
Beating LM-cut with LM-cut:
Quick Cutting and Practical Tie Breaking for the Precondition Choice Function

Pascal Lauer and Maximilian Fickert
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

s8palaue@stud.uni-saarland.de, fickert@cs.uni-saarland.de

Abstract
LM-cut is one of the most popular heuristics in optimal plan-
ning that computes strong admissible estimates of the per-
fect delete relaxation heuristic h+. The heuristic iteratively
computes disjunctive action landmarks for the current state,
reducing their action costs until no more landmarks with re-
maining action costs can be found. These landmarks are gen-
erated by finding cuts in the justification graph, which de-
pends on a precondition choice function mapping each action
to its most expensive precondition according to hmax. This
precondition is not necessarily unique, yet the performance
of the heuristic heavily depends on this choice. We introduce
and analyze several new tie breaking strategies for the pre-
condition choice function, and evaluate their effectiveness on
the IPC benchmarks. Furthermore, we suggest a modification
to the computation of the cut, which trades a negligible loss
in heuristic accuracy for a significant speedup of the LM-cut
computation.

Introduction
In optimal classical planning, strong admissible heuristics
are desired to find solutions through heuristic search. One
such heuristic is the landmarks cut heuristic hLM-cut (Helmert
and Domshlak 2009), which provides high-quality estimates
of the perfect delete relaxation heuristic h+. While LM-cut
has been surpassed by recent advancements on abstraction
heuristics and cost partitionings (e.g. Franco et al. 2017;
Seipp and Helmert 2018; Seipp, Keller, and Helmert 2020),
it remains a popular heuristic that does not require any pre-
computation before search.

LM-cut is defined by iteratively computing hmax (Bonet
and Geffner 2001), finding a disjunctive action landmark,
and reducing the cost of these actions until the hmax-value
becomes zero. A precondition choice function (pcf) maps
each action to a precondition with maximal hmax-value. The
pcf defines the hmax justification graph, where the facts of
the task form the vertices and there are edges from the pre-
condition returned by the pcf to each effect of an action. A
disjunctive action landmark is constructed by computing a
cut in the graph through actions leading into the zero-cost
goal zone (nodes from which the goal can be reached with a
zero-cost path), and the cost of these actions are reduced by
the minimal action cost in that landmark.

Bonet and Helmert (2010) have shown that the heuris-
tic is equal to h+ if the landmarks are computed via hit-

ting sets. They implemented variants of the heuristic us-
ing polynomial-time approximations of the hitting set and
showed that this approach does improve the accuracy of the
heuristic, but the improvement is outweighed by the added
computational overhead.

However, there is also some room to make LM-cut more
accurate without changing the algorithm: There can be mul-
tiple preconditions with the same (maximal) hmax-value (in
particular after the first few iterations when several actions
have reduced costs), and their tie breaking is left unspec-
ified. This detail has been mostly neglected in the litera-
ture, but as we demonstrate in our experiments, the per-
formance of the heuristic varies a lot depending on the tie
breaking strategy. Bonet et al. (Bonet and Helmert 2010;
Bonet and Castillo 2011) introduced a variant with random
tie breaking, where the heuristic is computed multiple times
in each state and the maximum heuristic value is used. While
the estimates of the heuristic values improve, requiring re-
peated computation of the heuristic diminishes its practical
use. We explore several new tie breaking strategies that aim
to improve the heuristic by generating more effective land-
marks.

LM-cut provides accurate admissible estimates, but is
expensive to calculate. Pommerening and Helmert (2012;
2013) show that the computational effort can be reduced
through incremental computation, by caching landmarks
and re-using them for the successor states. We introduce
a new idea to speed up the LM-cut computation, by com-
puting the cuts in the justification graph in a simplified and
faster way. While this can lead to overapproximated cuts and
make the heuristic less informed, this drawback is greatly
outweighed by the improved computation speed.

We first summarize the general planning background and
recapitulate the details of the LM-cut algorithm. Next, we
describe and evaluate our optimization to the computation of
the cuts. Finally, we introduce our new tie breaking strate-
gies for the precondition choice function, explain the intu-
ition behind them, and analyze their effectiveness with an
empirical evaluation on the IPC benchmarks.

Background
We first introduce the necessary background and notations,
before reviewing the details of the LM-cut algorithm.

Preliminaries
We consider classical planning using the STRIPS represen-
tation with action costs (Fikes and Nilsson 1971). A plan-
ning task is a 5-tuple Π = (F ,A, c, I,G), where

• F is a finite set of facts,

• A is a set of actions, each a ∈ A is a triple of fact sets
preconditions (prea), add effects (adda), and delete effects
(dela) with adda ∩ dela = ∅,

• c is a cost function A 7→ R+
0 ,

• I ⊆ F is the initial state,

• G ⊆ F are the goal facts.

A state s ⊆ F is a set of facts. An action a ∈ A is applicable
in a state s if prea ⊆ s, and applying a in s leads to the state
sJaK := (s \ dela) ∪ adda. A plan for s is a successively
applicable action sequence leading from s to a goal state
s∗ ⊇ G, and is called optimal if it has minimal cost among
all plans for s. A plan for Π is a plan for its initial state I.

The set of all states is denoted by S. A heuristic function
(short heuristic) h : S 7→ R+

0 ∪ ∞ estimates the cost of a
plan for a state. The perfect heuristic h∗ returns the cost of
an optimal plan. A heuristic h is called admissible if h(s) ≤
h∗(s) for all s ∈ S, and A∗ (Hart, Nilsson, and Raphael
1968) is guaranteed to find optimal solutions when using an
admissible heuristic.

LM-cut
LM-cut (Helmert and Domshlak 2009) is based on an itera-
tive computation of (action) landmarks. A disjunctive action
landmark is a set of actions L, such that every plan must
include at least one action from L. In the following, we as-
sume that I = {i}, G = {g}, and |prea| ≥ 1 for all actions
a ∈ A (this can be achieved with simple transformations).
The heuristic is computed in an iterative procedure, where
each iteration performs the following steps:

1. Compute hmax (Bonet and Geffner 2001) for all facts. If
hmax(g) = ∞, return∞. If hmax(g) = 0, return the com-
puted heuristic value.

2. Define a precondition choice function (pcf), mapping each
action to a precondition with maximal hmax-value.

3. Construct the justification graph. The facts F of the plan-
ning task are the vertices of the graph, and there is an arc
from the precondition chosen by the pcf to each of its add
effects for all actions. The arc is labeled with the action.

4. Partition the vertices into three sets: (a) the 0-cost goal
zone V ∗, containing all facts from which g is reachable
with a 0-cost path, (b) the before-goal zone V 0, contain-
ing all facts reachable from i without passing through a
node in V ∗, and (c) all other vertices V b. The labels of
the arcs leading from V 0 into V ∗ define a disjunctive ac-
tion landmark L.

5. Reduce the cost of actions in L by cmin = mina∈L c(a),
and add cmin to the heuristic value (which starts at 0).

After the computation of the heuristic, the action costs are
reset to their original values.

i g

F1

F2

1

0

0

1

Figure 1: Example justification graph. A minimal cut only
contains the action leading from i to F1.

Our work addresses two aspects of LM-cut. In the next
section, we describe a faster method to compute the cut
(step 4). Afterwards, we introduce and evaluate tie breaking
strategies for the precondition choice function (step 2).

Quick Cutting
In each iteration of LM-cut, the justification graph is built
during the computation of hmax: whenever a fact is assigned
its final hmax-value, (one of) its most expensive precondi-
tions is stored as the predecessor in the justification graph.
Afterwards, the zero-cost goal zone V ∗ is constructed using
a backwards exploration from g considering only edges with
cost 0. Finding the before-goal zone V 0 requires a separate
forward exploration from i considering only arcs that do not
lead into V ∗, to ensure that all vertices found by this proce-
dure are reachable without passing through V ∗.

We suggest to skip the forward exploration phase, and in-
stead just consider all non-zero cost arcs that lead from a
vertex not in V ∗ to a vertex in V ∗ for the cut. These arcs can
easily be identified at the end of the backward exploration
phase, and iterating over those is generally much cheaper
than the forward exploration. However, this strategy may
overapproximate the cut, as for some of the actions in the
cut, the precondition selected by the pcf may not be reach-
able from i without passing through the zero-cost zone.

Consider the example justification graph in Figure 1. The
graph can be partitioned into V ∗ = {g, F1}, V 0 = {i}, and
V b = {F2}. According to the original algorithm, this would
result in the cut containing only the arc from i to F1, whereas
with our method, the cut would additionally include the one
from F2 to g. In this example, the heuristic value would not
be affected, but the heuristic value can potentially change if
the additional action would otherwise be included in a cut in
a later iteration of the LM-cut computation.

Note that, since our computation of the cut always con-
tains the cut as computed by the original algorithm (but
may potentially include more actions), it is still a disjunc-
tive action landmark, and does not affect the properties of
the heuristic (in particular admissibility).

Tie Breaking Strategies for LM-cut
The precondition choice function maps actions to a precon-
dition with maximal hmax-value, but in many cases there
are multiple such preconditions which leaves room for tie
breaking. Consider the justification graph shown in Figure 2.
The action achieving g has three preconditions with maxi-
mal hmax-values: v1, v2, or v3 (indicated by the dashed ar-
rows). If v3 is selected by the precondition choice function,

gi

v0 v1 v2 v3
0

01

10
0

Figure 2: Example justification graph. The precondition
choice function for the action achieving g can select any of
v1, v2, or v3.

then the cut will contain both remaining actions with cost
one, and the computation will terminate. However, if v1 or
v2 is selected, the cut only contains one of these actions,
and an additional cut can be made afterwards, increasing the
heuristic value. The example is inspired by the VisitAll do-
main, where a perfect tie breaking strategy will only select
actions leading to a single location for the cut in each it-
eration (making hLM-cut = h+). Different tie breaking may
result in significantly larger cuts (and thus smaller heuristic
values), and similar cases where tie breaking is important
appear on most other domains as well.

In the following, we first explain how tie breaking is ap-
plied in detail, and then introduce several tie breaking strate-
gies that aim to improve the heuristic.

Tie Breaking in LM-cut
The pseudo code of the computation of the cut is shown in
Algorithm 1. This shows our quick cutting method which
only performs the backwards exploration from the goal; the
original computation of the cut would perform the forward
exploration afterwards to compute V 0, and would return
{a ∈ Discovered | pcf (a) ∈ V 0} instead.

It is important to note that for an action a, the tie breaking
of the precondition choice function is only applied the first
time pcf (a) is evaluated — all subsequent calls to pcf (a)
will return the same selected precondition. Furthermore, at
the time of the tie breaking, only a fragment of the final zero-
cost goal zone V ∗ is known.

Our tie breaking methods aim to reduce the size of the
cuts, i.e., generating smaller disjunctive action landmarks in

Algorithm 1: L computation
1 V ∗ ← {g}, Explored← ∅, Discovered← ∅
2 while Explored 6= V ∗ do
3 select f ∈ V ∗ \ Explored
4 Explored← Explored ∪ {f}
5 for each a ∈ A with f ∈ effa and

hmax(p) <∞ for all p ∈ prea do
6 if c(a) = 0 then
7 V ∗ ← V ∗ ∪ {pcf (a)}
8 else
9 Discovered← Discovered ∪ {a}

10 return {a ∈ Discovered | pcf (a) /∈ V ∗}

step 4 of each LM-cut iteration. While this does not guaran-
tee that the heuristic values will improve, it is reasonable to
assume that reducing the cost of fewer actions will result in
more cuts being made before hmax evaluates to zero.

In the following, we refer to the precondition selected by
pcf (a) as the supporter of a. We call an action a an achiever
of a fact f if f ∈ effa. Our first tie breaking strategies aim
to reduce the size of V ∗, with the assumption that this leads
to fewer actions pointing into V ∗ and thereby smaller cuts.

V∗ Detection (GZD) Prefer a precondition that is already
in the zero-cost goal zone V ∗. If such a precondition exists,
then choosing it as the supporter can not increase V ∗. Note
that any further tie breaking among multiple potential sup-
porters that are already in V ∗ has no effect.

Border Detection (BD) Prefer a precondition that has no
zero-cost achievers. If such a supporter is selected, the zero-
cost goal zone will not expand beyond that fact, as there are
no further zero-cost actions to choose from. In our motiva-
tional example (Figure 2), this strategy would prefer v1 and
v2 over v3 as intended, minimizing V ∗.

Zero-Cost Achievers (ZCA) Prefer a precondition with a
minimal number of zero-cost achievers. This strategy is an
extension of the previous one (BD), but imposes a ranking
to the potential supporters if there is no precondition with-
out zero-cost achievers. The idea is again to approximate
how many additional facts may be added to V ∗ when recur-
sively exploring the supporter. However, some of the zero-
cost achievers may originate from other facts already in V ∗,
and these achievers would be beneficial in keeping V ∗ small,
so this approximation may not always be accurate.

Value Decrease Minimization (VDM) Prefer a precon-
dition of which the hmax-value since the first iteration de-
creased the least. While the previous two strategies aim to
reduce the breadth of the backward exploration beyond the
supporter, this strategy aims to reduce the depth. If the hmax-
value of the precondition p is close to its value from the first
iteration, then there should not be many zero-cost actions in
the justification graph between i and p. In our example (Fig-
ure 2), assuming that the actions leading from v1 to v3 and
v2 to v3 initially had a cost of 1, then this strategy would
also prefer v1 or v2 over v3.

Zero-Cost Path (ZCP) Prefer a precondition p that min-
imizes the number of zero-cost actions on a path from i to
p. Note that when the precondition choice function is called,
the justification graph is still being constructed backwards
from the goal so we do not know the structure of the graph
between i and p. Therefore, we partially re-use the justifica-
tion graph from the previous iteration. More specifically, we
keep track of the path information for each fact during the
hmax computation: When the hmax-value of a fact is set, we
consider the justification graph from the previous LM-cut
iteration including the incremental updates (with arbitrary
tie breaking) of the current hmax computation so far. For the
evaluation of the precondition choice function, we then se-
lect the candidate with the fewest zero-cost actions on its
path. Like VDM, this strategy aims to reduce the depth of the

10−1 100 101 102 103 104 105 106 107
10−1

100

101

102

103

104

105

106

107

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

101 102 103 104 105

101

102

103

104

105

Figure 3: Number of expansions before the last f -layer (left), initial heuristic value (middle), and evaluations per second (right)
for original (x-axis) vs. quick (y-axis) cutting. Expansions and evaluations per second are shown for commonly solved instances,
and instances with a search time of less than 0.01 seconds are excluded for the latter to reduce noise.

backward exploration by reducing the number of zero-cost
actions between this precondition and i, but uses a different
approximation.

Achiever Minimization (AM) Prefer a precondition that
has a minimal number of achievers with reachable precondi-
tions under hmax. Each achiever of a fact f adds an incoming
arc to the corresponding node in the justification graph. Pre-
ferring preconditions with fewer achievers leads to fewer it-
erations in the backwards exploration (Algorithm 1, line 5).
Thus, we can expect V ∗ and Discovered to stay smaller,
which should lead to fewer actions in the cut.

Experiments
We implemented our techniques in Fast Downward (Helmert
2006), on top of the existing implementation of LM-cut. For
our evaluation, we include all solvable instances from the
optimal tracks of the IPCs up to 2018 that do not have con-
ditional effects or axioms, resulting in a total of 1672 unique
instances from 48 domains. The experiments were run using
the Lab framework (Seipp et al. 2017) on a cluster of ma-
chines with Intel Xeon E5-2660 CPUs with a clock rate of
2.2 GHz. LM-cut is run in A∗ with time and memory lim-
its of 30 minutes and 4 GB respectively. We first assess the
impact of our alternative computation of the cut, before eval-
uating our new tie breaking strategies.

Quick Cutting
Our new method of computing the cut should improve the
computational efficiency of the heuristic, but at a potential
loss of informativeness.

The left plot of Figure 3 shows a comparison of the num-
ber of expansions to the last f -layer between the two meth-
ods of computing the cut. Across all commonly solved in-
stances, our method of computing the cut leads to 6.6% more
expansions on average. The domains where expansions in-
crease the most are VisitAll (+70%), Sokoban (+40%), and
Depot (+23%), though the increase is typically low (less
than 1% on most domains). The initial heuristic value does

not decrease in 1396 of the 1672 instances (see the middle
plot of Figure 3).

On the other hand, we obtain a huge speed-up in the com-
putation of the heuristic as shown in the right plot of Fig-
ure 3. On average, with our method we can achieve 91%
more heuristic evaluations per second (up to 586% in Mi-
conic), which more than makes up for the comparatively
small loss in informativeness. This leads to a decreased
search time across almost all domains, and we are able to
solve 28 more instances (856 vs. 828) on our benchmark
set (the most significant gains are +4 in Parking and +3 in
Floortile).

The single exception is Organic Synthesis (split). Since
quick cutting overapproximates the cuts which leads to more
actions having their cost reduced, intuitively, one would ex-
pect that this should lead to fewer iterations of hmax per com-
putation of hLM-cut on average. However, this is not always
the case, as demonstrated by the following example. Assume
there are two actions a1 and a2 with cost 2, which, using the
original cutting, would be included in a cut at some point,
having both of their costs reduced by 2. If instead a2 was
included in an earlier (overapproximated) cut which only re-
duced its cost by 1, then reducing both a1 and a2 to 0 may
now require two cuts (first decreasing a1 and a2 by 1, and
then reducing only a2 by 1). Such cases appear frequently
in Organic Synthesis. While the resulting heuristic value is
typically not affected, it can significantly diminish the com-
putational advantage of our cutting method. The coverage
on Organic Synthesis does not decrease, but the number of
evaluations per second drops by 18%, increasing the search
time by 24% on average.

Tie Breaking Strategies
Table 1 shows the coverage of LM-cut with several tie break-
ing strategies. All configurations use our new method of
computing the cuts (we also ran the experiments with the
original cutting which exhibited a similar relative perfor-
mance of the different tie breaking strategies). As baselines,
we consider the (arbitrary) tie breaking employed by the cur-

Coverage arb inv rnd GZD BD ZCA VDM ZCP AM GZD+BD Scorpion
Airport (50) 28 27 23 29 27 28 24 24 27 28 29
Blocks (35) 28 27 28 28 28 28 28 28 28 28 28
DataNetwork (20) 12 12 12 13 12 12 12 12 12 13 14
Depot (22) 7 7 7 7 7 7 7 7 7 10 13
DriverLog (20) 13 14 13 14 13 13 13 13 13 13 15
Elevators (30) 22 22 20 22 22 22 22 22 22 22 24
Freecell (80) 15 15 15 24 16 12 15 15 21 33 64
Grid (5) 2 2 1 2 2 2 2 2 2 2 3
Hiking (20) 10 10 9 10 9 8 9 9 10 9 14
Logistics (63) 27 27 25 27 25 25 25 25 25 27 34
Mprime (35) 23 25 22 23 23 23 22 22 25 24 31
Mystery (19) 16 17 15 17 17 17 17 17 17 17 19
Nomystery (20) 16 16 14 17 15 14 18 18 16 18 20
Openstacks (80) 31 31 31 31 31 30 31 31 31 31 34
OrgSynth-split (20) 15 15 14 15 14 10 15 15 15 15 10
Parcprinter (30) 19 22 19 22 19 19 22 22 18 20 30
Parking (40) 9 9 6 9 10 10 12 12 8 13 13
Pegsol (36) 35 34 33 35 34 34 35 34 34 35 35
Pipes-notank (50) 18 18 17 18 17 17 18 18 17 18 25
Pipes-tank (50) 12 12 10 12 11 9 12 12 12 12 18
PNetAlignment (20) 9 9 7 9 9 9 9 9 9 9 0
Rovers (40) 9 11 9 9 9 9 9 9 9 9 9
Satellite (36) 8 12 7 8 14 13 15 15 10 14 8
Scanalyzer (30) 16 16 16 16 15 14 16 16 16 16 18
Snake (20) 6 6 4 6 4 4 6 6 6 7 13
Sokoban (30) 30 29 30 30 30 30 30 30 30 30 30
Spider (20) 11 11 9 12 11 9 11 11 10 12 15
Termes (20) 7 6 6 7 6 6 7 7 6 7 13
Tidybot (40) 23 22 20 23 20 15 22 22 22 23 22
VisitAll (40) 16 15 17 15 36 36 36 36 14 36 30
Woodworking (30) 19 22 19 19 20 22 20 20 22 20 30
Zenotravel (20) 13 13 12 13 12 12 13 13 13 12 13
Others (601) 331 331 331 331 331 331 331 331 331 331 346
Sum (1672) 856 865 821 873 869 850 884 883 858 914 1020

Table 1: Coverage for LM-cut with different tie breaking methods. Domains where coverage across tie breaking methods does
not change are grouped to “Others”.

rent implementation of Fast Downward (“arb”)1, its inverse
(“inv”), and random tie breaking (“rnd”). The results for ran-
dom tie breaking are averaged and rounded over 5 random
seeds, though there is very little variance (coverage changes
across different seeds on only 4 instances, and overall cov-
erage was always between 820 and 822). We include results
for all our tie breaking strategies as well as selected com-
binations thereof. Furthermore, we added Scorpion (Seipp
2018)2 as a representative of the state of the art.

This first thing to note is that the performance of LM-cut
is heavily dependent on the tie breaking strategy, as the over-
all coverage ranges from 821 (with random tie breaking) to
914 (with one of our combined methods). The biggest differ-

1While there is no explicit tie breaking, typically the first one
according to Fast Downward’s variable ordering is selected.

2We disabled the h2 preprocessor (Alcázar and Torralba 2015)
to make it more comparable to our planner which is not using it.

ences can be seen in Freecell and VisitAll: depending on the
tie breaking, the initial heuristic value can change by over
a factor of 3 (Freecell) respectively 5 (VisitAll), and cover-
age ranges from 12 to 33 respectively 14 to 36. Most of our
introduced strategies outperform the baselines, and random
tie breaking is particularly bad across most domains. Four of
our tie breaking strategies (BD, ZCA, VDM, and ZCP) lead
to significant gains on VisitAll (and similarly on Satellite),
as these strategies effectively solve the issue described in our
corresponding example (Figure 2). In Freecell on the other
hand, our other two strategies (GZD and AM) work best,
increasing coverage by 9 respectively 6 over the baselines.

Combined Tie Breaking Strategies In case of remaining
ties, multiple tie breaking strategies can be used in sequence
to break the remaining ties. In preliminary experiments, we
had most success with combining tie breaking strategies that
complement each other. For example, using any other strat-

100 102 104 106

100

102

104

106

un
s.

unsolved

Original Tie Breaking

G
Z

D
+B

D

Figure 4: Number of expansions before the last f -layer for
GZD+BD and original tie breaking.

egy after GZD or BD worked really well, as both strategies
seem to make good tie breaking choices if their criterion ap-
plies, but yield no further information in case such a precon-
dition does not exist. In that case, using a different strategy
provides additional information on top, improving the per-
formance of the heuristic. In contrast, VDM and ZCP both
aim to reduce the depth of the backward exploration, and
combining them had little effect.

The best configuration we have found so far prefers sup-
porters that are already in V ∗, and breaks the remaining ties
according to BD (GZD+BD). This configuration retains the
good performance on VisitAll, and further improves results
on Freecell (+9 coverage compared to the best individual
tie breaking method), Depot (+3), Parking (+1), and Snake
(+1). Compared to the original tie breaking, coverage in-
creases in 13 domains and decreases in only 2, solving 58
more instances overall. The number of expansions to the last
f -layer decreases significantly (see Figure 4), sometimes by
several orders of magnitude.

Compared to Scorpion, LM-cut is still worse on most do-
mains. However, on Organic Synthesis (split) and Petri Net
Alignment, the previous implementation of LM-cut already
beat Scorpion; and with our improvements, LM-cut pulls
ahead also in Sattelite (+7 coverage), VisitAll (+6), Rovers
(+2), Tidybot (+1), and Miconic (+1).

Conclusion
In this work, we introduced an optimization to LM-cut ad-
dressing the computation of the cut in the justification graph,
and introduced and evaluated an extensive set of tie break-
ing strategies for the precondition choice function. Both con-
tributions significantly improve the performance of LM-cut
on the IPC benchmarks: our best performing configuration
beats the previous implementation by 914 vs. 828 solved in-
stances, increasing coverage by 86 using the same heuristic
and search engine.

For future work, we want to explore additional tie break-
ing strategies, in particular ones that consider which actions
should be included in the cut. Our current strategies only
aim to include as few actions in the cut as possible, how-
ever, there may be cases where cutting more actions may
be preferable (for example, if there is a single action that, if
cut, enables a zero-cost path to the goal, but multiple other
actions could be cut instead without enabling such a path).

Additionally, we want to analyze the combinations of
multiple tie breaking strategies in more depth. In prelimi-
nary experiments, we had some good results, yet some com-
binations had surprisingly adverse effects on performance.
Understanding the cause of these effects may allow us to
combine our methods more effectively, and find combina-
tions that may further improve the heuristic.

Furthermore, our methods seem complementary to incre-
mental computation of LM-cut (Pommerening and Helmert
2013), and could be easily combined. This should further
boost the performance of the heuristic, and make it more
competitive with the state of the art.

Acknowledgments
Maximilian Fickert was funded by DFG grant 389792660
as part of TRR 248 – CPEC (see https://perspicuous-
computing.science).

References
[Alcázar and Torralba 2015] Alcázar, V., and Torralba, Á.

2015. A reminder about the importance of computing and
exploiting invariants in planning. In Brafman, R.; Domsh-
lak, C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of
the 25th International Conference on Automated Planning
and Scheduling (ICAPS’15), 2–6. AAAI Press.

[Bonet and Castillo 2011] Bonet, B., and Castillo, J. 2011. A
complete algorithm for generating landmarks. In Bacchus,
F.; Domshlak, C.; Edelkamp, S.; and Helmert, M., eds., Pro-
ceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS’11). AAAI Press.

[Bonet and Geffner 2001] Bonet, B., and Geffner, H. 2001.
Planning as heuristic search. Artificial Intelligence 129(1–
2):5–33.

[Bonet and Helmert 2010] Bonet, B., and Helmert, M. 2010.
Strengthening landmark heuristics via hitting sets. In
Coelho, H.; Studer, R.; and Wooldridge, M., eds., Proceed-
ings of the 19th European Conference on Artificial Intelli-
gence (ECAI’10), 329–334. Lisbon, Portugal: IOS Press.

[Fikes and Nilsson 1971] Fikes, R. E., and Nilsson, N. 1971.
STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2:189–
208.

[Franco et al. 2017] Franco, S.; Torralba, A.; Lelis, L. H.;
and Barley, M. 2017. On creating complementary pattern
databases. In Sierra, C., ed., Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’17), 4302–4309. AAAI Press/IJCAI.

[Hart, Nilsson, and Raphael 1968] Hart, P. E.; Nilsson, N. J.;
and Raphael, B. 1968. A formal basis for the heuristic de-

https://perspicuous-computing.science
https://perspicuous-computing.science

termination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics 4(2):100–107.

[Helmert and Domshlak 2009] Helmert, M., and Domshlak,
C. 2009. Landmarks, critical paths and abstractions: What’s
the difference anyway? In Gerevini, A.; Howe, A.; Cesta,
A.; and Refanidis, I., eds., Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09), 162–169. AAAI Press.

[Helmert 2006] Helmert, M. 2006. The Fast Downward
planning system. Journal of Artificial Intelligence Research
26:191–246.

[Pommerening and Helmert 2012] Pommerening, F., and
Helmert, M. 2012. Optimal planning for delete-free tasks
with incremental LM-Cut. In Bonet, B.; McCluskey, L.;
Silva, J. R.; and Williams, B., eds., Proceedings of the
22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), 363–367. AAAI Press.

[Pommerening and Helmert 2013] Pommerening, F., and
Helmert, M. 2013. Incremental lm-cut. In Borrajo, D.;
Fratini, S.; Kambhampati, S.; and Oddi, A., eds., Proceed-
ings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13), 162–170. Rome,
Italy: AAAI Press.

[Seipp and Helmert 2018] Seipp, J., and Helmert, M. 2018.
Counterexample-guided Cartesian abstraction refinement
for classical planning. Journal of Artificial Intelligence Re-
search 62:535–577.

[Seipp et al. 2017] Seipp, J.; Pommerening, F.; Sievers, S.;
and Helmert, M. 2017. Downward Lab. https://doi.org/
10.5281/zenodo.790461.

[Seipp, Keller, and Helmert 2020] Seipp, J.; Keller, T.; and
Helmert, M. 2020. Saturated cost partitioning for opti-
mal classical planning. Journal of Artificial Intelligence Re-
search 67:129–167.

[Seipp 2018] Seipp, J. 2018. Scorpion. In IPC 2018 planner
abstracts, 77–79.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

	Introduction
	Background
	Preliminaries
	LM-cut

	Quick Cutting
	Tie Breaking Strategies for LM-cut
	Tie Breaking in LM-cut

	Experiments
	Quick Cutting
	Tie Breaking Strategies

	Conclusion

