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ABSTRACT

Tropical cyclones are devastating natural phenomena that cause a significant
amount of damage every year. Conventionally, the Dvorak technique is used to
manually estimate cyclone intensity from satellite infrared imagery by following
a set of rules to identify certain cloud features. The manual nature of the Dvorak
technique introduces subjectivity, necessitating the implementation of an auto-
mated process for cyclone intensity estimation. Satellite infrared imagery provides
valuable information for detecting cyclonic storms. Recently, deep CNN models
have proven to be highly efficient in detecting relevant patterns in the images.
In this work, a novel cyclone detection and intensity estimation dataset called
INCYDE (INSAT-based Cyclone Detection and Intensity Estimation) dataset is
presented. The cyclone images in the dataset are captured from INSAT 3D/3DR
satellites over the Indian Ocean. The proposed INCYDE dataset contains over 21k
cyclone images taken from cyclones over the Indian Ocean from the year 2013 to
2021. The dataset pertains to two specific tasks: cyclone detection as an object
detection task, and intensity estimation as a regression task. In addition to the
dataset, this study introduces baseline models that were trained on the newly pre-
sented dataset. The results of this research would help develop innovative cyclone
detection and intensity estimation models, which in turn could help save lives.

1 INTRODUCTION

Tropical Cyclones (TC) are highly destructive natural phenomena and they are one of the costliest
natural disasters that cause a wide range of hazards. Tropical cyclones form over warm ocean waters
when the water temperature is at least 26.5 degrees Celsius (80 degrees Fahrenheit). As the storm
forms, it begins to suck up more and more warm air and moisture from the ocean, which causes it to
grow larger and more powerful.

Deep learning has proven to be very efficient in detecting fine patterns in images, the cloud patterns
in satellite infrared imagery provide valuable information about the formation of a cyclone. Thus,
the usage of deep learning techniques to detect and estimate the intensity of cyclones using infrared
satellite images has a lot of potential to be used as an early warning system to predict cyclones. Thus,
there is a need to have a large-scale dataset for cyclone detection and intensity estimation to help
research and develop deep Convolutional Neural Network (CNN) models that can help provide early
warning for cyclones using IR satellite imagery without any human intervention. In literature, there
has been some well-documented datasets for cyclone intensity estimation, but the present datasets
lack cyclone detection capabilities and lack some geographical areas like Indian Ocean.

In this work, we propose a large-scale dataset called INCYDE dataset for cyclone intensity es-
timation and cyclone detection. The dataset includes infrared (IR) images from INSAT 3D/3DR
Mahammad; Kaushik satellites from year 2013 to 2021 annotated using the Indian Meteorological
Department’s (IMD) best track data IMD (2022). The proposed dataset has higher-resolution im-
ages and covers a new geographical region (Indian Ocean Region) which is not present in other
datasets in the literature. Additionally, the proposed dataset also introduces the research community
to a new task of cyclone detection in satellite infrared images. The INCYDE dataset is available at
https://doi.org/10.5281/zenodo.8015544

1

https://doi.org/10.5281/zenodo.8015544


Under review as a conference paper at ICLR 2024

To summarise, the contributions of this work are as follows:

• A large-scale dataset INCYDE for cyclone detection and intensity estimation is presented.

• The dataset creation pipeline used to curate the dataset has been presented.

• A thorough dataset analysis has been carried out to provide insights relevant to the dataset
and a review of other state-of-the-art (SOTA) datasets has been carried out.

• Various deep CNN models have been trained on the proposed dataset for cyclone detection,
and cyclone intensity estimation to act as baseline models for future work.

The rest of the paper follows the following structure. In section 2, the literature survey is carried out
where prior works in the field of cyclone intensity estimation are discussed. In section 3 the method-
ology used to carry out the experimentation work in this research work is presented. In section 4,
the proposed INCYDE dataset is presented along with important characteristics of the dataset like
sample images, dataset curation process, dataset split, and comparison with other publicly available
datasets. In section 5, the experimentation regarding baseline models trained on the proposed dataset
is presented.

The motivation for our paper stems from the critical need to address cyclone intensity estimation as a
computer vision research problem. Currently, the field of cyclone intensity estimation heavily relies
on remote sensing expertise, making it inaccessible to many computer vision researchers who could
contribute valuable insights. Our aim is to bridge the gap between remote sensing and computer
vision, making cyclone intensity estimation more accessible and fostering collaboration between the
two domains. To accomplish this, we have curated an image dataset specifically for cyclone intensity
estimation and provided an object detection task dataset in Common Object in Context (COCO)
format. This research work would help researchers develop robust cyclone intensity estimation and
cyclone detection frameworks that have the potential to help save countless lives by providing early
warnings for cyclones.

2 RELATED WORK

Conventionally, the Dvorak technique is used to estimate cyclone intensity. The Dvorak technique
Dvorak (1973) uses satellite images to estimate the intensity of a tropical cyclone using its cloud
pattern. The cloud pattern is analyzed in terms of the distribution of cloud cover and the temperature
of the cloud tops. The cyclone is classified using a combination of cloud pattern features such as
the size, shape, and temperature of the cloud tops, as well as the presence of an eye or the center
of the storm. Once the storm has been classified, the Dvorak technique provides an estimate of the
maximum sustained winds and the central pressure of the storm. This information can be used to
issue forecasts and warnings to people in the path of the storm.

While the Dvorak technique is characterized by its inconsistencies and heavily manual approach,
relying on the subjectivity of experts. In contrast, the deep learning method offers a more systematic
and objective alternative. Various datasets have been published in the literature for cyclone intensity
estimation. Maskey et al. (2023) released a dataset for cyclone intensity estimation which includes
cyclones in the Atlantic and East Pacific Oceans from the year 2000 to 2019 for the Tropical Cyclone
Wind Estimation Competition. Maskey et al. (2020) also developed a simple deep CNN with 6 CNN
with max-pool layers and 3 fully connected layers at the end. Their baseline model was able to
achieve a root mean squared error (RMSE) of 13.24 knots. They also developed a web application to
visualize historical data of cyclones and get current cyclone intensity estimation predictions. Maskey
et al. (2020) used interpolation to generate more labels from existing labels. TCIR Chen et al.
(2018) is another dataset for cyclone intensity estimation task, It includes 4 channels (Infrared, Water
Vapor, Visible, and Microwave bands) satellite infrared images in the West Pacific, East Pacific, and
Atlantic Ocean Regions, the dataset contains satellite images having 301x301 pixels size, the authors
of TCIR have also employed interpolation to generate more labels from existing labels. HURSAT
Knapp & Kossin (2007) is another such dataset for cyclone intensity estimation from years 1978
to 2015 having 3 hourly satellite images. HURSAT also uses interpolation to generate more labels
from existing labels. The satellite images are abundant and have higher frequency than the labels for
those images, thus the approach of using interpolation to generate labels between two consecutive
timestamps helps ensure the efficient use of abundant satellite images.
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Li & Chen (2021) presents a cyclone dataset FY4A-TC using multispectral images of 81 cyclones
captured by FY4A satellite from 2018-2021. Li & Chen (2021) uses a Convolutional Neural Net-
work (CNN) with a self-label regularizer to increase accuracy. The author proposes a generative
adversarial network-convolutional neural network (GAN-CNN) hybrid model that uses both passive
microwave rate(PMW) and Visible channel images. Tan et al. (2022) used Himawari-8 satellite
products for cyclone intensity estimation. Tan et al. (2022) used a convolutional neural network
(CNN) and they were able to achieve 4.06 m/s (7.89 knots) RMSE. Their work revealed that the
model’s performance is highly affected by the initial cloud products. Chen et al. (2020) presents a
framework for tropical cyclone intensity estimation using a generative adversarial network (GAN)
to handle temporally heterogeneous datasets. Their model uses IR1 and WV channels for prediction,
eliminating the dependence on the PMW channel. They use a hybrid GAN-CNN model, with two
generators for producing VIS and PMW images. Bloemendaal et al. (2020a) uses STORM dataset
Bloemendaal et al. (2020b) for TC wind speed estimation. The author uses historical best track data
from the International Best Track Archive for Climate Stewardship (IBTrACS20) and generates
tropical cyclone data comparable to 10,000 years with the current climate constraints. The authors
propose the STORM dataset and use it to find the return periods of a Tropical cyclone hazard. Chen
et al. (2019) used a deep CNN model for estimating TC intensity using satellite IR brightness tem-
perature and microwave rain rates together with additional TC information like the basin, day of the
year, local time, etc. They managed to achieve an RMSE of 8.79 knots for a subset of 482 samples.
They use a 4-layer CNN model with three fully connected layers with random rotation as preprocess-
ing and post-analysis smoothing to achieve lower RMSE. Miller et al. (2017) used the Geostationary
Operational Environmental Satellite (GOES) program’s IR images for historical tropical storms in
the Atlantic and Pacific basins from the year 2000 to 2015. Miller et al. used the HURDAT2 dataset
for labels. Lu & Yu (2013) used IR satellite images from 2006 to 2010 for cyclone intensity esti-
mation. Pradhan et al. (2018) used a deep CNN for cyclone intensity estimation. Luo et al. (2021)
presented a novel DR-transformer for tropical cyclone intensity estimation. Their proposed model
is able to achieve a SOTA RMSE of 7.6 knots. Their transformer-based model extracts Distance-
consistency(DC) and rotation invariance(RI) features in TC images. These features extracted can
overcome the issues faced by classical CNN models in differentiating highly similar visual features.
Additionally, they also repurpose their model to incorporate the evolution of the cyclone through
time and intensity. Various machine learning algorithms were used by Biswas et al. (2021), Devaraj
et al. (2021) for predicting hurricane intensity using IR satellite imagery data. Devaraj et al. (2021)
used a VGG 19 model to predict the extent of the damage.

3 METHODOLOGY

In this work, a novel dataset INCYDE is presented. The images in the dataset were collected from
INSAT 3D and 3DR satellites Mahammad; Kaushik and the labels were collected from IMD best
track data. The IMD best track contains cyclone information like latitude, longitude, maximum
sustained wind speed, timestamp, etc. The data in the best track data has a frequency of 6 hours
but the INSAT 3D/3DR satellite IR imagery is available in 30/15 minutes intervals. So, in order to
efficiently use all the images available, it was imperative to generate more labels for the images in
the dataset using the available data from IMD’s best track data. So, we used interpolation to generate
more labels between two consecutive timestamps in the best track data for the corresponding images.
The details of the interpolation step are explained in later sections.

The proposed dataset, i.e., INCYDE contains 21k images or over 68k images with augmentation
from INSAT 3D and INSAT 3DR satellite IR imagery Mahammad; Kaushik of cyclones between
the years 2013-2021. Files in the INCYDE dataset are named with the cyclone date and time,
followed by an indication of the augmentation, if any. This aids users in quickly identifying both
augmented and original images, thus leaving the choice to researchers whether to utilize the provided
augmentations or solely rely on the original images for their studies. The INSAT 3D/3DR provides
IR imagery in 6 different bands (VIS (Visible) 520 - 720 nm, SWIR (Short Wave Infrared) 1550
- 1700 nm, MWIR (Mid Wave Infrared) 3800 - 4000 nm, WV (Water Vapor) 6500 - 7000 nm,
TIR-1 (Thermal Infrared) 1020 - 1120 nm, TIR-2 (Thermal Infrared) 1150 - 1250 nm) Mahammad;
Kaushik. The Visible and SWIR bands are not available at nighttime observations, and the images in
all infrared bands are visually similar, thus in this work, the thermal infrared (TIR1) band has been
used. In the following sub-sections, all the relevant information regarding the INCYDE dataset is
presented.
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3.1 DATASET CURATION PIPELINE

In order to create an end-to-end cyclone intensity estimation solution, the task of developing the
solution can be divided into two parts, i.e., object detection and intensity estimation. In the first step,
an object detection algorithm can be used to identify and localize cyclones in the image, and in the
second step, the cropped cyclone image can be used as input to the intensity estimation model to get
the maximum sustained wind speed (MSWS) of the cyclone. Thus, the entire solution is able to out-
put cyclone intensity as well as its location in the image. This pipeline also allows focusing research
on cyclone detection and intensity estimation independently. However, other design paradigms can
also be explored, the dataset includes a CSV file with cyclone bounding box information as well as
cyclone intensity that may help researchers experiment with different design choices for the solution
pipeline. In this work, we have presented a dataset with both types of annotations. Figure 1 shows
the process we used to curate the dataset. We have used INSAT 3D/3DR Mahammad; Kaushik satel-
lite infrared images for cyclone periods from 2013-2021, and for the labels, we have used IMD best
track data IMD (2022) that contains relevant information regarding cyclones from 1982 to 2022.
The data from INSAT 3D/3DR has been transformed from GeoTIFF format to JPG for the purpose
of training baseline models and to help train deep learning models in a reasonable time, the dataset
however is also available in GeoTIFF format. The best track data is first compiled for each year,
cleaned, and then standardized in a CSV format. Additional cyclone label data has been generated
using interpolation of the existing best track data. The combined data is then split into training,
validation and testing sets according to the distribution of cyclone categories in the dataset. The
training set is also augmented using various augmentation techniques. The process of interpolation,
dataset augmentations, and dataset splits are explained thoroughly in later sections. Similarly, the
cyclone detection annotations in COCO format are made using the best track data, more details are
discussed in later sections.

3.2 IMAGE CROPPING AND BOUNDING BOX DETAILS

In this work, we propose a novel dataset called INCYDE, which stands for INSAT-based Cyclone
Detection and Intensity Estimation. Figure 2 shows some sample images from the proposed IN-
CYDE dataset for cyclone detection from satellite IR imagery. Similarly, Figure 3 shows some
sample images from the proposed INCYDE dataset for cyclone intensity estimation, the cropped
images are taken from full INSAT 3D/3DR imagery and cropping 15 degrees latitude and longitude
around the cyclone center in the satellite image. The distance between 2 nearby pixels in a satellite
image corresponds to approximately 0.034 degrees in latitude for height and about 0.038 degrees in
longitude for width. To select an area of interest, we choose a range of 7.5 degrees in latitude both
above and below the center, which corresponds to approximately (7.5/0.034) × 2 ≈ 437 pixels in
height. Similarly, we choose a range of 7.5 degrees in longitude on either side of the center, corre-
sponding to approximately (7.5/0.038) × 2 ≈ 398 pixels in width. The INCYDE dataset presents
the intensity estimation annotations in CSV format and cyclone detection annotations in COCO Lin
et al. (2014) format. The bounding boxes are generated using the center of the cyclone as a reference

Figure 1: Workflow for curating the INCYDE dataset from best track data and satellite images for
cyclone detection and intensity estimation task
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point. The center of the cyclone is taken from IMD best track data. A bounding box is then created
with dimensions of approximately 7.5 degrees apart from the center, which is similar to the cyclone
crop dimensions. This translates to approximately 437 and 398 pixel values for the height and width
respectively of the bounding box. The coordinates of the bounding box, including its lower left
corner, height, and width, are exported in COCO format to a JSON file for the object detection task.

(a) 1 December 2020 (b) 8 November 2019 (c) 10 October 2014

Figure 2: Full infrared satellite images during cyclone period without crop

(a) 1 December 2020 (b) 8 November 2019 (c) 10 October 2014

Figure 3: Cropped cyclone images

3.3 INTERPOLATION OF LABELS IN THE INCYDE DATASET

The INSAT 3D/3DR satellite images are in the interval of 30/15 minutes but the IMD best track data
is the interval of 6 hours. So, in order to efficiently use all the infrared satellite imagery available
for a particular cyclone, it is imperative to use satellite images with timestamps lying in between
consecutive best-track data labels. We used interpolation to generate more labels from existing
labels for the satellite images. Figure 4 shows the process of interpolation of labels. First, the
stepsize is calculated using two consecutive rows in the best track data for latitude, longitude, and
MSWS fields. The stepsize is then added to the original row of best track data in multiples of the
number of steps in between two consecutive timestamps. The process is then continued for the entire
best track data to generate over 20k labels from existing 4k labels.

3.4 DATASET AUGMENTATION

Augmentation has been used to increase the size of the dataset. We have used openCV Bradski
(2000) and PIL Clark (2015) libraries to augment the images. Figure 5 shows augmented satellite
images for cyclone detection in the proposed INCYDE dataset. We have performed 90◦ rotation,
180◦ rotation and 270◦ rotation. Using these augmentations the resulting dataset size increased from
21k images to over 68k images. Similarly, the dataset was also augmented for the cyclone intensity
estimation task using the same augmentations.

3.5 DATASET SPLIT

The dataset has been split into training, validation, and testing sets based on sequences of cyclones
in the dataset. Every storm was given a unique ID and the highest grade it reached. According to the
highest wind speed recorded, the cyclone sequences were assigned classes based on the IMD best
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Figure 4: Process of generating new labels through interpolation of existing labels

(a) Original (b) Rotation 90 (c) Rotation 180 (d) Rotation 180

Figure 5: Augmented infrared satellites images for the INCYDE dataset with the bounding box for
the cyclone in the image

track cyclone classification IMD (2022). The dataset was divided to ensure equal representation
of the different classes of cyclone storms, for instance, for the highest class of cyclone i.e., Super
Cyclonic Storm (SuCS), there were only 4 cyclone storm sequences in the combined dataset, the split
was made in such a way that the final training set contains 2 SuCS sequences, validation, and testing
sets get 1 SuCS sequence each. The rest of the dataset was split into the train, test, and validation
sets by randomly sampling 70% of the sequences into the train, 15 % into the test, and 15% into
the validation set grouped by different classes. To avoid data leakage in the dataset, it was crucial
to split the data in a way that ensures an image from one sequence is not included in more than one
set, given the fact that consecutive images in a sequence are highly similar. The split was performed
in this way so as to create completely unseen sets for test and validation set as consecutive images
in a sequence of a cyclone have very similar images and thus randomly sampling all the images in a
naive approach would result in data leakage. The final split resulted in 16k training set images, 2.5k
test set images, and 2.39k validation set images before augmenting the training dataset.

4 DATASET STATISTICS

This section presents some statistics about the proposed INCYDE dataset. Figure 6 shows the his-
togram of mean sustained wind speed (MSWS) which is a metric for cyclone intensity in nautical
miles per hour (knots) for the proposed INCYDE dataset and other datasets for cyclone intensity
estimation as found in the literature. It can be observed in the figure that a lot of images have cy-
clones with speeds around 20-40 knots and very less images have cyclone intensity higher than 100
knots and it is consistent across all datasets for cyclone intensity estimation. It is in line with the
fact that in the entire lifecycle of a cyclone, for most of the part, the cyclone has speeds in the range
of 20 to 40 knots, and for very little time the cyclone actually achieves the highest MSWS at its
peak. Detection and intensity estimation of cyclones during the first phase is crucial for building a
robust early warning system for cyclone prediction as during the initial phases, the cyclone has not
yet formed spiral-like cloud patterns that are associated with cyclonic storms.
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Table 1 shows the size of the proposed INCYDE dataset in comparison to other (SOTA) cyclone
intensity estimation datasets. It can be observed that our proposed INCYDE dataset has a higher
number of images in the training dataset and the overall number of images are comparable to Maskey
et al. In this table, we have also shown the number of images for the cyclone detection dataset. There
is a slight difference between the number of images in cyclone detection and intensity estimation
datasets as in some satellite images multiple cyclones have appeared at a single timestamp that
resulted in 1 image for cyclone detection corresponding to multiple cropped images for cyclone
intensity estimation. It can also be observed that our proposed dataset has a higher image size as
we did not downsample the original image to preserve the finer details that would help develop
better models for cyclone detection and intensity estimation. All of the cyclone intensity estimation
datasets use infrared (IR) satellite images. Our dataset surpasses prior works by expanding the
geographical coverage of existing datasets in this field and providing high-resolution satellite images
without downsampling. It also includes a cyclone detection dataset in COCO format, making it a
valuable resource for researchers in the field.

5 EXPERIMENTS

Along with the dataset, several baseline models have been trained on the proposed dataset for both
cyclone detection and cyclone intensity estimation task. For object detection, YOLOv5Jocher &
et al. (2021), EfficientDetTan et al. (2020), Faster RCNNRen et al. (2015) have been trained as
baselines. YOLOv5Jocher & et al. (2021) is an efficient single-stage anchor-based object detector
that uses a feature pyramid network PANet as the backbone. Faster-RCNN Ren et al. (2015) is
a two-stage object detector that uses a region proposal network in first stage to find the region of
interest, and in the second stage, it performs object detection in order to be more accurate. Effi-
cientDet Tan et al. (2020) is another one-stage anchor-based object detector developed on top of
efficient net Tan & Le (2019) backbone. For cyclone intensity estimation, ResNet He et al. (2015),
Inception-V3 Szegedy et al. (2015b), EfficientNet Tan & Le (2019), DenseNet-121 Huang et al.
(2017), MobileNet-V2 Sandler et al. (2018) with modified prediction heads to output a single value
for intensity estimation are trained on the INCYDE dataset.

Table 1: Cyclone intensity estimation dataset sizes and statistics

Dataset Train Test Validation Image Size Total Frames IR Band
Maskey et al. (2020) 70258 44378 – 366 x 366 114636 IR
TCIR Chen et al. (2018) 70501 – – 201 x 201 70501 IR/PMW
INCYDE 65644 2503 2399 398 x 437 68912 TIR
(Intensity Estimation)
INCYDE 64152 2503 2399 1618 x 1616 67420 TIR
(Cyclone Detection)

5.1 EVALUATION METRICS

In this work, the proposed dataset uses root mean square error (RMSE) as the evaluation metric for
the cyclone intensity estimation task and mean average precision (mAP) as the evaluation metric for

(a) Proposed INCYDE dataset (b) Maskey et al. (c) TCIR dataset

Figure 6: Histogram of mean sustained wind speeds in knots for various cyclone intensity estimation
datasets in literature
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the cyclone detection task. RMSE as the name implies is calculated by taking the square root of
the mean of the squared differences between the predicted values and the actual observed values.
RMSE is calculated using the following formula:

RMSE =
√
Σ(pr − ob)2

where, pr = predicted value and, ob = observed value

Mean average precision (mAP) is a common metric used to evaluate the performance of object
detection models. The mAP is calculated by first determining the precision and recall for each class
in the dataset. Precision measures the accuracy of the model in identifying true positives, while
recall measures the completeness of the model in identifying all positives. For object detection, the
true positive is calculated using Intersection over Union (IoU) of bounding boxes of predicted and
ground truth bounding boxes. The precision and recall values are then used to calculate the Average
Precision (AP) for each class. AP is the area under the precision-recall curve for each class. The
mAP is then calculated as the average of the AP values across all classes. This provides an overall
measure of the model’s performance.

5.2 RESULTS AND DISCUSSIONS

For baseline models, a few algorithms were trained on the proposed dataset for cyclone detection
as well as intensity estimation tasks. The trained models with their respective accuracy metrics are
shown below. The models were trained on a subset of the entire INCYDE, specifically, these models
were trained only on the dataset without augmented images as the size of the augmented dataset
makes it impossible to train the baseline models in reasonable time with limited resources, so we
have kept the task of training the baseline models on an augmented dataset for future work. For
cyclone detection, i.e., an object detection task, the mean average precision (mAP) metric is used
while for intensity estimation, i.e., a regression task, root mean squared error (RMSE) is used to
report the results.

Table 2 shows the mean average precision (mAP) of YOLOv5, Faster-RCNN, and EfficientDet on
the proposed dataset along with a YOLOv5 model trained on the augmented INCYDE dataset. It can
be observed that the mAP of SOTA object detectors hovers around 40-63 mAP on the validation set
which acts as a solid baseline for future work. In our study, we found out that the models trained on
the dataset without augmentation performed well on non-augmented images but performed poorly
on augmented images, while the YOLOv5 trained on augmented INCYDE dataset dropped in terms
of mAP as compared to YOLOv5 trained on non-augmented INCYDE dataset but the YOLOv5-
Aug, when used to inference on the augmented dataset, performed much better implying the use of
augmentation in the proposed INCYDE dataset actually helped train a better generalizable model.
Figure 7 shows the inference of YOLOv5 trained on the INCYDE dataset with augmentation, it
can be observed that the model is able to detect cyclones anywhere in the image, implying better
generalization ability.

Table 3 shows the RMSE of ResNet-18, Inception-v3, EfficientNet, DenseNet-121, and MobileNet
V2 trained on the proposed dataset. In table 3, it can be observed that the best RMSE achieved
was with MobileNet-V2 at 15.44 knots RMSE which acts as a solid baseline for future work. The
RMSE of MobileNet-v2 on the proposed INCYDE dataset is comparable to baseline models on other
related datasets that hover around 13 knots. Maskey et al. (2020) were able to achieve an RMSE of

(a) Original (b) Rotation 90 (c) Rotation 180 (d) Rotation 180

Figure 7: YOLOv5 trained on augmented INCYDE dataset inferred on satellite infrared images
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13.24 knots, and Chen et al. (2018) were able to achieve an RMSE of 10.6 knots. However, direct
comparison of baseline models trained on different datasets is not appropriate, but it does provide a
benchmark to compare against.

Table 2: Summary of baseline models for object detection

Model Name Validation mAP Epochs
YOLOv5 Jocher & et al. (2021) 63.35 20
Faster Ren et al. (2015) RCNN 48.5 20
EfficientDet Tan et al. (2020) 40.5 20
YOLOv5-Aug Jocher & et al. (2021) 42.37 20

Table 3: Summary of baseline models for intensity estimation

Model Name RMSE Test (knots) Epoch
Resnet-18 He et al. (2015) 18.78 60
Inception-v3 Szegedy et al. (2015a;b) 18.28 60
EfficientNet Tan & Le (2019) 15.28 13
DenseNet-121 Huang et al. (2017) 15.55 60
MobileNet V2 Sandler et al. (2018) 15.44 60

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, a novel dataset has been presented for cyclone intensity estimation and cyclone detec-
tion. The dataset contains INSAT 3D/3DR thermal infrared satellite images since the year 2013 to
2021. The proposed INCYDE dataset is curated using a series of steps involving data collection,
data cleaning, label interpolation, data augmentation, and data split. A few SOTA object detection
algorithms are trained on the proposed INCYDE dataset to act as baselines. A few modified deep
CNN models are also trained on the proposed INCYDE dataset for cyclone intensity estimation to
act as baselines for cyclone intensity estimation. The INCYDE dataset contains over 21k images of
cyclones with their annotations (68k with augmentations) in bounding box configuration for object
detection in COCO format as well as for single-valued intensity estimation tasks in a CSV format.
The dataset is comparable to other cyclone intensity estimation datasets in the literature. The IN-
CYDE dataset would help researchers develop SOTA models for cyclone detection and intensity
estimation using innovative techniques which in turn would be used as an early warning system for
cyclones.

In the future, there lies potential in investigating the influence of diverse augmentation techniques
on the efficiency of cyclone intensity estimation models. Additionally, our dataset’s inclusion of
temporal information about cyclones opens avenues for delving into the realm of time series mod-
eling. The temporal information also opens up avenues for cyclone track prediction using satellite
imagery. This direction holds promise for deeper insights into cyclone behavior over time. Further-
more, given the dataset’s dual offering of both cyclone detection and intensity estimation datasets,
there exists an opportunity to explore a unified approach. This entails venturing into a one-stage
integrated solution for cyclone detection and intensity estimation. Such an exploration could pave
the way for a more comprehensive analysis. Since the dataset pertains to one geographical region, it
would be interesting to investigate the performance of a model on a geographical region that is dif-
ferent than the one the model was trained on. These potential avenues for future research highlight
the dynamic nature of our dataset’s applications and its capacity to drive innovative advancements
in cyclone analysis.
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