
Under review as a conference paper at ICLR 2024

DIFF-PRIVACY: DIFFUSION-BASED FACE PRIVACY
PROTECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Privacy protection has become a top priority due to the widespread collection and
misuse of personal data. Anonymization and visual identity information hiding
are two important face privacy protection tasks that aim to remove identification
characteristics from face images at the human perception level. However, they
have a significant difference in that the former aims to prevent the machine from
recognizing identity correctly, while the latter needs to ensure the accuracy of ma-
chine recognition. Therefore, it is difficult to train a model to complete these two
tasks simultaneously. In this paper, we unify the task of anonymization and visual
identity information hiding and propose a novel face privacy protection method
based on diffusion models, dubbed Diff-Privacy. Specifically, we train our pro-
posed multi-scale image inversion module (MSI) to obtain a set of SDM format
conditional embeddings of the original image. Based on the conditional embed-
dings, we design corresponding embedding scheduling strategies and construct
different energy functions during the denoising process to achieve anonymization
and visual identity information hiding. Extensive experiments have demonstrated
the effectiveness of our proposed framework in protecting facial privacy.

1 INTRODUCTION

The widespread application of intelligent algorithms and devices brings convenience together with
security concerns. Personal images uploaded on social media platforms or captured through intel-
ligent surveillance systems can be collected and misused by threat models, such as illegal snoop-
ers, unauthorized automatic recognition models, and malicious facial manipulation models, thereby
posing a significant threat to personal privacy. On the one hand, we are eager to use technology to
improve our quality of life (such as video conferencing), but on the other hand, we are unwilling
to give up our personal privacy. Consequently, research in the field of privacy protection has gar-
nered significant importance, with a particular emphasis on safeguarding face images that contain
substantial amounts of sensitive information.

Recent face privacy protection methods can be broadly divided into two main categories, i.e.,
anonymization (Neustaedter et al., 2006; Newton et al., 2005; Gross et al., 2009; Hukkelås et al.,
2019; Maximov et al., 2020; Cao et al., 2021; Gu et al., 2020; Li et al., 2023) and visual iden-
tity information hiding (Ito et al., 2021; Su et al., 2022). Anonymization methods aim to remove
identification characteristics from images while retaining essential facial structures to ensure the
functionality of face detection algorithms. Crucially, anonymized faces should maintain a realistic
appearance while preventing human observers and facial recognition models from recognizing their
identities correctly. Unlike anonymization, face images processed by visual identity information hid-
ing methods are unrecognizable to human observers but can be recognized by machines. Regarding
application scenarios, the former (anonymization) allows people to share photos with anonymized
faces on public social media. The latter (visual identity information hiding) encrypts private images
stored in cyberspace, ensuring the accuracy of facial recognition functions while improving security.

However, the above technologies for face privacy protection often specialize in specific types of pro-
tection and rely on high-quality facial datasets for training or continuous online iteration of images.
Moreover, these technologies often leave noticeable editing traces and possess limited recovery ca-
pabilities. Consequently, there is an urgent need to develop a method that can effectively and flexibly
achieve face privacy protection for various requirements, mitigating the shortcomings of existing ap-
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Figure 1: We show the results of our method in anonymization and visual identity information
hiding tasks. Compared with existing methods (Li et al., 2023; Su et al., 2022), our method can
better generate photo-realism encrypted images and recover the original image.

proaches. Encouraged by the powerful generation prior of diffusion models, we utilize pre-trained
diffusion models to promote face privacy protection.

In this paper, we unify the task of anonymization and visual identity information hiding and propose
a novel diffusion-based face privacy protection method, dubbed Diff-Privacy. Diff-Privacy enables
flexible face privacy protection and ensures identity recovery when needed. As shown in Fig. 1,
Diff-Privacy generates highly realistic faces whose identities differ from the original faces during
the task of anonymization and visual identity information hiding. Furthermore, Diff-Privacy also
exhibits exceptional recovery quality and some other advantages. These include: Security. Given
an encrypted image, the original image is recovered only if the correct password is provided. Utility.
The encrypted images generated by our method can still be used for downstream computer vision
tasks, such as face detection. Diversity. Given an original image, our model can generate a series
of encrypted images that are different from each other. Controllability. Our method can achieve
face privacy protection while identity-independent attributes such as background and posture remain
unchanged. We have conducted extensive experiments on publicly available facial datasets to verify
the effectiveness of our method.

In summary, we make the following contributions:

• We propose a novel diffusion-based face privacy protection method, which can achieve
anonymization or visual information hiding tasks by slightly tweaking some parameters
during inference.

• We develop an energy function-based identity guidance module to perform gradient correc-
tion on the denoising process to ensure the machine can correctly or incorrectly recognize
identity under different privacy protection tasks. We enhance the diversity of anonymized
images by maximizing the difference of identities generated under different noises.

• According to the characteristics of the diffusion model that different time steps pay at-
tention to different-level information, we design a multi-scale image inversion module to
learn conditional embedding and propose corresponding embedding scheduling strategies
to meet different privacy protection requirements.

• Experimental results show that compared with existing methods, our method can signif-
icantly change facial identity visually while maintaining its photo-realism, in addition to
high-quality recovery results.

2 DIFF-PRIVACY

We introduce Diff-Privacy, a diffusion-based face privacy protection method to fulfill the goals we
mentioned in Section 1. One notable advantage of Diff-Privacy is its inherent flexibility in achiev-
ing face privacy protection to meet diverse requirements. Specifically, the main framework of the
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Figure 2: Training process (Stage I) of Diff-Privacy. We apply the SDM as the generative backbone
and propose a multi-scale image inversion module. During the training process, the parameters of
SDM are fixed. We only optimize our MSI module to extract a set of conditional embeddings.

method can be summarized into the following three stages. Stage I: Training. Learning the corre-
sponding conditional embedding of the image in the pre-trained stable diffusion model (SDM) as the
key-E. Stage II: Encryption. Accomplishing privacy protection through our energy function-based
identity guidance module and embedding scheduling strategy during the denoising process and then
getting a noised map as the key-I according to DDIM inversion. Stage III: Recovery. Performing
identity recovery using DDIM sampling based on the acquired key. We will first briefly review some
preliminaries in Section 2.1. In Section 2.2, We provide the training process for learning the con-
ditional embedding of the original image. Based on the learned conditional embedding, we design
embedding scheduling strategies and an energy function-based identity guidance module to achieve
face privacy protection in Section 2.3. Last, we describe the details of how to recover the original
face images in Section 2.4.

2.1 PRELIMINARIES

Diffusion Models (Ho et al., 2020) are probabilistic models designed to learn a data distribution p(x)
by gradually denoising a normally distributed variable, which corresponds to learning the reverse
process of a fixed Markov chain of length T . In this paper, we apply a pre-trained SDM as the
generative backbone. Specifically, the noising process refers to the process of gradually adding
Gaussian noise to the initial latent code z0 until the data becomes random noise zT , which is known
as a fixed-length Markov chain. An important property of this process is that we can directly sample
the noised latent code zt at any step t ∈ {0, ..., T} based on the original data z0:

zt =
√
αtz0 +

√
1− αtϵ, (1)

where αt =
∏t

i=1(1 − βi). βi ∈ (0, 1), β1 < β2 < ... < βT . Regarding the reverse process,
since we aim to recover the original image accurately, we employ the deterministic DDIM sampling
(Song et al., 2020a):

zt−1 =

√
αt−1

αt
zt +

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· ϵθ (zt, t, C) , (2)

where C = ϕ(P ) is the embedding of the text condition P , ϕ is the pre-trained model that maps
text condition into a conditional vector. ϵθ is a time-conditioned UNet equipped with attention
mechanism and trained to achieve the objective. The training objectives are as follows:

minθEz0,ϵ∼N (0,I),t∥ϵ− ϵθ (zt, t, C)∥22. (3)

DDIM inversion. A simple inversion technique was suggested for the DDIM sampling (Song et al.,
2020a), based on the assumption that the ODE process can be reversed in the limit of small steps:

zt+1 =

√
αt+1

αt
zt +

(√
1

αt+1
− 1−

√
1

αt
− 1

)
· ϵθ (zt, t, C) . (4)
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2.2 CONDITIONAL EMBEDDING LEARNING

Motivated by text inversion (Gal et al., 2022), we know that within the text embedding space of a
stable diffusion, appropriate vectors can be learned to guide the diffusion model in reconstructing
a given image. In addition, (Daras & Dimakis, 2022; Zhang et al., 2023a; Balaji et al., 2022) have
demonstrated that the generation process of the diffusion model is related to the frequency of the
corresponding attribute’s signal. Generally, the model tends to generate the overall layout at the
initial stage of the denoising process (corresponding to a large time step), the structure and content
at the intermediate stage, and the detailed texture at the final stage. Based on these observations, our
key insight is whether we can learn a set of embedding vectors of a specific image and utilize them
to help achieve privacy protection and image recovery.

We refer to the learnable embedding vectors as “conditional embedding”. Our goal is to learn a set
of conditional embeddings {C} corresponding to the given image. We do not view the diffusion
process as a whole but rather as different stages of generation, each stage corresponding to a unique
conditional embedding, generating corresponding attributes. Specifically, we divide the 1000 steps
of conditioning in SDM into ten stages on average.

{C} = C0, C1..., C9, (5)

where Ci represents the conditional embedding used in the ith stage of generation process.

An instinctive way to obtain this set of embeddings
{
Ci
}

is to directly optimize it by minimizing
the SDM loss of a specific image. However, it is inefficient (Zhang et al., 2023b) and difficult to
obtain accurate embeddings without overfitting. Given that our diffusion model employs distinct
conditional embeddings at different stages to generate corresponding attributes, we propose the ac-
quisition of conditional embeddings from multi-scale features and the incorporation of temporal
information. Thus, we design a multi-scale image inversion (MSI) module to learn conditional em-
beddings. Specifically, the MSI module utilizes five layers of features from the CLIP image encoder
τθ and maps each layer of features to a vector. After obtaining five vectors, we modulated the vec-
tors through our time modulation module. The time modulation module maps time steps into time
embedding and performs point multiplication with corresponding feature vectors, which adaptively
adjust the information intensity derived from the features. Subsequently, the MSI module executes
attention on embeddings, extracting pivotal information and transmitting it to the text encoder (Rad-
ford et al., 2021) for obtaining the final embeddings.

{C} = MSI(τθ(x)). (6)

We optimize MSI module by minimizing the SDM loss function. The overall training process is
illustrated in Fig. 2. To avoid overfitting, we apply a dropout strategy in each cross-attention layer,
which is set to 0.05. Our optimization goal can finally be defined as:

LSDM = Ez,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t, Ct)∥22

]
, Ct = Ct//100, (7)

where Ct denotes the embedding used in time step t and // represents obtaining the integer of
quotients in division operations. z ∼ E(x), ϵ ∼ N (0, I), ϵθ and τθ are fixed during training.

2.3 FACE PRIVACY PROTECTION

To achieve privacy protection, we develop an energy function-based identity guidance module and
design embedding scheduling strategies to guide the denoising process. Alg. 1 shows the inference
process of Diff-Privacy, which can achieve anonymization and visual identity information hiding.

2.3.1 EMBEDDING SCHEDULING STRATEGY

As mentioned in Section 2.2, we learn a set of conditional embeddings of a specific image and apply
them to different stages of the denoising process. Generally, diffusion models generate images in the
order of “layout → content/structure → texture/style”. Based on this characteristic of the diffusion
model, we can design different embedding scheduling strategies to meet various privacy protection
needs. For example, starting from different initial noises for denoising, we can employ conditional
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embedding in the initial stage to uphold the manifold structure of human faces. Subsequently, in the
middle and later stages of denoising, we utilize unconditional embedding (default embedding value
when the condition is null) to generate diverse appearances and textures of faces. We will introduce
our embedding scheduling strategies for different privacy protection tasks later.

2.3.2 ENERGY FUNCTION-BASED IDENTITY GUIDANCE MODULE

One pivotal concern in privacy protection is the identification rate of face images by machines.
In order to generate images that can be correctly or incorrectly recognized by machines based on
different privacy protection requirements, we propose to incorporate some knowledge of face recog-
nition models into the denoising process for guidance. Inspired by (Yu et al., 2023; Kwon & Ye,
2022; Avrahami et al., 2022; Fei et al., 2023), we construct an energy function ε to perform gradient
correction on SDM. According to FreeDoM (Yu et al., 2023), the formula can be written as:

∇xt
log p(c|xt) ∝ −∇xt

ε(c, xt), (8)

xt−1 = xt − λt∇xt
ε(c, xt), (9)

where ∇xt
log p(c|xt) is the correction gradient and c is the condition. xt represents a noisy image.

λt is a scale factor, which can be seen as the learning rate of the correction term. Because we can
not find an existing model to measure the distance between noisy data xt and condition c, acquiring
clean images x̂0 from the noisy images xt of the diffusion process is necessary. Referring to Eq. 1,
we can estimate the clean latent code ẑ0 from the noisy latent code zt as follows:

ẑ0 =
zt√
αt

−
√
1− αtϵθ(zt, t, Ct)√

αt
. (10)

Subsequently, by employing the pre-trained decoder Dec of SDM, we can derive a clean image
x̂0 = Dec(ẑ0). Accordingly, the energy function can be written as:

ε(c, xt) ≈ Dθ(x, x̂0). (11)

where Dθ is a distance measure function and x is the actual condition (original image x). Eq. 11 is
reasonable because the clean latent code ẑ0 has the same trend of change as the noisy latent code
zt. As the distance between the clean image x̂0 (decoded from the clean latent code ẑ0) and the
conditional image decreases, a corresponding reduction occurs in the distance between the noisy
image xt (decoded from the noisy latent code zt) and the conditional image. Then, according to
Eq. 2, Eq. 8, Eq. 9, Eq. 10 and Eq.11, the approximated sampling process can be written as:

z′t−1 = zt−1 − λt∇ẑ0Dθ(x, x̂0), (12)

zt−1 =

√
αt−1

αt
zt +

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· ϵθ (zt, t, Ct) . (13)

2.3.3 ANONYMIZATION

We implement anonymization according to the inference process described in Alg.1. Specifically,
we first add random noise to the initial latent code z0 to extract the noisy code zt according to Eq. 1,
where t = Sns ∗ T . Sns is a scaling factor that mainly controls the noise strength. Then we denoise
it according to Eq. 12, where we use the identity dissimilarity loss LIdis and diversity loss Ldiv

as distance measurement functions to construct the energy function, i.e., ε(c, xt) ≈ Dθ(x, x̂0) =
LIdis+Ldiv. The identity dissimilarity loss function ensures that the generated image has a different
identity from the original image.

LIdis =

4∑
i=1

Max(
Fθ(x) · Fθ(x̂

i
0)

||F (x)|| · ||Fθ(x̂i
0)||

, 0), (14)
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Algorithm 1 Inference process (Stage II) of Diff-Privacy
Require: original images x, SDM (ϵθ, Dec, Enc), distance measure function Dθ, a set of conditional
embeddings {C}, total time steps T , pre-defined parameters αt, scale factor λt, Sns.
Output: encrypted image xe, Key-I: zT

1: z0 = Enc(x)

2: Sample T̂ = Sns ∗ T , ϵ ∼ N (0, I)
3: zT̂ =

√
αtz0 +

√
1− αtϵ \\ Noising

4: for t from T̂ to 1 do
5: x̂0 = Dec(

zt√
αt

−
√
1−αtϵθ(zt,t,Ct)√

αt
), Ct = Ct//100

6: zt−1 =
√

αt−1

αt
zt +

(√
1

αt−1
− 1−

√
1
αt

− 1
)
· ϵθ (zt, t, Ct)

7: z′t−1 = zt−1 − λt∇ẑ0Dθ(x, x̂0) \\ Denoising with guidance
8: end for
9: for t from 0 to T − 1 do

10: zt+1 =
√

αt+1

αt
zt +

(√
1

αt+1
− 1−

√
1
αt

− 1
)
· ϵθ (zt, t, Ct) \\ DDIM inversion

11: end for
Return: xe = Dec(z

′
0), zT

where Fθ represents a pre-trained face recognition model. Note that in order to enhance the diversity
of generated results, we add different noises to the initial latent code z0 and obtained different clean
images x̂i

0 based on the Eq. 1, Eq. 13. The detailed process will be introduced below.

Diversity loss is designed to enhance the diversity of anonymized faces. The intuition is to add
different noises to the initial latent code (Eq. 1), and the identity of the resulting anonymized face
should also be inconsistent. In our experiment, four groups of different noises are added to each
initial latent code z0. The diversity loss can be formulated as follows:

Ldiv =

4∑
i=1

4∑
j=2,j ̸=i

Max(
Fθ(x̂

i
0) · Fθ(x̂

j
0)

||Fθ(x̂i
0)|| · ||Fθ(x̂

j
0)||

, 0). (15)

In addition to utilizing the identity guidance module, we develop an embedding scheduling strategy
to implement anonymization more effectively. Specifically, we consider a two-stage embedding
scheduling procedure, divided by τ ∈ [0, 1]. For a denoising process with T steps, one can employ
unconditional embedding UC at the first τ ∗ T steps, and use the conditional embedding Ct//100

corresponding to each step for the remaining (1− τ) ∗ T steps.

Ct =

{
Ct//100 t > τ ∗ T,
UC t ≤ τ ∗ T. (16)

This strategy enables us to achieve anonymization while preserving the overall layout of the original
image and certain identity-independent attributes (e.g., posture) unchanged. Furthermore, in order
to recover the image better, we also generated a noisy latent zT as key-I through DDIM inversion
(Eq. 4) in the process of anonymization, where the conditional embedding C = Ct//100.

2.3.4 VISUAL IDENTITY INFORMATION HIDING

The process of implementing visual identity information hiding is similar to anonymization. Ini-
tially, we employ Eq. 1 to introduce noise to the initial latent code z0 and obtain the noisy latent
code zt. In this context, Sns is set to a larger value to ensure there is a significant change in face
images (e.g., layout and background) from the human observer’s perspective. Next, we also obtain
the latent code zt−1 of step t− 1 with guidance through Eq. 12. We use identity similarity loss Lis

to construct the energy function. Identity similarity loss promotes the generated image that can be
correctly recognized by machines, which can be formulated as:

Lis = 1− Fθ(x) · Fθ(x̂0)

||Fθ(x)|| · ||Fθ(x̂0)||
. (17)
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Figure 3: Qualitative comparison with literature anonymization methods.

Regarding the scheduling strategy for embedding, as we only need to constrain the image to a facial
manifold without maintaining some attributes such as posture, we can set τ in Eq. 16 to a larger
value than in the anonymization task. In addition, in order to recover the original image, we also use
DDIM Inversion (Eq. 4) to generate a noisy latent code zT as the key-I.

2.4 IDENTITY RECOVERY

In this section, we use the noisy latent code zT as key-I and a set of conditional embeddings {C}
as key-E for denoising to recover the original image. Specifically, through Eq. 13, we can gradually
denoise the noisy latent code zT to obtain the recovered latent code zr and decode it to obtain the
recovered image xr, where Ct = Ct//100.

3 EXPERIMENTS AND EVALUATION

In this section, we evaluate the performance of our method in anonymization and visual identity
information hiding tasks. The implementation details and more results can be found in the appendix.

3.1 ANONYMIZATION

3.1.1 DE-IDENTIFICATION

Table 1: Quantitative evaluation for anonymization meth-
ods. We calculate the successful protection rate (SR) for
de-identification results and the identification rate for re-
covered results. A higher rate implies better performance.

Type Method Facenet ArcFace

De-identity↑

Ours 0.988 1
RIDDLE 0.985 1
CIAGAN 0.849 0.9

FIT 0.985 0.998
Deep Privacy 0.923 0.933

The qualitative comparison is shown in
Fig. 3. Blurring and Mosaicing can
successfully erase identity information,
but photo-realism has been damaged
severely. CIAGAN (Maximov et al.,
2020) experienced significant distortion
when generating anonymized images.
FIT (Gu et al., 2020) can generate faces
with different identities from the origi-
nal image. However, its visual quality is
unsatisfactory, and the generated faces
are unnatural. As shown in the second
line of Fig. 3, FIT generates the face
of a middle-aged man, yet the skin and
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hairstyle more closely resemble those of a woman. RIDDLE (Li et al., 2023) can generate diverse
faces, but some important parts of the anonymous faces are unnatural, such as the eyes in the first
row of Fig. 3. Deepprivacy (Hukkelås et al., 2019) can somewhat maintain photo-realism but fails to
retain the identity-irrelevant attributes such as expressions. Compared with the above methods, our
method generates anonymous images with natural facial features and better photo-realism. More-
over, our method can maintain identity-irrelevant attributes.

Quantitatively, we calculate the successful protection rate (SR) of different methods on the CelebA-
HQ dataset (Karras et al., 2017). Note that when the distance between the identity embedding of
the de-identified image and the source image exceeds the threshold set by the corresponding facial
recognition network, protection is considered successful. Here, we use FaceNet and ArcFace for
evaluation and choose the threshold of ArcFace as 0.8 and the FaceNet as 1.1 according to (Schroff
et al., 2015). Table 1 shows that our method has a higher SR than other anonymization methods,
which proves that our method can erase identity information of face images more effectively.

3.1.2 IDENTITY RECOVERY

Ours RIDDLE FITOri

Figure 4: Visualization comparison of recovered
image between different anonymization methods.
Zoom in for a better view.

In this section, we compare our method with
recoverable anonymization methods FIT (Gu
et al., 2020) and RiDDLE (Li et al., 2023)
regarding identity recovery performance. We
fed both the original and recovered image
into the face recognition model to extract
identity embedding and subsequently calcu-
late the Cosine similarity between the Identity
Embedding (Cos-IE). Moreover, we also use
mean square error (MSE), peak signal-to-noise
ratio (PSNR), structural similarity (SSIM),
and learned perceptual image patch similarity
(LPIPS) as metrics. From Table 2, it can be
seen that our method outperforms the existing
recoverable anonymization methods in terms
of identity recovery. In addition, as shown in
Fig. 4, we can see that compared with FIT and RIDDLE, the recovered image generated by our
method is smoother, clearer, and more similar to the original image.

3.2 VISUAL IDENTITY INFORMATION HIDING

3.2.1 INFORMATION ENCRYPTION

We evaluate our approach according to the testing process proposed by AVIH (Su et al., 2022). We
randomly select 12 individuals from the LFW dataset (Huang et al., 2008) as the probe set Setp and
randomly select 10 images for each individual from the probe set as the same-identity verification set
Sets. A total of 12878 images from other individuals are used as the different-identity verification
set Setd. Then, we encrypt the images of the same-identity verification set Sets. In the evaluation
stage, we sequentially take a face image from the probe set as a query and calculate the identity
embeddings similarity between the query and images of the same identity in Sets, and the identity
embeddings similarity between the query and the images in Setd. If there are images in Setd with
higher similarity than the images in Sets, it is considered that the identification is incorrect.

The results are shown in Table 3. When using FaceNet as the face recognition model, our method
has an identification accuracy of three percentage points higher than AVIH and only three percent-
age points lower than the identification accuracy of original images. Meanwhile, when utilizing
the ArcFace face recognition model, our method exhibited comparable performance to AVIH, ap-
proaching the identification accuracy achieved with original images. The results can demonstrate
the utility of our method on the face recognition models in practical applications. In addition, the
qualitative results are shown in Fig. 5. It can be seen that our method encrypts the original image
while preserving the facial structure in a photo-realistic manner. A notable advantage over AVIH
is that even if a hacker obtains encrypted images, distinguishing whether these images have been
encrypted becomes challenging, thus enhancing privacy protection security.
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Table 2: Quantitative comparison of recovered results. (F) and (A) represent that we use FaceNet
and ArcFace as face recognition models, respectively.

Method Anonymization Visual identity information hiding

FIT RIDDLE Ours AVIH (F) AVIH (A) Ours
MSE ↓ 0.006 0.045 0.003 0.003 0.004 0.004
LPIPS↓ 0.051 0.192 0.037 0.216 0.109 0.059
SSIM↑ 0.762 0.494 0.854 0.775 0.793 0.872
PSNR↑ 28.693 19.489 28.900 32.306 31.369 31.913

Cos-IE (F)↑ 0.896 0.774 0.956 0.926 0.87 0.929
Cos-IE (A)↑ 0.88 0.709 0.932 0.919 0.726 0.905

Ours (F) Ours (A) AVIH (F)Ori AVIH (A)

Encryption Recovery

Ours AVIH (F) AVIH (A)

Figure 5: Qualitative comparison with literature visual identity information methods.

3.2.2 IDENTITY RECOVERY

Table 3: Face identification accuracy using origi-
nal images and different encrypted images as val-
idation sets.

Method Original Ours AVIH
FaceNet 84.15% 81.10% 78.52%
ArcFace 88.30% 87.70% 88.30%
Average 86.23% 84.40% 83.41%

In this section, we evaluate the quality of the
decrypted image and its similarity to the source
image. The results are shown in Fig. 5 and Ta-
ble 2. Our method achieved comparable per-
formance to AVIH in metrics such as MSE,
PSNR, and Cos-IE while surpassing AVIH in
LPIPS and SSIM. Moreover, Fig. 5 illustrates
that AVIH generates recovered images with ar-
tifacts and can only recover the image content
of the area where the face is located. In con-
trast, our method can achieve complete recov-
ery of the original image in a high-quality manner.

4 CONCLUSION

In this paper, we unify anonymization and visual identity information hiding tasks and propose
a novel diffusion-based face privacy protection method, dubbed Diff-Privacy. It mainly achieves
recoverable face privacy protection through three stages. Stage I: Training. Learning a set of con-
ditional embedding of the original image as the key-E through our designed MSI module. Stage II:
Encryption. Accomplishing privacy protection through our energy function-based identity guidance
module and embedding scheduling strategy during the denoising process and then getting a noised
map as the key-I according to DDIM inversion. Stage III: Recovery. Performing identity recovery
using DDIM sampling based on the acquired key. Extensive experiments demonstrate our method
achieves state-of-the-art results both quantitatively and qualitatively.
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generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5447–5456, 2020.

Carman Neustaedter, Saul Greenberg, and Michael Boyle. Blur filtration fails to preserve privacy for
home-based video conferencing. ACM Transactions on Computer-Human Interaction (TOCHI),
13(1):1–36, 2006.

Elaine M Newton, Latanya Sweeney, and Bradley Malin. Preserving privacy by de-identifying face
images. IEEE transactions on Knowledge and Data Engineering, 17(2):232–243, 2005.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Warit Sirichotedumrong and Hitoshi Kiya. A gan-based image transformation scheme for privacy-
preserving deep neural networks. In 2020 28th European Signal Processing Conference (EU-
SIPCO), pp. 745–749. IEEE, 2021.

Warit Sirichotedumrong, Takahiro Maekawa, Yuma Kinoshita, and Hitoshi Kiya. Privacy-preserving
deep neural networks with pixel-based image encryption considering data augmentation in the
encrypted domain. In 2019 IEEE International Conference on Image Processing (ICIP), pp. 674–
678. IEEE, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

11



Under review as a conference paper at ICLR 2024

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Zhigang Su Su, Dawei Zhou, Decheng Liu, Nannan Wang Wang, Zhen Wang, and Xinbo
Gao. Visual information hiding based on obfuscating adversarial perturbations. arXiv preprint
arXiv:2209.15304, 2022.

Qianru Sun, Liqian Ma, Seong Joon Oh, Luc Van Gool, Bernt Schiele, and Mario Fritz. Natural and
effective obfuscation by head inpainting. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5050–5059, 2018a.

Qianru Sun, Ayush Tewari, Weipeng Xu, Mario Fritz, Christian Theobalt, and Bernt Schiele. A
hybrid model for identity obfuscation by face replacement. In Proceedings of the European con-
ference on computer vision (ECCV), pp. 553–569, 2018b.

Suriyon Tansuriyavong and Shin-ichi Hanaki. Privacy protection by concealing persons in circum-
stantial video image. In Proceedings of the 2001 workshop on Perceptive user interfaces, pp. 1–4,
2001.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Yizhi Wang, Jun Lin, and Zhongfeng Wang. An efficient convolution core architecture for privacy-
preserving deep learning. In 2018 IEEE International Symposium on Circuits and Systems (IS-
CAS), pp. 1–5. IEEE, 2018.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. arXiv preprint arXiv:2209.00796, 2022.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. arXiv preprint arXiv:2303.09833, 2023.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE signal processing letters, 23(10):1499–1503,
2016.

Yuxin Zhang, Weiming Dong, Fan Tang, Nisha Huang, Haibin Huang, Chongyang Ma, Tong-Yee
Lee, Oliver Deussen, and Changsheng Xu. Prospect: Expanded conditioning for the personaliza-
tion of attribute-aware image generation. arXiv preprint arXiv:2305.16225, 2023a.

Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Chang-
sheng Xu. Inversion-based style transfer with diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10146–10156, 2023b.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation
via energy-guided stochastic differential equations. Advances in Neural Information Processing
Systems, 35:3609–3623, 2022.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 RELATED WORK

A.1.1 ANONYMIZATION

Anonymization aims to remove identification characteristics from images, rendering them unrecog-
nizable to both human observers and computer vision systems. Existing anonymization methods can
be categorized into two main types based on the underlying technology: low-level image processing
methods (Boyle et al., 2000; Chen et al., 2007; Neustaedter et al., 2006; Tansuriyavong & Hanaki,
2001; Newton et al., 2005; Gross et al., 2009) and face replacement-based methods (Hukkelås et al.,
2019; Gafni et al., 2019; Sun et al., 2018b;a; Maximov et al., 2020; Cao et al., 2021; Gu et al.,
2020; Li et al., 2023). The first category anonymization methods, including blurring, mosaicing,
pixelization can eliminate identity, but also seriously damage the utility of the original image. Face
replacement-based methods (Sun et al., 2018b;a) focus on generating a virtual face to replace the
original face. However, the anonymized faces generated by the above methods often have unnatural
appearances. Recently, researchers have focused on the development of recoverable anonymization
methods (Cao et al., 2021; Gu et al., 2020; Li et al., 2023). Gu et al. (2020) trains a conditional
GAN with multi-task learning objectives, which takes the input image and password as conditions
and outputs the corresponding anonymization image. Cao et al. (2021) decouples a face image
into an attribute vector and identity vector and rotates the identity vector to change identity. Li
et al. (2023) projects the original image into the latent space of the pre-trained StyleGAN2 and pro-
cesses the latent code and password through a lightweight transformer to generate encrypted code.
However, these methods often rely on high-quality facial datasets for training and can not achieve
satisfactory results in terms of the quality of anonymized and recovered images.

A.1.2 VISUAL INFORMATION HIDING

Visual information hiding focuses on the human visual perspective, aiming to encrypt the source
image so that human observers cannot recognize it. It mainly includes Homomorphic encryption
(HE)-based methods (Aono et al., 2017; Liu et al., 2015; Wang et al., 2018) and perceptual en-
cryption (PE)-based methods (Ding et al., 2020; Ito et al., 2021; Sirichotedumrong et al., 2019;
Sirichotedumrong & Kiya, 2021). HE-based methods mainly come from Cryptography and are
usually unsuitable for deep neural networks (DNNs) containing many nonlinear operations. For
PE-based methods, some work (Ding et al., 2020; Sirichotedumrong et al., 2019; Sirichotedumrong
& Kiya, 2021) focuses on designing the encrypted domain and directly using the encrypted images
to train the model. However, this training strategy has a significant impact on the accuracy of the
model. To address this issue, Ito et al. (2021) trains a transformation network to preserve the correct
classification results while hiding visual information. However, it generates protected image that
can not be recovered to its original form. Inspired by adversarial attack methods, Su et al. (2022)
proposes a visual identity information hiding method to protect face privacy protection. However,
the generated images are similar to random noise, making it easy for hackers to realize that these
images are encrypted. In addition, this online optimization-based method leads to slower generation
speed.

A.1.3 DIFFUSION MODELS

Diffusion-based Generative models (DMs) (Song & Ermon, 2019; Song et al., 2020b; Ho et al.,
2020; Sohl-Dickstein et al., 2015; Yang et al., 2022) is a powerful tool for data modeling and gener-
ation, which has achieved the first results in density estimation and sample quality. Early work (Ho
et al., 2020) relied on markov chains and required many iterations to generate high-quality samples.
DDIM (Song et al., 2020a) proposes a deterministic sampling process that greatly reduces the time
required to generate samples. Dhariwal & Nichol (2021) proposes to introduce category information
into the diffusion model, which can better generate realistic images. However, this method requires
to train an additional classifier, resulting in a high training cost. classifier-free diffusion method (Ho
& Salimans, 2022) jointly trains the conditional diffusion model and the unconditional Diffusion
model, and combines the noise estimation of these two models to achieve the balance between sam-
ple quality and diversity. In addition, considering the drawbacks of slow training and inference in
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pixel space of the above methods, Rombach et al. (2022) proposes to denoise in the latent space of
the pre-trained auto-encoder, significantly reducing the computational requirements.

A.2 IMPLEMENTATION DETAILS

A.2.1 PRELIMINARIES

In this section, we provide a concise overview of score function and energy function. Score-based
Diffusion Models (SBDMs) (Song & Ermon, 2019; Song et al., 2020b) are a category of diffusion
model rooted in score theory. It illuminates that the essence of diffusion models is to estimate the
score function ∇xt

log p(xt), where xt is noisy data. During the sampling process, SBDMs predict
xt−1 from xt using the estimated score step by step. Its sampling formula is as follows:

xt−1 = (1 +
1

2
βt)xt + βt∇xt log p(xt) +

√
βtϵ, (18)

where ϵ ∈ N(0, I) is randomly sampled Gaussian noise and βt ∈ R is a pre-defined parameter.
Given sufficient data and model capacity, the score function can be estimated by a score estimator
s(xt, t), that is, s(xt, t) ≈ ∇xt log p(xt). Nevertheless, the original diffusion process is limited
to functioning solely as an unconditional generator, yielding randomly synthesized outcomes. To
achieve controllable generation, SDE (Song et al., 2020b)] proposed to control the generated results
with a given condition c by modifying the score function as ∇xt

log p(xt|c). Using the Bayesian
formula p(xt|c) = p(c|xt)p(xt)

p(c) , the conditional score function can be written as two terms:

∇xt
log (xt|c) = ∇xt

log p(xt) +∇xt
log (c|xt), (19)

where the first term ∇xt
log p(xt) can be estimated using the pre-trained unconditional score estima-

tor s(, t) and the second term ∇xt
log (c|xt) is the critical part of constructing conditional diffusion

models. The second term can be interpreted as a correction gradient (Yu et al., 2023), irecting xt

towards a hyperplane in the data space where all data conform to the given condition c. Following
(Yu et al., 2023), we used an energy function (Zhao et al., 2022) to model the correction gradient:

p(c|xt) =
exp {−λε(c, xt)}

Z
, (20)

where λ denotes the positive temperature coefficient and Z>0 denotes a normalizing constant, com-
puted as Z =

∫
c∈cd

exp {−λε(c, xt)} where cd denotes the domain of the given conditions. ε(c, xt)
is an energy function that measures the compatibility between the condition c and the noisy image
xt. When xt aligns more closely with c, the value of ε(c, xt) decreases. If xt satisfies the constraint
of c perfectly, the energy value should be zero. Any function satisfying the above property can serve
as a feasible energy function, and we can adjust the coefficient λ to obtain p(c|xt).

Therefore, the correction gradient ∇xt
log (c|xt) can be implemented with the following:

∇xt
log (c|xt) ∝ −∇xt

ε(c, xt) (21)

A.2.2 INFERENCE PIPELINE OF DIFF-PRIVACY

Fig. 6 shows the inference pipeline of Diff-Privacy. We take the anonymization task as an example
to provide the inference process. The content enclosed within the black dashed box in the figure sig-
nifies its exclusive relevance to the anonymization task. In the inference process, the anonymization
task produces four results simultaneously (i.e., batch size=4), while the visual identity information
hiding task only produces one result.

A.2.3 EXPERIMENTAL SETTINGS

We have retained the original hyperparameter selection of SDM, and only the parameters of our
proposed MSI module can be trained. On an NVIDIA GeForce RTX3090, the training process for
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Figure 6: Inference pipeline (Stage II) of Diff-Privacy. We take the anonymization task as an
example to provide the inference process.
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Figure 7: Visualization results of recovered images by using different keys.

each image takes approximately 20 minutes, with a batch size of 1. The basic learning rate is set to
0.001. For evaluation, we use CelebA-HQ Karras et al. (2017) dataset and LFW Huang et al. (2008)
dataset to evaluate the effectiveness of Diff-Privacy. In the anonymization task, we perform DDIM
sampling with 50 steps, and set a batch size of 4, scaling factor Sns = 0.6 and τ = 0.4. For visual
identity information hiding task, we perform DDIM sampling with 100 steps, and set a batch size of
4, scaling factor Sns = 0.8 and τ = 0.6.

A.3 MORE RESULTS

In this section, we conduct more comprehensive experiments to evaluate our method. We first evalu-
ate the security of our method in terms of privacy protection. Furthermore, we evaluate the diversity
and utility of de-identified images generated in the anonymization task.

A.3.1 SECURITY

In Section 3, we have verified that our method can achieve privacy protection. Next, we will demon-
strate the security of our method. Our method mainly recovers the original image based on key-I
and key-E. Now, we obtain the wrong key by randomly sampling or scaling the original key. Then,
we use the wrong key to recover the image. Specifically, we set the following variants: wrong key-I,
wrong key-E, UC as key-E, wrong key (including key-I and key-E), and correct key. “UC as key-E”

15



Under review as a conference paper at ICLR 2024

Table 4: Utility evaluation of de-identification results.

Method Ours RIDDLE CIAGAN FIT DeepPrivacy

Face detection ↑ MtCNN 1 1 1 1 1
Dlib 1 1 0.957 1 0.995

Bounding box distance ↓ MtCNN 5.834 6.45 19.975 5.3 6.467
Dlib 3.695 6.245 18.441 3.866 5.296

Landmark distance ↓ MtCNN 2.848 3.478 7.326 2.398 4.298
Dlib 2.548 3.453 9.598 2.664 4.075

Ours RIDDLE CIAGAN FIT Ours RIDDLE CIAGAN FIT

Ori Ori 

Ori Ori 

Figure 8: Qualitative comparison with literature anonymization methods on diversity.

indicates that we use the correct key-I and use unconditional embedding as key-E to recover the
original image. From Fig. 7, it can be seen that as long as there is a key error, it fails to recover the
original image, which proves the security of our method. Furthermore, we find that key-I serves as
the starting point for denoising, preserving some global information about the original image (such
as background and human skin color). On the contrary, key-E contains more detailed information
on the face.

A.3.2 FACE UTILITY

We apply computer vision algorithms on the de-identified images and evaluate the utility of de-
identified images on downstream vision tasks. We calculate the face-detection rate between our
methods and other anonymization methods on two face-detection models: MtCNN (Zhang et al.,
2016) and Dlib Kazemi & Sullivan (2014). The per-pixel distance of facial bounding boxes and 68
facial key points are also calculated. As shown in Table 4, our method achieved the best results
in face detection rate and pixel distance calculated by the Dlib model and comparable results as
FIT in pixel distance calculated by the MtCNN model. It means that our method can guarantee
the consistency of the face region and landmarks better and be used for identity-agnostic computer
vision tasks.
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Figure 9: Quantitative comparison with literature anonymization methods on diversity.

Table 5: We calculate the protection success rate in the anonymization task (Task I) and face iden-
tification accuracy in the visual identity information hiding task (Task II) to verify the effectiveness
of the energy function-based identity guidance module. A higher rate implies better performance.

Method Task I Task II

Facenet ArcFace FaceNet ArcFace
w/o energy guidance 14.5% 99.5% 0% 0.06%

ours 98.8% 100% 81.1% 87.7%

A.3.3 DIVERSITY OF IDENTITIES

We compare our method with FIT, RIDDLE, and CIAGAN for the diversity of de-identified images.
The results are shown in Fig. 8 and Fig. 9. Although all these methods can generate diverse faces,
the faces generated by FIT under different passwords exhibit shared characteristics in local regions.
CIAGAN generates faces with low-quality and obvious splicing traces. RIDDLE can obtain diverse
faces, but the facial features obtained by encrypting different faces with the same password are
similar. In contrast, our method brings fruitful facial features with high-quality for different images.
To further demonstrate the diversity of our method, we conduct an identity visualization experiment.
For each person, we use 200 different passwords or labels to generate their de-identified faces. Then,
we use a face recognition network to extract identity embeddings of de-identified faces and perform
dimensionality reduction using t-SNE (Van der Maaten & Hinton, 2008). From Fig. 9, it can be seen
that the identity clusters of FIT are relatively tight, and different clusters are spaced far apart on the
hyperplane. In contrast, our de-identified faces are more dispersed and occupy most of the area of
the hyperplane.

A.3.4 ABLATION STUDY

In this section, we will evaluate the contribution of each component in our model.

Energy function-based identity guidance module. To verify the effectiveness of the energy
function-based identity guidance module, we remove the module (represented as w/o energy guid-
ance) and conduct experiments on anonymization and visual identity information hiding tasks. From
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Figure 10: We show two sets of encrypted images in the anonymization and visual identity informa-
tion hiding tasks. One was generated without an energy function-based identity guidance module,
and the other was generated by the full model.

Table 6: The effectiveness of a set of conditional embeddings in identity recovery. Task I represents
anonymization and task II represents visual identity information hiding.

Method MSE↓ LPIPS↓ SSIM↑ PSNR↑ Cos-IE (F)↑ Cos-IE (A)↑
Task I Ours-OE 0.007 0.051 0.821 27.359 0.94 0.914

Ours 0.003 0.037 0.854 28.900 0.956 0.932

Task II Ours-OE 0.005 0.080 0.831 30.237 0.913 0.856
Ours 0.004 0.059 0.872 31.913 0.929 0.905

Fig. 10 and Table 5, it can be seen that removing the energy function-based identity guidance mod-
ule in the anonymization task can also generate faces with different appearances, but their identities
are relatively similar to the original image. In addition, regarding machine perception, removing the
energy function-based identity guidance module leads to a decrease in the protection success rate
(SR), especially when using FaceNet as the face recognition model. When removing the energy
function-based identity guidance module to achieve the visual identity information hiding task, the
generated face has significant visual differences from the original face. However, the identification
accuracy of using these generated faces as the validation set is almost zero, which demonstrates that
the generated face cannot replace the original image to complete face recognition.

A set of conditional embeddings. In our method, we design an MSI module to obtain a set of
conditional embeddings of the original image. Now, we conduct experiments to verify the advan-
tages of a set of conditional embeddings over one conditional embedding. Specifically, we remove
the multi-layer features and time modulation modules from the MSI module and only use the last
layer of features encoded by CLIP to obtain one conditional embedding, represented as Ours-OE.
Fig. 11 shows the de-identified results of using one embedding and a set of conditional embed-
dings in anonymization tasks. It can be seen that using a set of conditional embeddings has better
decoupling and editability, and different levels of privacy protection can be achieved by using dif-
ferent embedding scheduling strategies. On the contrary, using one conditional embedding has poor
editability and generates unsatisfactory de-identified faces. In addition, we also conducted experi-
ments on the impact of one embedding and a set of embeddings on identity recovery. The results
are shown in Table. 6. From the table, it can be seen that using a set of embeddings for identity re-
covery outperforms using a single embedding in both pixel-level and perceptual-level metrics. The
above experiment demonstrates the effectiveness of employing our MSI module to acquire a set of
conditional embeddings for both encryption and recovery processes.

Embedding scheduling strategy. We have designed corresponding embedding scheduling strate-
gies for privacy protection tasks with different requirements. Next, we conduct experiments to verify
the effectiveness of these strategies and provide the impact of different strategies on the generated
results. Specifically, we conduct experimental verification by changing τ in the embedding schedul-
ing strategy. The results are shown in Fig. 11 and Fig. 12. From the first line of Fig. 11, it can be
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Figure 11: Effect of different conditional embedding in our method. The first line of the image
is generated using a set of conditional embeddings, while the second line is generated using one
conditional embedding. The images in each row, arranged from left to right, represent the outcomes
produced by the different τ of the embedding scheduling strategy. The number below the image
represents the distance between the identity embedding of the de-identified face and the identity
embedding of the original face.

seen that as τ decreases, the similarity between the de-identified face and the original face gradually
increases, and the identity embedding distance between the de-identified face and the original face
decreases. When τ = 0.4, it ensures the effectiveness of anonymization while maintaining irrelevant
attributes such as posture and facial expressions unchanged. In addition, it can be seen from Fig. 12
that in the visual identity information hiding task, when τ ∈ [0.4, 0.6], the distance between the
encrypted face and the original face in the identity embedding space is the smallest. In the visual
identity information hiding task, in order to ensure significant changes in the identity of encrypted
images from the perspective of human observers, we chose the time embedding scheduling strategy
with τ = 0.6.

Noise strength. We change the scaling factor Sns to explore the impact of different noise strengths
on the generated results. As shown in Fig. 13, when the noise strength weakens (i.e., the scaling
factor Sns decreases), the generated results gradually resemble the original image. In the first row of
the figure (anonymization task), it can be seen that when Sns = 0.6, privacy protection is effectively
achieved while ensuring that identity-independent attributes such as posture and facial expressions
remain unchanged. In the visual identity information hiding task (the second line in the figure),
when Sns = 0.8, it maximizes the difference observed by the naked eye while ensuring the correct
recognition of identity by the machine.

Diversity loss function. In the anonymization task, in order to enhance the diversity of de-identified
images, we design a diversity loss function. Now, we remove the diversity loss function and conduct
experiments to verify its effectiveness. This variant is called w/o diversity loss. We conduct identity
visualization experiments as described in Section A.3.3. The results are shown in Fig. 14. With
diversity loss function, the generated de-identified faces are more scattered and occupy most of the
area of the hyperplane.
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0.8 0.6 0.4 0.2 0

Figure 12: Visualization of generated results of visual identity information hiding tasks under
different embedding scheduling strategies. The number below the image represents the identity
embedding distance between the encrypted face and the original face.

0.04 0.03 0.02 0.02

Scale facetor 𝑆𝑛𝑠:1 0.8 0.6 0.4 0.2

1.37 1.24 1.21 0.93 0.81

Figure 13: Effect of different noise strength in our method. The number below the image repre-
sents the distance between the identity embedding of the encrypted face and the identity embedding
of the original face. Because the image in the second row and first column can not detect a face, the
distance between it and the original face in the identity embedding space is not given.

Ours (A) Ours (F)w/o diversity loss (A) w/o diversity loss (F)

Figure 14: The effectiveness of diversity loss function. We remove the diversity loss and conducted
experiments to verify its effectiveness.
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