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Abstract

Non-IID transfer learning on graphs is crucial in
many high-stakes domains. The majority of ex-
isting works assume stationary distribution for
both source and target domains. However, real-
world graphs are intrinsically dynamic, present-
ing challenges in terms of domain evolution and
dynamic discrepancy between source and target
domains. To bridge the gap, we shift the prob-
lem to the dynamic setting and pose the question:
given the label-rich source graphs and the label-
scarce target graphs both observed in previous T
timestamps, how can we effectively characterize
the evolving domain discrepancy and optimize the
generalization performance of the target domain
at the incoming T + 1 timestamp? To answer it,
we propose a generalization bound for dynamic
non-IID transfer learning on graphs, which im-
plies the generalization performance is dominated
by domain evolution and domain discrepancy be-
tween source and target graphs. Inspired by the
theoretical results, we introduce a novel generic
framework named EVOLUNET. It leverages a
transformer-based temporal encoding module to
model temporal information of the evolving do-
mains and then uses a dynamic domain unifica-
tion module to efficiently learn domain-invariant
representations across the source and target do-
mains. Finally, EVOLUNET outperforms the state-
of-the-art models by up to 12.1%, demonstrating
its effectiveness in transferring knowledge from
dynamic source graphs to dynamic target graphs.
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Figure 1. A paradigm shift to the dynamic non-IID transfer learn-
ing. D denotes IID domain; G denotes non-IID graph domain.
Subscript src and tgt denote source and target, and superscript (i)
represents the ith timestamp.

1. Introduction
The recent decade has witnessed notable achievements
in machine learning. Despite the exciting achievements,
whether the learned model could deliver its promise in
real-world scenarios heavily depends on abundant and high-
quality training data. Nevertheless, the data annotation
process, which requires domain-specific knowledge from
human annotators, is often a costly and time-intensive en-
deavor (Fang et al., 2022; Cui et al., 2022; Zhou et al.,
2022). Transfer learning has emerged as a promising tool,
which aims to improve the generalization performance of
the target domain with little or no labeled data by leveraging
knowledge from the source domain with adequate labeled
data (Tripuraneni et al., 2020; Wang et al., 2019; Ganin et al.,
2016; Ben-David et al., 2006). However, a majority of the
existing work (Ben-David et al., 2010; Zhao et al., 2019a;
Wang et al., 2022) hold the assumption that data is static and
independent and identically distributed (IID), as shown in
the bottom-left of Figure 1. When extending transfer learn-
ing to graph-structured data, particular challenges are posed
due to the non-IID nature of graphs, i.e., samples on graphs
(e.g., nodes, edges, subgraphs) are naturally connected with
their neighbors in certain ways (Xie et al., 2021a).

While recent research efforts have delved into non-IID trans-
fer learning on graphs (Wu et al., 2023; Zhu et al., 2021; Hu
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et al., 2020; Wu et al., 2020; Shen et al., 2020) as shown in
the bottom-right of Figure 1, the most of them have over-
looked the dynamics inherent in realistic systems, where
graphs in both source and target domains evolve over time.
Directly applying existing static works on graphs to the dy-
namic setting may lead to a sub-optimal performance due
to the unexplored temporal information and evolving distri-
bution discrepancy (Greene et al., 2010; Fallani et al., 2014;
Pareja et al., 2020; Song et al., 2019; Fu et al., 2020; Zhou
et al., 2020a). Therefore, our paper proposes a paradigm
shift in Figure 1 towards the dynamic non-IID setting, by
introducing the novel problem termed as dynamic non-IID
transfer learning on graphs. In particular, given the label-
rich source graphs and the label-scarce target graphs ob-
served in previous T timestamps, how can we effectively
characterize the evolving domain discrepancy and optimize
the generalization performance of the target graph at the
incoming T + 1 timestamp?

Despite the key importance, there exist three pivotal chal-
lenges in our problem setting. C1. Generalization Bound:
There is limited theoretical analysis on how the domain
discrepancy would accumulate across time and how it will
affect the model performance. Carrying out theoretical anal-
ysis on the generalization bound would be crucial for under-
standing dynamic non-IID transfer learning on graphs. C2.
Computational Framework: How can we develop a com-
putational framework to characterize the evolving domain
discrepancy and capture the domain-invariant information
when the source and target graphs exhibit distinct distribu-
tions over time? C3. Benchmark: As there is little existing
literature on dynamic non-IID transfer learning on graphs,
it is essential to point out a set of benchmark datasets and
baselines for algorithm development and evaluation.

In this paper, we make the first attempt to derive a gener-
alization bound for dynamic transfer learning on graphs.
The theoretical findings illustrate that the generalization
performance is dominated by historical empirical error and
domain discrepancy. It also serves as theoretical support
to our proposed EVOLUNET, which is a generic learning
framework to enhance knowledge transfer across dynamic
graphs. Moreover, we utilize a multi-resolution temporal
encoding module to model domain evolution and a module
to minimize domain discrepancy via dual divergence loss.
In particular, the first module captures the interdependence
over time and obtains the temporal graph representation in
the evolving graphs, while the second module learns invari-
ant representations to unify the source and target domains’
spatial and temporal information. Our empirical results
show that EVOLUNET outperforms the state-of-the-art mod-
els by up to 12.1%, underscoring its effectiveness in knowl-
edge transfer across dynamic graphs. Furthermore, we ex-
tensively surveyed existing temporal graphs and constructed

benchmark datasets1 for dynamic non-IID transfer learning,
which have rich, dynamic properties regarding nodes, edges,
node attributes, and labels. We conduct various evaluations
on the constructed benchmark dataset, which demonstrate
its validity and reliance.

2. Preliminary
In this section, we introduce the background that is pertinent
to our work and give the formal problem definition. Table 1
summarizes the main notations used in this paper. We use
regular letters to denote scalars (e.g., µ), boldface lowercase
letters to denote vectors (e.g., v), and boldface uppercase
letters to denote matrices (e.g., X). Next, we briefly review
non-IID transfer learning on graphs and dynamic transfer
learning for IID distributions.

Table 1. Symbols and notations.
Symbol Description

G(i)
src, G(i)

tgt input source and target graphs at timestamp i.
V(i)
src, V(i)

tgt the set of nodes in G(i)
src and G(i)

tgt.
E(i)
src, E(i)

tgt the set of edges in G(i)
src and G(i)

tgt.
X

(i)
src, X(i)

tgt the node feature matrices of G(i)
src, G(i)

tgt.
Y(i)
src, Ỹ(i)

tgt the set of labels in G(i)
src and G(i)

tgt.
N

(i)
src, N (i)

tgt the size of sample graph G(i)
src, G(i)

tgt.
dsrc, dtgt feature dimensions of X(i)

src, X(i)
tgt, ∀i.

T number of timestamps.
h(·) node classifier for downstream task.
ℜ̃ Rademacher complexity.
Wp p-Wasserstein distance.

Non-IID Transfer Learning on Graphs. It focuses on
leveraging knowledge gained from a source graph Gsrc to
improve the performance of a target graph Gtgt. Graphs are
non-IID because their interconnected nodes, edges, and sub-
graphs exhibit inherent dependencies, and require modeling
the highly complex interconnection. To applied existing
theoretical guarantees of transfer learning under IID as-
sumption to non-IID graph data, Wu et al. (2023) propose
a novel graph discrepancy dGSD(Gsrc,Gtgt) between two
graphs Gsrc and Gtgt as follows (informal):

dGSD(Gsrc,Gtgt) = lim
M→∞

1

M + 1

M∑
m=0

db(Gm
src,Gm

tgt),

where Gm is the Weisfeiler-Lehman subgraph (Shervashidze
et al., 2011) at depth m for an input graph G, db(·, ·) is
the base domain discrepancy. We refer to Definition 4 in
Appendix A for formal definition. It reveals that given

1We publish our data and code at https://github.com/
wanghh7/EvoluNet.
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Weisfeiler-Lehman subtree, the subtree representations can
be considered as IID samples, thus existing distribution
discrepancy measures (e.g., Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) and Wasserstein Distance (Vil-
lani, 2009)) can be used to measure the distribution shift of
source and target graphs.

Dynamic Transfer Learning. Let {D(i)
src}Ti=1 and

{D(i)
tgt}Ti=1 be the labeled dynamic source domains and unla-

beled (or few labeled) dynamic target domains, where super-
script (i) represents the ith timestamp, and there are T total
timestamps. Dynamic transfer learning aims to improve the
prediction performance of D(T+1)

tgt using the knowledge in
historical source and target domains under the domain shift
{D(i)

src}Ti=1 ̸= {D(i)
tgt}Ti=1. Let H be the hypothesis class

on input feature space X where a hypothesis is a function
h : X → Y , and Y is output label space. The expected error
of the hypothesis h on the source domain D(i)

src at timestamp
i is given by ϵ

(i)
src(h) = E

x∼D(i)
src

[L(h(x), y)],∀h ∈ H,
where L(·, ·) is some loss function. Its empirical estimate

is defined as ϵ̂(i)src(h) =
1

N
(i)
src

∑N(i)
src

j=1 [L(h(xj), yj)], where

xj is the feature of jth sample in X
(i)
src. We use the parallel

notations ϵ(i)tgt(h) and ϵ̂
(i)
tgt(h) for the target domain. In Wu

& He (2022), the expected error on the newest target domain
is derived as follows:

ϵ
(T+1)
tgt (h) ≤ 1

2T

T∑
i=1

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
+

T + 2

2
(d̃+ λ̃)

+ ℜ̃ (HL) +
ρ

T

√
log 1

δ

2m̃
,

(1)
where d̃ = ρ ·max

{
max1≤i≤T−1 dMMD

(
D(i)

src,D(i+1)
src

)
,

dMMD

(
D(1)

src,D(1)
tgt

)
,max1≤i≤T dMMD

(
D(i)

tgt,D
(i+1)
tgt

)}
,

dMMD is the maximum mean discrepancy (Gretton
et al., 2012), ρ is the Lipschitz constant, λ̃ = ρ ·
max

{
max1≤i≤T−1 λ∗

(
D(i)

src,D(i+1)
src

)
, λ∗

(
D(1)

src,D(1)
tgt

)
,

max1≤i≤T λ∗

(
D(i)

tgt,D
(i+1)
tgt

)}
, λ∗ measures the labeling

difference. HL = {(X, y) 7→ L(h(X), y) : h ∈ H},
ℜ̃ (HL) is a term that involves the Rademacher
complexity defined on multiple domains, and
m̃ =

∑T
i=1

(
N

(i)
src +N

(i)
tgt

)
is the total number of

training examples from historical source and target domains.
However, this bound sums the errors in all timestamps
without capturing domain evolution.

Problem definition. In the setting of dynamic non-
IID transfer learning on graphs, the observed graph in
source at timestamp i is defined as a source sample graph
G(i)
src = (V(i)

src, E(i)
src) (parallel definition of target sample

graph G(i)
tgt = (V(i)

tgt, E
(i)
tgt)), where V(i)

src and V(i)
tgt represent

Figure 2. An illustrative example of dynamic non-IID transfer
learning on book review graph and movie review graph. As an
example, consider a new series launched on a movie website,
where the original book of this series may have been published
for decades. It is very natural to transfer knowledge from the
information-rich source domain (book) to the information-scarce
target domain (movie) across time in order to solve the target task
(movie review prediction) at G(T+1)

tgt .

the set of nodes, and E(i)
src and E(i)

tgt represent the set of edges,

respectively. X
(i)
src and X

(i)
tgt represent the node features

in G(i)
src and G(i)

tgt, T is the total number of timestamps that
can be observed in history. Furthermore, we define labels
of source at ith timestamp as Y(i)

src and labels of target as
Ỹ(i)
tgt, where only few target samples have labels, so Ỹ(i)

tgt is
a sparse vector. We consider transferring knowledge from a
series of time-evolving source sample graphs {G(i)

src}Ti=1 to
a series of time-evolving target sample graphs {G(i)

tgt}T+1
i=1 .

Figure 2 illustrates the knowledge transfer from historical
time snapshots of the book review graph and movie review
graph to a more recent time snapshot of the movie review
graph. Here, each node in a graph indicates an entity (user,
movie, book), and the co-reviewer determines the edge be-
tween two nodes. Nodes, edges, and their attributes are
evolving over time. The node label is the popularity of the
movie (book) at that time and is also changing.

Given the notations above, we formally define the problem
as follows.

Problem 1. Dynamic Non-IID Transfer Learning on
Graphs
Given: (i) a set of source sample graphs {G(i)

src =

(V(i)
src, E(i)

src)}Ti=1 with rich label information {Y(i)
src}Ti=1, and

(ii) a set of target sample graphs {G(i)
tgt = (V(i)

tgt, E
(i)
tgt)}T+1

i=1

with few label information {Ỹ(i)
tgt}T+1

i=1 .

Find: Accurate predictions Ŷ(T+1)
tgt of unlabeled examples

in the target sample graph G(T+1)
tgt .
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3. Model
In this section, we introduce our proposed framework EVOL-
UNET for dynamic non-IID transfer learning on graphs. The
key idea lies in regularizing the underlying evolving domain
discrepancy, which mainly stems from the distribution shift
due to domain evolution and the inherent domain discrep-
ancy between the source and target domains. In particular,
we start with deriving a novel generalization bound of Prob-
lem 1, which is composed of historical empirical errors on
the source and target domains, domain discrepancies across
time on source and target, and Rademacher complexity of
the hypothesis class. Inspired by the theoretical results, we
then develop the overall learning paradigm of EVOLUNET
and discuss the details of how to model domain evolution
and how to unify dynamic graph distribution. Finally, we
present an optimization algorithm with pseudo-code for
EVOLUNET in Algorithm 1 in Appendix B.

3.1. Theoretical Analysis

Here, we propose the very first generalization guarantee
under the setting of dynamic non-IID transfer learning on
graphs. The existing literature (Wu & He, 2022) leads to a
loosely bound in special cases when the historical empirical
error at a specific timestamp is extremely large. This is be-
cause Wu and He’s work simply accumulates the empirical
errors across time, which results in their generalization error
bound being sensitive to extreme cases.

To derive a better error bound, we propose to improve our
bound mainly from the following three aspects: (1) We
propose to replace

∑T
i=1

(
ϵ̂
(i)
src(h) + ϵ̂

(i)
tgt(h)

)
with the min-

imum value of historical empirical errors on source and tar-
get. The conventional measurement is notably susceptible
to outliers over time. This sensitivity becomes particularly
evident when a machine learning model encounters failures
at specific timestamps, leading to exceptionally large empir-
ical errors in both the source and target domains. In contrast,
using the minimum value demonstrates inherent resilience
to such extreme cases and prevents the error bound from
being impacted by some extreme cases. (2) We develop a
novel dynamic Wasserstein distance to replace maximum
mean discrepancy d̃ for better measuring the evolving do-
main discrepancy. (3) To accurately characterize the graph
distribution shift, we propose to construct the Weisfeiler-
Lehman subgraphs at each timestamp and then compute the
dynamic graph discrepancy upon them.

We first introduce the definition of dynamic p-Wasserstein
distance on graphs, which measures the graph discrepancy
across tasks and across time stamps.

Definition 1 (Dynamic p-Wasserstein Distance on Graphs).
Consider two dynamic graphs {G(i)

src}Ti=1 and {G(i)
tgt}T+1

i=1 .
For any p ≥ 1, the dynamic p-Wasserstein distance is de-

fined as:

W̃p =ρ
√
R2 + 1max

(
max

1≤i≤T−1
dGSD(G(i)

src,G(i+1)
src ),

dGSD(G(1)
src,G

(1)
tgt), max

1≤i≤T
dGSD(G(i)

tgt,G
(i+1)
tgt )

)
,

where R and ρ are the Lipschitz constants, dGSD denotes the
graph discrepancy based on p-Wasserstein distance Wp (Wu
et al., 2023).

Based on Definition 1, we can apply Lemma 1 (Error Dif-
ference over Shifted Domains) to bound the error difference
on two arbitrary domains as follows.
Lemma 1 (Error Difference over Shifted Domains (Wang
et al., 2022)). For arbitrary classifier h and loss function L
satisfying Assumption 1 and 2, the expected error of h on
two arbitrary domain Dµ and Dν satisfies

|ϵµ(h)− ϵν(h)| ≤ ρ
√
R2 + 1Wp(Dµ,Dν),

where Wp is the p-Wasserstein distance metric and p ≥ 1.

Intuitively, Lemma 1 yields that the expected error on the
target domain at the N + 1 timestamp ϵ

(T+1)
tgt is upper

bounded with an expected error on an arbitrary domain and
the maximum of measures of domain discrepancy. Based on
Lemma 1, we can further generalize the difference between
the expected error and the empirical error to the arbitrary
domains via Lemma 2 (Algorithm Stability) as follows.
Lemma 2 (Algorithm Stability, from Lemma A.1 in Ku-
mar et al. (2020)). With the assumptions 1, 2, 3, consider
empirical and expected errors on arbitrary domain with n
samples, ∀ δ ∈ (0, 1), the following holds with probability
at least 1− δ for some constant B > 0,

|ϵ̂(h)− ϵ(h)| ≤ O

ρB +
√
log 1

δ√
n

 .

With Lemma 2, we are able to bound ϵ
(T+1)
tgt with minimal

empirical errors on the source and target and the maximum
domain discrepancy. That being said, the error of the latest
target domain ϵ

(T+1)
tgt can be bounded. Finally, we can de-

rive our generalization bound for dynamic non-IID transfer
learning on graphs, as stated by the following Theorem 1.
Theorem 1. Assume classifier h ∈ H is R-Lipschitz and
loss function L(·, ·) is ρ-Lipschitz, where R and ρ are the
Lipschitz constants. For any δ > 0, with probability at least
1− δ, the error ϵ(T+1)

tgt is bounded by:

ϵ
(T+1)
tgt (h) ≤ 1

2
min

1≤i≤T

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
+

3T

2
W̃p

+ ℜ̃ (HL) +O

 ρB√
ñ
+

√
log 1

δ

ñ

 (2)
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where W̃p is dynamic Wasserstein distance on graphs,
p ≥ 1, HL = {(X, y) 7→ L(h(X), y) : h ∈ H},

ℜ̃(HL) = 1
2T

∑T
i=1

(
ℜ̃D(i)

src
(HL) + ℜ̃D(i)

tgt
(HL)

)
, ℜ̃ is

Rademacher complexity, B > 0 is a constant, and ñ =

min1≤i≤T

(
N

(i)
src, N

(i)
tgt

)
is the minimal number of training

examples in source and target domains.

Proof. The detailed proof is provided in Appendix A.

The theorem shows that the error on the latest target domain
ϵ
(T+1)
tgt is bounded in terms of (1) the minimum value of em-

pirical errors in the historical source and target domains; (2)
the maximum of domain discrepancies across time and do-
main; (3) the average Rademacher complexity of hypothesis
class over all domains.

Remarks: Compared to the existing theoretical results on
dynamic transfer learning (Wu & He, 2022), we obtain a
significantly improved bound in the following aspects.
• Instead of simply averaging the errors over time as (Wu

& He, 2022), we propose to use the minimum of empirical
errors over time to imply domain evolution and avoid
extreme errors, and we have

min
1≤i≤T

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
≤ 1

T

∑
1≤i≤T

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
.

Correspondingly, rather than using an accumulative
method to consider all timestamps, EVOLUNET uses multi-
resolution temporal encoding and attention mechanisms to
consider domain evolution uniformly.

• Instead of separately measuring the difference of features
and the difference of labels based on MMD, we propose
a dynamic Wasserstein distance on graphs to model the
evolving graph discrepancy. Correspondingly, EVOLUNET
leverages dual-divergence unification to implicitly reduce
this distance (Ganin et al., 2016; Ganin & Lempitsky,
2015).

In general, this generalization bound guarantees the trans-
ferability from evolving source domains to evolving target
domains and motivates us to propose a framework for dy-
namic non-IID transfer learning on graphs by empirically
minimizing generalization bounds with domain evolution
and domain discrepancy.

3.2. EVOLUNET Framework

Without loss of generality, a typical dynamic transfer learn-
ing paradigm can be formulated as follows.

min
θ

L(θ) =
T∑

i=1

(
ϵ̂(i)src(θ) + d(G(i)

src,G
(i)
tgt, θ)

)
(3)

Figure 3. The proposed EVOLUNET framework.

However, Eq. 3 may not well capture evolving domain dis-
crepancy in practice due to the following two reasons. First,
Eq. 3 simply sums up the empirical errors over time, which
ignores the evolution process of dynamic graphs, i.e., the
changes in the future snapshot G(t+1)

src are often highly depen-
dent on the structure of the current snapshot G(t)

src (Kazemi
et al., 2020). Second, accumulating the domain discrepancy
over all timestamps might lose track of the fine-grained in-
formation on how domain discrepancies evolve, e.g., the
domain discrepancy d(G(T )

src ,G(T )
tgt , θ) in the last timestamp

could play a key role in the success of the downstream task
in the timestamp T + 1.

As shown in Theorem 1, the generalization performance
is dominated by two factors: the domain evolution across
time and the domain discrepancy on source and target.
Inspired by this, we propose EVOLUNET, which consists
of two major modules: M1. Modeling Domain Evolution
via Multi-Resolution Temporal Encoding and M2. Domain-
Invariant Learning via Dual-Divergence Unification. In
particular, M1 introduces a multi-resolution temporal
encoding for dynamic graphs, which encodes temporal
information into the representation with continuous values
and captures domain evolution by attention; M2 further
unifies disparate spatial and temporal information of source
and target into the domain-invariant hidden spaces. In
addition, both M1 and M2 are absolutely necessary to
overcome the main obstacles in dynamic non-IID transfer
learning on graphs. M1 ensures accurate modeling domain
evolution and characterizes historical temporal information
for future downstream task-related representation learning,
while M2 ensures extraction of domain-invariant spatial and
temporal information that could be transferred to benefit the
target domain. Our ablation study (Table 4) firmly attests
both M1 and M2 are essential in a successful dynamic graph
transfer. The overview of EVOLUNET is presented in Fig-
ure 3. Next, we dive into the technical details of M1 and M2.

M1. Modeling Domain Evolution via Multi-Resolution
Temporal Encoding. Different from Wu & He (2022) that
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Figure 4. An illustrative example of why multi-resolution temporal
encoding is important.
accumulates dynamic domain discrepancy over all times-
tamps, our method introduces a novel perspective by specif-
ically focusing on the dynamic domain discrepancy within
selected time windows. We treat each domain’s time win-
dow as an integrated entity, utilizing Transformers (Vaswani
et al., 2017) for its significant achievements in performance
and computational efficiency across a variety of sequential
data tasks, particularly in natural language processing. How-
ever, the positional encoding used in traditional Transformer
models primarily serves to distinguish the sequential order
of inputs rather than actual continuous time values. This
limitation becomes particularly evident when dealing with
temporal graphs that are observed at multiple timestamps,
that is, the timestamps are multi-resolution and the time gap
between inputs may differ.

One key challenge in temporal modeling for dynamic graphs
lies in the fact that each snapshot graph is tagged with a
timestamp that is both continuous and often irregular (shown
in Figure 4). Such timestamps defy simple arithmetic op-
erations, complicating the modeling process. To address
this issue, we introduce an innovative approach of multi-
resolution temporal encoding, which serves as a replacement
for conventional positional encoding. This method enables
our framework, EVOLUNET, to adeptly encode temporal
information across multiple resolutions into a learnable rep-
resentation as follows:

ENC =

T∑
i=1

POSITION(CONTEXT(G(i)
src,G

(i)
tgt)) (4)

where CONTEXT is the graph context extraction func-
tion (Starnini et al., 2012) that extracts temporal random
walks from the input graphs, the POSITION is the posi-
tional encoding function (Dai et al., 2019) that considers
node as a token, continuous-valued timestamp as a position
to capture the multi-resolution temporal information.

Next, we introduce the cross-domain self-attention layer to
obtain important temporal graph representation for domain
evolution. Notably, through previous operations in this
framework, node embeddings of source and target sample
graphs are converted into the same dimension du. Thus,
a parameter-shared attention layer can be used for source

and target domains to learn domain-invariant temporal node
embeddings and also improve the model scalability because
of its parallelism. Specifically, for each node, we group its
temporal embeddings across all the timestamps and pack
them into a matrix where the order is consistent with the
corresponding timestamps. This temporal-related matrix is
passed to the self-attention layer, and the output indicates
the relevance and importance of different timestamps for
capturing domain evolution knowledge in terms of a specific
node. Our cross-domain self-attention layer has advantages
in two aspects: (i) By deploying the attention layer on the
source domain (target domain), we effectively capture the
temporal dynamics of each domain. This allows us to model
dGSD(G(i)

src,G(i+1)
src ) (dGSD(G(i)

tgt,G
(i+1)
tgt )) in error bound. (ii)

By sharing the attention parameters of the source and target
domains, we are able to capture dGSD(G(1)

src,G(1)
tgt) in the

error bounds.

M2. Domain-Invariant Learning via Dual-Divergence
Unification. To address the aforementioned dynamic do-
main divergence, we aim to learn invariant representations
across evolving graphs. Nonetheless, the process of trans-
ferring knowledge from graph-formatted data introduces
inherent spatial and temporal divergences, necessitating
the adoption of a dual-divergence unification approach to
learning domain-invariant representations across both spa-
tial and temporal dimensions. In response, we present a
dual-divergence unification module shown in Figure 3. In
our implementation, we first standardize the feature dimen-
sion sizes from dsrc, dtgt to a unified dimension du using
multi-layer perceptrons (MLPs). This standardization al-
lows for the sharing of GNN parameters between source
and target sample graphs, enhancing the learning of spatial
information. We unify the MLP and the GNN into one unit
named GNN Layers, and then one Gradient Reversal Layer
(GRL, (Ganin et al., 2016)) is utilized on this unit to ob-
tain the spatial invariant representation across domains. In
parallel, temporal invariance is secured by employing the
GRL after the assimilation of domain evolution insights and
the derivation of temporal graph representations through
multi-resolution temporal encoding by module 1 (M1). The
loss function LGRL of M2 can be expressed as follows:

LGRL = UNIFspatial + UNIFtemporal

=

T∑
i=1

GRL
(

GNN(G(i)
src),GNN(G(i)

tgt)
)

+

T∑
i=1

GRL
(

M1(G(i)
src),M1(G(i)

tgt)
)

where UNIFspatial and UNIFtemporal represent the spatial di-
vergence loss on GNN Layers and the temporal divergence
loss on temporal graph representation after M1, respectively.

Overall, the objective function is defined to minimize the
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dual-divergence GRL loss (for all sample graphs) and the
node classification loss (for source sample graphs and the
few labeled nodes in target sample graphs). We detail the
optimization process for EVOLUNET, as delineated in the
pseudo-code provided in Algorithm 1 in Appendix B.

4. Experiments
In this section, we evaluate the performance of EVOLUNET
on six benchmark datasets. EVOLUNET exhibits superior
performances compared to various state-of-the-art baselines
(Section 4.2). Moreover, we conduct ablation studies (Sec-
tion 4.3) and sensitivity analysis (Section 4.4) to demon-
strate the necessity of each module in EVOLUNET and the
reliability of EVOLUNET in various parameter settings.

4.1. Experiment Setup

Datasets: We evaluate EVOLUNET on our benchmark
which is composed of three real-world graphs, including
two graphs extracted from Digital Bibliography & Library
Project: DBLP-3 and DBLP-5 (Fan et al., 2021), where
nodes represent authors, edges represent the co-authorship
between two linked nodes; and one graph generated from
human connectome project: HCP (Fan et al., 2021), where
nodes represent cubes of brain tissue, edges represent that
two linked cubes show similar degrees of activation. Each
node of these three graphs is associated with one label only.

Our benchmark follows these principles: (1) Dynamic: data
follows the settings of graph and label evolution. (2) Trans-
ferability: there are existing works that have explored knowl-
edge transfer across heterogeneous domains (Moon & Car-
bonell, 2017; Day & Khoshgoftaar, 2017). Some simple
guesses are that the two graphs may have structural simi-
larities allowing knowledge transfer (Zhu et al., 2021) or
the attention mechanism suppressing the performance drop
with heterogeneity (Moon & Carbonell, 2017). To explore
the potential structural similarities of the three datasets, we
employ EEE-plot (Prakash et al., 2010), which is a scatter
plot of the first three singular vectors of the adjacency ma-
trix. In Figure 5, we observe there are spokes observed on
the EEE-plots of three datasets, associating with the pres-
ence of well-defined communities in graphs (Prakash et al.,
2010). The results suggest a similarity in structure across
the three datasets, providing insights into the possibility of
knowledge transferability among them. Our experiments
also prove the validity of positive knowledge transfer. The
details of our benchmark are summarized in Table 2.

Baselines: We compare EVOLUNET with four classical
graph neural networks, four temporal graph neural networks
and two graph transfer learning methods.

• Classical GNNs: Graph Convolutional Network (GCN,
Kipf & Welling (2017)), Graph Attention Network (GAT,

Table 2. Benchmark statistics.
Benchmark Source Target Benchmark Source Target

1 DBLP-5 DBLP-3 4 HCP DBLP-5
2 HCP DBLP-3 5 DBLP-3 HCP
3 DBLP-3 DBLP-5 6 DBLP-5 HCP

Dataset #Nodes #Edges #Attributes #Classes #Timestamps
DBLP-3 4,257 23,540 100 3 10
DBLP-5 6,606 42,815 100 5 10

HCP 5,000 1,955,488 20 10 12

Figure 5. The EEE-plots of temporal graphs in Table 2.

Veličković et al. (2018)), Graph Isomorphism Network
(GIN, Xu et al. (2019)), Graph SAmple and aggreGatE
(GraphSAGE, Hamilton et al. (2017)) are four standard
graph representation benchmark architectures.

• Temporal GNNs: Diffusion Convolutional Recurrent
Neural Network (DCRNN, Li et al. (2018)) captures both
spatial and temporal dependencies of graphs among time
series. Dynamic Graph Encoder (DyGrEncoder, Taheri &
Berger-Wolf (2019)) models embedding GNN to LSTM.
Evolving Graph Convolutional Network (EvolveGCN,
Pareja et al. (2020)) uses a GCN evolved by a Recur-
rent Neural Network (RNN) to capture the dynamism of
graph sequence. Temporal Graph Convolutional Network
(TGCN, Zhao et al. (2019b)) is a combination of GCN and
the gated recurrent unit.

• Transfer Learning Methods: Domain-Adversarial Neural
Networks (DANN, Ganin et al. (2016)) is the first method
using GRL for domain adaptation. Unsupervised Domain
Adaptive Graph Convolutional Network (UDAGCN, Wu
et al. (2020)) is a method for domain adaptation in the
static graph using the attention mechanism. GRaph ADap-
tive Network (GRADE, Wu et al. (2023)) is a method for
cross-network knowledge transfer from the perspective of
the Weisfeiler-Lehman graph isomorphism test.

The implementation details of the methods are provided in
Appendix C.

4.2. Effectiveness

We compare EVOLUNET with eleven baseline methods
across three real-world undirected graphs. We report the
AUC of different methods on the last timestamp of the tar-
get domain in Table 3. In general, we have the following
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Table 3. Comparison of different methods in node classification task using 5 labeled samples per class (area under the curve, AUC). The
first four models are Classical GNN models and the next four are Temporal GNNs, we show their fine-tuned results on the target domain.
The remaining three models are for transfer learning. We show results of knowledge transfer from source to target domain.

Classical GNNs Temporal GNNs Transfer learning Ours
GCN GAT GIN GraphSAGE DCRNN DyGrEncoder EvolveGCN TGCN DANN UDAGCN GRADE EVOLUNET

Benchmark 1 0.5609 0.5489 0.5454 0.5452 0.5637 0.5672 0.5823 0.5640 0.5416 0.5688 0.5246 0.6527
Benchmark 2 0.5400 0.5523 0.5223 0.6103
Benchmark 3 0.5404 0.5387 0.5422 0.5390 0.5518 0.5489 0.5610 0.5482 0.5395 0.5660 0.5295 0.5915
Benchmark 4 0.5348 0.5651 0.5354 0.5769
Benchmark 5 0.6756 0.6964 0.6962 0.6798 0.5710 0.6363 0.5679 0.5695 0.6977 0.7407 0.5170 0.7975
Benchmark 6 0.6981 0.7320 0.5154 0.8046

Table 4. Ablation study (AUC).
Ablation Benchmark 1 Benchmark 5 Benchmark 6
w/o pre-training 0.5907 0.7661 0.7234
w/o module 1 0.6487 0.7682 0.7303
w/o UNIFspatial 0.6367 0.7939 0.7985
w/o UNIFtemporal 0.6341 0.7966 0.8021
EVOLUNET 0.6527 0.7975 0.8046

observations: (1) EVOLUNET consistently outperforms all
eleven baselines on all the datasets, which demonstrates the
effectiveness and generalizability of our model. Especially
when adapting knowledge from DBLP-5 to DBLP-3 with
five labeled samples per class, the improvement is 12.1%
compared with the second-best model (EvolveGCN). (2)
Classical GNNs have the worst performance on four bench-
marks (1, 2, 3, 4) since they can neither learn knowledge
from the previous timestamps nor transfer knowledge from
other domains. EVOLUNET boosts the performance com-
pared with classical GNNs by up to 16.4% (on benchmark
1). (3) Temporal GNNs achieve second-place performance
on Benchmarks 1 and 2, which means in these benchmarks,
there is knowledge existing in the previous timestamps that
is useful for the label prediction task in the future times-
tamps. Particularly, EVOLUNET still outperforms these
temporal GNNs on Benchmarks 1 and 2 by up to 12.1%.
Notably, on Benchmarks 5 and 6, all temporal GNNs fail,
while EVOLUNET can still has the highest performance.
(4) Transfer learning models have the second place perfor-
mance on Benchmarks 5 and 6, which shows the efficacy of
the domain knowledge transfer on these two benchmarks.
Especially, EVOLUNET still does better than this kind of
model on Benchmarks 5 and 6 by up to 9.9% AUC.

4.3. Ablation Study

Considering that EVOLUNET consists of various compo-
nents, we set up the following experiments to study the
effect of different components by removing one component
from EVOLUNET at a time: (1) removing the pre-training
process; (2) removing module 1, multi-resolution temporal
encoding and attention; (3) removing module 2, the dual-
divergence losses (including UNIFspatial and UNIFtemporal).
Due to the space limit, we use Benchmark 1, 5, and 6 to

illustrate in this section. From Table 4, we have several inter-
esting observations: (1) Pre-training can significantly boost
the model performance by up to 11.2% (on Benchmark 6),
which indicates the efficacy of knowledge transferring of our
model across different graphs under the limited label setting.
(2) Module 1 achieves impressive improvement on Bench-
mark 5 and 6 by up to 10.2%, which shows its strength in
temporal transfer learning and also supports our theoretical
analysis in Section 3.1. (3) Both dual-divergence losses
help the model better adapt knowledge from the source to
the target domain. especially on Benchmark 1, the removal
of UNIFspatial (UNIFtemporal) leads to a decrease in AUC by
1.6% (1.8%), p-value < 0.001. This proves the effectiveness
of dual GRLs module in alleviating the spatial and temporal
divergences. (4) The improvements of M2 are not obvious
in Benchmarks 5 and 6, and a simple guess is EVOLUNET
variation with only M1 already achieves significant improve-
ment than our baselines, so M2 makes less contribution to
the final results.

4.4. Parameter Sensitivity Analysis

Figure 6. Hyper-parameter analysis on Benchmark 2 with respect
to du and d.

In this section, we study two hyper-parameters of our model:
(1) the size of head dimension d in M1 (modeling domain
evolution via multi-resolution temporal encoding); (2) the
size of the mapped features du of two MLPs in M2 (domain-
invariant learning via dual-divergence unification). The
result is shown in Figure 6. Based on that, the fluctuation
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of the AUC (z-axis) is less than 3%. The AUC is slightly
lower when the head dimension of module 1 becomes larger,
and different values of d do not affect the AUC significantly.
Overall, we find EVOLUNET is reliable and not sensitive to
the hyperparameters under study within a wide range.

5. Related Work
In this section, we briefly review the existing literature in
the context of transfer learning and graph neural networks.

Transfer learning has exhibited excellent performance in
several areas, such as natural language processing (Yang
et al., 2021; Ruder et al., 2019), computer vision (Zhang
et al., 2022; Alhashim & Wonka, 2018), time series anal-
ysis (Bethge et al., 2022; Ismail Fawaz et al., 2018), and
healthcare (Panagopoulos et al., 2021). Then, several works
named “continuous transfer (Wang et al., 2021; 2020b; De-
sai et al., 2020)” or “dynamic domain adaptation (Li et al.,
2021; Ke et al., 2021; Mancini et al., 2019)” are proposed
to learn the evolving data. For example, Minku (2019) man-
ually partitioned source data into several evolving parts and
managed to solve the non-stationary source domain by per-
forming transfer learning. There are also some works (Hoff-
man et al., 2014; Ortiz-Jiménez et al., 2019; Liu et al., 2020;
Wu & He, 2020; Wang et al., 2020a; Kumar et al., 2020;
Xie et al., 2021b) that addressed the scenario in which the
source domain is static, and the target domain is continually
evolving. Recently, Wu & He (2022) modeled the knowl-
edge transferability with dynamic source domain and dy-
namic target domain and defined this problem as “dynamic
transfer learning.” Despite the success of dynamic transfer
learning, no effort has been made to solve the problem of
graph-structured data. In this paper, we aim to explore the
knowledge transferability across graphs.

Graph neural networks capture the structure of graphs via
message passing between nodes. Many significant efforts
such as GCN (Kipf & Welling, 2017), GraphSAGE (Hamil-
ton et al., 2017), GAT (Veličković et al., 2018), GIN (Xu
et al., 2019) arose and have become indispensable baseline
in a wide range of downstream tasks. Here we do not in-
tend to provide a comprehensive survey of the wide range
of GNNs. Instead, we refer the reader to excellent recent
surveys to get more familiar with the topics (Wu et al., 2021;
Zhou et al., 2020b). Recently, several attempts have been
focused on generalizing GNN from static graphs to dynamic
graphs (Yu et al., 2018; Schlichtkrull et al., 2018; Rossi
et al., 2020; Skarding et al., 2021; Kim et al., 2022; You
et al., 2022; Cong et al., 2023; Yu et al., 2023). Specifically,
Pareja et al. (2020) utilize common GCNs to learn node
representations on each static graph snapshot and then ag-
gregate these representations from the temporal dimension.
While Xu et al. (2020) first propose to use time embedding
and design a temporal graph attention layer to concatenate

node, edge, and time features efficiently. However, the
Dynamic GNN strategies often lack the capability of trans-
ferring knowledge, thus limiting their ability to leverage
valuable information from other data sources. Here we fur-
ther extend it to the transfer learning setting with dynamic
source and target domains.

6. Conclusion
In this paper, we investigate a novel problem named dy-
namic non-IID transfer learning on graphs, which intends to
augment knowledge transfer from dynamic source graphs to
dynamic target graphs. We shed light on C1 (Generalization
bound) by proposing a new generalized bound in terms of
historical empirical error and domain discrepancy. We also
present EVOLUNET, an end-to-end framework with two
major modules: M1. modeling domain evolution via multi-
resolution temporal encoding and M2. domain-invariant
learning via dual-divergence unification to alleviate evolv-
ing domain discrepancy that is specified in C2 (Computa-
tional framework). Extensive experiments on our carefully
prepared benchmark, where EVOLUNET consistently out-
performs leading baselines, demonstrate the efficacy of our
model for dynamic non-IID transfer learning on graphs.

Reproducibility: We have released our code and data at
https://github.com/wanghh7/EvoluNet.
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A. Algorithm Analysis
First, we have the following assumptions from the previous work.

Assumption 1 (R-Lipschitz Classifier (Wang et al., 2022)). Assume each classifier h ∈ H is R-Lipschitz in ℓ2 norm, i.e.,
∀x,x′ ∈ X ,

|h(x)− h (x′)| ≤ R ∥x− x′∥2 .

Assumption 2 (ρ-Lipschitz Loss (Wang et al., 2022)). Assume the loss function L(·, ·) is ρ-Lipschitz if ∃ ρ > 0 such that
∀x ∈ X , y, y′ ∈ Y and h, h′ ∈ H, the following inequalities hold:

|L (h′(x), y)− L(h(x), y)| ≤ ρ |h′(x)− h(x)| ,
|L (h(x), y′)− L(h(x), y)| ≤ ρ |y′ − y| .

Assumption 3 (Bounded Model Complexity (Wang et al., 2022; Kumar et al., 2020; Liang, 2016)). Assume the Rademachor
complexity ℜ̃ of the hypothesis class H is bounded, i.e., for some constant B > 0,

ℜ̃(H) = E

[
sup
h∈H

1

n

n∑
i=1

σih (xi)

]
≤ B√

n

where σi ∼ Uniform({−1, 1}) for i = 1, . . . , n.

Next, we give the definition of dynamic Wasserstein distance on graphs, Wasserstein distance between domains, Weisfeiler-
Lehman subtree, graph discrepancy, and Rademacher Complexity of hypothesis class.

Definition 1 (Dynamic p-Wasserstein Distance on Graphs). Consider two dynamic graphs {G(i)
src}Ti=1 and {G(i)

tgt}T+1
i=1 . For

any p ≥ 1, the dynamic p-Wasserstein distance is defined as:

W̃p =ρ
√
R2 + 1max

(
max

1≤i≤T−1
dGSD(G(i)

src,G(i+1)
src ),

dGSD(G(1)
src,G

(1)
tgt), max

1≤i≤T
dGSD(G(i)

tgt,G
(i+1)
tgt )

)
,

where R and ρ are the Lipschitz constants, dGSD denotes the graph discrepancy based on p-Wasserstein distance Wp (Wu
et al., 2023).

Definition 2 (p-Wasserstein Distance (Villani, 2009)). Consider two domains Dµ and Dν . For any p ≥ 1, their p-Wasserstein
distance metric is defined as:

Wp(Dµ,Dν) =

(
inf

γ∈Γ(Dµ,Dν)

∫
d(x, y)p dγ(x, y)

)1/p

,

where Γ(Dµ,Dν) is the set of all measures over Dµ ×Dν .

Definition 3 (Weisfeiler-Lehman subtree (Shervashidze et al., 2011)). Given a graph G = (V, E), the Weisfeiler-Lehman
subtree of depth m rooted at v ∈ V can be defined as:

fm(v) = fm
(
fm−1(v);∪u∈N (v)fm−1(u)

)
,

where f0(v) is the initial node attributes for node v, fi, i = 1, · · · ,m, · · · denotes the labeling function, N (v) denotes the
neighbors of node v.

Definition 4 (Graph Discrepancy (Wu et al., 2023)). Given two graphs Gµ and Gν , the graph discrepancy between the two
graphs can be represented as:

dGSD(Gµ,Gν) = lim
M→∞

1

M + 1

M∑
m=0

db(Gm
µ ,Gm

ν ),

where Gm is the Weisfeiler-Lehman subgraph at depth m for an input graph G, db(·, ·) is the base domain discrepancy, here
we use the p-Wasserstein distance metric Wp.
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Definition 5 (Rademacher Complexity (Bartlett & Mendelson, 2002)). Given a sample S = (X1, · · · ,XN ) ∈ XN , the
empirical Rademacher complexity of H given S is defined as:

ℜ̂S(H) = Eσ

[
sup
h∈H

N∑
i=1

σih (xi) | S = (x1, · · · ,xN )

]
,

where σ = (σ1, · · · , σm) is a vector of independent random variables from the Rademacher distribution.

Then, we use Lemma 1 to bound the error difference between arbitrary two domains and use Lemma 2 to bound the
difference between empirical and expected errors.

Lemma 1 (Error Difference over Shifted Domains (Wang et al., 2022)). For arbitrary classifier h and loss function L
satisfying Assumption 1 and 2, the expected error of h on two arbitrary domain Dµ and Dν satisfies

|ϵµ(h)− ϵν(h)| ≤ ρ
√

R2 + 1Wp(Dµ,Dν),

where Wp is the p-Wasserstein distance metric and p ≥ 1.

Lemma 2 (Algorithm Stability, from Lemma A.1 in Kumar et al. (2020)). With the assumptions 1, 2, 3, consider empirical
and expected errors on arbitrary domain with n samples, ∀ δ ∈ (0, 1), the following holds with probability at least 1− δ for
some constant B > 0,

|ϵ̂(h)− ϵ(h)| ≤ O

ρB +
√
log 1

δ√
n

 .

The proof of Lemma 2 can be found in the proof of Proposition 1 of the proof of Wang et al. (Wang et al., 2022) and Lemma
A.1 of Kumar et al. (Kumar et al., 2020).

Lemma 3 (McDiarmid’s inequality). Let function f satisfies for all 1 ≤ i ≤ N , and all X1, · · · ,XN ,X′
i ∈ X ,

|f (X1, · · · ,Xi, · · · ,XN )− f (X1, · · · ,X′
i, · · · ,XN )| ≤ ci, (5)

where bound c1, · · · , cN are constants. Then, for any ϵ > 0,

Pr[f − E[f ] ≥ ϵ] ≤ exp

(
−2ϵ2∑N
i=1 c

2
i

)
. (6)

Based on the above conclusion, Theorem 1 and its proof are given as follows.

Theorem 1. Assume classifier h ∈ H is R-Lipschitz and loss function L(·, ·) is ρ-Lipschitz, where R and ρ are the Lipschitz
constants. For any δ > 0, with probability at least 1− δ, the error ϵ(T+1)

tgt is bounded by:

ϵ
(T+1)
tgt (h) ≤ 1

2
min

1≤i≤T

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
+

3T

2
W̃p

+ ℜ̃ (HL) +O

 ρB√
ñ
+

√
log 1

δ

ñ

 (2)

where W̃p is dynamic Wasserstein distance on graphs, p ≥ 1, HL = {(X, y) 7→ L(h(X), y) : h ∈ H},

ℜ̃(HL) = 1
2T

∑T
i=1

(
ℜ̃D(i)

src
(HL) + ℜ̃D(i)

tgt
(HL)

)
, ℜ̃ is Rademacher complexity, B > 0 is a constant, and ñ =

min1≤i≤T

(
N

(i)
src, N

(i)
tgt

)
is the minimal number of training examples in source and target domains.

Proof. For the sake of simplicity here, we use G(i)
src and G(i)

tgt be the Weisfeiler-Lehman subgraphs of source domain and
the target domain at ith timestamp, following the discussion of Wu et al. (2023), the representations can be considered
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as conditionally independent with respect to Weisfeiler-Lehman subgraph. B ∈ (G × Y)ñ is the measurable subset over
G(1)
src × · · · × G(T )

src × G(1)
src × · · · × G(T )

tgt , and we define a function g over B as follows (Wu & He, 2022):

g(B) = sup
h∈H

ϵ
(T+1)
tgt (h)− 1

2T

T∑
i=1

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
, (7)

where ϵ̂
(i)
src(h) = 1

N
(i)
src

∑N(i)
src

j=1 [L(h(xj), yj)] (xj is the feature of jth sample in X
(i)
src) and ϵ̂

(i)
tgt(h) =

1

N
(i)
tgt

∑N
(i)
tgt

j=1 [L(h(xj), yj)] (xj is the feature of jth sample in X
(i)
tgt) are the estimate errors on graph G(i)

src and G(i)
tgt. Let B

and B′ be two measurable subsets containing only one different source sample in G(i)
src, then we have

|g(B)− g (B′)| ≤ 2ρ

2N
(i)
tgtT

≤ ρ

ñT
.

The same result holds for different target samples. Based on McDiarmid’s inequality (see Lemma 3), we have for any ϵ > 0,

Pr [g(B)− EB[g(B)] ≥ ϵ] ≤ exp

(
−2ñT 2ϵ2

ρ2

)
.

Then, for any δ > 0, with probability at least 1− δ, the following holds:

g(B) ≤ EB[g(B)] +
ρ

T

√
log 1

δ

2ñ
.

In addition, Definition 4 gives a metric to measure the graph discrepancy based on p-Wasserstein distance Wp, so we can
generalize Lemma 1 to graphs. It bounds the population error difference of a classifier between a pair of shifted domains on
graphs. For any h ∈ H and any i ∈ {1, · · · , T}, we have

ϵ
(i)
tgt(h) = ϵ(i)src(h) + ϵ

(i)
tgt(h)− ϵ(i)src(h),

≤ ϵ(i)src + ρ
√

R2 + 1dGSD(G(i)
tgt,G(i)

src).

Similarly, we have

ϵ
(T+1)
tgt (h) = ϵ

(i)
tgt(h) + ϵ

(T+1)
tgt (h)− ϵ

(i)
tgt(h),

≤ ϵ
(i)
tgt + ρ

√
R2 + 1dGSD(G(T+1)

tgt ,G(i)
tgt).

Then, we have

T∑
i=1

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
=ϵ

(T+1)
tgt (h)− ϵ

(T )
tgt (h) + · · ·+ ϵ

(2)
tgt(h)− ϵ

(1)
tgt(h) +

T∑
i=2

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
≤ρ
√
R2 + 1

(
dGSD(G(T )

tgt ,G
(T+1)
tgt ) + · · ·+ dGSD(G(1)

tgt ,G
(2)
tgt)
)
+

T∑
i=2

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
≤TW̃p +

T∑
i=2

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
≤ T (T + 1)

2
W̃p
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Then

EB[g(B)]

=EB

[
sup
h∈H

ϵ
(T+1)
tgt (h)− 1

2T

T∑
i=1

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)]

=EB

[
sup
h∈H

ϵ
(T+1)
tgt (h)− 1

2T

T∑
i=1

(
ϵ(i)src(h) + ϵ

(i)
tgt(h)

)
+

1

2T

T∑
i=1

(
ϵ(i)src(h)− ϵ̂(i)src(h)

)
+

1

2T

T∑
i=1

(
ϵ
(i)
tgt(h)− ϵ̂

(i)
tgt(h)

)]

=
1

2T
sup
h∈H

(
T∑

i=1

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
+

T∑
i=1

(
ϵ
(T+1)
tgt (h)− ϵ(i)src(h)

))

+EB

[
sup
h∈H

1

2T

T∑
i=1

(
ϵ(i)src(h)− ϵ̂(i)src(h)

)
+

1

2T

T∑
i=1

(
ϵ
(i)
tgt(h)− ϵ̂

(i)
tgt(h)

)]

≤ 1

2T
sup
h∈H

(
T∑

i=1

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
+

T∑
i=1

(
ϵ
(T+1)
tgt (h)− ϵ

(i)
tgt(h)

)
+

T∑
i=1

(
ϵ
(i)
tgt(h)− ϵ(i)src(h)

))

+EB

[
1

2T

T∑
i=1

sup
h∈H

(
ϵ(i)src(h)− ϵ̂(i)src(h)

)
+

1

2T

T∑
i=1

sup
h∈H

(
ϵ
(i)
tgt(h)− ϵ̂

(i)
tgt(h)

)]

≤ 1

2T

[
T (T + 1)

2
W̃p +

T (T + 1)

2
W̃p + TW̃p

]
+ EB

[
1

2T

T∑
i=1

ℜ̃D(i)
src

(HL) +
1

2T

T∑
i=1

ℜ̃D(i)
tgt

(HL)

]

≤T + 2

2
W̃p + ℜ̃(HL).

According to (7), we have for any h ∈ H,

ϵ
(T+1)
tgt (h) ≤ 1

2T

T∑
i=1

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
+ EB[g(B)] +

ρ

T

√
log 1

δ

2ñ
. (8)

W.l.o.g., we assume ϵ̂
(1)
src ≤ ϵ̂

(2)
src ≤ · · · ≤ ϵ̂

(T )
src for simplify. Consider the last term in

∑T
i=1

(
ϵ̂
(i)
src(h)

)
, for some constant

B > 0,

(lemma 2)ϵ̂(T )
src ≤ϵ(T )

src +O

 ρB√
ñ
+

√
log 1

δ

ñ


(lemma 1) ≤ϵ(T−1)

src + ρ
√
R2 + 1dGSD(G(T )

src ,G(T−1)
src ) +O

 ρB√
ñ
+

√
log 1

δ

ñ


≤ · · ·

≤ϵ(1)src + (T − 1)W̃p +O

 ρB√
ñ
+

√
log 1

δ

ñ


(lemma 2) ≤ϵ̂(1)src + (T − 1)W̃p +O

 ρB√
ñ
+

√
log 1

δ

ñ

 .

(9)
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For the second last term in
∑T

i=1

(
ϵ̂
(i)
src(h)

)
, we have

(lemma 2)ϵ̂(T−1)
src ≤ϵ(T−1)

src +O

(
ρB√
ñ
+

√
log(1/δ)

ñ

)

≤ϵ(T )
src +O

 ρB√
ñ
+

√
log 1

δ

ñ


(Eq.9) ≤ϵ̂(1)src + (T − 1)W̃p +O

 ρB√
ñ
+

√
log 1

δ

ñ

 .

It is easy to see that this can be bounded for source or target across time. Generally,

1

2T

T∑
i=1

(
ϵ̂(i)src(h)

)
≤ 1

2
min

1≤i≤T
(ϵ̂(i)src) +

T − 1

2
W̃p +O

 ρB√
ñ
+

√
log 1

δ

ñ

 ,

1

2T

T∑
i=1

(
ϵ̂
(i)
tgt(h)

)
≤ 1

2
min

1≤i≤T
(ϵ̂

(i)
tgt) +

T − 1

2
W̃p +O

 ρB√
ñ
+

√
log 1

δ

ñ

 .

Therefore, from (8), we have

ϵ
(T+1)
tgt (h) ≤ 1

2
min

1≤i≤T

(
ϵ̂(i)src(h) + ϵ̂

(i)
tgt(h)

)
+

3T

2
W̃p + ℜ̃(HL) +O

 ρB√
ñ
+

√
log 1

δ

ñ

 . (10)

which completes the proof.

B. Optimization and Pseudo Code
The goal of the training process is to minimize the dual-divergence GRL loss (for all sample graphs) and the node
classification loss (for source sample graphs and the few labeled nodes in target sample graphs). The overall loss function
can be written as follows:

Ltotal = LGRL + γ1 ∗ Ltask (11)

where LGRL represents the dual GRL loss, Ltask represents the loss for classification on labeled nodes, and the hyperparam-
eter γ1 balances the contribution of the two terms. In the paper, we consider the node classification task, Ltask is therefore
defined as follows:

Ltask = Lsource + Ltarget

=

T∑
i=1

LCE

(
h(G(i)

src),Y(i)
src

)
+ γ2 ∗

T+1∑
i=1

LCE

(
h(G̃(i)

tgt), Ỹ
(i)
tgt

) (12)

where h(·) is the classifier for the downstream task, Lsource and Ltarget represent the node classification loss on the source
and target domains, here we employ cross-entropy loss LCE, and the contribution of the two terms is balanced by γ2.

We provide the pseudo-code of EVOLUNET in Algorithm 1 and we employ Adam (Kingma & Ba, 2015) as the optimizer.
Given a set of source sample graphs {G(i)

src = (V(i)
src, E(i)

src)}Ti=1 with rich label information {Y(i)
src}Ti=1, and a set of target

graphs {G(i)
tgt = (V(i)

tgt, E
(i)
tgt)}T+1

i=1 with few label information {Ỹ(i)
tgt}T+1

i=1 , our proposed EVOLUNET framework aims to

predict Ŷ(T+1)
tgt in the latest target sample graph G(T+1)

tgt . We initialize each of the models and the classifier in Step 1. Steps
2-7 correspond to the pre-train process: in Step 3, we map sample graphs from source and target domains to a shared latent
space using two separate MLPs; then the mapped representations are passed to a domain-invariant GNN for computing
domain-invariant spatial representations in Step 4; followed by a domain-invariant module 1 for computing domain-invariant
temporal graph representations in Step 5; while in Step 6, models are trained by minimizing the objective function. In
Steps 8-10, we fine-tune the MLP of the target domain, the domain-invariant GNN, the domain-invariant module 1, and the
classifier h(·) on the latest target domain G(T+1)

tgt .
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Algorithm 1 The EVOLUNET Learning Framework.
Require:

(i) a set of source sample graphs {G(i)
src = (V(i)

src, E(i)
src)}Ti=1 with rich label information {Y(i)

src}Ti=1; (ii) a set of target
sample graphs {G(i)

tgt = (V(i)
tgt, E

(i)
tgt)}T+1

i=1 with few label information {Ỹ(i)
tgt}T+1

i=1 .
Ensure:

Prediction Ŷ(T+1)
tgt of unlabeled examples in G(T+1)

tgt .
1: Initialize two MLPs for source and target, the domain-invariant GNN, the domain-invariant module 1, the dual-divergence

unification module, and the classifier h(·) for the downstream task in G(T+1)
tgt .

2: while not converge do
3: Compute representations in a shared latent space of both {G(i)

src}Ti=1 and {G(i)
tgt}T+1

i=1 via two MLPs.

4: Compute domain-invariant spatial representations of both {G(i)
src}Ti=1 and {G(i)

tgt}T+1
i=1 via the domain-invariant GNN

and first GRL.
5: Compute domain-invariant temporal graph representations of both {G(i)

src}Ti=1 and {G(i)
tgt}T+1

i=1 via the domain-invariant
module 1 and second GRL.

6: Update the hidden parameters of two MLPs, the GNN, module 1, and the dual-divergence unification module by
minimizing the loss function in Eq. 11.

7: end while
8: while not converge do
9: Fine-tune MLP for the target domain, the GNN, module 1, and the classifier h(·) for the downstream task.

10: end while
C. Implementation Details
We compare EVOLUNET with four classical graph neural networks GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018), GIN (Xu et al., 2019), GraphSAGE (Hamilton et al., 2017); four temporal graph neural networks DCRNN (Li et al.,
2018), DyGrEncoder (Taheri & Berger-Wolf, 2019), EvolveGCN (Pareja et al., 2020), TGCN (Zhao et al., 2019b)); and
three graph transfer learning methods DANN (Ganin et al., 2016), UDAGCN (Wu et al., 2020), GRADE (Wu et al., 2023)).
For a fair comparison, the output dimensions of all GNNs including baselines and EVOLUNET are set to 16. We conduct
experiments with only five labeled samples in each class of the target dataset and test model performance based on all the
rest of the unlabeled nodes. For non-temporal GNNs, since they cannot process dynamic graphs directly, we train each
model on the graph of the last timestamp. Specifically, for classical GNNs, they are trained on the target dataset for 1000
epochs; for transfer learning models, after training on the source dataset for 2000 epochs, they are fine-tuned on the target
dataset for 600 epochs. We use GCN as the feature extractor of DANN and follow the instructions from the original paper of
UDAGCN (Wu et al., 2020) to build a union set for input features between the source and target domains by setting zeros
for unshared features. The original code for GRADE does not support cross-domain transfer with different feature and class
dimensions; we processed the features with a linear layer and constructed a joint label space. For four temporal GNNs, they
are trained using all timestamps of the target dataset for 1000 epochs.

For EVOLUNET, it is firstly pre-trained for 2000 epochs, then fine-tuned on the target dataset for 600 epochs using limited
labeled data in each class. Since the label of each node in current benchmarks is consistent in every timestamp, in this paper,
the output of module 1 in EVOLUNET is aggregated using the average function over all the timestamps, but our model can
easily be applied to the settings where labels of each node are changed in different timestamps by simply removing the
aggregation operation. We use Adam optimizer with learning rate 3e-3. Considering the imbalanced label distribution, the
area under the receiver of the characteristic curve (AUC) is used as the evaluation metric. We run all the experiments with
25 random seeds. The experiments are performed on a Ubuntu20 machine with 16 3.8GHz AMD Cores and a single 24GB
NVIDIA GeForce RTX3090.
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