

000 001 002 003 004 005 006 007 008 009 010 RETHINKING LLM PARAMETRIC KNOWLEDGE AS CONFIDENCE FOR EFFECTIVE AND EFFICIENT RAG

005
006
Anonymous authors
Paper under double-blind review

009 010 ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
Large Language Models (LLMs) tend to generate high-confidence hallucinations when faced with questions beyond their parametric knowledge scope. Retrieval-Augmented Generation (RAG) alleviates this by leveraging external knowledge, but challenges remain as to whether the retrieved context is useful (effective RAG) and whether to retrieve (efficient RAG) when answering specific-domain questions. This challenge underscores the importance of knowledge boundary awareness, which the current methods—relying on discrete labels or limited signals—fail to address adequately, as they overlook the rich information in LLMs' continuous internal hidden states. To this end, we propose a novel knowledge probing approach for effective and efficient RAG. First, we construct a confidence detection model based on LLMs' internal hidden states to quantify how retrieved contexts enhance the model's confidence. Then, we build a preference dataset with the confidence detection model to fine-tune a reranker, enabling it to prioritize contexts preferred by the downstream LLM. Additionally, we introduce CBDR, which adaptively triggers retrieval based on the LLM's initial confidence in the original question, reducing knowledge conflicts and improving efficiency. Experimental results show that significant improvements have been achieved in the accuracy of both context screening and end-to-end Retrieval-Augmented Generation (RAG) performance. Wherein, when dynamic retrieval is activated, the accuracy of the RAG system increases by 5.6 percentage points (pp); meanwhile, the retrieval cost is significantly reduced by 7.1 pp, thereby substantially enhancing the system's practical utility while maintaining competitive accuracy.

033 034 1 INTRODUCTION

035
036
037
038
039
040
041
042
043
044
The core efficiency bottlenecks of Retrieval-Augmented Generation (RAG) consistently revolve around two key issues: how to precisely select effective retrieval contexts and when to trigger retrieval. If retrieval contexts are irrelevant to the question, they will introduce knowledge conflicts and increase costs; if retrieval is forced when unnecessary, it will waste resources and reduce efficiency (Yoran et al. (2023); Fang et al. (2024)). Essentially, these problems stem from the "perceptual blind spot" of Large Language Models (LLMs) regarding their own knowledge boundaries—when faced with questions beyond the scope of their parametric knowledge, LLMs often generate hallucinations due to overconfidence (Ji et al. (2023); Martino et al. (2023)), failing both to judge "whether external knowledge is needed" and to identify "which external knowledge is truly useful," ultimately undermining the accuracy and practicality of RAG systems.

045
046
047
048
049
050
051
Existing studies have attempted to address this dilemma through "knowledge boundary awareness" but still exhibit limitations: Prompt-guided confidence estimation (Yin et al. (2023)) relies on manually designed templates, resulting in insufficient generalizability; multi-sample confidence aggregation (Brown et al. (2024)) is costly and ignores dynamic contextual influences; hidden-state-based methods (Su et al. (2024b); Ni et al. (2025)), while capturing continuous confidence signals, only stop at discrete labels outputs of "answerable/unanswerable" and fail to directly link confidence with "retrieval context selection."

052
053
To this end, this paper specifically proposes a model self-confidence-centric RAG framework to enhance RAG system efficiency: 1) Perceiving knowledge boundaries through confidence self-assessment: Inspired by Ni et al. (2025). A confidence detection model is trained to enable LLMs

054 to dynamically evaluate their confidence in answering original questions—low confidence triggers
 055 retrieval, while high confidence allows direct answer generation to reduce unnecessary operations;
 056 2) Optimizing retrieval context reranking using confidence changes: Based on the magnitude of con-
 057 fidence improvement in LLMs when exposed to different retrieval contexts, a preference dataset is
 058 constructed to fine-tune the reranker, enabling it to prioritize contexts that “significantly enhance an-
 059 swer confidence,” thus achieving direct translation from the model’s intrinsic preferences to retrieval
 060 context reranking.

061 This logic can be intuitively understood through Figure 1: As illustrated in Figure 1a, this figure con-
 062 trasts two architectures: one with a context similarity-based reranker and the other with a reranker
 063 based on the downstream LLM’s confidence. Figure 1b further compares the differences between
 064 Contexts C1 and C2 in assisting the same LLM in completing question-answering tasks.

065 Based on the above ideas, the core technologies of this paper include: 1) Reranker fine-tuned with
 066 confidence signals: First, the confidence detection model parses the internal hidden states of LLMs
 067 to quantify the enhancement effect of different retrieval contexts on answer confidence (magni-
 068 tude of confidence improvement); this quantitative signal is then used as supervision to fine-tune
 069 the reranker, enabling it to directly output retrieval contexts rankings consistent with the LLM’s
 070 confidence preferences and prioritize contexts that significantly enhances answer reliability. 2)
 071 **Confidence-Based Dynamic Retrieval (CBDR):** Combined with the LLM’s initial confidence in the
 072 original question, it adaptively decides whether to trigger retrieval, balancing accuracy and retrieval
 073 costs.

074 Experiments validate the effectiveness of this framework: a 5.6% improvement in end-to-end RAG
 075 accuracy and a 7.1% reduction in retrieval costs. The core contribution of this paper lies in the
 076 first-time deep integration of LLMs’ confidence self-assessment with retrieval context reranking,
 077 providing a new approach for enhancing RAG system efficiency.

078

079 2 RELATED WORK

080

081 2.1 KNOWLEDGE BOUNDARY IN RAG SYSTEM

082

083 RAG’s knowledge boundary is defined as the combined knowledge space of LLMs’ internal para-
 084 metric knowledge and external retrieved knowledge. Early RAG evaluations overemphasized re-
 085 triever performance, neglecting potential conflicts between external and internal knowledge—which
 086 lead to low-confidence errors (Yoran et al. (2023); Fang et al. (2024); Cuconasu et al. (2024)).

087

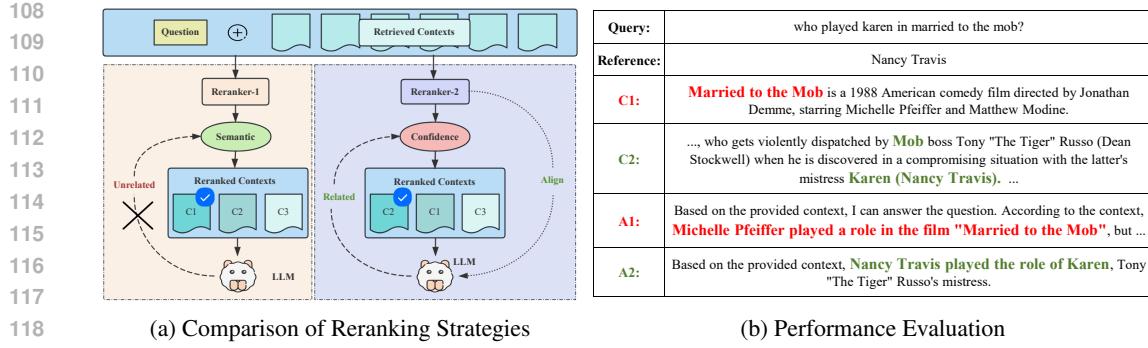
088 Subsequent research shifted to coordinating these dual knowledge sources to delineate RAG’s ef-
 089 fective boundary. Works like (Marina et al. (2025); Yao et al. (2024)) analyze LLMs’ internal states
 090 to detect uncertainty and dynamically trigger retrieval. DRAGIN (Su et al. (2024a)) dynamically
 091 retrieves information by assessing the importance and uncertainty of generated tokens during infe-
 092 rence. CTRLA (Liu et al. (2024)) quantifies confidence by computing the projection of the current
 093 query onto the LLM’s confidence representation, thereby dynamically triggering retrieval. Adaptive-
 094 RAG (Jeong et al. (2024)) employs a lightweight model to estimate question complexity and select
 095 an appropriate retrieval strategy. Like CBDR, Probing-RAG (Baek et al. (2025)) trains a small
 096 model to inspect the internal states of the target LLM but does not exploit the resulting state dis-
 097 crepancies to inform retrieval preferences. Parenting (Xu et al. (2025)) automatically defines knowl-
 098 edge boundaries by quantifying the relative importance of two capabilities—adherence and robust-
 099 ness—through parameter analysis. DTA framework (Sun et al. (2025)) formally proposes RAG’s
 100 knowledge boundary, categorizing queries into four quadrants based on LLM’s parametric bound-
 101 ary KB_p and retriever’s retrieved boundary KB_r to define the system’s holistic effective boundary.

101

102 2.2 PREFERENCE ALIGNMENT IN RAG SYSTEM

103

104 To improve LLMs’ utilization of external knowledge, aligning retriever-LLM preferences in RAG
 105 is critical. Existing works use diverse preference signals: RE-PLUG (Shi et al. (2023)): LLM’s
 106 correct answer probability to identify critical contexts; RRR (Cong et al. (2024)): Overall quality
 107 of LLM-generated responses; DPA-RAG (Dong et al. (2025a)): Bidirectional alignment to mitigate
 component preference conflicts; RADIO (Jia et al. (2024)): Rationale correctness as indicators,



118 (a) Comparison of Reranking Strategies

119 (b) Performance Evaluation

120 Figure 1: Figure 1a contrasts two RAG reranking strategies: a conventional context-similarity-based
121 reranker and one leveraging the LLM’s intrinsic preference (reranking contexts by changes in the
122 LLM’s confidence). Figure 1b provides a concrete example: it compares the effectiveness of
123 contexts reranked by Reranker-1 (similarity-based) and Reranker-2 (LLM-aligned).124
125 fine-tuning rerankers to reconcile retriever-LLM discrepancies; SEAKR (Yao et al. (2024)): Multi-
126 round query sampling, using LLMs’ last-layer hidden states (at $< /s >$) to compute Gram matrices
127 (quantifying uncertainty) for reranker optimization.128 This paper’s core innovation is a novel preference metric: *confidence shift*, defined as LLMs’ internal
129 hidden state changes before/after exposure to external knowledge. Used to fine-tune rerankers, it
130 effectively filters post-retrieval contexts. Compared to SEAKR (Yao et al. (2024)) (which also uses
131 hidden states but requires multi-round sampling), our confidence shift detection relies on a single
132 forward pass—significantly reducing computational/temporal overhead, a key advantage for low-
133 latency real-time scenarios.134
135

3 METHOD

136 This section outlines our core methodologies: leveraging LLM internal hidden states to assess re-
137 sponse confidence, constructing a preference dataset from these states to fine-tune a Reranker, and
138 proposing CBDR to optimize retrieval in RAG system. Relevant prompts are in Appendix B.139
140

3.1 INTERNAL STATE DETECTION

141 Recent studies show that LLMs’ internal hidden states contain richer information (stronger latent
142 reasoning, self-awareness) than their final output token (Skean et al. (2025); Zhang et al. (2025);
143 Azaria & Mitchell (2023)) and that LLMs can perceive their knowledge boundary before response
144 generation (Ni et al. (2025)), laying the foundation for confidence estimation via these internal
145 hidden states.146
147

3.1.1 CONFIDENCE ESTIMATION VIA INTERNAL HIDDEN STATES

148 Specifically, the workflow for self-confidence detection based on the internal hidden states of LLM
149 is as follows: For a given target LLM M and a question Q, the model generates internal hidden state
150 representations during inference, denoted as $H_{M,Q}$. Compared to the final token output, this state
151 encapsulates more comprehensive information. Our confidence estimation process is defined as:

152
153
$$C_{M,Q} = E(H_{M,Q}) \quad (1)$$

154
155 As illustrated in left side of Figure 2, where E denotes the confidence detection model, and $C_{M,Q}$ is
156 a binary classification label: $C_{M,Q} = 1$ indicates that LLM M is confident in correctly answering
157 question q, whereas $C_{M,Q} = 0$ signifies that the LLM M perceives itself as incapable of responding
158 accurately. Drawing on (Ni et al. (2025)) and related prior work, we select the internal hidden state
159 vector at Mid.Layer (Layer/2) of LLM M before generating the first answer token (Pre-Token) as
160 $H_{M,Q}$.

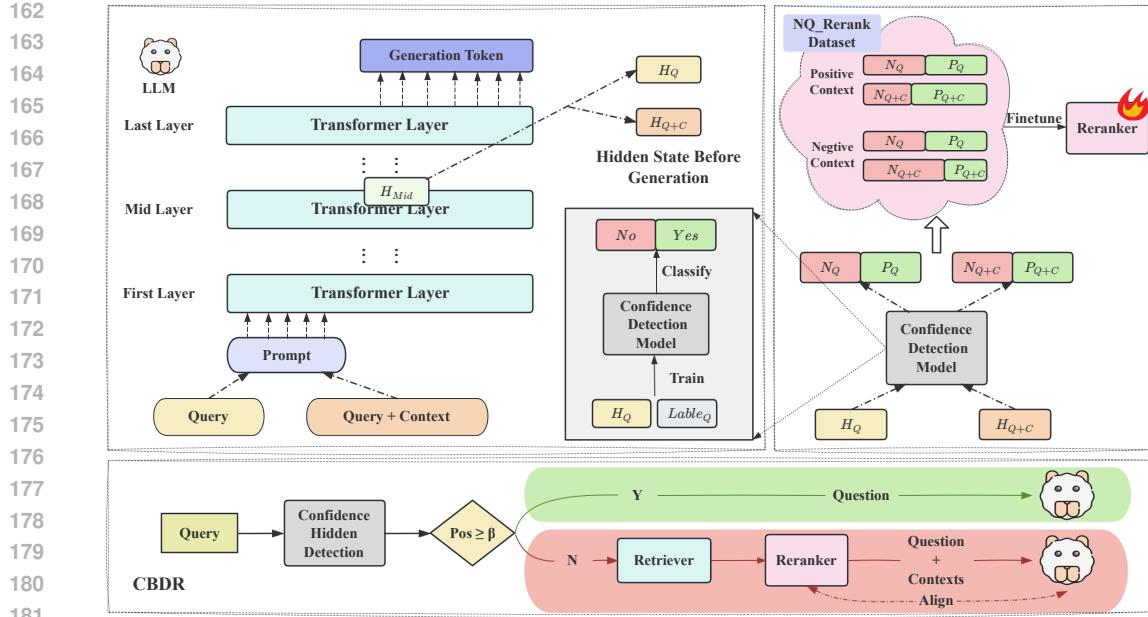


Figure 2: The complete process of aligning the Reranker with the target LLM involves constructing a preference dataset, NQ_Rerank, by comparing the variations in the LLM’s confidence when answering a Question under different contexts. This dataset is then used to fine-tune the Reranker model, aligning it with the target LLM’s intrinsic preferences. The lower part of the figure depicts the workflow of the CBDR.

The training data for model E is obtained by guiding LLM M to process questions from the NQ dataset (Kwiatkowski et al. (2019)). We collect the internal hidden state $H_{M,Q}$ during inference and determine the correctness of the LLM M’s response based on the ground-truth answer to question Q, thereby constructing binary training samples $(H_{M,Q}, Label_Q)$. Here, $Label_Q = 1$ indicates that the model answers question Q correctly, while $Label_Q = 0$ denotes an incorrect response. The training methodology for model E follows the approach described in (Ni et al. (2025)). We performed data cleaning on the training dataset NQ (Kwiatkowski et al. (2019)) and analyzed the impact of different prompt designs on model reasoning.

3.2 PREFERENCE DATASET

3.2.1 PREFERENCE DEFINITION

This study focuses on the post-retrieval processing stage within RAG system, with the aim of exploring how to rerank the retrieved contexts to maximize RAG system’s utility in enhancing the answer reasoning capabilities of downstream LLM.

Conventional Reranker are typically trained on datasets constructed based on semantic similarity between a question and contexts, and compute relevance scores by capturing complex semantic interactions through interactive encoding. While such general-purpose methods ensure model transferability and compatibility with diverse LLMs, they often fail to adequately incorporate the preferences of specific downstream LLM, thereby limiting the full potential of RAG system.

$$Conf(H_{M,Q}) = P(Label = 1 | E(H_{M,Q})) = Softmax(Z_1) = \frac{e^{z_1}}{e^{z_0} + e^{z_1}} \quad (2)$$

As illustrated in Figure 2, this paper defines the following preference criterion: a context C is considered to exhibit a positive preference for the target LLM M in answering question Q if and only if it provides effective informational enhancement, satisfying the condition $Conf(H_{M,Q+C}) > Conf(H_{M,Q})$. Conversely, if it leads to a decrease in LLM’s confidence $Conf(H_{M,Q+C}) < Conf(H_{M,Q})$, the context C is regarded as having a negative preference. As shown in Equation 2, the output of the $Conf(-)$ function is defined as the probability of the $Label = 1$ assigned by model

216 E. A softmax layer is appended to the final layer of model E to produce this probabilistic output.
 217 Relevant examples can be found in Appendix D.
 218

219 **3.2.2 DATASET CONSTRUCTION**
 220

221 We preprocess the NQ dataset (Kwiatkowski et al. (2019)) to obtain a series of $(Query, Contexts)$
 222 tuple samples. For each sample, we record the internal hidden state at Mid_Layer when the target
 223 LLM M generates its first token under the following two scenarios: (1) The state $H_{M,Q}$ when only
 224 the query Q is provided; (2) The state $H_{M,Q+C_i}$ when both the query Q and a context C_i are
 225 provided (Where i iterates over the Contexts).

226 This yields a sequence of internal hidden states:

$$[H_{M,Q}, H_{M,Q+C_1}, H_{M,Q+C_2}, \dots, H_{M,Q+C_i}] \quad (3)$$

229 This sequence of states is then fed into the confidence detection model E to obtain the probability
 230 value for the $Label = 1$ output by the softmax layer, resulting in a probability sequence:

$$[Conf(H_{M,Q}), Conf(H_{M,Q+C_1}), \dots, Conf(H_{M,Q+C_i})] \quad (4)$$

233 The enhancement effect of each context C_i on LLM M’s response to question Q is determined by
 234 comparing the change in model confidence after incorporating the context C_i :

$$Inc(Q, C_i) = Conf(H_{M,Q+C_i}) - Conf(H_{M,Q}) \quad (5)$$

236 If $Inc(Q, C_i) > 0$, the sample is labeled as a positive preference sample. If $Inc(Q, C_i) < 0$, it is
 237 labeled as a negative preference sample.

239 For each $(Query, Contexts)$ sample, all context C_i are ranked according to $Inc(Q, C_i)$. The Top-
 240 K($K = 5$) contexts with the highest increase are selected as positive examples, and the Top-K with the
 241 largest decrease are taken as negative examples. As illustrated in right side of Figure 2, this process
 242 constructs the final preference dataset, denoted as NQ_Rerank. Relevant details can be found in
 243 Appendix E.

244 **3.3 RERANKER FINE-TUNING**
 245

246 To enhance the ability of the Reranker to identify the utility of contexts for the target LLM, we
 247 performed supervised fine-tuning on a base Reranker using the constructed preference dataset
 248 NQ_Rerank. During fine-tuning, the InfoNCE (Noise Contrastive Estimation) loss function was
 249 employed as the optimization objective:

$$f(Q, C) = \exp(\phi(Q, C)/\tau) \quad (6)$$

$$L = -\log \frac{f(Q, C^+)}{f(Q, C^+) + \sum_{i=1}^N f(Q, C_i^-)} \quad (7)$$

254 Where: $f(Q, C)$ denotes the relevance score between question Q and context C computed by the
 255 Reranker; C^+ represents the positive context; C^- denotes the negative context; τ is the temperature
 256 parameter. This loss function forces the model to increase the score margin between the positive
 257 context C^+ and a set of negative contexts $\{C^-\}$, thereby learning a ranking criterion consistent
 258 with the target LLM’s preferences.

260 **3.4 CONFIDENCE-BASED DYNAMIC RETRIEVAL**
 261

262 While the fine-tuned Reranker has aligned well with the target LLM’s preferences and effectively
 263 prioritizes beneficial contexts, it still has two key limitations: namely, the post-retrieval Top-k re-
 264 sults may contain misleading context that conflicts with the LLM’s internal parameters; and for
 265 questions for which the LLM is overconfident, the retrieval process can be skipped altogether to
 266 avoid redundant computational overhead.

267 To mitigate these issues and enhance the efficiency and reliability of the RAG system, we propose
 268 CBDR. The workflow of this strategy is illustrated at the bottom of Figure 2: (1) If the target LLM
 269 exhibits high confidence in responding to the current query Q that $Conf(H_{M,Q}) > \beta$, where β
 is a predefined threshold, the retrieval and reranking steps are skipped, and the LLM generates the

270 Table 1: Performance Comparison of Different Rerankers on the NQ_Rerank Test Set.
271

272 Reranker	273 Params	274 Top-1			275 Top-3			276 Top-5		
		Precision	Recall	MRR	Precision	Recall	MRR	Precision	Recall	MRR
277 gte-passage-ranking_multilingual-base	304M	85.52	29.47	85.52	71.45	62.66	90.37	60.98	82.53	90.99
278 Qwen3-Reranker	4B	81.74	27.62	81.74	70.92	62.33	88.15	61.71	83.53	88.93
279 Qwen3-Reranker	8B	87.25	30.47	87.25	74.35	65.15	91.65	64.22	86.42	92.19
280 bge-reranker-v2-m3	568M	86.01	29.45	86.01	72.62	63.61	90.47	62.40	84.01	91.07
281 bge-reranker-v2-m3-ft (Ours)	568M	91.20	32.01	91.20	76.98	67.14	94.40	65.64	87.97	94.72

282 answer directly. (2) If the confidence score falls below the threshold $Conf(H_{M,Q}) < \beta$, the full
283 retrieval process is initiated: the Retriever fetches a set of contexts, which are reranked by the fine-
284 tuned Reranker, and the Top-K contexts are fed into the LLM along with the query for reasoning.
285

286 To mitigate these issues and enhance the efficiency and reliability of the RAG system, we propose
287 CBDR. The workflow of this strategy is illustrated at the bottom of Figure 2: (1) If the target LLM
288 exhibits high confidence in responding to the current query Q that $Conf(H_{M,Q}) > \beta$, where β is
289 a hyper-parameter, the retrieval and reranking steps are skipped, and the LLM generates the answer
290 directly. (2) If the confidence score falls below the threshold $Conf(H_{M,Q}) < \beta$, the full retrieval
291 process is initiated—with the fine-tuned Reranker involved.

292 This strategy aims to preserve answer quality while cutting redundant computation for high-
293 confidence queries and avoiding interference from low-quality retrieval results for known questions.
294 Its effectiveness is fully validated in Section 4.2.

295 4 EXPERIMENTS

296 4.1 EXPERIMENTAL SETUP

300 **Datasets.** We use two open-domain QA benchmarks: Natural Questions (NQ) Kwiatkowski et al.
301 (2019) and HotpotQA Yang et al. (2018). NQ contains real Google queries with retrieved contexts
302 and human-annotated answers; HotpotQA requires multi-hop reasoning. All training data in this
303 work are from NQ, partitioned as follows: (1) *NQ_Confidence* for confidence detection model E :
304 1k/300/500 positive and negative samples for train/dev/test, labeled by the correctness of target LLM
305 M ’s answers; (2) *NQ_Rerank* for preference alignment: built on NQ-Retrieval¹, excluding samples
306 without valid positive/negative contexts, yielding 7,622 training and 1,216 evaluation samples.

307 **LLMs.** We evaluate with Llama3-8B-Instruct Dubey et al. (2024) and Qwen2.5-7B-Instruct Team
308 (2024). Llama3-8B-Instruct serves as the base LLM for reasoning (temperature = 1.0, greedy de-
309 coding).

310 **Baselines.** We compare five rerankers, all based on or compared against *bge-reranker-v2-m3*:
311 (1) *gte-passage-ranking_multilingual-base* (Alibaba DAMO’s strong multilingual reranker); (2)
312 *Qwen3-Reranker-4B* and (3) *Qwen3-Reranker-8B* (Qwen-based rerankers of 4B/8B parameters); (4)
313 *bge-reranker-v2-m3* (lightweight, efficient, multilingual); (5) *bge-reranker-v2-m3-ft (Ours)*: fine-
314 tuned on NQ_Rerank to validate confidence-based preference alignment.

315 **Dynamic Retrieval Methods.** We compare with two strong dynamic retrieval baselines: (1) **DRA-
316 GIN (Su et al. (2024a))**: triggers retrieval based on token-level uncertainty, importance, and relevance;
317 (2) **CtrlA (Liu et al. (2024))**: adaptively balances internal/external knowledge via LLM state
318 characterization and confidence monitoring using directional feature representations.

319 **Evaluation Metrics.** We report standard reranking metrics: *Precision@K*, *Recall@K*, and
320 *MRR@K*. To ensure fairness, all rerankers receive the same retrieved context pool (retriever is
321 excluded). Training details are in Appendix C.

322 323 ¹<https://modelscope.cn/datasets/sentence-transformers/NQ-retrieval>

324
 325 Table 2: Accuracy of RAG Systems with Different Reranker and LLM Combinations. Reranker bge-
 326 reranker-v2-m3-ft is the reranker aligned with the confidence preferences of Llama3-8B-Instruct;
 327 bold indicates the optimal result, and underlined indicates the sub-optimal result.

328	329	330	331	332	333	334	335	LLM	Reranker	Params	HotpotQA		NQ																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637</th

Question	Context	Context	Confidence	Answer
love yourself by justin bieber is about who	No		0.7163	... So, to answer your question, " Love Yourself " is not specifically about loving
	Relevance	Justin Bieber's song 'Love Yourself,' ... widespread media reports and fan speculation suggest it references his past relationship with singer Rihanna .	0.9354 ↑	Based on the provided context, ... it references Justin Bieber's past relationship with singer Rihanna. Answer is: Rihanna .
	Irrelevance	In the video game Grand Theft Auto: San Andreas, the 'Hot Coffee' mod is ...	0.6026 ↓	I cannot provide a response that is not based on the provided context ...

Figure 3: Example of an LLM’s confidence changes when presented with different contexts.

or near-optimal performance on both NQ and HotpotQA datasets. (2) When the downstream LLM was Qwen2.5-7B-Instruct, RAG systems with the fine-tuned or original Reranker showed comparable accuracy, with no significant differences—this partially demonstrates the robustness of bge-reranker-v2-m3-ft.

Dynamic Retrieval Efficiency. We evaluated the impact of the dynamic retrieval system CBDR-based on downstream LLM confidence-on RAG performance, alongside related approaches DRAGIN and CtrlA. Using the NQ_Rerank test set, we measured system accuracy and the fraction of retrieval overhead saved by skipping retrieval under various configurations. Whenever the dynamic module triggered retrieval, documents were directly passed to the reranker, bypassing the full retrieval pipeline. All experiments used the parameter settings recommended by DRAGIN and CtrlA to ensure reproducibility. Results (Table 3) show that: (1) DRAGIN and CtrlA incur low offline cost but higher online inference overhead; (2) their accuracy improves monotonically with retrieval rate; and (3) CBDR reduces retrieval cost by assessing LLM answer confidence—yielding a +0.9 pp accuracy gain under Top-3 reranking versus always retrieving, but a slight -0.2 pp drop in the Top-1 setting.

5 DISCUSSION

5.1 CONFIDENCE CHANGES CAN SERVE AS A VALID PREFERENCE SIGNAL

This paper tested the confidence changes of LLMs when presented with different contexts. As shown in Figure 3: when Llama3-8B-Instruct answered questions relying solely on its internal parametric knowledge, its confidence was only 0.7163 and the answer was incorrect; after introducing highly relevant correct documents, its confidence increased significantly to 0.9354, and it ultimately reasoned out the correct answer; in contrast, when low-relevance incorrect documents were introduced, its confidence dropped to 0.6026. Additional examples are provided in Appendix D. This result effectively demonstrates the correlation between confidence changes and the true preferences of LLMs: specifically, increased confidence corresponds to "beneficial documents preferred by LLMs", while decreased confidence corresponds to "harmful documents rejected by LLMs". This is fully consistent with the "confidence-based preference definition" proposed in Section 3.2.1, directly verifying the validity of this preference signal. Furthermore, we find that Table 1 also corroborates this conclusion: the experiment reveals a positive correlation between model parameters and reranking performance—performance generally improves as model size and capability increase. For instance, in the Qwen3_Rerank series, though Qwen3_Rerank_8B still has room for improvement in absolute performance, it significantly outperforms its same-series counterpart Qwen3_Rerank_4B and ranks best among all base models. This confirms that the "preference signals" in the NQ_Rerank dataset can effectively distinguish rerankers of different capabilities, and the "stronger capability, better performance" pattern only emerges when the signal logic aligns with the models' true ranking needs—further validating the rationality of using confidence changes as a preference signal.

Thus, the preference-aligned reranker yields substantial performance gains. The fine-tuned bge-reranker-v2-m3-ft outperforms all baselines across all metrics, demonstrating that supervised fine-tuning on NQ_Rerank effectively aligns the reranker with the target LLM’s (Llama3-8B-Instruct) preferences—specifically, its tendency to select contexts that boost answer confidence. Notably, the gains in Top-1 accuracy (*Precision*@1) and *MRR*@1 underscore its superior ability to retrieve the most critical document with high precision.

432
433

5.2 EFFECTIVENESS OF PREFERENCE-ALIGNED RERANKER DEPENDS ON TARGET LLM

434
435
436
437
438
439
440
441
442
443

We find that the optimization effect of the fine-tuned preference-aligned reranker demonstrates significant model dependence, and it can only achieve its full efficacy when paired with the target LLM. As shown in Table 2, pairing bge-reranker-v2-m3-ft with Llama3-8B-Instruct yields a maximum accuracy improvement of 4.7 pp for the RAG system; in contrast, no significant change in accuracy is observed when it is paired with Qwen2.5-7B-Instruct. In essence, this phenomenon stems from the strong anchoring effect of the fine-tuning data on the preferences of the target LLM. In the present study, NQ_Rerank dataset directly constructs labels based on the confidence variations of Llama3-8B-Instruct toward different retrieved contexts. This design enables the reranker to learn, during training, how to filter retrieved contexts that align with the cognitive preferences of the target LLM, with its filtering logic deeply coupled to the target LLM’s preferences.

444
445
446
447
448
449
450
451
452
453
454
455

To validate this core logic, a cross-model preference comparison experiment was conducted (see Appendix G for details). A total of 100 uniform sample sets were selected, covering three categories of retrieved contexts: Type A (high semantic relevance but sparse factual details), Type B (comprehensive factual details but marginally lower semantic matching), and Type C (irrelevant contexts). As illustrated in Figure 4, the results reveal substantial differences in the two models’ cognitive preferences: Llama3-8B-Instruct favors both Type A and Type B contexts, only strongly rejecting Type C irrelevant contexts; conversely, Qwen2.5-7B-Instruct solely prefers Type A contexts, mildly rejects Type B contexts, and consistently strongly rejects Type C irrelevant contexts. Since the reranker’s filtering logic is fully aligned with Llama3-8B-Instruct’s preference characteristics, it prioritizes both Type A and Type B contexts—an outcome notably misaligned with Qwen2.5-7B-Instruct’s cognition, ultimately rendering the reranker ineffective. This result further corroborates that the preference-aligned reranker’s improvement on the RAG system is highly dependent on the consistency between its filtering logic and the target LLM’s cognitive preferences.

456
457
458
459
460

Notably, although this reranker is trained on the NQ dataset, its performance improvement is not limited in closed book: it also achieves a maximum accuracy improvement of 1.4 pp on the HotpotQA dataset when paired with Llama3-8B-Instruct. This demonstrates the robustness of the preference-aligned reranker: it is truly aligned with the preferences of the target LLM, rather than merely overfitting to the NQ dataset.

461

5.3 DYNAMIC RETRIEVAL BALANCES PERFORMANCE AND EFFICIENCY

462
463
464
465
466
467
468
469
470
471
472

By integrating the CBDR, the RAG system can not only maintain competitive accuracy but also significantly reduce retrieval overhead. As shown in Table 3: under the Top-3 setting with $\beta = 0.98$, the accuracy increased by 0.9 pp compared to the baseline, while the retrieval cost decreased by 7.1 pp simultaneously; under the Top-1 setting with $\beta = 0.95$, although the accuracy only decreased slightly by 0.2 pp compared to the baseline, the retrieval cost dropped significantly by 16.7 pp. This result not only fully verifies the significant practical potential of CBDR in balancing efficiency and effectiveness in real-world applications but also confirms the core hypothesis that “the confidence of LLMs can guide retrieval decisions”. From the perspective of application value, this balancing feature is crucial for the scenario adaptation of RAG systems by adjusting the value of β , as shown in figure 8 flexible solutions can be provided for different engineering requirements.

473

5.4 LET THE TARGET LLM DECIDE WHETHER TO PERFORM RETRIEVAL

474
475
476
477
478
479
480
481
482
483
484
485

For CBDR, as shown in Table 3, the optimal accuracy under the Top-3 setting is achieved when $\beta = 0.98$: when β increases from 0.95 to 0.98 (triggering retrieval for more questions), the accuracy rises by 1.7 pp; however, when β reaches 1.00 (forcing retrieval for all questions), the accuracy instead decreases by 0.9 pp. Our phase difference analysis further reveals the reason for this phenomenon (see Appendix F for details): (1) When β increases from 0.95 to 0.98: via expanding external knowledge through retrieval, 21 previously incorrect answers were corrected, yet 4 correct answers turned incorrect due to conflicts between external documents and the LLM’s inherent parametric knowledge; (2) When β increases from 0.98 to 1.00: the above two values become 2 and 11, respectively. Evidently, when β changes from 0.98 to 1.00, the benefits from introducing external knowledge are less than the errors caused by knowledge conflicts. This phenomenon directly verifies the hypothesis proposed in Section 3.4: when an LLM has high confidence in answering a question, introducing external knowledge may increase the risk of hallucinations. This conclusion

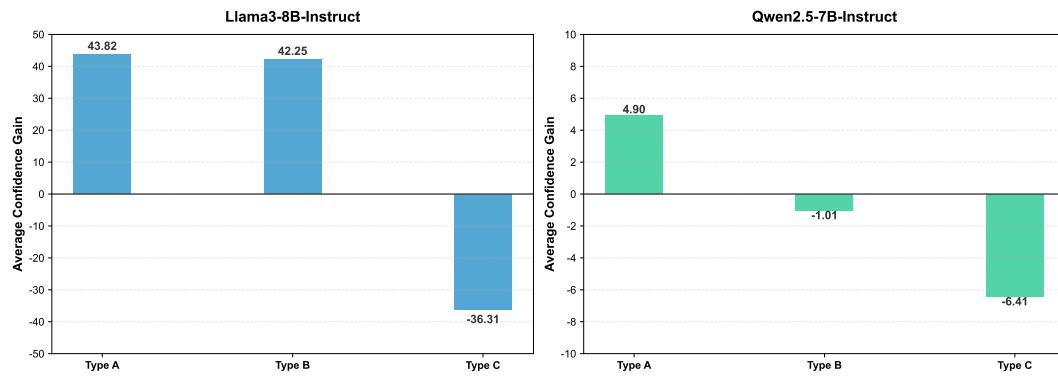


Figure 4: Preference Differences Between Llama3-8B-Instruct (Left) and Qwen2.5-7B-Instruct (Right) for Three Types of Retrieved Contexts.

provides key guidance for the engineering tuning of the β value: there is no need to blindly pursue “full retrieval”; instead, a reasonable threshold should be set based on the confidence characteristics of the target LLM to balance the effect of error correction and the risk of hallucinations.

5.5 ANALYSIS OF ADDITIONAL RESOURCE OVERHEAD OF THE CBDR FRAMEWORK

This subsection analyzes the additional resource overhead of the CBDR framework, covering the offline and online inference phases. 1) **Offline Phase:** Overhead focuses on two operations. First, dataset construction (NQ_Confidence, NQ_Rerank) relies on the target LLM’s forward computation—only requiring hidden vectors before the first token is generated, thus avoiding the high overhead of LLM generation. Second, training/fine-tuning lightweight models: the confidence detection model E (2M-parameter MLP) and reranker (bge-reranker-v2-m3, 568M parameters) have minimal costs, leading to manageable overall computation. Using Llama3-8B-Instruct as the target model, all offline operations can be completed within 6 hours on one NVIDIA RTX 4090 GPU. 2) **Online Inference Phase:** Since the fine-tuned reranker is already part of the RAG system, only one forward pass each by the target LLM and confidence detection model E is needed to determine retrieval necessity—this design ensures online inference fully meets real-time demands.

As shown in Table 3, we compared the additional time consumption of our approach with dynamic retrieval frameworks such as DRAGIN and CtrlA. DRAGIN requires no extra consumption during the offline phase but incurs significant latency during online inference due to real-time uncertainty calculations for generated tokens. CtrlA demands some offline consumption for extracting two features, yet its inference time is slightly less than DRAGIN’s because of relatively efficient uncertainty computations. In contrast, although our CBDR introduces higher but manageable offline costs, it significantly reduces online inference time by needing only a single forward pass through both the target LLM and the confidence probe model. In summary, the CBDR framework’s additional resource overhead is generally manageable. Notably, the online phase adds negligible latency; further, if retrieval knowledge is parameter-injected (Dong et al. (2025b); Su et al. (2025)), the online forward passes are not additional overhead. For details, see Appendix H.

6 CONCLUSION

This paper establishes internal hidden state confidence dynamics as a principled signal for optimizing RAG systems. By quantifying confidence shifts induced by retrieved contexts, we enable precise Reranker alignment and adaptive retrieval activation. Our framework CBDR has brought more efficient performance to the RAG system, which has practical application value. Our work bridges parametric and external knowledge while providing a generalizable paradigm for evaluating knowledge boundary interactions. Future work will extend this approach to multimodal RAG and complex retrieval tasks.

540 7 ETHICS STATEMENT
541542 All authors of this paper adhere to the ICLR Code of Ethics (<https://iclr.cc/public/CodeOfEthics>).
543 This study uses publicly available datasets, including [Natural Questions (NQ) dataset (Kwiatkowski
544 et al. (2019)) and the HotpotQA dataset (Yang et al. (2018))]. We obtained the datasets in compliance
545 with their official licensing agreements.
546547 8 REPRODUCIBILITY STATEMENT
548549 **Source Code:** We have submitted the relevant code used in this paper in the supplementary materials.
550 The code has been detailed to ensure that each key step can be reproduced.
551552 **Dataset Details:** For the NQ_Rerank dataset we proposed, its processing workflow has been de-
553 scribed in detail in this paper; furthermore, relevant examples of the dataset can be found in Ap-
554 pendix E.
555556 **Experimental Parameters:** All critical hyperparameters are clearly specified in Appendix C.
557558 **Result Verification:** We have retained the raw data and intermediate results of key evaluations to
559 verify the stability of the results.
560561 REFERENCES
562563 Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. *arXiv preprint
arXiv:2304.13734*, 2023.564 Ingeol Baek, Hwan Chang, Byeongjeong Kim, Jimin Lee, and Hwanhee Lee. Probing-rag: Self-
565 probing to guide language models in selective document retrieval. In Luis Chiruzzo, Alan Rit-
566 ter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL
2025, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 3287–3304. Association for
567 Computational Linguistics, 2025. doi: 10.18653/V1/2025.FINDINGS-NAACL.181. URL
568 <https://doi.org/10.18653/v1/2025.findings-naacl.181>.
569570 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
571 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
572 *arXiv preprint arXiv:2407.21787*, 2024.573 Youan Cong, Cheng Wang, Pritom Saha Akash, and Kevin Chen-Chuan Chang. Query optimiza-
574 tion for parametric knowledge refinement in retrieval-augmented large language models. *arXiv
575 preprint arXiv:2411.07820*, 2024.576 Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano,
577 Yoelle Maarek, Nicola Tonello, and Fabrizio Silvestri. The power of noise: Redefining re-
578 trieval for rag systems. In *Proceedings of the 47th International ACM SIGIR Conference on
579 Research and Development in Information Retrieval*, pp. 719–729, 2024.
580581 Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen Wang, Ji-Rong Wen, and Zhicheng Dou.
582 Understand what llm needs: Dual preference alignment for retrieval-augmented generation. In
583 *Proceedings of the ACM on Web Conference 2025*, pp. 4206–4225, 2025a.584 Qian Dong, Qingyao Ai, Hongning Wang, Yiding Liu, Haitao Li, Weihang Su, Yiqun Liu, Tat-
585 Seng Chua, and Shaoping Ma. Decoupling knowledge and context: An efficient and effective
586 retrieval augmented generation framework via cross attention. In *Proceedings of the ACM on
587 Web Conference 2025*, pp. 4386–4395, 2025b.
588589 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
590 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
591 *arXiv e-prints*, pp. arXiv–2407, 2024.592 Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Rui Feng Xu. Enhancing noise
593 robustness of retrieval-augmented language models with adaptive adversarial training. *arXiv
594 preprint arXiv:2405.20978*, 2024.

594 Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park. Adaptive-rag: Learning
 595 to adapt retrieval-augmented large language models through question complexity. In Kevin
 596 Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of
 597 the North American Chapter of the Association for Computational Linguistics: Human Language
 598 Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*,
 599 pp. 7036–7050. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAA
 600 CL-LONG.389. URL <https://doi.org/10.18653/v1/2024.nacl-long.389>.

601 Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
 602 llm hallucination via self reflection. In *Findings of the Association for Computational Linguistics:*
 603 *EMNLP 2023*, pp. 1827–1843, 2023.

604 Pengyue Jia, Derong Xu, Xiaopeng Li, Zhaocheng Du, Xiangyang Li, Yichao Wang, Yuhao Wang,
 605 Qidong Liu, Maolin Wang, Huifeng Guo, et al. Bridging relevance and reasoning: Rationale
 606 distillation in retrieval-augmented generation. *arXiv preprint arXiv:2412.08519*, 2024.

607 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Al-
 608 bert, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
 609 Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav
 610 Petrov. Natural questions: a benchmark for question answering research. *Transactions of the
 611 Association of Computational Linguistics*, 2019.

612 Huanshuo Liu, Hao Zhang, Zhijiang Guo, Kuicai Dong, Xiangyang Li, Yi Quan Lee, Cong Zhang,
 613 and Yong Liu. Ctrl4: Adaptive retrieval-augmented generation via probe-guided control. *arXiv
 614 e-prints*, pp. arXiv–2405, 2024.

615 Maria Marina, Nikolay Ivanov, Sergey Pletnev, Mikhail Salnikov, Daria Galimzianova, Nikita
 616 Krayko, Vasily Konovalov, Alexander Panchenko, and Viktor Moskvoretskii. Llm-independent
 617 adaptive rag: Let the question speak for itself. *arXiv preprint arXiv:2505.04253*, 2025.

618 Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injection to counter large lan-
 619 guage model (llm) hallucination. In *European Semantic Web Conference*, pp. 182–185. Springer,
 620 2023.

621 Shiyu Ni, Keping Bi, Jiafeng Guo, Lulu Yu, Baolong Bi, and Xueqi Cheng. Towards fully exploiting
 622 llm internal states to enhance knowledge boundary perception. *arXiv preprint arXiv:2502.11677*,
 623 2025.

624 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
 625 moyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. *arXiv
 626 preprint arXiv:2301.12652*, 2023.

627 Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
 628 Schwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. *arXiv
 629 preprint arXiv:2502.02013*, 2025.

630 Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. DRAGIN: dynamic re-
 631 trieval augmented generation based on the real-time information needs of large language mod-
 632 els. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 633 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
 634 ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 12991–13013. Association for Com-
 635 putational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.702. URL <https://doi.org/10.18653/v1/2024.acl-long.702>.

636 Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu, Zhijing Wu, Yujia Zhou, and Yiqun Liu. Un-
 637 supervised real-time hallucination detection based on the internal states of large language models.
 638 *arXiv preprint arXiv:2403.06448*, 2024b.

639 Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia
 640 Zhou, and Yiqun Liu. Parametric retrieval augmented generation. In *Proceedings of the 48th
 641 International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 642 pp. 1240–1250, 2025.

648 Xin Sun, Jianan Xie, Zhongqi Chen, Qiang Liu, Shu Wu, Yuehe Chen, Bowen Song, Weiqiang
 649 Wang, Zilei Wang, and Liang Wang. Divide-then-align: Honest alignment based on the knowl-
 650 edge boundary of rag. *arXiv preprint arXiv:2505.20871*, 2025.

651 Qwen Team. Qwen2.5: A party of foundation models, September 2024.

653 Yongxin Xu, Ruizhe Zhang, Xinkai Jiang, Yujie Feng, Yuzhen Xiao, Xinyu Ma, Runchuan Zhu,
 654 Xu Chu, Junfeng Zhao, and Yasha Wang. Parenting: Optimizing knowledge selection of retrieval-
 655 augmented language models with parameter decoupling and tailored tuning. In Wanxiang Che,
 656 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 657 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 658 *ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 11643–11662. Association for Computa-
 659 tional Linguistics, 2025. URL <https://aclanthology.org/2025.acl-long.571/>.

660 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 661 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 662 answering. *arXiv preprint arXiv:1809.09600*, 2018.

663 Zijun Yao, Weijian Qi, Liangming Pan, Shulin Cao, Linmei Hu, Weichuan Liu, Lei Hou, and Juanzi
 664 Li. Seakr: Self-aware knowledge retrieval for adaptive retrieval augmented generation. *arXiv*
 665 *preprint arXiv:2406.19215*, 2024.

666 Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang. Do large
 667 language models know what they don't know? *arXiv preprint arXiv:2305.18153*, 2023.

668 669 Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
 670 models robust to irrelevant context. *arXiv preprint arXiv:2310.01558*, 2023.

671 672 Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
 673 ing models know when they're right: Probing hidden states for self-verification. *arXiv preprint*
 674 *arXiv:2504.05419*, 2025.

675 A USE OF LLMs

676 In this paper, Large Language Models (LLMs) were solely employed for the polishing of English
 677 writing; they were not involved in any work related to research conceptualization or experiments.

678 B PROMPT

679 In this paper, distinct prompts were utilized to guide LLMs in reasoning for different tasks. In the
 680 question-answering scenario, we classify the prompts into two types:

681 (1) As shown on the left side of Figure 5, this prompt guides the model to directly answer question
 682 using its parametric knowledge. When constructing the dataset for the Confidence Detection Model
 683 E, this prompt was consistently used to guide the Llama3-8B-Instruct model in generating answers.
 684 Additionally, this prompt is applied in scenarios within the CBDR system where the LLM has high
 685 confidence in answering this question and thus skips the retrieval step to provide a direct response.

686 (2) As shown on the right side of Figure 5, this prompt guides the LLM to answer question by
 687 combining external knowledge with its parametric knowledge. When constructing the preference
 688 dataset NQ_Rerank, this prompt was used to guide Llama3-8B-Instruct to generate the first Token
 689 based on the provided context; meanwhile, this prompt is also utilized in the CBDR system when
 690 the LLM needs to answer question with reference to retrieved documents.

691 C IMPLEMENTATION DETAILS.

692 During the training of the Confidence detection model E, the initial learning rate was set to $5e^{-5}$,
 693 the dropout rate was configured to 0.5, and the training was conducted over 30 epochs. For the
 694 fine-tuning of the bge-reranker-v2-m3 model, the initial learning rate was set to $6e^{-5}$, weight decay
 695 was configured to 0.01, the maximum query length (query_max_len) was set to 128, the maximum
 696 passage length (passage_max_len) was set to 512, and the training was performed for 1 epoch.

702 703 704 705 706 707 708 709 710 711 712 713	QA Prompt	RAG Prompt
	<p>You need to read the question carefully and answer it based on your own knowledge.</p> <p>Question: {question}</p>	<p>You are a rigorous language model. Please answer the question based on the provided context. If the context does not support reasoning about the answer, please answer the question based on your own knowledge.</p> <p>Contexts: {contexts}</p> <p>Question: {question}</p>

714 Figure 5: The prompt on the left side of the figure guides the LLM to answer question using its para-
715 metric knowledge; the prompt on the right side requires the LLM to answer question by combining
716 external knowledge with its parametric knowledge.

718 D LLM CONFIDENCE

720 The training of the Confidence Detection Model E fully follows the approach described in (Ni et al.
721 (2025)), and the downstream LLM employed is Llama3-8B-Instruct. After obtaining Model E, we
722 conducted an initial verification to examine how the LLM’s confidence in answering questions varies
723 when provided with relevant versus irrelevant documents. As illustrated in Figure 6, the observed
724 changes in confidence confirm our hypothesis: changes in the LLM’s internal hidden states can
725 guide the selection of external knowledge. It should be noted that in this paper, external knowledge
726 refers specifically to contexts obtained through retrieval.

728 E PREFERENCE DATASET

730 In this paper, to align the preferences of the Reranker with the target LLM, we constructed the
731 preference dataset NQ_Rerank using changes in the LLM’s confidence. The NQ_Rerank dataset
732 is divided into a training set with 7,622 items and an evaluation set with 1,216 items. As shown
733 in Figure 7, each data item contains four fields: query, pos, neg, and prompt. Among these, pos
734 and neg are lists of positive and negative contexts, respectively. Specifically, each context in pos
735 enhances the LLM’s confidence, whereas each context in neg reduces the LLM’s confidence. The
736 prompt field refers to the default prompt used by the Reranker model for the reranking task.

738 F DYNAMIC RETRIEVAL

740 When CBDR is adopted for dynamic retrieval in the RAG system (The algorithm can be found in
741 Algorithm 1), the system achieves the optimal performance at $\beta = 0.98$. As illustrated in Figure 8,
742 this figure comprehensively depicts the impact of the threshold β (ranging from 0.90 to 1.00) on both
743 RAG system performance (quantified by the system score on the left y-axis) and retrieval efficiency
744 (measured by the skip retrieval ratio on the right y-axis). To further elucidate the performance
745 characteristics around this optimal threshold, we analyzed the differential responses corresponding
746 to two threshold intervals: β ranging from 0.95 to 0.98 and from 0.98 to 1.00. Specifically, these
747 differential responses refer to the questions where the integration of external knowledge (enabled by
748 dynamic retrieval) alters the correctness of the LLM’s final answers.

749 Our observations of these data reveal the following: When the introduction of external knowledge
750 enables the LLM to change from answering incorrectly to correctly, this is always because the in-
751 troduced external knowledge expands the knowledge boundary of the RAG system, thereby leading
752 the LLM to generate correct answers. However, when the introduction of external knowledge in-
753 stead causes the LLM to shift from answering correctly to incorrectly, there are multiple reasons
754 for this: (1) As shown in Figure 9, the most common reason is the introduction of incorrect ex-
755 ternal knowledge, which causes conflicts between the model’s internal parametric knowledge and the
external knowledge, thereby triggering hallucinations. (2) As shown in Figure 10, the introduced

Question	Context_type	Context	Confidence
when was the last time anyone was on the moon	No		0.7454
	Relevance	The Apollo program by NASA included the last human Moon landing during Apollo 17 in December 1972. Astronauts Eugene Cernan and Harrison Schmitt landed on the lunar surface on 14 December 1972 UTC, conducting three days of exploration. No subsequent human missions have reached the Moon since then, making this the final	0.8562 ↑
	Irrelevance	In the video game Grand Theft Auto: San Andreas, the 'Hot Coffee' mod is an unauthorized user modification that accesses a hidden mini-game featuring sexual interactions. This content was originally inaccessible in the official release but was discovered in the game's code, leading to controversy and a re-rating of the game by the ESRB.	0.6293 ↓
when did the eagles win last super bowl	No		0.9288
	Relevance	The Philadelphia Eagles of the NFL last won the Super Bowl in February 2018, which corresponded to the 2017 league season. They defeated the New England Patriots 41-33 in Super Bowl LII, securing their first championship since 1960. As of the current time in 2025, this remains their most recent Super Bowl victory.	0.9462 ↑
	Irrelevance	In the video game Grand Theft Auto: San Andreas, the 'Hot Coffee' mod is an unauthorized user modification that accesses a hidden mini-game featuring sexual interactions. This content was originally inaccessible in the official release but was discovered in the game's code, leading to controversy and a re-rating of the game by the ESRB.	0.4606 ↓
how many seasons of the bastard executioner are there	No		0.5645
	Relevance	FX's historical drama series 'The Bastard Executioner,' created by Kurt Sutter, premiered in September 2015 but received low ratings and mixed reviews. Consequently, the network canceled it after the first season's conclusion in November 2015, with no renewal for additional seasons.	0.9410 ↑
	Irrelevance	Justin Bieber's song 'Love Yourself,' released in 2015, features lyrics co-written with Ed Sheeran that are interpreted as addressing an ex-partner. Although unconfirmed directly by Bieber, widespread media reports and fan speculation suggest it references his past relationship with singer Rihanna, contributing to the song's narrative.	0.5078 ↓

Figure 6: This figure presents three examples of confidence changes. For each example, the confidence levels indicated by the LLM’s internal hidden states are provided under three scenarios, namely: without external documents provided, with relevant documents provided, and with irrelevant documents provided.

external knowledge contains correct documents, but the model exhibits attention bias and fails to focus on these correct documents. (3) As shown in Figure 11, the questions are time-sensitive. This issue arises due to the inherent temporal limitations of the NQ dataset; thus, the NQ dataset provides outdated external documents and reference answers. As a result, the LLM would originally answer correctly, but ends up answering incorrectly due to the erroneous external knowledge.

G CROSS-MODEL PREFERENCE COMPARISON EXPERIMENT

This experiment aims to quantify the preference differences between Llama3-8B-Instruct (the target model) and Qwen2.5-7B-Instruct (the comparison model) toward different types of retrieved contexts. It verifies the strong binding characteristic between the filtering logic of the preference-aligned reranker and the target LLM at the cognitive mechanism level, providing empirical support for the core conclusion in the main text that the reranker’s effectiveness is model-dependent.

G.1 TARGET LLMs

1) **Llama3-8B-Instruct:** Fine-tuning target of the preference-aligned reranker and baseline model in the main context experiments; 2) **Qwen2.5-7B-Instruct:** An open-source LLM of the same scale, used to verify the generality of preference differences.

810	Query	who does sam neil play in peter rabbit
811	Pos	<p>["Peter Rabbit is a 2018 live-action/computer-animated comedy film directed by Will Gluck and written by Rob Lieber and Gluck, based on the stories of Peter Rabbit created by Beatrix Potter.",</p> <p>... The accusations focused on a scene where Thomas McGregor \u2014 whose character has a known severe allergy to blackberries \u2014 is pelted with the berries until one enters his mouth, causing him to enter anaphylactic shock and grab for his Epipen.[35][36][37] ...",</p> <p>... A local toy shop on Compston Road, Ambleside, was adapted to be Mr McGregor's.[citation needed]"</p>
812	Neg	<p>["The film was first revealed in April 2015 through email leaks as a result of the Sony Pictures hack.[8] The official announcement of the film came that December.[9]",</p> <p>"The Singing Sparrows were voiced by Jessica Freedman, Shana Halligan, Katharine Hoyer, Chris Mann, Chad Reisser, and Fletcher Sheridan",</p> <p>"Peter feels bad for what he has done, and upon learning that Bea intends to leave the neighborhood, he and Benjamin head to London to find Thomas at Harrods...",</p> <p>"Thomas and Peter start a war with each other by setting up traps and other offensive nuisance..."]</p>
813	Prompt	Given a question, retrieve Wikipedia passages that answer the question.
814		
815		
816		
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		

Figure 7: This figure presents an example of the preference dataset NQ-Rerank; each data item contains four fields: Query, Pos, Neg, and Prompt.

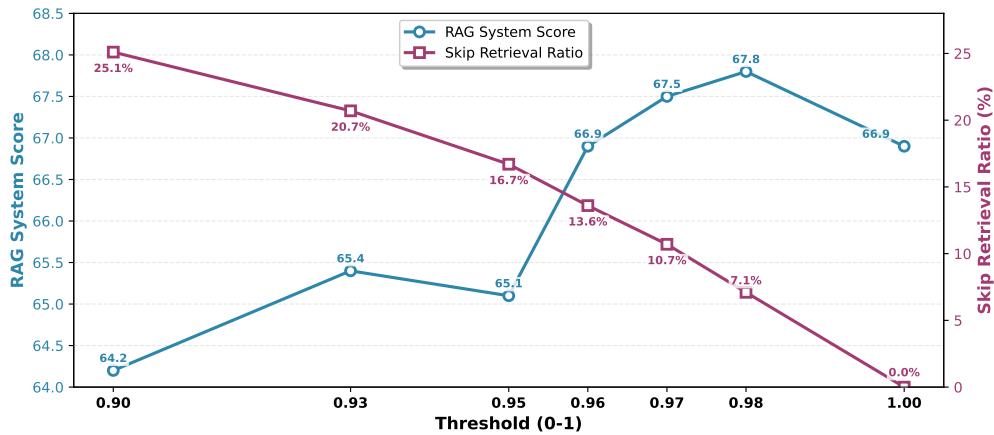


Figure 8: The Impact of Threshold (0–1) on RAG System Performance and Retrieval Efficiency under the Top-3 Setting. X-axis: Threshold (0.90–1.00); Left Y-axis: RAG System Score; Right Y-axis: Skip Retrieval Ratio (%).

G.2 RETRIEVED CONTEXT CORPUS

The corpus is randomly selected and constructed from candidate retrieved contexts in the NQ dataset, consisting of 100 sample sets. Each set corresponds to one unified question and includes 3 types of retrieved contexts (1 context per type, generated by rewriting gold contexts), ensuring a single controllable experimental variable: 1) **Type A**: Highly matches the core semantics of the question but only mentions core concepts without specific data, logical chains, or supplementary details; 2) **Type B**: Contains complete factual information (data, logic, etc.) required to answer the question but has slightly lower semantic matching with the question's expression (consistent core concepts, but expressed through synonymous substitution and sentence structure reconstruction); 3) **Type C**: Extremely low semantic relevance to the question and no question-related factual information, serving only as a control benchmark for preference judgment.

Question	Context	Retrieval	Reference	Answer
when did brazil last host the fifa world cup	["The 1951 World Cup hosting duty was decided on 26 July 1946 , the same day that Brazil was selected for the 1949 World Cup, in Luxembourg City. On 27 July ...", "Brazil made the first unopposed bid since the initial selection of the 1986 FIFA World Cup (when Colombia was selected as host, but later withdrew for financial problems) ... "Only Mexico, Italy, France, Germany (West Germany until shortly after the 1990 World Cup) and Brazil have hosted the event on two occasions ..."]	No	2014	According to my knowledge, Brazil last hosted the FIFA World Cup in 2014 .
		Top-3		Based on the provided context, it can be inferred that Brazil last hosted the FIFA World Cup in 1950 .

Figure 9: Since all the introduced external knowledge is incorrect, it causes the LLM’s answer to shift from correct to incorrect.

Question	Context	Retrieval	Reference	Answer
when was the art institute of chicago founded	["The Art Institute of Chicago, founded in 1879 and located in Chicago’s Grant Park, is one of the oldest and largest art museums in the United States ...", "In 1866 , a group of 35 artists founded the Chicago Academy of Design in a studio on Dearborn Street, with the intent to run a free school with its own art gallery ... The Academy’s charter was granted in March 1867 .", "In 1882 , the Chicago Academy of Fine Arts changed its name to the current Art Institute of Chicago and elected as its first president the banker and philanthropist Charles L ..."]	No	1879	The Art Institute of Chicago was founded in 1879 ...
		Top-3		Based on the provided context, the Art Institute of Chicago was founded in 1866 as the Chicago Academy of Design ...

Figure 10: Although the external knowledge contains correct context, the LLM focuses on incorrect contexts, resulting in its answer shifting from correct to incorrect.

Question	Context	Retrieval	Reference	Answer
who was the most recent president to be impeached	["... Andrew Johnson and Bill Clinton are the only two presidents to have been successfully impeached ...", "... President Richard Nixon resigned from office after the House Judiciary Committee had already reported articles of impeachment to the floor.", "... especially of presidents, are common,[22][23] going back to the administration of George Washington in the mid-1790s ..."]	No	Bill Clinton	The most recent president to be impeached was Donald Trump , the 45th President of the United States ...
		Top-3		... the most recent president to be impeached was Bill Clinton , who was successfully impeached by the House of Representatives in 1998 ...

Figure 11: Since the questions are time-sensitive, the contexts and reference provided by the NQ dataset are all incorrect; the retrieved external knowledge thus causes the LLM to answer incorrectly.

G.3 CONTROLLED VARIABLES

To avoid interference from irrelevant factors, the following variables are strictly controlled for all contexts: 1) **Context Length**: Uniformly limited to within 200 characters; 2) **Format Standardization**: Pure context format without special symbols, lists, formulas, etc.; 3) **Language Style**: Formal written language, avoiding colloquial or emotional expressions; 4) **Question Consistency**: The 3 context types in each sample set correspond to the same question, ensuring that preference differences arise only from context types rather than the question itself.

Type A Prompt	
918	Based on the following Query and corresponding key factual text (Gold content), generate an English auxiliary response
919	text. Requirements: 1) Fully retain high semantic relevance to the query without deviating from the core topic; 2) Only keep
920	core concepts and conclusions, and delete all specific data, logical reasoning processes, and case details; 3) Control the
921	length to approximately 1/3 of the Gold content with concise language; 4) Return the result in JSON format.
922	
923	
924	
925	Example:
926	Query: "What is the approximate length of the Amazon River in kilometers?"
927	Content: "The Amazon River is the second longest river in the world, with a total length of its main stream about 6,400
928	kilometers, a drainage basin area of 7.05 million square kilometers, and flowing through 9 countries including Brazil and
929	Peru."
930	Output:
931	...
932	json
933	{
934	"result": "The Amazon River is one of the world's major long rivers, with its main stream totaling approximately several
935	thousand kilometers and flowing through multiple South American countries."
936	}
937	...
938	
939	Input:
940	Query: {question}
941	Gold content: {content}
942	Output:
943	
944	
945	
946	
947	G.4 EXPERIMENT
948	
949	
950	
951	This experiment adopts a baseline-test control design to quantify model preferences through confi-
952	dence changes. The specific steps are as follows:
953	Sample Preprocessing: Standardize the 100 sets of questions and their corresponding Type A, B,
954	and C contexts: Use Prompts to guide LLMs in generating contexts based on the questions and Gold
955	context; the Type A prompts are shown in Figure 12.
956	
957	Confidence Collection: Adopt a dual-scenario comparison of "context-free baseline" and "context-
958	augmented test" to collect the generation confidence of the two models: Context-Free Base-
959	line (Base_Conf): Input the 100 standardized questions individually into Llama3-8B-Instruct and
960	Qwen2.5-7B-Instruct. The models generate answers relying solely on internal parameter knowl-
961	edge, and the confidence during generation is recorded (calculated as the maximum value of the
962	softmax outputs of model logits, with a value range of [0,1]). Context-Augmented Test (Test_Conf):
963	For each sample set, construct three input formats—"question + Type A context", "question + Type
964	B context", and "question + Type C context"—and input them into the two LLMs sequentially. After
965	generating answers, the corresponding confidence is recorded (using the same calculation method
966	as the baseline).
967	Data Calculation and Statistics: Conduct quantitative analysis on the collected confidence data,
968	with the core calculation logic as follows: Per-Sample Confidence Improvement Value: For each
969	model, sample set, and text type, calculate Improvement Value = Test_Conf - Base_Conf. Positive
970	value indicates the context enhances model confidence, i.e., "preference"; Negative value indicates
971	the context reduces model confidence, i.e., "rejection". Average Confidence Improvement Value:
972	For each model and context type, compute the total sum of improvement values across the 100
973	sample sets.

972 **H DETAILED ANALYSIS OF RESOURCE CONSUMPTION FOR THE CBDR**
 973 **FRAMEWORK**
 974

975 The additional resource consumption required to construct the CBDR framework is divided into
 976 the offline preparation phase and online inference phase, with overall computational costs well-
 977 controlled. Details are as follows:
 978

979 **H.1 OFFLINE PREPARATION PHASE**
 980

981 The offline phase involves four core tasks, with resource consumption concentrated on target LLM
 982 forward computations and lightweight model training (no generation operations), ensuring manage-
 983 able computational costs: 1) **Constructing the NQ_Confidence dataset:** Provides training data for
 984 the confidence detection model E, including input contexts and corresponding target LLM confi-
 985 dence labels. Sample scale: 2,000 training samples, 1,000 development (Dev) samples, and 500 test
 986 samples, totaling 3,500 samples. Computational load: Each sample requires one forward pass of the
 987 target LLM (e.g., Llama3-8B-Instruct) to extract confidence features, resulting in a total of 3,500
 988 target LLM forward passes. 2) **Training the confidence detection model E:** Model architecture:
 989 5-layer MLP with 2M parameters. Training configuration: Trained on the NQ_Confidence training
 990 set for 100 epochs with a batch size of 32. Resource characteristics: Lightweight model with
 991 extremely low training overhead; completable within 10 minutes on a single consumer-grade GPU
 992 (e.g., NVIDIA RTX 4090). 3) **Constructing the NQ_Rerank fine-tuning dataset:** Provides fine-
 993 tuning data for the preference-aligned reranker, with labels generated based on confidence changes
 994 of the target LLM toward different retrieved contexts. Sample scale: 7,622 training samples and
 995 1,216 test samples, totaling 8,838 samples. Computational load: Each sample requires 8 forward
 996 passes of the target LLM (matching 8 types of retrieved contexts) to generate preference labels, re-
 997 sulting in a total of 70,704 target LLM forward passes. 4) **Fine-tuning the reranker:** Base model:
 998 bge-reranker-v2-m3 (568M parameters). Fine-tuning configuration: Fine-tuned on the NQ_Rerank
 999 training set for 5 epochs (weights after 1 epoch are used in practice) with a batch size of 32. Re-
 1000 source characteristics: Moderate-scale model with few fine-tuning epochs; the entire process can be
 1001 completed within 2 hours on a single NVIDIA RTX 4090.

1001 **H.2 ONLINE INFERENCE PHASE**
 1002

1003 The additional resource consumption in the online phase only involves two lightweight forward
 1004 passes, which do not affect inference efficiency: 1) **Workflow:** For input query, the target LLM
 1005 first performs one forward pass to obtain hidden states, while the confidence detection model E (2M
 1006 parameters) executes one forward pass to determine the necessity of retrieval. If retrieval is deemed
 1007 unnecessary, the generation process can be directly connected using the results of this target LLM
 1008 forward pass, eliminating the need for additional LLM calls and redundant computations. 2) **Opti-
 1009 mization:** Retrieval knowledge is directly injected into the target LLM’s Attention module (Dong
 1010 et al. (2025b)) or FNN module (Su et al. (2025)) via parameter injection. Thus, even if retrieval is re-
 1011 quired after the LLM’s forward pass, the generation process can be seamlessly connected following
 1012 parameterized knowledge injection, with no redundant computational overhead. 3) **Latency:** The
 1013 total latency of the two forward passes is less than 100ms (on a single NVIDIA RTX 4090), which
 1014 negligibly increases inference latency and meets real-time requirements.

1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041

Algorithm 1: CBDR Inference

1042 **Input:** Query q
 1043 **Output:** Final answer y
 1044 **Require:** Target LLM M , confidence detection model E , retriever \mathcal{R} , document corpus \mathcal{D} ,
 1045 Fine-tuning reranker FR , confidence threshold β , $Top - K$ parameter K , QA prompt \mathcal{P}_{qa} ,
 1046 RAG prompt \mathcal{P}_{rag} ;
 1047 1 Construct pure QA prompt: $\text{prompt}_{qa} \leftarrow \mathcal{P}_{qa}(q)$;
 1048 2 Tokenize input: $\mathbf{x} \leftarrow \text{Tokenize}(\text{prompt}_{qa})$;
 1049 3 Forward through M with hidden states output:
 1050 outputs $\leftarrow M(\mathbf{x}, \text{output_hidden_states} = \text{True})$;
 1051 5 Extract last context hidden state: $\mathbf{V} \leftarrow \text{outputs}.\text{hidden_states}[-1][0, -1, :]$;
 1052 6 Compute confidence score: $S \leftarrow E(\mathbf{V})$;
 1053 7 **if** $S \geq \beta$ **then**
 1054 8 Generate answer directly: $y \leftarrow M.\text{generate}(\mathbf{x}, \text{max_new_tokens} = L_{\text{max}})$;
 1055 9 **else**
 1056 10 Retrieve candidate documents: $\mathcal{D}_{\text{raw}} \leftarrow \mathcal{R}.\text{retrieve}(q, \text{top_k} = K \cdot r)$;
 1057 11 Rerank using M -aligned reranker: $\mathcal{D}_{\text{reranked}} \leftarrow FR.\text{rerank}(q, \mathcal{D}_{\text{raw}}, K)$;
 1058 12 Construct context: $\text{context} \leftarrow \bigoplus_{i=1}^K \mathcal{D}_{\text{reranked}}[i].\text{text}$;
 1059 13 Build RAG prompt: $\text{prompt}_{rag} \leftarrow \mathcal{P}_{rag}(\text{context}, q)$;
 1060 14 Tokenize RAG input: $\mathbf{x}_{\text{rag}} \leftarrow \text{Tokenize}(\text{prompt}_{rag})$;
 1061 15 Generate answer with evidence: $y \leftarrow M.\text{generate}(\mathbf{x}_{\text{rag}}, \text{max_new_tokens} = L_{\text{max}})$;
 1062 16 **end**
 1063 17 Return y ;

1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079