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ABSTRACT

Large Language Models (LLMs) tend to generate high-confidence hallucinations
when faced with questions beyond their parametric knowledge scope. Retrieval-
Augmented Generation (RAG) alleviates this by leveraging external knowledge,
but challenges remain as to whether the retrieved context is useful (effective
RAG) and whether to retrieve (efficient RAG) when answering specific-domain
questions. This challenge underscores the importance of knowledge boundary
awareness, which the current methods—relying on discrete labels or limited sig-
nals—fail to address adequately, as they overlook the rich information in LLMs’
continuous internal hidden states. To this end, we propose a novel knowledge
probing approach for effective and efficient RAG. First, we construct a confidence
detection model based on LLMs’ internal hidden states to quantify how retrieved
contexts enhance the model’s confidence. Then, we build a preference dataset
with the confidence detection model to fine-tune a reranker, enabling it to pri-
oritize contexts preferred by the downstream LLM. Additionally, we introduce
CBDR, which adaptively triggers retrieval based on the LLM’s initial confidence
in the original question, reducing knowledge conflicts and improving efficiency.
Experimental results show that significant improvements have been achieved in
the accuracy of both context screening and end-to-end Retrieval-Augmented Gen-
eration (RAG) performance. Wherein, when dynamic retrieval is activated, the
accuracy of the RAG system increases by 5.6 percentage points (pp); meanwhile,
the retrieval cost is significantly reduced by 7.1 pp, thereby substantially enhanc-
ing the system’s practical utility while maintaining competitive accuracy.

1 INTRODUCTION

The core efficiency bottlenecks of Retrieval-Augmented Generation (RAG) consistently revolve
around two key issues: how to precisely select effective retrieval contexts and when to trigger re-
trieval. If retrieval contexts are irrelevant to the question, they will introduce knowledge conflicts and
increase costs; if retrieval is forced when unnecessary, it will waste resources and reduce efficiency
(Yoran et al. (2023); Fang et al. (2024)). Essentially, these problems stem from the ”perceptual blind
spot” of Large Language Models (LLMs) regarding their own knowledge boundaries—when faced
with questions beyond the scope of their parametric knowledge, LLMs often generate hallucinations
due to overconfidence (Ji et al. (2023); Martino et al. (2023)), failing both to judge ”whether ex-
ternal knowledge is needed” and to identify ”which external knowledge is truly useful,” ultimately
undermining the accuracy and practicality of RAG systems.

Existing studies have attempted to address this dilemma through ”knowledge boundary awareness”
but still exhibit limitations: Prompt-guided confidence estimation (Yin et al. (2023)) relies on manu-
ally designed templates, resulting in insufficient generalizability; multi-sample confidence aggrega-
tion (Brown et al. (2024)) is costly and ignores dynamic contextual influences; hidden-state-based
methods (Su et al. (2024b); Ni et al. (2025)), while capturing continuous confidence signals, only
stop at discrete labels outputs of ”answerable/unanswerable” and fail to directly link confidence with
”retrieval context selection.”

To this end, this paper specifically proposes a model self-confidence-centric RAG framework to
enhance RAG system efficiency: 1) Perceiving knowledge boundaries through confidence self-
assessment: Inspired by Ni et al. (2025). A confidence detection model is trained to enable LLMs

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to dynamically evaluate their confidence in answering original questions—low confidence triggers
retrieval, while high confidence allows direct answer generation to reduce unnecessary operations;
2) Optimizing retrieval context reranking using confidence changes: Based on the magnitude of con-
fidence improvement in LLMs when exposed to different retrieval contexts, a preference dataset is
constructed to fine-tune the reranker, enabling it to prioritize contexts that ”significantly enhance an-
swer confidence,” thus achieving direct translation from the model’s intrinsic preferences to retrieval
context reranking.

This logic can be intuitively understood through Figure 1: As illustrated in Figure 1a, this figure con-
trasts two architectures: one with a context similarity-based reranker and the other with a reranker
based on the downstream LLM’s confidence. Figure 1b further compares the differences between
Contexts C1 and C2 in assisting the same LLM in completing question-answering tasks.

Based on the above ideas, the core technologies of this paper include: 1) Reranker fine-tuned with
confidence signals: First, the confidence detection model parses the internal hidden states of LLMs
to quantify the enhancement effect of different retrieval contexts on answer confidence (magni-
tude of confidence improvement); this quantitative signal is then used as supervision to fine-tune
the reranker, enabling it to directly output retrieval contexts rankings consistent with the LLM’s
confidence preferences and prioritize contexts that significantly enhances answer reliability. 2)
Confidence-Based Dynamic Retrieval (CBDR): Combined with the LLM’s initial confidence in the
original question, it adaptively decides whether to trigger retrieval, balancing accuracy and retrieval
costs.

Experiments validate the effectiveness of this framework: a 5.6% improvement in end-to-end RAG
accuracy and a 7.1% reduction in retrieval costs. The core contribution of this paper lies in the
first-time deep integration of LLMs’ confidence self-assessment with retrieval context reranking,
providing a new approach for enhancing RAG system efficiency.

2 RELATED WORK

2.1 KNOWLEDGE BOUNDARY IN RAG SYSTEM

RAG’s knowledge boundary is defined as the combined knowledge space of LLMs‘ internal para-
metric knowledge and external retrieved knowledge. Early RAG evaluations overemphasized re-
triever performance, neglecting potential conflicts between external and internal knowledge—which
lead to low-confidence errors (Yoran et al. (2023); Fang et al. (2024); Cuconasu et al. (2024)).

Subsequent research shifted to coordinating these dual knowledge sources to delineate RAG’s ef-
fective boundary. Works like (Marina et al. (2025); Yao et al. (2024)) analyze LLMs‘ internal states
to detect uncertainty and dynamically trigger retrieval. DRAGIN (Su et al. (2024a)) dynamically
retrieves information by assessing the importance and uncertainty of generated tokens during infer-
ence. CTRLA (Liu et al. (2024)) quantifies confidence by computing the projection of the current
query onto the LLM’s confidence representation, thereby dynamically triggering retrieval. Adaptive-
RAG (Jeong et al. (2024)) employs a lightweight model to estimate question complexity and select
an appropriate retrieval strategy. Like CBDR, Probing-RAG (Baek et al. (2025)) trains a small
model to inspect the internal states of the target LLM but does not exploit the resulting state dis-
crepancies to inform retrieval preferences. Parenting (Xu et al. (2025)) automatically defines knowl-
edge boundaries by quantifying the relative importance of two capabilities—adherence and robust-
ness—through parameter analysis. DTA framework (Sun et al. (2025)) formally proposes RAG’s
knowledge boundary, categorizing queries into four quadrants based on LLM’s parametric bound-
ary KBp and retriever’s retrieved boundary KBr to define the system’s holistic effective boundary.

2.2 PREFERENCE ALIGNMENT IN RAG SYSTEM

To improve LLMs‘ utilization of external knowledge, aligning retriever-LLM preferences in RAG
is critical. Existing works use diverse preference signals: RE-PLUG (Shi et al. (2023)): LLM’s
correct answer probability to identify critical contexts; RRR (Cong et al. (2024)): Overall quality
of LLM-generated responses; DPA-RAG (Dong et al. (2025a)): Bidirectional alignment to mitigate
component preference conflicts; RADIO (Jia et al. (2024)): Rationale correctness as indicators,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Reranker-1

Semantic

C1 C2 C3

Reranked Contexts

Reranker-2

Confidence

C2 C1 C3

Reranked Contexts

Question

LLM
LLM

Retrieved Contexts

Unrelated
Related

Align

(a) Comparison of Reranking Strategies

Query: who played karen in married to the mob?

Reference: Nancy Travis

C1: Married to the Mob is a 1988 American comedy film directed by Jonathan 
Demme, starring Michelle Pfeiffer and Matthew Modine.

C2:
..., who gets violently dispatched by Mob boss Tony "The Tiger" Russo (Dean 
Stockwell) when he is discovered in a compromising situation with the latter's 

mistress Karen (Nancy Travis).  ...

A1:
Based on the provided context, I can answer the question. According to the context, 
Michelle Pfeiffer played a role in the film "Married to the Mob", but ...

A2: Based on the provided context, Nancy Travis played the role of Karen, Tony 
"The Tiger" Russo's mistress.

(b) Performance Evaluation

Figure 1: Figure 1a contrasts two RAG reranking strategies: a conventional context-similarity-based
reranker and one leveraging the LLM’s intrinsic preference (reranking contexts by changes in the
LLM’s confidence). Figure 1b provides a concrete example: it compares the effectiveness of con-
texts reranked by Reranker-1 (similarity-based) and Reranker-2 (LLM-aligned).

fine-tuning rerankers to reconcile retriever-LLM discrepancies; SEAKR (Yao et al. (2024)): Multi-
round query sampling, using LLMs’ last-layer hidden states (at < /s >) to compute Gram matrices
(quantifying uncertainty) for reranker optimization.

This paper’s core innovation is a novel preference metric: confidence shift, defined as LLMs‘ internal
hidden state changes before/after exposure to external knowledge. Used to fine-tune rerankers, it
effectively filters post-retrieval contexts. Compared to SEAKR (Yao et al. (2024)) (which also uses
hidden states but requires multi-round sampling), our confidence shift detection relies on a single
forward pass—significantly reducing computational/temporal overhead, a key advantage for low-
latency real-time scenarios.

3 METHOD

This section outlines our core methodologies: leveraging LLM internal hidden states to assess re-
sponse confidence, constructing a preference dataset from these states to fine-tune a Reranker, and
proposing CBDR to optimize retrieval in RAG system. Relevant prompts are in Appendix B.

3.1 INTERNAL STATE DETECTION

Recent studies show that LLMs’ internal hidden states contain richer information (stronger latent
reasoning, self-awareness) than their final output token (Skean et al. (2025); Zhang et al. (2025);
Azaria & Mitchell (2023)) and that LLMs can perceive their knowledge boundary before response
generation (Ni et al. (2025)), laying the foundation for confidence estimation via these internal
hidden states.

3.1.1 CONFIDENCE ESTIMATION VIA INTERNAL HIDDEN STATES

Specifically, the workflow for self-confidence detection based on the internal hidden states of LLM
is as follows: For a given target LLM M and a question Q, the model generates internal hidden state
representations during inference, denoted as HM,Q. Compared to the final token output, this state
encapsulates more comprehensive information. Our confidence estimation process is defined as:

CM,Q = E(HM,Q) (1)

As illustrated in left side of Figure 2, where E denotes the confidence detection model, and CM,Q is
a binary classification label: CM,Q = 1 indicates that LLM M is confident in correctly answering
question q, whereas CM,Q = 0 signifies that the LLM M perceives itself as incapable of responding
accurately. Drawing on (Ni et al. (2025)) and related prior work, we select the internal hidden state
vector at Mid Layer (Layer/2) of LLM M before generating the first answer token (Pre-Token) as
HM,Q.
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Figure 2: The complete process of aligning the Reranker with the target LLM involves construct-
ing a preference dataset, NQ Rerank, by comparing the variations in the LLM’s confidence when
answering a Question under different contexts. This dataset is then used to fine-tune the Reranker
model, aligning it with the target LLM’s intrinsic preferences. The lower part of the figure depicts
the workflow of the CBDR.

The training data for model E is obtained by guiding LLM M to process questions from the NQ
dataset (Kwiatkowski et al. (2019)). We collect the internal hidden state HM,Q during inference and
determine the correctness of the LLM M’s response based on the ground-truth answer to question Q,
thereby constructing binary training samples (HM,Q, LabelQ). Here, LabelQ = 1 indicates that the
model answers question Q correctly, while LabelQ = 0 denotes an incorrect response. The training
methodology for model E follows the approach described in (Ni et al. (2025)). We performed data
cleaning on the training dataset NQ Kwiatkowski et al. (2019) and analyzed the impact of different
prompt designs on model reasoning.

3.2 PREFERENCE DATASET

3.2.1 PREFERENCE DEFINITION

This study focuses on the post-retrieval processing stage within RAG system, with the aim of explor-
ing how to rerank the retrieved contexts to maximize RAG system‘s utility in enhancing the answer
reasoning capabilities of downstream LLM.

Conventional Reranker are typically trained on datasets constructed based on semantic similarity
between a question and contexts, and compute relevance scores by capturing complex semantic
interactions through interactive encoding. While such general-purpose methods ensure model trans-
ferability and compatibility with diverse LLMs, they often fail to adequately incorporate the prefer-
ences of specific downstream LLM, thereby limiting the full potential of RAG system.

Conf(HM,Q) = P (Label = 1 | E(HM,Q)) = Softmax(Z1) =
ez1

ez0 + ez1
(2)

As illustrated in Figure 2, this paper defines the following preference criterion: a context C is con-
sidered to exhibit a positive preference for the target LLM M in answering question Q if and only
if it provides effective informational enhancement, satisfying the condition Conf(HM,Q+C) >
Conf(HM,Q). Conversely, if it leads to a decrease in LLM‘s confidence Conf(HM,Q+C) <
Conf(HM,Q), the context C is regarded as having a negative preference. As shown in Equation 2,
the output of the Conf(-) function is defined as the probability of the Label = 1 assigned by model
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E. A softmax layer is appended to the final layer of model E to produce this probabilistic output.
Relevant examples can be found in Appendix D.

3.2.2 DATASET CONSTRUCTION

We preprocess the NQ dataset (Kwiatkowski et al. (2019)) to obtain a series of (Query, Contexts)
tuple samples. For each sample, we record the internal hidden state at Mid Layer when the target
LLM M generates its first token under the following two scenarios: (1) The state HM,Q when only
the query Q is provided; (2) The state HM,Q+Ci

when both the query Q and a context Ci are
provided (Where i iterates over the Contexts).

This yields a sequence of internal hidden states:

[HM,Q, HM,Q+C1 , HM,Q+C2 , ..., HM,Q+Ci ] (3)

This sequence of states is then fed into the confidence detection model E to obtain the probability
value for the Label = 1 output by the softmax layer, resulting in a probability sequence:

[Conf(HM,Q), Conf(HM,Q+C1), ..., Conf(HM,Q+Ci)] (4)

The enhancement effect of each context Ci on LLM M’s response to question Q is determined by
comparing the change in model confidence after incorporating the context Ci:

Inc(Q,Ci) = Conf(HM,Q+Ci)− Conf(HM,Q) (5)

If Inc(Q,Ci) > 0, the sample is labeled as a positive preference sample. If Inc(Q,Ci) < 0, it is
labeled as a negative preference sample.

For each (Query, Contexts) sample, all context Ci are ranked according to Inc(Q,Ci). The Top-
K(K = 5) contexts with the highest increase are selected as positive examples, and the Top-K with the
largest decrease are taken as negative examples. As illustrated in right side of Figure 2, this process
constructs the final preference dataset, denoted as NQ Rerank. Relevant details can be found in
Appendix E.

3.3 RERANKER FINE-TUNING

To enhance the ability of the Reranker to identify the utility of contexts for the target LLM, we
performed supervised fine-tuning on a base Reranker using the constructed preference dataset
NQ Rerank. During fine-tuning, the InfoNCE (Noise Contrastive Estimation) loss function was
employed as the optimization objective:

f(Q,C) = exp(ϕ(Q,C)/τ) (6)

L = −log f(Q,C+)

f(Q,C+) +
∑N

i=1 f(Q,C−
i )

(7)

Where: f(Q,C) denotes the relevance score between question Q and context C computed by the
Reranker; C+ represents the positive context; C− denotes the negative context; τ is the temperature
parameter. This loss function forces the model to increase the score margin between the positive
context C+ and a set of negative contexts {C−}, thereby learning a ranking criterion consistent
with the target LLM’s preferences.

3.4 CONFIDENCE-BASED DYNAMIC RETRIEVAL

While the fine-tuned Reranker has aligned well with the target LLM’s preferences and effectively
prioritizes beneficial contexts, it still has two key limitations: namely, the post-retrieval Top-k re-
sults may contain misleading context that conflicts with the LLM’s internal parameters; and for
questions for which the LLM is overconfident, the retrieval process can be skipped altogether to
avoid redundant computational overhead.

To mitigate these issues and enhance the efficiency and reliability of the RAG system, we propose
CBDR. The workflow of this strategy is illustrated at the bottom of Figure 2: (1) If the target LLM
exhibits high confidence in responding to the current query Q that Conf(HM,Q) > β, where β
is a predefined threshold, the retrieval and reranking steps are skipped, and the LLM generates the

5
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Table 1: Performance Comparison of Different Rerankers on the NQ Rerank Test Set.

Reranker Params Top-1 Top-3 Top-5

Precision Recall MRR Precision Recall MRR Precision Recall MRR

gte passage-ranking multilingual-base 304M 85.52 29.47 85.52 71.45 62.66 90.37 60.98 82.53 90.99

Qwen3-Reranker 4B 81.74 27.62 81.74 70.92 62.33 88.15 61.71 83.53 88.93

Qwen3-Reranker 8B 87.25 30.47 87.25 74.35 65.15 91.65 64.22 86.42 92.19

bge-reranker-v2-m3 568M 86.01 29.45 86.01 72.62 63.61 90.47 62.40 84.01 91.07

bge-reranker-v2-m3-ft (Ours) 568M 91.20 32.01 91.20 76.98 67.14 94.40 65.64 87.97 94.72

answer directly. (2) If the confidence score falls below the threshold Conf(HM,Q) < β, the full
retrieval process is initiated: the Retriever fetches a set of contexts, which are reranked by the fine-
tuned Reranker, and the Top-K contexts are fed into the LLM along with the query for reasoning.

To mitigate these issues and enhance the efficiency and reliability of the RAG system, we propose
CBDR. The workflow of this strategy is illustrated at the bottom of Figure 2: (1) If the target LLM
exhibits high confidence in responding to the current query Q that Conf(HM,Q) > β, where β is
a hyper-parameter, the retrieval and reranking steps are skipped, and the LLM generates the answer
directly. (2) If the confidence score falls below the threshold Conf(HM,Q) < β, the full retrieval
process is initiated—with the fine-tuned Reranker involved.

This strategy aims to preserve answer quality while cutting redundant computation for high-
confidence queries and avoiding interference from low-quality retrieval results for known questions.
Its effectiveness is fully validated in Section 4.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use two open-domain QA benchmarks: Natural Questions (NQ) Kwiatkowski et al.
(2019) and HotpotQA Yang et al. (2018). NQ contains real Google queries with retrieved contexts
and human-annotated answers; HotpotQA requires multi-hop reasoning. All training data in this
work are from NQ, partitioned as follows: (1) NQ Confidence for confidence detection model E:
1k/300/500 positive and negative samples for train/dev/test, labeled by the correctness of target LLM
M ’s answers; (2) NQ Rerank for preference alignment: built on NQ-Retrieval1, excluding samples
without valid positive/negative contexts, yielding 7,622 training and 1,216 evaluation samples.

LLMs. We evaluate with Llama3-8B-Instruct Dubey et al. (2024) and Qwen2.5-7B-Instruct Team
(2024). Llama3-8B-Instruct serves as the base LLM for reasoning (temperature = 1.0, greedy de-
coding).

Baselines. We compare five rerankers, all based on or compared against bge-reranker-v2-m3:
(1) gte passage-ranking multilingual-base (Alibaba DAMO’s strong multilingual reranker); (2)
Qwen3-Reranker-4B and (3) Qwen3-Reranker-8B (Qwen-based rerankers of 4B/8B parameters); (4)
bge-reranker-v2-m3 (lightweight, efficient, multilingual); (5) bge-reranker-v2-m3-ft (Ours): fine-
tuned on NQ Rerank to validate confidence-based preference alignment.

Dynamic Retrieval Methods. We compare with two strong dynamic retrieval baselines: (1) DRA-
GIN (Su et al. (2024a)): triggers retrieval based on token-level uncertainty, importance, and rele-
vance; (2) CtrlA (Liu et al. (2024)): adaptively balances internal/external knowledge via LLM state
characterization and confidence monitoring using directional feature representations.

Evaluation Metrics. We report standard reranking metrics: Precision@K, Recall@K, and
MRR@K. To ensure fairness, all rerankers receive the same retrieved context pool (retriever is
excluded). Training details are in Appendix C.

1https://modelscope.cn/datasets/sentence-transformers/NQ-retrieval
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Table 2: Accuracy of RAG Systems with Different Reranker and LLM Combinations. Reranker bge-
reranker-v2-m3-ft is the reranker aligned with the confidence preferences of Llama3-8B-Instruct;
bold indicates the optimal result, and underlined indicates the sub-optimal result.

LLM Reranker Params HotpotQA NQ

Top-1 Top-3 Top-1 Top-3

gte passage-ranking multilingual-base 304M 47.20 51.80 63.80 67.60

Qwen3-Reranker 4B 42.30 50.10 50.70 64.00

Qwen2.5-7B-Instruct Qwen3-Reranker 8B 47.50 51.90 56.30 68.80

bge-reranker-v2-m3 568M 47.20 53.30 64.20 69.70

bge-reranker-v2-m3-ft (Ours) 568M 48.70 53.30 63.40 69.90

gte passage-ranking multilingual-base 304M 48.80 50.20 60.10 60.70

Qwen3-Reranker 4B 40.70 48.00 49.70 62.30

Llama3-8B-Instruct Qwen3-Reranker 8B 48.40 50.10 55.20 68.80

bge-reranker-v2-m3 568M 46.60 51.40 61.50 62.20

bge-reranker-v2-m3-ft (Ours) 568M 48.00 (+1.4) 52.20 (+0.8) 62.60 (+1.1) 66.90 (+4.7)

Table 3: Comparison of Different Dynamic Retrieval Methods. Bold indicates the optimal result,
and underlined indicates the sub-optimal result. All methods use Llama3-8B-Instruct as the LLM.
In the threshold, h represents the hallucination score, T represents the sensitivity of confidence
monitoring, and β indicates the confidence score.

Method Threshold Reranker RR (%) ↓ Offline Cost Online Cost NQ

Top-1 Top-3

DRAGIN
(Su et al. (2024a))

h = 0.80

Bge-reranker-v2-m3

2.8

No High

41.1 41.8
h = 0.70 4.4 41.2 41.9
h = 0.60 9.6 43.8 41.9
h = 0.50 19.4 44.9 45.7

CtrlA
(Liu et al. (2024))

T = 0.00 Bge-reranker-v2-m3 53.4 Low High 51.4 52.4
T = 0.10 70.1 56.2 56.2

CBDR (ours)
β = 0.90

Bge-reranker-v2-m3-ft (ours)

74.9

Mid Low

60.6 64.2
β = 0.95 83.3 62.4 66.1
β = 0.98 92.9 61.7 67.8
β = 1.00 100 62.6 66.9

4.2 MAIN RESULTS

Reranker Performance. We evaluate whether the fine-tuned reranker (bge-reranker-v2-m3-ft)
better selects LLM-suitable contexts for Llama3-8B-Instruct on the NQ Rerank test set. Each
reranker ranks query-context pairs and returns Top-K documents (K ∈ {1, 3, 5}), evaluated via
Precision@K, Recall@K, and MRR@K. As shown in Table 1: (1) bge-reranker-v2-m3-ft
(fine-tuned on NQ Rerank) achieves the best performance across all K; (2) Gains are most pro-
nounced at Top-1: it outperforms Qwen3-Reranker-8B by +3.95 pp in Precision@1/MRR@1
and +1.54 pp in Recall@1, and improves over the original bge-reranker-v2-m3 by +5.19 pp
(Precision@1/MRR@1) and +2.56 pp (Recall@1).

RAG System Accuracy. To further verify whether a fine-tuned Reranker enhances Retrieval-
Augmented Generation (RAG) system performance, we constructed multiple ”Reranker + LLM”
combined systems for comparative experiments. The setup was as follows: each Reranker reranked
the query and its corresponding context documents, selected Top-K (K ∈ {1, 3}) documents, and
fed them to the downstream LLM for answer generation. System performance was ultimately eval-
uated by the precision of generated answers. As shown in Table 2, the experimental results yield
two main findings: (1) When the downstream LLM was Llama3-8B-Instruct, the RAG system us-
ing bge-reranker-v2-m3-ft consistently achieved higher accuracy than that with the original bge-
reranker-v2-m3, with a maximum improvement of +4.7 pp; this combination also reached optimal
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Question Context Context Confidence Answer

love yourself 
by justin bieber 

is about who

No 0.7163
... So, to answer your question, "Love 
Yourself" is not specifically about loving 
oneself ...

Relevance
Justin Bieber's song 'Love Yourself,' ... widespread 
media reports and fan speculation suggest it 
references his past relationship with singer Rihanna.

0.9354 ↑
Based on the provided context, ... it 
references Justin Bieber\'s past relationship 
with singer Rihanna. Answer is: Rihanna.

Irrelevance In the video game Grand Theft Auto: San Andreas, 
the 'Hot Coffee' mod is ... 0.6026 ↓ I cannot provide a response that is not based 

on the provided context ...

Figure 3: Example of an LLM’s confidence changes when presented with different contexts.

or near-optimal performance on both NQ and HotpotQA datasets. (2) When the downstream LLM
was Qwen2.5-7B-Instruct, RAG systems with the fine-tuned or original Reranker showed compa-
rable accuracy, with no significant differences—this partially demonstrates the robustness of bge-
reranker-v2-m3-ft.

Dynamic Retrieval Efficiency. We evaluated the impact of the dynamic retrieval system CBDR-
based on downstream LLM confidence-on RAG performance, alongside related approaches DRA-
GIN and CtrlA. Using the NQ Rerank test set, we measured system accuracy and the fraction of
retrieval overhead saved by skipping retrieval under various configurations. Whenever the dynamic
module triggered retrieval, documents were directly passed to the reranker, bypassing the full re-
trieval pipeline. All experiments used the parameter settings recommended by DRAGIN and CtrlA
to ensure reproducibility. Results (Table 3) show that: (1) DRAGIN and CtrlA incur low offline
cost but higher online inference overhead; (2) their accuracy improves monotonically with retrieval
rate; and (3) CBDR reduces retrieval cost by assessing LLM answer confidence-yielding a +0.9 pp
accuracy gain under Top-3 reranking versus always retrieving, but a slight -0.2 pp drop in the Top-1
setting.

5 DISCUSSION

5.1 CONFIDENCE CHANGES CAN SERVE AS A VALID PREFERENCE SIGNAL

This paper tested the confidence changes of LLMs when presented with different contexts. As
shown in Figure 3: when Llama3-8B-Instruct answered questions relying solely on its internal
parametric knowledge, its confidence was only 0.7163 and the answer was incorrect; after intro-
ducing highly relevant correct documents, its confidence increased significantly to 0.9354, and it
ultimately reasoned out the correct answer; in contrast, when low-relevance incorrect documents
were introduced, its confidence dropped to 0.6026. Additional examples are provided in Appendix
D. This result effectively demonstrates the correlation between confidence changes and the true pref-
erences of LLMs: specifically, increased confidence corresponds to ”beneficial documents preferred
by LLMs”, while decreased confidence corresponds to ”harmful documents rejected by LLMs”.
This is fully consistent with the ”confidence-based preference definition” proposed in Section 3.2.1,
directly verifying the validity of this preference signal. Furthermore, we find that Table 1 also cor-
roborates this conclusion: the experiment reveals a positive correlation between model parameters
and reranking performance—performance generally improves as model size and capability increase.
For instance, in the Qwen3 Rerank series, though Qwen3 Rerank 8B still has room for improvement
in absolute performance, it significantly outperforms its same-series counterpart Qwen3 Rerank 4B
and ranks best among all base models. This confirms that the ”preference signals” in the NQ Rerank
dataset can effectively distinguish rerankers of different capabilities, and the ”stronger capability,
better performance” pattern only emerges when the signal logic aligns with the models’ true ranking
needs—further validating the rationality of using confidence changes as a preference signal.

Thus, the preference-aligned reranker yields substantial performance gains. The fine-tuned
bge-reranker-v2-m3-ft outperforms all baselines across all metrics, demonstrating that su-
pervised fine-tuning on NQ Rerank effectively aligns the reranker with the target LLM’s (Llama3-
8B-Instruct) preferences—specifically, its tendency to select contexts that boost answer confidence.
Notably, the gains in Top-1 accuracy (Precision@1) and MRR@1 underscore its superior ability
to retrieve the most critical document with high precision.
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5.2 EFFECTIVENESS OF PREFERENCE-ALIGNED RERANKER DEPENDS ON TARGET LLM

We find that the optimization effect of the fine-tuned preference-aligned reranker demonstrates sig-
nificant model dependence, and it can only achieve its full efficacy when paired with the target LLM.
As shown in Table 2, pairing bge-reranker-v2-m3-ft with Llama3-8B-Instruct yields a maximum ac-
curacy improvement of 4.7 pp for the RAG system; in contrast, no significant change in accuracy is
observed when it is paired with Qwen2.5-7B-Instruct. In essence, this phenomenon stems from the
strong anchoring effect of the fine-tuning data on the preferences of the target LLM. In the present
study, NQ Rerank dataset directly constructs labels based on the confidence variations of Llama3-
8B-Instruct toward different retrieved contexts. This design enables the reranker to learn, during
training, how to filter retrieved contexts that align with the cognitive preferences of the target LLM,
with its filtering logic deeply coupled to the target LLM’s preferences.

To validate this core logic, a cross-model preference comparison experiment was conducted (see
Appendix G for details). A total of 100 uniform sample sets were selected, covering three categories
of retrieved contexts: Type A (high semantic relevance but sparse factual details), Type B (compre-
hensive factual details but marginally lower semantic matching), and Type C (irrelevant contexts).
As illustrated in Figure 4, the results reveal substantial differences in the two models’ cognitive
preferences: Llama3-8B-Instruct favors both Type A and Type B contexts, only strongly reject-
ing Type C irrelevant contexts; conversely, Qwen2.5-7B-Instruct solely prefers Type A contexts,
mildly rejects Type B contexts, and consistently strongly rejects Type C irrelevant contexts. Since
the reranker’s filtering logic is fully aligned with Llama3-8B-Instruct’s preference characteristics, it
prioritizes both Type A and Type B contexts—an outcome notably misaligned with Qwen2.5-7B-
Instruct’s cognition, ultimately rendering the reranker ineffective. This result further corroborates
that the preference-aligned reranker’s improvement on the RAG system is highly dependent on the
consistency between its filtering logic and the target LLM’s cognitive preferences.

Notably, although this reranker is trained on the NQ dataset, its performance improvement is not lim-
ited in closed book: it also achieves a maximum accuracy improvement of 1.4 pp on the HotpotQA
dataset when paired with Llama3-8B-Instruct. This demonstrates the robustness of the preference-
aligned reranker: it is truly aligned with the preferences of the target LLM, rather than merely
overfitting to the NQ dataset.

5.3 DYNAMIC RETRIEVAL BALANCES PERFORMANCE AND EFFICIENCY

By integrating the CBDR, the RAG system can not only maintain competitive accuracy but also
significantly reduce retrieval overhead. As shown in Table 3: under the Top-3 setting with β = 0.98,
the accuracy increased by 0.9 pp compared to the baseline, while the retrieval cost decreased by 7.1
pp simultaneously; under the Top-1 setting with β = 0.95, although the accuracy only decreased
slightly by 0.2 pp compared to the baseline, the retrieval cost dropped significantly by 16.7 pp. This
result not only fully verifies the significant practical potential of CBDR in balancing efficiency and
effectiveness in real-world applications but also confirms the core hypothesis that ”the confidence
of LLMs can guide retrieval decisions”. From the perspective of application value, this balancing
feature is crucial for the scenario adaptation of RAG systems by adjusting the value of β, as show in
figure 8 flexible solutions can be provided for different engineering requirements.

5.4 LET THE TARGET LLM DECIDE WHETHER TO PERFORM RETRIEVAL

For CBDR, as shown in Table 3, the optimal accuracy under the Top-3 setting is achieved when
β = 0.98: when β increases from 0.95 to 0.98 (triggering retrieval for more questions), the accuracy
rises by 1.7 pp; however, when β reaches 1.00 (forcing retrieval for all questions), the accuracy
instead decreases by 0.9 pp. Our phase difference analysis further reveals the reason for this phe-
nomenon (see Appendix F for details): (1) When β increases from 0.95 to 0.98: via expanding
external knowledge through retrieval, 21 previously incorrect answers were corrected, yet 4 correct
answers turned incorrect due to conflicts between external documents and the LLM’s inherent para-
metric knowledge; (2) When β increases from 0.98 to 1.00: the above two values become 2 and
11, respectively. Evidently, when β changes from 0.98 to 1.00, the benefits from introducing ex-
ternal knowledge are less than the errors caused by knowledge conflicts. This phenomenon directly
verifies the hypothesis proposed in Section 3.4: when an LLM has high confidence in answering a
question, introducing external knowledge may increase the risk of hallucinations. This conclusion
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Figure 4: Preference Differences Between Llama3-8B-Instruct (Left) and Qwen2.5-7B-Instruct
(Right) for Three Types of Retrieved Contexts.

provides key guidance for the engineering tuning of the β value: there is no need to blindly pursue
”full retrieval”; instead, a reasonable threshold should be set based on the confidence characteristics
of the target LLM to balance the effect of error correction and the risk of hallucinations.

5.5 ANALYSIS OF ADDITIONAL RESOURCE OVERHEAD OF THE CBDR FRAMEWORK

This subsection analyzes the additional resource overhead of the CBDR framework, covering the
offline and online inference phases. 1) Offline Phase: Overhead focuses on two operations. First,
dataset construction (NQ Confidence, NQ Rerank) relies on the target LLM’s forward computa-
tion—only requiring hidden vectors before the first token is generated, thus avoiding the high over-
head of LLM generation. Second, training/fine-tuning lightweight models: the confidence detection
model E (2M-parameter MLP) and reranker (bge-reranker-v2-m3, 568M parameters) have minimal
costs, leading to manageable overall computation. Using Llama3-8B-Instruct as the target model, all
offline operations can be completed within 6 hours on one NVIDIA RTX 4090 GPU. 2) Online In-
ference Phase: Since the fine-tuned reranker is already part of the RAG system, only one forward
pass each by the target LLM and confidence detection model E is needed to determine retrieval
necessity—this design ensures online inference fully meets real-time demands.

As shown in Table 3, we compared the additional time consumption of our approach with dynamic
retrieval frameworks such as DRAGIN and CtrlA. DRAGIN requires no extra consumption during
the offline phase but incurs significant latency during online inference due to real-time uncertainty
calculations for generated tokens. CtrlA demands some offline consumption for extracting two
features, yet its inference time is slightly less than DRAGIN’s because of relatively efficient un-
certainty computations. In contrast, although our CBDR introduces higher but manageable offline
costs, it significantly reduces online inference time by needing only a single forward pass through
both the target LLM and the confidence probe model. In summary, the CBDR framework’s addi-
tional resource overhead is generally manageable. Notably, the online phase adds negligible latency;
further, if retrieval knowledge is parameter-injected (Dong et al. (2025b); Su et al. (2025)), the online
forward passes are not additional overhead. For details, see Appendix H.

6 CONCLUSION

This paper establishes internal hidden state confidence dynamics as a principled signal for opti-
mizing RAG systems. By quantifying confidence shifts induced by retrieved contexts, we enable
precise Reranker alignment and adaptive retrieval activation. Our framework CBDR has brought
more efficient performance to the RAG system, which has practical application value. Our work
bridges parametric and external knowledge while providing a generalizable paradigm for evaluating
knowledge boundary interactions. Future work will extend this approach to multimodal RAG and
complex retrieval tasks.
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A USE OF LLMS

In this paper, Large Language Models (LLMs) were solely employed for the polishing of English
writing; they were not involved in any work related to research conceptualization or experiments.

B PROMPT

In this paper, distinct prompts were utilized to guide LLMs in reasoning for different tasks. In the
question-answering scenario, we classify the prompts into two types:

(1) As shown on the left side of Figure 5, this prompt guides the model to directly answer question
using its parametric knowledge. When constructing the dataset for the Confidence Detection Model
E, this prompt was consistently used to guide the Llama3-8B-Instruct model in generating answers.
Additionally, this prompt is applied in scenarios within the CBDR system where the LLM has high
confidence in answering this question and thus skips the retrieval step to provide a direct response.

(2) As shown on the right side of Figure 5, this prompt guides the LLM to answer question by
combining external knowledge with its parametric knowledge. When constructing the preference
dataset NQ Rerank, this prompt was used to guide Llama3-8B-Instruct to generate the first Token
based on the provided context; meanwhile, this prompt is also utilized in the CBDR system when
the LLM needs to answer question with reference to retrieved documents.

C IMPLEMENTATION DETAILS.

During the training of the Confidence detection model E, the initial learning rate was set to 5e−5,
the dropout rate was configured to 0.5, and the training was conducted over 30 epochs. For the
fine-tuning of the bge-reranker-v2-m3 model, the initial learning rate was set to 6e−5, weight decay
was configured to 0.01, the maximum query length (query max len) was set to 128, the maximum
passage length (passage max len) was set to 512, and the training was performed for 1 epoch.
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QA Prompt RAG Prompt

You need to read the question carefully and 
answer it based on your own knowledge.

Question: {question}

You are a rigorous language model. Please answer 
the question based on the provided context. If the 
context does not support reasoning about the 
answer, please answer the question based on your 
own knowledge. 

Contexts: {contexts} 
Question: {question}

Figure 5: The prompt on the left side of the figure guides the LLM to answer question using its para-
metric knowledge; the prompt on the right side requires the LLM to answer question by combining
external knowledge with its parametric knowledge.

D LLM CONFIDENCE

The training of the Confidence Detection Model E fully follows the approach described in (Ni et al.
(2025)), and the downstream LLM employed is Llama3-8B-Instruct. After obtaining Model E, we
conducted an initial verification to examine how the LLM’s confidence in answering questions varies
when provided with relevant versus irrelevant documents. As illustrated in Figure 6, the observed
changes in confidence confirm our hypothesis: changes in the LLM’s internal hidden states can
guide the selection of external knowledge. It should be noted that in this paper, external knowledge
refers specifically to contexts obtained through retrieval.

E PREFERENCE DATASET

In this paper, to align the preferences of the Reranker with the target LLM, we constructed the
preference dataset NQ Rerank using changes in the LLM’s confidence. The NQ Rerank dataset
is divided into a training set with 7,622 items and an evaluation set with 1,216 items. As shown
in Figure 7, each data item contains four fields: query, pos, neg, and prompt. Among these, pos
and neg are lists of positive and negative contexts, respectively. Specifically, each context in pos
enhances the LLM’s confidence, whereas each context in neg reduces the LLM’s confidence. The
prompt field refers to the default prompt used by the Reranker model for the reranking task.

F DYNAMIC RETRIEVAL

When CBDR is adopted for dynamic retrieval in the RAG system (The algorithm can be found in
Algorithm 1), the system achieves the optimal performance at β = 0.98. As illustrated in Figure 8,
this figure comprehensively depicts the impact of the threshold β (ranging from 0.90 to 1.00) on both
RAG system performance (quantified by the system score on the left y-axis) and retrieval efficiency
(measured by the skip retrieval ratio on the right y-axis). To further elucidate the performance
characteristics around this optimal threshold, we analyzed the differential responses corresponding
to two threshold intervals: β ranging from 0.95 to 0.98 and from 0.98 to 1.00. Specifically, these
differential responses refer to the questions where the integration of external knowledge (enabled by
dynamic retrieval) alters the correctness of the LLM’s final answers.

Our observations of these data reveal the following: When the introduction of external knowledge
enables the LLM to change from answering incorrectly to correctly, this is always because the in-
troduced external knowledge expands the knowledge boundary of the RAG system, thereby leading
the LLM to generate correct answers. However, when the introduction of external knowledge in-
stead causes the LLM to shift from answering correctly to incorrectly, there are multiple reasons
for this: (1) As shown in Figure 9, the most common reason is the introduction of incorrect exter-
nal knowledge, which causes conflicts between the model’s internal parametric knowledge and the
external knowledge, thereby triggering hallucinations. (2) As shown in Figure 10, the introduced
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Question Context_type Context Confidence

when was the last time 
anyone was on the moon

No 0.7454

Relevance

The Apollo program by NASA included the last human Moon landing 
during Apollo 17 in December 1972. Astronauts Eugene Cernan and 
Harrison Schmitt landed on the lunar surface on 14 December 1972 
UTC, conducting three days of exploration. No subsequent human 
missions have reached the Moon since then, making this the final 
instance.

0.8562 ↑

Irrelevance

In the video game Grand Theft Auto: San Andreas, the 'Hot Coffee' mod 
is an unauthorized user modification that accesses a hidden mini-game 
featuring sexual interactions. This content was originally inaccessible in 
the official release but was discovered in the game's code, leading to 
controversy and a re-rating of the game by the ESRB.

0.6293 ↓

when did the eagles win 
last super bowl

No 0.9288

Relevance

The Philadelphia Eagles of the NFL last won the Super Bowl in 
February 2018, which corresponded to the 2017 league season. They 
defeated the New England Patriots 41-33 in Super Bowl LII, securing 
their first championship since 1960. As of the current time in 2025, this 
remains their most recent Super Bowl victory.

0.9462 ↑

Irrelevance

In the video game Grand Theft Auto: San Andreas, the 'Hot Coffee' mod 
is an unauthorized user modification that accesses a hidden mini-game 
featuring sexual interactions. This content was originally inaccessible in 
the official release but was discovered in the game's code, leading to 
controversy and a re-rating of the game by the ESRB.

0.4606 ↓

how many seasons of the 
bastard executioner are 

there

No 0.5645

Relevance

FX's historical drama series 'The Bastard Executioner,' created by Kurt 
Sutter, premiered in September 2015 but received low ratings and mixed 
reviews. Consequently, the network canceled it after the first season's 
conclusion in November 2015, with no renewal for additional seasons.

0.9410 ↑

Irrelevance

Justin Bieber's song 'Love Yourself,' released in 2015, features lyrics co-
written with Ed Sheeran that are interpreted as addressing an ex-partner. 
Although unconfirmed directly by Bieber, widespread media reports and 
fan speculation suggest it references his past relationship with singer 
Rihanna, contributing to the song's narrative.

0.5078 ↓

Figure 6: This figure presents three examples of confidence changes. For each example, the con-
fidence levels indicated by the LLM’s internal hidden states are provided under three scenarios,
namely: without external documents provided, with relevant documents provided, and with irrele-
vant documents provided.

external knowledge contains correct documents, but the model exhibits attention bias and fails to
focus on these correct documents. (3) As shown in Figure 11, the questions are time-sensitive. This
issue arises due to the inherent temporal limitations of the NQ dataset; thus, the NQ dataset provides
outdated external documents and reference answers. As a result, the LLM would originally answer
correctly, but ends up answering incorrectly due to the erroneous external knowledge.

G CROSS-MODEL PREFERENCE COMPARISON EXPERIMENT

This experiment aims to quantify the preference differences between Llama3-8B-Instruct (the target
model) and Qwen2.5-7B-Instruct (the comparison model) toward different types of retrieved con-
texts. It verifies the strong binding characteristic between the filtering logic of the preference-aligned
reranker and the target LLM at the cognitive mechanism level, providing empirical support for the
core conclusion in the main text that the reranker’s effectiveness is model-dependent.

G.1 TARGET LLMS

1) Llama3-8B-Instruct: Fine-tuning target of the preference-aligned reranker and baseline model
in the main context experiments; 2) Qwen2.5-7B-Instruct: An open-source LLM of the same scale,
used to verify the generality of preference differences.
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Query who does sam neil play in peter rabbit

Pos

["Peter Rabbit is a 2018 live-action/computer-animated comedy film directed by Will Gluck and written by Rob Lieber and 
Gluck, based on the stories of Peter Rabbit created by Beatrix Potter. ...", 

"... The accusations focused on a scene where Thomas McGregor \u2014 whose character has a known severe allergy to 
blackberries \u2014 is pelted with the berries until one enters his mouth, causing him to enter anaphylactic shock and grab for 
his Epipen.[35][36][37] ...", 

"... A local toy shop on Compston Road, Ambleside, was adapted to be Mr McGregor's.[citation needed]"]

Neg

["The film was first revealed in April 2015 through email leaks as a result of the Sony Pictures hack.[8] The official 
announcement of the film came that December.[9]", 

"The Singing Sparrows were voiced by Jessica Freedman, Shana Halligan, Katharine Hoye, Chris Mann, Chad Reisser, and 
Fletcher Sheridan", 

"Peter feels bad for what he has done, and upon learning that Bea intends to leave the neighborhood, he and Benjamin head to 
London to find Thomas at Harrods...", 

"Thomas and Peter start a war with each other by setting up traps and other offensive nuisance..."]

Prompt Given a question, retrieve Wikipedia passages that answer the question.

Figure 7: This figure presents an example of the preference dataset NQ Rerank; each data item
contains four fields: Query, Pos, Neg, and Prompt.
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Figure 8: The Impact of Threshold (0–1) on RAG System Performance and Retrieval Efficiency
under the Top-3 Setting. X-axis: Threshold (0.90–1.00); Left Y-axis: RAG System Score; Right
Y-axis: Skip Retrieval Ratio (%).

G.2 RETRIEVED CONTEXT CORPUS

The corpus is randomly selected and constructed from candidate retrieved contexts in the NQ dataset,
consisting of 100 sample sets. Each set corresponds to one unified question and includes 3 types
of retrieved contexts (1 context per type, generated by rewriting gold contexts), ensuring a single
controllable experimental variable: 1) Type A: Highly matches the core semantics of the question
but only mentions core concepts without specific data, logical chains, or supplementary details; 2)
Type B: Contains complete factual information (data, logic, etc.) required to answer the question but
has slightly lower semantic matching with the question’s expression (consistent core concepts, but
expressed through synonymous substitution and sentence structure reconstruction); 3) Type C: Ex-
tremely low semantic relevance to the question and no question-related factual information, serving
only as a control benchmark for preference judgment.
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Question Context Retrieval Reference Answer

when did 
brazil last host 
the fifa world 

cup

["The 1951 World Cup hosting duty was decided on 26 July 1946, 
the same day that Brazil was selected for the 1949 World Cup, in 
Luxembourg City. On 27 July ...", 

"Brazil made the first unopposed bid since the initial selection of 
the 1986 FIFA World Cup (when Colombia was selected as host, 
but later withdrew for financial problems) ...

"Only Mexico, Italy, France, Germany (West Germany until 
shortly after the 1990 World Cup) and Brazil have hosted the 
event on two occasions ..."]

No

2014

According to my 
knowledge, Brazil last 
hosted the FIFA World 
Cup in 2014.

Top-3

Based on the provided 
context, it can be inferred 
that Brazil last hosted the 
FIFA World Cup in 1950.

Figure 9: Since all the introduced external knowledge is incorrect, it causes the LLM’s answer to
shift from correct to incorrect.

Question Context Retrieval Reference Answer

when was the 
art institute of 

chicago 
founded

["The Art Institute of Chicago, founded in 1879 and located in 
Chicago's Grant Park, is one of the oldest and largest art museums 
in the United States ...", 

"In 1866, a group of 35 artists founded the Chicago Academy of 
Design in a studio on Dearborn Street, with the intent to run a free 
school with its own art gallery ... The Academy's charter was 
granted in March 1867.", 

"In 1882, the Chicago Academy of Fine Arts changed its name to 
the current Art Institute of Chicago and elected as its first 
president the banker and philanthropist Charles L ..."]

No

1879

The Art Institute of 
Chicago was founded in 
1879 ...

Top-3

Based on the provided 
context, the Art Institute 
of Chicago was founded 
in 1866 as the Chicago 
Academy of Design ...

Figure 10: Although the external knowledge contains correct context, the LLM focuses on incorrect
contexts, resulting in its answer shifting from correct to incorrect.

Question Context Retrieval Reference Answer

who was the 
most recent 

president to be 
impeached

["... Andrew Johnson and Bill Clinton are the only two presidents 
to have been successfully impeached ...", 

"... President Richard Nixon resigned from office after the House 
Judiciary Committee had already reported articles of impeachment 
to the floor.", 

"... especially of presidents, are common,[22][23] going back to 
the administration of George Washington in the mid-1790s ..."]

No

Bill 
Clinton

The most recent president 
to be impeached was 
Donald Trump, the 45th 
President of the United 
States ...

Top-3

... the most recent 
president to be impeached 
was Bill Clinton, who 
was successfully 
impeached by the House 
of Representatives in 
1998 ...

Figure 11: Since the questions are time-sensitive, the contexts and reference provided by the NQ
dataset are all incorrect; the retrieved external knowledge thus causes the LLM to answer incorrectly.

G.3 CONTROLLED VARIABLES

To avoid interference from irrelevant factors, the following variables are strictly controlled for all
contexts: 1) Context Length: Uniformly limited to within 200 characters; 2) Format Standard-
ization: Pure context format without special symbols, lists, formulas, etc.; 3) Language Style:
Formal written language, avoiding colloquial or emotional expressions; 4) Question Consistency:
The 3 context types in each sample set correspond to the same question, ensuring that preference
differences arise only from context types rather than the question itself.
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Type A Prompt

Based on the following Query and corresponding key factual text (Gold content), generate an English auxiliary response 
text.Requirements:  1) Fully retain high semantic relevance to the query without deviating from the core topic; 2) Only keep 
core concepts and conclusions, and delete all specific data, logical reasoning processes, and case details; 3) Control the 
length to approximately 1/3 of the Gold content with concise language; 4) Return the result in JSON format.

Example:
Query: "What is the approximate length of the Amazon River in kilometers?"
Content: "The Amazon River is the second longest river in the world, with a total length of its main stream about 6,400 
kilometers, a drainage basin area of 7.05 million square kilometers, and flowing through 9 countries including Brazil and 
Peru."
Output:
```
json
{
    "result": "The Amazon River is one of the world's major long rivers, with its main stream totaling approximately several 
thousand kilometers and flowing through multiple South American countries."
}
```
Input:
Query: {question}
Gold content: {content}
Output:

Figure 12: Type A prompt is used to generate content that is semantically relevant to the gold context
but with concise factual details.

G.4 EXPERIMENT

This experiment adopts a baseline-test control design to quantify model preferences through confi-
dence changes. The specific steps are as follows:

Sample Preprocessing: Standardize the 100 sets of questions and their corresponding Type A, B,
and C contexts: Use Prompts to guide LLMs in generating contexts based on the questions and Gold
context; the Type A prompts are shown in Figure 12.

Confidence Collection: Adopt a dual-scenario comparison of ”context-free baseline” and ”context-
augmented test” to collect the generation confidence of the two models: Context-Free Base-
line (Base Conf): Input the 100 standardized questions individually into Llama3-8B-Instruct and
Qwen2.5-7B-Instruct. The models generate answers relying solely on internal parameter knowl-
edge, and the confidence during generation is recorded (calculated as the maximum value of the
softmax outputs of model logits, with a value range of [0,1]). Context-Augmented Test (Test Conf):
For each sample set, construct three input formats—”question + Type A context”, ”question + Type
B context”, and ”question + Type C context”—and input them into the two LLMs sequentially. After
generating answers, the corresponding confidence is recorded (using the same calculation method
as the baseline).

Data Calculation and Statistics: Conduct quantitative analysis on the collected confidence data,
with the core calculation logic as follows: Per-Sample Confidence Improvement Value: For each
model, sample set, and text type, calculate Improvement Value = Test Conf - Base Conf. Positive
value indicates the context enhances model confidence, i.e., ”preference”; Negative value indicates
the context reduces model confidence, i.e., ”rejection”. Average Confidence Improvement Value:
For each model and context type, compute the total sum of improvement values across the 100
sample sets.
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H DETAILED ANALYSIS OF RESOURCE CONSUMPTION FOR THE CBDR
FRAMEWORK

The additional resource consumption required to construct the CBDR framework is divided into
the offline preparation phase and online inference phase, with overall computational costs well-
controlled. Details are as follows:

H.1 OFFLINE PREPARATION PHASE

The offline phase involves four core tasks, with resource consumption concentrated on target LLM
forward computations and lightweight model training (no generation operations), ensuring manage-
able computational costs: 1) Constructing the NQ Confidence dataset: Provides training data for
the confidence detection model E, including input contexts and corresponding target LLM confi-
dence labels. Sample scale: 2,000 training samples, 1,000 development (Dev) samples, and 500 test
samples, totaling 3,500 samples. Computational load: Each sample requires one forward pass of the
target LLM (e.g., Llama3-8B-Instruct) to extract confidence features, resulting in a total of 3,500
target LLM forward passes. 2) Training the confidence detection model E: Model architecture:
5-layer MLP with 2M parameters. Training configuration: Trained on the NQ Confidence train-
ing set for 100 epochs with a batch size of 32. Resource characteristics: Lightweight model with
extremely low training overhead; completable within 10 minutes on a single consumer-grade GPU
(e.g., NVIDIA RTX 4090). 3) Constructing the NQ Rerank fine-tuning dataset: Provides fine-
tuning data for the preference-aligned reranker, with labels generated based on confidence changes
of the target LLM toward different retrieved contexts. Sample scale: 7,622 training samples and
1,216 test samples, totaling 8,838 samples. Computational load: Each sample requires 8 forward
passes of the target LLM (matching 8 types of retrieved contexts) to generate preference labels, re-
sulting in a total of 70,704 target LLM forward passes. 4) Fine-tuning the reranker: Base model:
bge-reranker-v2-m3 (568M parameters). Fine-tuning configuration: Fine-tuned on the NQ Rerank
training set for 5 epochs (weights after 1 epoch are used in practice) with a batch size of 32. Re-
source characteristics: Moderate-scale model with few fine-tuning epochs; the entire process can be
completed within 2 hours on a single NVIDIA RTX 4090.

H.2 ONLINE INFERENCE PHASE

The additional resource consumption in the online phase only involves two lightweight forward
passes, which do not affect inference efficiency: 1) Workflow: For input query, the target LLM
first performs one forward pass to obtain hidden states, while the confidence detection model E (2M
parameters) executes one forward pass to determine the necessity of retrieval. If retrieval is deemed
unnecessary, the generation process can be directly connected using the results of this target LLM
forward pass, eliminating the need for additional LLM calls and redundant computations. 2) Opti-
mization: Retrieval knowledge is directly injected into the target LLM’s Attention module (Dong
et al. (2025b)) or FNN module (Su et al. (2025)) via parameter injection. Thus, even if retrieval is re-
quired after the LLM’s forward pass, the generation process can be seamlessly connected following
parameterized knowledge injection, with no redundant computational overhead. 3) Latency: The
total latency of the two forward passes is less than 100ms (on a single NVIDIA RTX 4090), which
negligibly increases inference latency and meets real-time requirements.
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Algorithm 1: CBDR Inference
Input: Query q
Output: Final answer y

1 Require: Target LLM M , confidence detection model E, retrieverR, document corpus D,
Fine-tuning reranker FR, confidence threshold β, Top−K parameter K, QA prompt Pqa,
RAG prompt Prag;

2 Construct pure QA prompt: promptqa ← Pqa(q);
3 Tokenize input: x← Tokenize(promptqa);
4 Forward through M with hidden states output:

outputs←M(x,output hidden states = True);
5 Extract last context hidden state: V← outputs.hidden states[−1][0,−1, :];
6 Compute confidence score: S ← E(V);
7 if S ≥ β then
8 Generate answer directly: y ←M.generate(x,max new tokens = Lmax);
9 else

10 Retrieve candidate documents: Draw ← R.retrieve(q,top k = K · r);
11 Rerank using M -aligned reranker: Dreranked ← FR.rerank(q,Draw,K);
12 Construct context: context←

⊕K
i=1Dreranked[i].text;

13 Build RAG prompt: promptrag ← Prag(context, q);
14 Tokenize RAG input: xrag ← Tokenize(promptrag);
15 Generate answer with evidence: y ←M.generate(xrag,max new tokens = Lmax);
16 end
17 Return y;
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