an LLM does not have accurate knowledge
about this task, the agents cannot complete it successfully. Besides, LLMs solely support text input,
which is inadequate for encapsulating environmental information. To surmount this hurdle, certain
studies train large vision-language models through fine-tuning LLMs Zhao et al. (2023); Feng et al.
(2024). Despite these advancements, the output of these models remains descriptive text. In this
work, we aim to explore how to develop agents with long-term scheduling intelligence.

Large language models. LLMs draw broad attention from the research and industrial communities
due to their rich general knowledge and the ability to generate the answers to diverse kinds of
questions Chang et al. (2024). Early LLMs mainly serve as pre-training weights for downstream
tasks Devlin et al. (2019). GPT-3 emerges as a milestone in the evolution of LLMs, as it takes
the next token prediction problem as the pre-training task and showcases remarkable open-world
generalization capabilities across diverse tasks Brown et al. (2020). Subsequently, the fine-tuning of
GPT-3 using reinforcement learning with human feedback leads to the creation of ChatGPT, a model
that displays an impressive breadth of general knowledge OpenAI (2023). Further advancements
result in the creation of GPT-4, reinforcing the advantages of increasing model size and training
data Achiam et al. (2023). Although these LLMs present remarkable performance, their model
weights are mostly inaccessible to the research community. To bridge this gap, some notable open-
source works are released. These works train models with fewer parameters while still achieving
promising results, such as LLaMA Touvron et al. (2023). However, a significant limitation of LLMs
is their inability to interpret information in images, which are vital for humans to perceive the world.

To overcome this problem, researchers devise strategies that inject vision information into LLMs and
enable LLMs to perceive images. The common method is fine-tuning a small amount of network
parameters using numerous language-image data pairs to bridge the representation gap between text
and images Ding et al. (2023). In this way, some large vision-language models like LLaVA Liu
et al. (2024) and Flamingo Alayrac et al. (2022) are derived. While these models can describe the
content in provided images, they lack the capability to interact with the real world, which needs the
models to predict the correct actions to execute according to the environment status. To address this
limitation, some works like EmbodiedGPT boost the performance of LLMs on scheduling actions
through fine-tuning models using chain of thought data Mu et al. (2024). The fine-tuning process is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Target: Find 
sugar canes. Tokenizer

Text Tokens

Decoders

Skill Prompt
GPT-4

Skill Library

Collect log

Smelt iron
Craft furnace

Mine gold

MineCLIP

Skill Embeddings

LoRA

Multi-view 
Images

CLIP

Multi-view 
Image Tokens

Image 
Tokens

Skill Token

Match
Matched Skill

Agent

Perform 
the skill

Environment

The last skill
Position coordinate

Inventory list

Environment 
feedback

Q
-F

or
m

er

Pr
oj

ec
to

r

Pr
oj

ec
to

r
Figure 2: The overall framework of LARM. In this framework, the network takes the target task
description, multi-view images, agent information, and environment feedback as input to predict a
skill token. The skill token is matched with the skill embeddings, which are generated based on a
pre-prepared skill library, to select the optimal skill. Then, the agent performs this skill, which helps
the agent one step closer to completing the target task and changes the environment.

often based on a technique named LoRA Hu et al. (2021), which greatly alleviates the optimization
challenge and computational burden compared with fine-tuning the whole model. Although these
embodied LLMs have achieved promising results to some extent, their output is still in the format
of descriptive sentences, which is not naturally consistent with the action space.

3 METHOD

3.1 PROBLEM FORMULATION

What we study in this work can be conceptualized as an auto-regressive prediction problem in-
volving long sequences, and is effectively framed as a Markov Decision Process, symbolized by
E = (S,A,P). In this formulation, S is the space encompassing all possible states of the envi-
ronment, A is the set of feasible actions that the policy can take, and P represents the probability
distribution that governs state transitions given a current state and action. At any discrete time step
t, the environment resides in a state st ∈ S, and the corresponding observation ot by a policy π is
a function of this state, expressed as ot = f(st). This observation ot is then utilized to select the
subsequent action according to at ∼ π(ot), where at ∈ A. After the action at is executed, the envi-
ronment transitions to the next state following the probability distribution st+1 ∼ P(st+1 | st, at).
In tackling the long-horizon prediction problem, the objective is to navigate through a sequence of
intermediate states s1, s2, . . . , sT−1 to ultimately reach the target state sT at the final time step T .
This requires the policy to generate a series of actions a0, a1, . . . , aT−1 such that each action at
transitions the environment from state st to the next state st+1, adhering to the dynamics prescribed
by the transition probability distribution P . Formally, the trajectory through the state sequence is
constructed iteratively. Starting from an initial state s0, the policy selects an action a0 based on
the initial observation o0 = f(s0) leading to a transition s1 ∼ P(s1 | s0, a0). This process is
repeated iteratively such that at any time step t, the action at selected from the policy π depends on
the observation ot = f(st), thereby driving the state evolution st+1 ∼ P(st+1 | st, at). It is crucial
that each intermediate state st is accurately predicted and achieved in sequence to ensure the policy
attains the target state sT by the final time step T .

3.2 LARGE AUTO-REGRESSIVE MODEL

In this work, we model the policy π by the proposed large auto-regressive model, which contains
billions of parameters and predicts subsequent skills to execute in an end-to-end manner. Its frame-
work is illustrated in Fig. 2. The skill library is generated by GPT-4, and the description of every

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Target: Craft 16 planks
Weather: Clear
……
Multi-view images:

Node A

Target: Craft 4 sticks
Weather: Clear
……
Multi-view images:

Node B

Craft planks

Target: Craft 1 crafting 
table
Weather: Clear
……
Multi-view images:

Node C

Craft sticks
Craft a 

crafting table

Target: Craft 1 wooden 
pickaxe
Weather: Clear
……
Multi-view images:

Node D

Figure 3: For ARTNS, the procedures of performing a multi-step task are interpreted as a graph.
In different nodes, the agent perceives the environment information and selects a skill to execute.
During an edge linking two nodes, the agent performs the selected skill and its status transfers from
the start node to the end node. Besides, there exist dependencies among various nodes. For example,
as marked by the blue dotted lines, Node D depends on the first three nodes, because crafting 1
wooden axe requires the planks, sticks, and crafting table in Minecraft.

skill is mapped to an embedding vector with the length of L based on MineCLIP Fan et al. (2022).
LARM selects a skill through predicting a vector closest to the corresponding skill embedding.

The real-time observation ot of LARM at the timestamp t consists of both text and image informa-
tion. The text information includes the target task description, agent information, and environment
feedback. Specifically, the agent information contains the last skill performed by the agent, the
current 3D position coordinate of the agent in the Minecraft world, and the inventory list (a list of
the resources that the agent owns). For the environment feedback, two kinds of information are
included, i.e., whether the last skill performed by the agent is executed successfully and the game
response message to that skill. All the text information is tokenized into text tokens by a frozen
tokenizer, the weight of which is initialized from BERT Kenton & Toutanova (2019).

Different from previous Minecraft agents that take a monocular image as input Zhao et al. (2023),
LARM adopts N views of images in different directions, providing a more comprehensive descrip-
tion of the surrounding environment. The N multi-view images are tokenized as N × N I image
tokens by a frozen CLIP encoder. However, since there are N images, the number of obtained to-
kens is increased by N times and would result in a significant computational burden if using all these
tokens as input to the subsequent decoders. To resolve this problem, we utilize a trainable Q-Former
Li et al. (2023) module to reduce the number of image tokens from N × N I to N I , as shown in
Fig. 2. Besides reducing image tokens, this Q-Former module is also helpful for fusing the feature
existing in multi-view images. After the Q-Former, the image tokens are further transformed by a
trainable projector linking the vision branch with decoders. The decoders take both text and image
tokens as input to conduct feature interaction. Given that the decoders contain numerous parameters
and are challenging to train, we initialize the parameters from the LLaVA weight Liu et al. (2023)
and freeze them during training. Additionally, a trainable LoRA Hu et al. (2021) is applied to assist
the model in understanding Minecraft knowledge.

The output of the decoders is multiple tokens and we compress them into a single token with a
trainable projector. We name the token produced by this projector as skill token, which contains
the information about which skill should be executed according to the observation. By conducting
cosine distance Nguyen & Bai (2010) based matching between the skill token and the many pre-
generated skill embeddings, the most similar skill is selected for the agent to perform. The chosen
skill alters both the status of the agent and the environment. LARM repeats the above process in an
auto-regressive way until an End token is matched, marking the end of this skill execution chain.

3.3 TRAINING PROTOCOL

We develop a two-stage protocol to train LARM, including Wiki pre-training and ARTNS fine-
tuning. Although the parameters of LARM are initialized from LLaVA, its initial knowledge about
the Minecraft world is very limited. Therefore, we first employ 34G webpage data Fan et al. (2022)
crawled from Wiki to pre-train LARM. Specifically, we remove the text comprising fewer than 30
letters in the webpage data. In this way, 63,666 sentences are obtained. The sentences are matched
with the closest images on webpages and provided to the model. In Wiki pre-training, we mask a
part of these sentences and train the model to predict the masked words. This helps the pre-trained

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Original Adjusted

Figure 4: Some examples of the collected multi-view images, which cover diverse tasks, biomes,
weather, etc. The bottom right group of images is a rainy night case so its images are dim. We adjust
its color contrast for clearer visualization, and the input to LARM is still in the original form.

model gain a better understanding of Minecraft. The model in Wiki pre-training shares the same
network structure and training process as LLaVA. Subsequently, in ARTNS fine-tuning, we employ
the decoder weight of the pre-trained model to initialize the parameters of the LARM decoders
shown in Fig. 2. The experimental results suggest that the devised Wiki pre-training effectively
improves the convergence speed of LARM.

During ARTNS fine-tuning, we fine-tune the LARM policy with our defined ARNTS data. In
ARTNS, we represent the process of performing a multi-step task as a sequential chain, which
includes nodes and edges that link these nodes. As illustrated in Fig. 3, the nodes denote the agent
and environment status {st}Tt=0, and edges represent the corresponding selected skills {at}Tt=0. At
timestamp t, when a skill at is performed, the status transitions from a node st to the next node
st+1. Notably, for i < j, reaching sj does not necessarily require first arriving in si. There could be
multiple viable transition paths, reflecting the huge decision-making challenges in Minecraft. For
example, as shown in Fig. 3, making a crafting table requires planks but not sticks, which means
Node C depends on the completion of the target in Node A but not Node B. In addition, a node could
depend on multiple previous nodes, like arriving in Node D relies on first reaching Node A, Node
B, and Node C, simultaneously. In accordance with the ARTNS format, we manually operate an
agent to complete various tasks in Minecraft and record the data. Through collecting data in diverse
biomes and weather, we obtain a dataset consisting of 2,589 data pairs. Each pair contains the explo-
ration trajectory ID, data pair ID, time, weather, biome name, target, agent position, agent inventory
list, the name of the last performed skill and its corresponding execution result, the next skill, and
multi-view images. Some multi-view image examples are visualized in Fig. 4. Then, we annotate
the dependency relations among nodes, which are represented as a graph like the blue dotted lines
illustrated in Fig. 3. This graph describes the skills in some nodes are prerequisites for other nodes,
and the agent should learn this knowledge to understand how to schedule future skills.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The LARM hyper-parameters N , H , W , L, and N I are set to 4, 480, 640, 512, and 1,024, respec-
tively. LARM is built with 32 decoders, which contain about 7B parameters. The epoch number and
learning rate are set to 1 and 2e-4 for Wiki pre-training, and 6 and 2e-5 in ARTNS fine-tuning. The
training batch size is 16. Other training details, like the choice of optimizer and learning scheduler,
follow LLaVA. The basic skills are implemented based on Mineflayer.

In Minecraft, due to the lack of a widely accepted benchmark, different methods often employ vary-
ing training pipelines, testing protocols and training data. Therefore, to fully reveal the effectiveness
of LARM, we compare LARM with methods adopting different testing protocols. In addition, we
make sure that the testing protocol adopted by LARM is the same or more challenging than the
compared methods. In this way, the experimental results that reveal the superiority of LARM are
guaranteed to be convincing. To be more transparent about the differences among various meth-
ods, we elaborate on the details of all compared methods, including MineAgent Fan et al. (2022),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Performance comparison with reinforcement learning skill based methods.

Task MineAgent Plan4MC LLaMA-Rider Base LLaMA-Rider LARM

Harvest stick 0.00 0.30 0.23 0.43 1.00
Harvest crafting table 0.03 0.30 0.37 0.67 1.00

Harvest bowl 0.00 0.47 0.73 0.97 1.00
Harvest chest 0.00 0.23 0.67 0.77 1.00

Harvest wooden sword 0.00 0.47 0.63 0.10 1.00
Harvest furnace 0.00 0.37 0.00 0.17 1.00

Harvest stone stairs 0.00 0.47 0.00 0.57 1.00
Harvest stone sword 0.00 0.10 0.00 0.00 1.00
Harvest iron ingot 0.00 0.47 0.03 0.13 1.00

Harvest bucket 0.00 0.20 0.00 0.00 1.00
Harvest iron sword 0.00 0.20 0.00 0.00 1.00

Harvest beef 0.33 0.43 0.03 0.03 1.00
Harvest mutton 0.35 0.33 0.00 0.03 1.00

Harvest diamond sword 0.00 0.00 0.00 0.00 1.00
Harvest enchanted sword 0.00 0.00 0.00 0.00 0.70

Table 2: Performance comparison with LLM based methods on the tech tree mastery.

Achievement ReAct Reflexion AutoGPT VOYAGER STEVE LARM

Wooden Tool 0/3 0/3 3/3 3/3 3/3 30/30
Stone Tool 0/3 0/3 3/3 3/3 3/3 30/30
Iron Tool 0/3 0/3 3/3 3/3 3/3 28/30

Diamond Tool 0/3 0/3 0/3 1/3 3/3 27/30
Enchanted Tool 0/3 0/3 0/3 0/3 0/3 21/30

LLaMA-Rider Feng et al. (2024), Voyager Wang et al. (2023a), ReAct Yao et al. (2022), Reflex-
ion Shinn et al. (2023), AutoGPT autogpt, and STEVE Zhao et al. (2023).

Specifically, MineAgent is the baseline method provided by Minddojo. It first fine-tunes CLIP
Radford et al. (2021) based on numerous web data and uses the fine-tuned CLIP to guide the training
of reinforcement learning algorithms. Plan4MC is a reinforcement learning based method. It splits
a task into basic skills and trains an agent to learn them one by one in a hierarchical way. LLaMA-
Rider is an LLM obtained by fine-tuning LLaMA. It first makes the agent explore the environment
to collect data. Then, they adopt the collected data to fine-tune LLaMA in a supervised manner.
Voyager is a training-free method implemented based on GPT-4. Its main contribution is designing
a multi-step prompt generation pipeline. Its skills are implemented based on Mineflayer. When a
target task is given, Voyager prompts GPT-4 to know which skill should be executed and gradually
realizes the target. ReAct, Reflexion, and AutoGPT are LLMs and can reason about which skill
should be performed through multi-step question answering. STEVE is a large vision-language
model. In this work, a dataset including both videos and text-image pairs is gathered and utilized to
fine-tune LLaMA, and then the fine-tuned model can invoke pre-defined skills.

4.2 COMPARISON WITH PREVIOUS METHODS

Tech tree mastery comparison. In this experiment, we compare the tech tree mastery of LARM
with previous counterparts, and the details of these methods have been explained in Section 4.1.
The task completion success rates of LARM and reinforcement learning skill based methods, which
include MineAgent, Plan4MC, and LLaMA-Rider, are reported in Table 1. In this table, following
previous works Wang et al. (2023a); Feng et al. (2024), except for the tasks “harvest diamond sword”
and “harvest enchanted sword” where the compared methods are tested 3 times, all the methods are
run 30 times in other tasks. The shown numbers are the success rates of the methods in completing
these tasks successfully. The best method is highlighted in light gray. A variety of tasks are tested
and the best method is marked in light gray. It can be observed that the reinforcement learning skill
based methods display significantly poorer performance compared with LARM, which can complete
almost all these tasks with a success rate of 100%. Besides, except LARM, all these methods fail to
craft a diamond sword or enchanted sword. This is because these methods are still struggling with
how to schedule the low-level actions well.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 200 400 600 800
Training Iteration

w/ Wiki pre-train
w/o Wiki pre-trainWood log

Crafting table
Wooden pickaxe

Furnace
Stone pickaxe

Iron furnace
Diamond pickaxe

Obsidian
Enchanting table
Enchanted sword Assume you are a Minecraft agent and own a

diamond sword. The target task is to combat a
horse. What should you do next?

The next step is to gather materials for crafting
a saddle to ride the horse. The agent should
gather 2 birch planks, 1 cobblestone, and 1
stick from the surrounding area.

w/ Wiki 

w/o Wiki 

The next action is to equip the diamond sword,
and then proceed to locate and approach the 
horse. Once the horse is within range, the 
agent should use the diamond sword to attack
the horse.

(a) (b)

Figure 5: Analysis of the effect of Wiki pre-training. (a) The most advanced items achieved by the
models with and without Wiki pre-training after various iterations of ARTNS fine-tuning. It can
be observed that the model converges more quickly and presents better performance with ARTNS
fine-tuning. (b) The model initialized from LLaVA lacks knowledge about Minecraft and gives a
false answer to the question. By contrast, the model after Wiki pre-training answers correctly. The
key points of the false and correct responses are highlighted in bronze and green, respectively.

We further compare LARM with LLM based methods in Table 2. In this table, the results of the
compared methods are obtained from the work Voyager Wang et al. (2023a). These methods are run
for 3 times to compute success rates. To make the result more convincing, we test LARM for 30
times. Notably, all the compared methods demand tens of prompting iterations, while LARM obtains
the enchanted tool achievement with only 1 prompt, which reflects the efficiency of LARM. The best
method is highlighted in light gray. First of all, it can be found that the results of the methods in
Table 2 are significantly better than those in Table 1. This observation indicates that LLM-based
agents generally outperform reinforcement learning skill based ones. Secondly, LARM is the only
method capable of crafting enchanted tools, which requires a complex skill execution chain. This
observation indicates that LARM presents stronger long-horizon scheduling ability compared with
existing methods, and this advantage arises from that the output of LARM is more consistent with
the requirement of embodied AI tasks.

Inference efficiency. Besides the tech tree mastery achievement, inference efficiency is also impor-
tant. However, many of the aforementioned methods are implemented based on LLM APIs. The
inference speed of these methods is significantly affected by network latency, while LARM is a
model deployed in local machines. Additionally, the GPUs used by these methods may vary and are
uncontrollable. Therefore, directly comparing their inference speeds is meaningless. Thankfully, the
methods built upon LLM share a similar Transformer architecture. Thus, it is reasonable to compare
LARM with an LLM of the same parameter volume to validate inference efficiency. In line with
this thought, we compare the inference time costs of LARM and the LLaVA-1.6 model with both
7B parameters. They are tested in 100 cases to compute the average inference time, with each case
corresponding to a node in Fig. 3. The output of LLaVA is prompted to be as concise as possible.
This experiment is performed using one RTX3090 GPU. Through this experiment, we find that the
average inference time of LLaVA on the 100 cases is 5.78 seconds while LARM is 0.85 seconds,
which indicates that LARM is 6.8× more efficient. The high efficiency of LARM stems from its
distinctive design, which enables the LLM to generate a single token for every skill.

4.3 STUDY ON PERFORMANCE DYNAMICS

In this part, we study the changing dynamics of the highest achievement the agent can obtain and the
effect of Wiki pre-training. The results are depicted in Fig. 5. Specifically, in Fig. 5 (a), we compare
the most advanced items obtained by the models after different iterations of ARTNS fine-tuning.
Achieving an upper item indicates more superior performance, and the two curves correspond to
models with and without Wiki pre-training. Comparing these two curves, we can conclude that Wiki
pre-training accelerates the convergence of LARM and contributes to better performance. Moreover,
it can be found that our method presents high training efficiency. For example, LARM harvests the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

En
te

r t
he

 N
et

he
r

Se
ar

ch
 a

 V
ill

ag
e 

M
ul

ti-
ag

en
t C

om
ba

t

t! t" t# t$

t! t" t# t$

t! t" t# t$

Figure 6: More behavior example illustrations of LARM, which include traveling a long distance to
find a village, building a nether portal, and then entering the nether, multiple agents collaborate with
each other to combat zombies.

iron tool achievement after fewer than 300 training iterations. By contrast, previous reinforcement
learning based methods demand thousands of exploration iterations to learn to craft a wooden tool.

Fig. 5 (b) presents the responses of the models with and without Wiki pre-training to a question
about Minecraft. The model without Wiki pre-training is exactly the original LLaVA-1.6-7B model.
The key points of these two answers are marked in different colors. We can find that although
the question is about how to combat a horse when a diamond sword is in the inventory, the model
without Wiki pre-training provides an answer about riding a horse instead. Besides, the provided
recipe for crafting a saddle is incorrect. By contrast, the model after Wiki pre-training accurately
and in detail describes the steps for combating a horse. This demonstrates that Wiki pre-training
effectively enriches the general knowledge of LARM about Minecraft.

4.4 CASE STUDY

In Fig. 6, we present additional examples of LARM learned behaviors. In the first case, the agent
travels through various biomes to find a village, which demonstrates that LARM can continuously
explore the open world until finding the desired object. For the second one, the agent builds a nether
portal and enters the Nether through it. This case suggests the promising construction capability
of LARM. In the last example, two agents collaborate with each other to combat a large group of
zombies, confirming that multiple LARM models can efficiently cooperate together.

5 CONCLUSION

In this work, we have focused on strategies of how to design and implement long-horizon embod-
ied intelligence in an efficient manner. We have introduced the concept of the large auto-regressive
model and implemented a corresponding model LARM, an embodied agent predicting subsequent
skills in an auto-regressive manner. To train LARM, a new data organization structure has been pro-
posed and a corresponding dataset has been collected. Extensive experiments have been conducted
to validate the effectiveness of LARM. Compared with previous methods, LARM has presented
stronger long-horizon scheduling ability and faster inference speed. LARM is the first method capa-
ble of crafting enchanted diamond tools in Minecraft. We hope this work to significantly contribute
to the development of high-level embodied intelligence.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv:2303.08774, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. NeurIPS, 2022.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In CVPR, 2018.

autogpt. Significant-gravitas/auto-gpt: An experimental open-source attempt to make gpt-
4 fully autonomous., 2023. URL https://github.com/Significant-Gravitas/
Auto-GPT/tree/master.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. NeurIPS, 2022.

Nicolas Bredeche, Evert Haasdijk, and Abraham Prieto. Embodied evolution in collective robotics:
a review. Front. Robot. AI, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Ron Chrisley. Embodied artificial intelligence. Artificial Intelligence, 2003.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In ACL, 2019.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan. A survey of embodied ai:
From simulators to research tasks. IETCI, 2022.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. NeurIPS, 2022.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. Llama-rider: Spurring
large language models to explore the open world. In NAACL, 2024.

Spencer Frazier and Mark Riedl. Improving deep reinforcement learning in minecraft with action
advice. In AAAI, 2019.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: a large-scale dataset of minecraft demonstrations.
In IJCAI, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In ICLR, 2021.

10

https://github.com/Significant-Gravitas/Auto-GPT/tree/master
https://github.com/Significant-Gravitas/Auto-GPT/tree/master


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
navigation. In ICRA, 2023.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
arXiv:2304.08485, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS,
2024.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu based physics simulation for robot learning. In NeurIPS, 2021.

Moritz Meser, Aditya Bhatt, Boris Belousov, and Jan Peters. Mujoco mpc for humanoid control:
Evaluation on humanoidbench. arXiv preprint arXiv:2408.00342, 2024.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. NeurIPS, 2024.

Hieu V Nguyen and Li Bai. Cosine similarity metric learning for face verification. In ACCV, 2010.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt/, 2023.

PrismarineJS. mineflayer - a node.js minecraft bot library for programmatically controlling a
minecraft client. https://github.com/PrismarineJS/mineflayer, 2013.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai
research. In ICCV, 2019.

Christian Scheller, Yanick Schraner, and Manfred Vogel. Sample efficient reinforcement learning
through learning from demonstrations in minecraft. In NeurIPS Workshop, 2020.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv:2303.11366, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv:2302.13971, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv:2305.16291, 2023a.

11

https://openai.com/blog/chatgpt/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv:2302.01560, 2023b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR, 2022.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. In NeurIPS
Workshop, 2023.

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, Jenq-
Neng Hwang, and Gaoang Wang. See and think: Embodied agent in virtual environment.
arXiv:2311.15209, 2023.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher G Atkeson, Sören Schwertfeger, Chelsea
Finn, and Hang Zhao. Robot parkour learning. In CoRL, 2023.

A VIDEO DEMO

We present a video in the Supplementary Material to show how the agent successfully harvests
enchanted diamond tools. The video showing diverse basic capabilities is named as “LARM-
enchanted-submission.mp4”.

12


	Introduction
	Related Work
	Method
	Problem Formulation
	Large Auto-Regressive Model
	Training Protocol

	Experiments
	Experimental Setup
	Comparison with Previous Methods
	Study on Performance Dynamics
	Case Study

	Conclusion
	Video Demo

