
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FILTERED SEMANTIC SEARCH VIA
VECTOR ARITHMETIC

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we retrieve search results that are both semantically relevant and satisfy
certain filter criteria? Modern day semantic search engines are increasingly reliant
on vector-based search, yet the ability to restrict vector search to a fixed set of filter
criteria remains an interesting problem with no known satisfactory solution. In this
note, we leverage the rich emergent structure of vector embeddings of pre-trained
search transformers to offer a simple solution. Our method involves learning, for
each filter, a vector direction in the space of vector embeddings, and adding it to the
query vector at run-time to perform a search constrained by that filter criteria. Our
technique is broadly applicable to any finite set of semantically meaningful filters,
compute-efficient in that it does not require modifying or rebuilding an existing k-
NN index over document vector embeddings, lightweight in that it adds negligible
latency, and widely compatible in that it can be utilized with any transformer
model and k-NN algorithm. We also establish, subject to mild assumptions, an
upper bound on the probability that our method errantly retrieves irrelevant results,
and reveal new empirical insights about the geometry of transformer embeddings.
In experiments, we find that our method, on average, yields more than a 21%
boost over the baseline (measured in terms of nDCG@10) across three different
transformer models and datasets.

1 INTRODUCTION

Search is an age-old problem in the field of information retrieval. It has been revolutionized by
modern machine learning systems, particularly by pre-trained transformer models Nogueira & Cho
(2020); Devlin et al. (2018). When these models are fine-tuned for search—hereafter referred to
as search transformers—they demonstrate state-of-the-art performance across a wide variety of
information retrieval tasks, domains, and data modalities Yates et al. (2021). The natural language
understanding capabilities of these search transformers have enabled users to pose queries in natural
language and retrieve semantically relevant results.

A query for shoes in an e-commerce corpus retrieves not only product articles about shoes but also
those on boots, loafers, sneakers, etc. In many situations, this is the intended behavior. However,
semantic relevance is not the sole criterion for obtaining relevant results. Often, users seek results
that are semantically relevant and meet specific keyword criteria. For example, a user might want to
find shoes from a specific brand, such as Nike. In this case, the ideal results would be semantically
relevant to shoes, such as shoe and sneakers, while exactly matching the brand Nike. In this paper,
we study how one can retrieve results that simultaneously exhibit semantic relevance while satisfying
certain filter criteria.

The fundamental principle of search transformers is to generate a vector embedding for every item
in the corpus, henceforth referred to as documents, in a way that ensures that vector embeddings
of relevant documents are positioned closer to each other in the vector space and vice versa. The
resulting collection of document vectors forms the universe over which searches are conducted. At
the time of a query, the query q is converted into a vector, and the nearest neighbors of the query
vector v⃗q are retrieved as the relevant results. The nearest neighbor search is executed either using
an exact search or, more commonly, an approximate k-Nearest Neighbors (k-NN) method such as
Hierarchical Navigable Small Worlds (HNSW) Malkov & Yashunin (2020) or Product Quantization
(PQ) Jégou et al. (2011). Both approximate methods involve a computationally intensive step of
building an index, which, while substantially increasing the initial setup time, significantly reduces
downstream latency during query retrieval.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Red
Sw

ea
te
r

Figure 1: The “Red↔ Sweater” continuum using clip for Tiny Imagenet. For an appropriate value
of λ, the nearest neighbor of v⃗Sweater + λν⃗Red, retrieves a relevant result a red Poncho.

Our method relies on the intuition that there exist emergent directions in the space of vector embed-
dings that correspond to different filters such as Nike or Sony, and that these directions can be found
using a simple algorithm that employs linear probes with a limited amount of un-supervised data. At
run-time, a query q with a filter f is vectorized into a simple linear combination, such as v⃗q+f + λν⃗f ,
before being submitted to k-NN search. Here λ is a scalar, v⃗q+f refers to the model embedding of the
concatenated query and filter string, and ν⃗f corresponds to the learned filter direction. Experimentally,
this simple protocol achieves an improvement over the baseline of almost 21% across different
datasets and models, as measured in terms of nDCG@10 and Recall@10.

We discover that other linear combinations also yield comparable performance. For illustration and
theoretical analysis, we work with v⃗q + λν⃗f , while for our experiments, we use v⃗q+f + λν⃗f . The
former greatly simplifies the illustration and theoretical analysis, while the latter allows for a more
intuitive comparison with the experimental baseline. As shown in Figure 1, our method leverages the
continuum of semantically meaningful linear combinations v⃗q + λν⃗f within transformer embeddings
as we vary λ. Specifically, using image embeddings from clip with Tiny Imagenet Le & Yang
(2015), we find that increasing λ spans concepts from an image of a sweater (Poncho) to that of a red
object (red sports car). For an appropriate value of λ, our method retrieves the relevant results. Thus,
λ serves as a hyperparameter in our approach, which we fix for a given dataset and model.

We also derive some theoretical results about our method and establish bounds on the probability
of retrieving irrelevant results subject to a particular generative model with mild assumptions. We
motivate these underlying assumptions with new insights into the geometry of search transformers,
specifically regarding the isotropy of their output representations. Contrary to previous findings,
our research indicates that search transformers do not exhibit the kind of anisotropy often assumed
to indicate degenerate representations. For example, our findings suggest that for most search
transformers, vector embeddings of random, unrelated documents are nearly orthogonal to one another,
i.e., are not anisotropic, and they do not possess “rogue” dimensions that could disproportionately
influence the nearest neighbor distance calculation.

Query latency is a critical metric in modern search applications; thus, the proposed method should
not be computationally heavy and must not add considerable latency during runtime. Additionally, a
solution that necessitates rebuilding of the k-nearest neighbors index is impractical due to the vast size
of contemporary search corpora. Our method is computationally efficient, adds negligible latency,
and does not require the index to be rebuilt. It can be seamlessly integrated with any existing search
transformer without the need for fine-tuning. However, since our approach relies on the presence of
emergent directions leverageable by search transformers, it is effective only for filters with semantic
relevance. Concretely, the filters cannot be arbitrary alphanumeric strings, such as serial number, size
or price. To summarize, our contributions include

1. A simple, lightweight, and low latency algorithm for semantic search with filters, indepen-
dent of both the transformer model and the underlying k-NN search algorithm.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. Experiments demonstrating an improvement of 21% in nDCG@10 compared to a baseline
across three different transformer models and datasets.

3. A theoretical analysis of the approach, establishing accuracy bounds under a certain genera-
tive model, and empirical insights into the geometry of vector embeddings.

2 BACKGROUND AND RELATED WORK

One of the oldest and most widely used techniques for information retrieval is BM25 Robertson
& Zaragoza (2009). It is based on keyword matching and frequency statistics, providing a robust,
generalizable search solution for many use cases. However, keyword-based search lacks the semantic
understanding of a pre-trained search transformer, and thus it cannot be used to retrieve semantically
relevant results with or without a filter.

Another common solution involves post-filtering the results using a two-stage approach. The first
stage involves retrieval with a large k using an approximate k-NN algorithm such as HNSW, while
the second stage subselects those results that satisfy the filter criteria using a pre-built index or
BM25. These two-stage retrieval systems are limited by the Recall@k of the first stage retriever. We
demonstrate that our method significantly improves recall during the first stage retrieval of HNSW
for semantic search with filters. Other k-NN algorithms, such as Filtered-DiskANN Gollapudi et al.
(2023) and FAISS filtering Johnson et al. (2019), either necessitate rebuilding the document index,
require constructing new indices that independently encapsulate filter information, or increase query
latency by dynamically checking filter criteria while searching through the vectors. That being said,
our method can still be combined with these algorithms, potentially serving as a more efficient entry
point in the search index.

To our knowledge, the work most closely aligning with our research has been independently explored
within the computer vision community under the concept of compositional learning Neculai et al.
(2022); Nagarajan & Grauman (2018); Vo et al. (2018); Misra et al. (2017). The task in this domain
involves retrieving images with specific attributes, such as dogs that are also large or brown. However,
as far as we are aware, these methods are not model-agnostic and/or necessitate joint pre-training.

On the other hand, the emergence of semantically meaningful directions in deep neural networks has
been extensively studied, including the seminal work on word vectors by Mikolov et al. (2013). Recent
advancements in mechanistic interpretability have further uncovered deep connections between feature
representations (i.e., filters) and neuron activations (i.e., vector directions) Bricken et al. (2023);
Cammarata et al. (2020). Previous studies have employed linear probes to uncover syntax trees and
linguistic features within transformer models Hewitt & Manning (2019); Coenen et al. (2019). Our
method is inspired by these investigations, aiming to leverage the geometry of these models using
linear probes for the downstream task of semantic search with filters.

3 METHOD

Problem The problem we study is as follows. We are given a corpus of n documents D, their
corresponding filters, and corresponding embedding vectors VD as generated by a transformer model.
For a given corpus, the collection of filter sets {F1, F2, · · · } is fixed and we denote it as F . For each
filter set Fa ∈ F , every document di ∈ D possesses some filter f i

a ∈ Fa. A document is said to
possess a filter if it satisfies that particular filter criteria. The task, for a given query q with filter f in
some Fa, is to retrieve k documents that are relevant to q and satisfy f .

For example, if the corpus D represents a shoe catalog, the collection F of filter sets could be
{brand, color, size, ...}, where the filter set F1 for brand may include {Nike, Sony, Apple, ...}. Given
a query, q = athletic shoe with filter f = Nike, we wish to find k items from the catalog semantically
matching the query athletic shoe and exactly matching the filter Nike.

We assume that |Fa| ≪ |D| for all a, e.g., the number of distinct brands is much smaller than the size
of the corpus. Additionally, we assume that each document possesses a unique filter for a given filter
set, i.e., a document corresponding to an athletic shoe cannot possess both Nike and Puma as filters
(but can possess Nike and purple, since they belong to different filter sets).

Intuition To the best of our knowledge, efficiently filtering a k-NN vector search remains an open
combinatorial geometry problem, even for the special case of retrieving documents containing a
specific string or keyword. One natural approach toward filtered k-NN search would be to limit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the search solely to the subregion of vectors meeting the filter criteria. For an arbitrary distribution
of vectors, this region could be highly non-linear, disconnected, and challenging to find. The core
premise of our method is the observation that vector embeddings generated by transformers possess
considerable linear structure, for reasons not yet fully understood, allowing for the identification of
semantically meaningful directions.

To be precise, we propose that every semantically meaningful filter can be associated with a cor-
responding direction, and that the documents matching these filters are those whose embeddings
have a high dot product with this direction. We hypothesize that these directions exist either be-
cause a sufficiently powerful language model can implicitly infer a connection between documents
and their filters (for example, drawing a connection between Air Jordans and the filter Nike), or
because the document explicitly mentions the filter in its description (Volkswagen Beetle and the filter
Volkswagen), and the model has contextualized it within the document’s context.

To build our intuition about these embeddings, let us first understand the behavior of random vectors
in high dimensions. Unless otherwise specified, we always work with unit norm vectors. Therefore,
the dot product between two vectors and the angle between them can be used interchangeably.
The dot product of two random unit vectors in d dimensions has an expectation of 0 and standard
deviation 1/

√
d; this underlies the well known fact (e.g. Arora (2014)) that random vectors in high

dimensions are approximately perpendicular and make an angle of roughly θ ∼ (90± αd)°, where
αd ≈ arcsin(1/

√
d). For d = 384, as in the popular search transformer model minilm, this puts the

majority of vectors with in the 87°–93° range of each other, and we approach exact orthogonality in
the limit where d→∞.

However, does this hold true for vectors output by search transformers? To investigate this, we select
random documents from the widely-used MS Marco Bajaj et al. (2018) dataset and use minilm to
vectorize the documents. We compute the pairwise angles between all documents in Figure 2 left. We
find that the distribution of angles is concentrated near orthogonality with a mean of approximately
91°. For unit vectors, this is equivalent to vectors spreading isotropically on the unit sphere. A similar
result holds true for two other popular search transformers that we consider, mpnet and sgpt.

It is worthwhile to contrast this with literature on anisotropic embeddings in pre-trained transformer
models like GPT-2 and BERT (Ethayarajh, 2019; Timkey & van Schijndel, 2021). Anisotropy has
been linked to poor performance and representation degeneration, prompting proposals for isotropic
methods (Jung et al., 2022; Rajaee & Pilehvar, 2021; Gao et al., 2019; Liang et al., 2021). A priori, a
pre-trained model could have anisotropic word embeddings yet excel at language modeling, given
that next token prediction depends on hidden states across all layers and past tokens. However,
for transformers used for search, the geometry of the embeddings directly impact k-NN search
and anisotropy could degrade performance. Fortunately, search transformers are fine-tuned using
contrastive loss, and we empirically find that they are isotropic and thus utilize the entire unit sphere
uniformly – the most information-theoretically appealing solution (Wang & Isola, 2020; Elhage et al.,
2022). See Appendix E for more discussion.

Given that MS Marco is part of the training distribution of minilm, we also conduct the experiment
with the out-of-distribution Amazon ESCI shopping dataset Reddy et al. (2022). The dataset consists
of e-commerce product descriptions with other attributes such as product brand and color. We treat
the product descriptions as documents, and vectorize them while the brands and colors serve as
filter sets Fa. As shown in Figure 2 left, we find that the distribution, although not centered around
(90± αd)°, is still close to being orthogonal.

On the other hand, if we select documents conditioned on a particular filter, e.g., only selecting Nike
products from the dataset, we find that the vectors are more correlated and make an angle θ much
smaller than (90− αd)°, as shown in Figure 2 left (although the variance is high). On the unit sphere
this corresponds to all Nike document vectors making a cone with an opening angle θ. This allows us
to learn a vector direction that has a large dot product, i.e., small angle with documents possessing a
particular filter while being almost orthogonal to the rest of the documents. Indeed, for the Amazon
ESCI dataset, we show in Figure 2 right that we can learn a direction vector for Nike such that it
exhibits a high dot product with Nike items and a low dot product with products associated with
different filters, such as Sony, Puma, Adidas. While we use the algorithms mentioned below to learn
the filter direction, a simple mean pooling of all Nike document vectors could also be used as the filter
direction for Nike, since mean pooling simply reproduces the axis around which the Nike document

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Left: Vector embeddings of randomly selected documents, shown in red and blue, are almost
orthogonal to each other. While vector embeddings of documents that have the same filter (Nike), shown in
purple, are more collinear to each other. Right: Histograms of the dot products between a specific filter direction
and document vectors. The dot products between the learned filter direction for Nike and Nike documents,
shown in red, are significantly higher than those between the learned filter direction for Nike and random
documents, such as Apple, Puma and Adidas, shown in blue. This separation of scales could thus be utilized to
find documents that have a particular filter. All vectors are unit norm.

vectors form the cone. For all experiments, the filter directions are trained and tested on separate
splits of the dataset.

However, it is crucial to acknowledge that not every filter can be accurately represented by a vector
direction. In Appendix D.3, we evaluate how the fidelity of vector directions to filters diminishes as the
semantic meaning of the filter decreases. As an extreme example, if filters are random alphanumeric
strings, we fail to identify a vector direction that outperforms random chance at selecting documents
that belong to a particular filter. This occurs because documents with the same alphanumeric filter
are nearly orthogonal to each other, preventing us from learning a vector direction that has a high dot
product exclusively with documents possessing that filter. In other words, document vectors with a
particular alphanumeric filter form a cone with opening angle ≈ 90°, i.e., a degenerate flat cone.

Algorithm We now describe a pair of algorithms. Algorithm 1, run independently for each filter
set Fa ∈ F , attempts to learn a collection of linear probes (i.e. a collection of directions in the space)
that best predicts which filter f in Fa, if any, applies to a given document. To turn this classification
problem into a geometric one, we use a one-hot encoding to identify each filter with a basis direction
in R|Fa|, and learn a linear mapping from these one-hot encoded filter vectors into the space of
document vectors. This mapping is constructed to maximize the inner product between the learned
filter directions and the embedded documents matching the corresponding filter. The mapping of
these vectors, which define the columns of the learned matrix RFa , will form the set of linear probes
we use throughout the remainder of the paper.

Algorithm 1 Linear probe
1: Input document vectors VD ∈ Rn×d, filters f i

a ∀i ∈ {1, 2, . . . , n}, filter set Fa ∈ F .
2: Encode each document filter f i

a ∈ Fa using a one-hot row vector of dimension |Fa|. Stack them
to create a filter matrix Fa ∈ Rn×|Fa|.

3: Initialize RFa
from U

(
−1√
d
, 1√

d

)d×|Fa|
, and use gradient descent to minimize mean squared

error loss L = ||VD ·RFa
− Fa||22

4: Normalize the columns of RFa
to have unit norm, i.e., Σd

i=1(RFa
)
2
ij = 1,∀j ∈ {1, 2, . . . , |Fa|}

5: Output matrix of directions RFa .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

While other techniques could be used to find RFa
, such as solving VD ·RFa

− Fa = 0 directly
using pseudo-inverses, the speed, numerical stability, and extensibility of gradient descent prove very
helpful. Since we work with transformers with unit norm embeddings, we explicitly normalize the
filter directions to have unit norm in step 4 of the algorithm. We also find that using a cross entropy
loss instead of mean squared loss in step 3 yields equally good results.

Algorithm 2 shows how we can apply these linear probes at query time to retrieve a subset of filtered,
semantically relevant documents. Given such an Fa and the matrix RFa learned for Fa in Algorithm 1,
we apply the same one-hot-encoding scheme to f in order to identify the index of the column of RFa

which forms its corresponding filter direction ν⃗f . We then add a scaled version of ν⃗f to the model
embedding of the concatenated query and filter strings v⃗q+f , and output the normalized result.

Algorithm 2 Query-time filter
1: Input model embedding v⃗q+f ∈ Rd, filter set Fa, query filter f ∈ Fa, probe matrix RFa , λ
2: Let if be the index of filter f in the one-hot encoding of Fa, as computed in Algorithm 1.
3: ν⃗f ← column if of RFa

4: ṽq ← v⃗q+f + λν⃗f

5: Output ṽq/|ṽq|: combined normalized vector

At query time, the vector generated by Algorithm 2 is passed to the k-NN search algorithm to conduct
semantic search in the presence of a filter. The weight factor λ is a hyper-parameter that needs to be
tuned using a held-out supervised test set of (queries, filters, documents) triples. Slight variations
on the combination strategy in Line 4 also work. In Appendix D.1, we consider the combinations
(1− λ)v⃗q + λν⃗f and (1− λ)v⃗q+f + λν⃗f and find that it yields comparable performance.

A priori, the existence of a filter direction does not necessarily imply that the nearest neighbors of a
linear combination of the query and filter vector will yield relevant results. In principle, the nearest
neighbors could all be completely unrelated to the query and the filter. In the following section, we
prove that, with high probability and under mild assumptions, this is not the case.

4 THEORY

The quality of the results coming out of our k-NN search depends on the number of irrelevant versus
relevant search results we return among the top k nearest vectors. Intuitively, irrelevant results are
those items that have little to do with the query (“D-cell battery” as a response to “sweater, red”), and
therefore the process generating their corresponding vector is independent of either the choice of the
query vector v⃗q or the filter vector ν⃗f . In contrast, relevant search results are those that directly have
to do with the query (“Striped Christmas sweater” as a reply to the same query), and the generative
process is consequently a function of some combination of v⃗q and ν⃗f .

Specifically, with respect to fixed i.i.dN (⃗0, Id/d) samples of a query vector v⃗q and filter vector ν⃗f (a
standard model for random unit vectors of near-unit length in high-dimensional Euclidean space), we
assume the data is generated via one of two generative processes:

• Irrelevant vectors are sampled from some spherical Gaussian of mean 0⃗ and covariance 1
dId,

independent of v⃗q and ν⃗f .

• Relevant vectors are sampled from some spherical Gaussian of covariance σ2

d Id centered
around v⃗q + γν⃗f for some unknown γ, σ ∈ [0, 4/5].

Crucially, we do not assume that we know the “true” value of the parameter γ. Instead, running
Algorithm 2 with some λ of our choosing will produce (a normalized version of) v⃗q + λν⃗f around
which we search for the k nearest neighbors1. We argue that this seemingly “wrong” query, with γ
replaced by λ, will still be overwhelmingly likely to find relevant vectors nearby rather than irrelevant
ones. Note that, as mentioned in Section 3, our analysis in this section depends on the query vector
v⃗∗ being a function of v⃗q rather than the less interpretable v⃗q+f which gives experimentally similar
results but cannot be nicely decomposed into simpler components.

1For simplicity, we omit these normalizing factors from our analysis, which readily cancel out in all key
calculations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

These two distributions model the distribution of vectors previously discussed in Section 3, and elab-
orated on in Appendix E. The i.i.d. Gaussian distribution from which we sample “irrelevant” vectors
matches a well-studied model of isotropic vectors on a high-dimensional sphere (e.g. Vershynin
(2018)), and the distribution of relevant vectors is an attempt to model the conical distribution we
discover for vectors that match semantically meaningful filters.

While it is challenging to validate these assumptions by directly establishing the Gaussianity of an
arbitrary distribution, in Figure 3, we plot the distribution of irrelevant vectors and relevant vectors
around vq, for a random vector component. We find that it closely follows a Gaussian distribution
with standard deviations in the required range. In Appendix E, we provide Q-Q plots that further
corroborate this claim, and contrast our findings with those on anisotropy in the literature.

Figure 3: Distribution of vector components generated by minilm on the Brands dataset

As a warmup, we build intuition for the efficacy of Algorithm 2 in this setting by first considering
the (somewhat degenerate) case where γ = λ = 0. This corresponds to ordinary vector search with
out any filters. In this special case, the assumptions imposed above stipulate that for any sample
of the combined query-filter vector v⃗q + γν⃗f = v⃗q and irrelevant vector v⃗i, the difference v⃗q − v⃗i
is distributed as N

(
0, 2

dId
)
. Conversely, the difference with a relevant vector v⃗r is distributed as

N
(
0, σ2

d Id

)
. Because σ2

d ≤
(4/5)2

d < 2
d , squared distances to relevant vectors will typically be

much smaller than those to irrelevant vectors, ensuring relevant k-NN results with high probability.
This separation of scale in these variances could be attributed to neural network training, where the
objective is to bring relevant vectors closer together and push irrelevant vectors further apart in the
embedding space. In the more general case where γ and λ can vary, the gap will depend non-linearly
on the specific choice of those values. Details are left to the proof of Theorem 1.

Under these assumptions, it is fairly intuitive that relevant vectors have a definite advantage in terms
of likelihood of being nearest neighbors of our modified query ṽq , especially when σ is small and λ
is close to γ. However, when working with large datasets, it is plausible that the sheer size of the
dataset D may overwhelm this advantage by containing so many irrelevant samples that many of
them end up as k nearest neighbors by accident.

Our analysis shows that for reasonable settings of parameters, this is not the case. We take advantage
of the high dimensionality of the vector spaces we work with, and show that the probability that any
given irrelevant vector is among the k-nearest neighbors decreases exponentially in d. Intuitively,
this happens because each additional dimension gives more room for an irrelevant vector to be far
from ṽq than it does for relevant vectors. By taking the union bound over all vectors of the dataset,
we show that the expected number of irrelevant results among the k-nearest neighbors is oftentimes
much less than 1. This statement is captured in the following theorem.

Theorem 1. Let v⃗q and ν⃗f be independent N (⃗0, Id) samples representing the embedding of some
query q and filter f . Let λ, γ, σ ∈ [0, 4/5]. Let D ⊂ Rd be a dataset of n embedded passage vectors
irrelevant to v⃗q and ν⃗f , and let R be a set of relevant vectors sampled as defined above. As long as
|R| ≥ k, the expected number of irrelevant vectors among the k nearest neighbors of v⃗q is at most
0.943d−1kn.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In the analysis, we analyze two different distributions: that of squared distances between the query
vector v⃗∗ = v⃗q + λν⃗f and irrelevant vectors (Dr), and that of the squared distances between v⃗∗ and
relevant vectors (Di). We show that these are both scaled mostly-independent χ2(d) distributions,
and that the probability that v⃗∗ is closer to a vector drawn from Dr than one from Di matches the
probability that the difference of two other closely related (but now truly independent) χ2 distributions
is negative. By analyzing the moment generating function of this difference (Lemma 2), we show
that it only takes on negative values an exponentially small fraction of the time.

Lemma 2. Let X1 and X2 be independent random variables sampled as X1 ∼ c1χ
2(k) and

X2 ∼ c2χ
2(k), respectively. If c1 > 2c2, then Pr[X2 ≥ X1] ≤

√
8/9

k
≈ 0.943k.

Given Lemma 2 (whose proof is deferred to Appendix A), one can derive Theorem 1 as follows.

Proof of Theorem 1. Let v⃗r be the embedding of a vector relevant to both q and f , and let v⃗i be the
embedding of a vector irrelevant to both. Define Di as the distribution over ||v⃗∗ −N (⃗0, Id)||22, i.e.
the prior distribution of the squared distance from some fixed v⃗∗ to an irrelevant v⃗i. Define Dr as the
distribution over ||v⃗∗− (v⃗q + γν⃗f +N (⃗0, σ2Id))||22, i.e. the prior distribution of the squared distance
from a fixed v⃗∗ to a relevant v⃗r.

We can evaluate Dr and Di as follows

Dr = ||v⃗∗ − (v⃗q + γν⃗f +N (⃗0, σ2Id))||22 = ||v⃗q + λν⃗f − (v⃗q + γν⃗f +N (⃗0, σ2Id))||22
= ||N (⃗0, σ2Id) + (λ− γ)N (⃗0, Id)||22 = (σ2 + (λ− γ)2)χ2(d),

and

Di = ||v⃗∗ −N (⃗0, Id)||22 = ||(N (⃗0, Id) + λN (⃗0, Id))−N (⃗0, Id)||22
= ||N (⃗0, (2 + λ2)Id)||22 = (2 + λ2)χ2(d)

Thus, both distributions are scaled χ2 distributions with the same parameter d. However, having
fixed a value for v⃗∗, the squared distances in Dr and Di both depend on our choice of v⃗∗, so
jointly sampling x1 ∼ Dr and x2 ∼ Di for the same v⃗∗ yields random values that are not entirely
independent. However, rotating the sampled vectors so that v⃗∗ lies on a basis direction shows that
the samples are still independent among the remaining d− 1 dimensions, and hence x1 − x2 can be
expressed as the difference of two χ2(d− 1) distributions with scales as above.

D = (2 + λ2)χ2(d− 1)− (σ2 + (λ− γ)2)χ2(d− 1)

It can be verified that the ratio (σ2 + (λ− γ)2)/(2 + λ2) is at most 1/2. Therefore, plugging this
difference of distributions into Lemma 2, we conclude that the probability it is negative (and hence
the probability that a sample from Dr exceeds that from Di) is at most 0.943d−1.

The above statement is true for a single sample from Di and Dr. With k samples from Dr, the
probability of a single sample from Di exceeding any of the k of them (and thus appearing among
the k nearest neighbors) is at most 0.943d−1k. By a second union bound, the probability that of the n
samples in D is one of the k-nearest neighbors is at most 0.943d−1nk.

For a 384-dimensional dataset (such as minilm) supported on 1B points, this calculation estimates
that at most 1.73 irrelevant vectors will show up in the top 10 nearest neighbors, or that 80+% of
results will be relevant. For higher dimensional models such as the 768-dimensional mpnet, the
dataset will need to be more than a billion times larger before we expect a single irrelevant result.

5 EXPERIMENTS

Datasets To evaluate our method we require a dataset that has queries, passages and filters, although
we do not need queries for training. Popular search relevancy datasets such as MS Marco have queries
and passages but no filters. To this end, we utilize the Amazon shopping queries ESCI dataset Reddy
et al. (2022) mentioned in earlier sections. The ESCI dataset contains real e-commerce user queries,
Amazon products, and ground truth relevancy ratings. Each product comes with several attributes
such as product description, brand, color, etc. We sub-sample the dataset to only contain products
that exactly match some query.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We create three different evaluation datasets using the English (US) test split: two real datasets
based on colors and brands, and one synthetic dataset based on manufacturing countries. For the
former, we first find the top 40 and 100 frequent colors and brands respectively, and only keep
products that satisfy this criteria. For the latter, we create a synthetic attribute for each product item
by sampling a {country} from a random list of 50 countries and correspondingly concatenate “Made
in {country}” to the product description. This concatenation is crucial for the countries dataset since
the product description otherwise has no information about the {country}, and it would be impossible
to learn a filter direction. For the real datasets, no such concatenation is performed. All of our datasets
are always balanced, ensuring that the filters are uniformly distributed across both the training and
evaluation dataset. These constraints significantly change the retrieval task from Reddy et al. (2022),
and thus our numbers cannot be compared directly to the ESCI leader board.

For each relevant query-product pair (qi, di), we form a triple (qi, di, fi), where fi represents the
associated product color, brand, or manufacturing country of that product, di is the product description
and qi is the user query. During evaluation, we simulate a scenario where each query qi is accompanied
by a filter fi, and di is the intended result. Dataset statistics can be found in Table 1 where, qrels
refers to the total number of (q, d, f) triples and |F | refers to the total number of different filters for
that evaluation dataset. In Appendix C, we provide dataset examples, list of filters, and statistics
about textual overlap between product descriptions and filters.

Table 1: Details of the evaluation datasets
Dataset docs queries qrels |F |
Colors 40,072 1,581 2,379 40
Brands 61,600 1,411 3,974 100
Countries 12,500 11,247 12,500 50

Models and training For our experiments, we employ three different pre-trained search trans-
formers: minilm, mpnet, and sgpt, using the Sentence Transformers library Reimers & Gurevych
(2019); Muennighoff (2022). We work with pre-trained models to emulate the real world scenario
where search queries are often unavailable for fine-tuning. Indeed, our algorithm does not require
queries for learning the filter direction. The models have 22M, 110M, and 1.3B parameters, with
dimensionalities of 384, 768, and 2048 respectively. Their performance on the original Task 1 ESCI
challenge, as measured in terms of nDCG@10, is 0.54, 0.53, and 0.53, respectively. The first two
models produce unit norm vectors, and the latter, although not inherently outputting normalized
vectors, was fine-tuned with cosine similarity. This allows us to explicitly normalize its embeddings
without affecting the performance2.

All models are utilized with frozen weights, and the linear probe is trained using the English (US)
train split of the Amazon ESCI dataset for each model and dataset. Like for the evaluation dataset,
we curate three different train datasets and keep them balanced. The training dataset consisted of
150, 70, and 2000 instances for each filter for colors, brands, and countries respectively, resulting
in total training dataset sizes of 6K, 7K, and 100K, respectively. We utilized Adam with a learning
rate ranging from 1 × 10−1 to 1 × 10−2, employing lower learning rates for the sgpt model and
the countries dataset. The learned linear probes, on a held-out set, on average show an accuracy of
0.50, 0.99 and 0.82 the three datasets respectively. More details on training and performance of linear
probe, and the optimal values of λ can be found in Appendix B.

Results and baselines We compare our method against two related, motivated baselines satisfying
criteria key of our work: they must neither substantially affect query latency, nor may they alter the
k-NN index. The first baseline involves concatenating the query and the filter, denoted by q + f , and
sending the model embedding of the concatenated string v⃗q+f to k-NN search, effectively treating it as
our method, v⃗q+f +λν⃗f , with λ = 0. Performance is measured in our terms of nDCG@10, a standard
metric for evaluating the accuracy of search results. The results can be found in Table 2 left. On
average we find a boost of 15.3%, 22.0% and 25.8% for minilm, mpnet and sgpt respectively. The
performance on colors is the least impressive of all, presumably because many product descriptions
do not explicitly mention the color, and color names such as black, white, or blue are more ambiguous
than brand names like Nike or Sony. This ambiguity makes it more challenging to identify a unique

2While theoretical analysis formally assumes vectors are drawn from a spherical Gaussian, the concentration
of norms in high dimensional Gaussians makes the distinction between the cases minimal.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Our method vs baseline for different models and datasets in terms of nDCG@10 and Recall@10.

nDCG@10 Recall@10

Colors Brands Countries Colors Brands Countries

minilm baseline 0.2328 0.4194 0.4522 0.3710 0.5477 0.6362
minilm ours 0.2609 0.4713 0.5496 0.4031 0.6177 0.7172
mpnet baseline 0.2316 0.4088 0.5033 0.3667 0.5334 0.7054
mpnet ours 0.2797 0.4962 0.6230 0.4335 0.6392 0.7982
sgpt baseline 0.2294 0.4293 0.4644 0.3299 0.5582 0.6771
sgpt ours 0.2749 0.4831 0.6733 0.4080 0.6354 0.8351

direction corresponding to the filter within the context of the search corpus, as is also reflected in the
performance of the linear probe in Table 3 in Appendix B.

In the above experiment, we employ exact k-NN search to isolate and quantify the accuracy benefits
of our method. This approach avoids the potential variability introduced by approximate k-NN search
methods. Conversely, our second baseline is designed to measure the effectiveness of our method in
real-world systems, which typically employ approximate k-NN algorithms such as HNSW. We refer
to this baseline as post-filtering. This involves two steps: first, executing the query using approximate
k-NN search to retrieve an initial set of k′ results, and second, applying a post-filtering step to retain
only the top k documents that satisfy the filter criteria. Since we’re working with an expanded initial
result set, the appropriate comparison metric is Recall@k′. The results for k′ = 10 can be found
on Table 2 right. We choose a relatively small value of k′ because, on average, each query in the
dataset corresponds to approximately one relevant document and filter, and we are operating within a
relatively small corpus. We find an average boost of 11.4%, 17.1% and 20.3% for the three models.
Results for k′ = 100 and HNSW implementation details can be found in Appendix D.

Figure 4: Performance for the task of double filters, and its sensitivity to λ for single filters

Colors &
Countries

Brands &
Countries

minilm baseline 0.5068 0.6167
minilm ours 0.6283 0.8045
mpnet baseline 0.5189 0.6403
mpnet ours 0.6946 0.8421
sgpt baseline 0.4892 0.6212
sgpt ours 0.7480 0.8890

Other experiments and ablations We also assess the performance of our method when employing
two different filter sets together, such as colors and brands. We now send v⃗q+fc+fb + λ1ν⃗fc + λ2ν⃗fb
to k-NN search, where each λi is a separate hyperparameter and ν⃗fc , ν⃗fb are the probe vectors
corresponding to colors and brands respectively. For the corresponding baseline, v⃗q+fc+fb is sent
to k-NN search; our method performs significantly better as shown in Figure 4 left. We also study
the impact of varying λ on search performance as measured. Figure 4 right, shows the effect of
varying λ for each of the three models for the brands dataset. In Appendix D, we conduct additional
experiments and ablations. We explore different ways of combining v⃗q and ν⃗f in D.1, and find
that different linear combintations yield comparable performance. We determine the importance of
identifying filter directions using linear probes as opposed to just using the model embedding of the
filter in D.2. We also evaluate our method with a pre-trained model that outputs non-normalized
embeddings in D.4, and with a fine-tuned mpnet model in D.5.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora. High dimensional geometry, curse of dimensionality, dimension reduc-
tion. https://www.cs.princeton.edu/courses/archive/fall14/cos521/lecnotes/lec11.
pdf, 2014. Lecture notes for COS 521: Advanced Algorithm Design, Princeton University.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
dataset, 2018.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov, and Chris Olah. Curve
detectors. Distill, 2020. doi: 10.23915/distill.00024.003. https://distill.pub/2020/circuits/curve-
detectors.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Viégas, and Martin
Wattenberg. Visualizing and measuring the geometry of bert, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018.

Yue Ding, Karolis Martinkus, Damian Pascual, Simon Clematide, and Roger Wattenhofer. On
isotropy calibration of transformer models. In Shabnam Tafreshi, João Sedoc, Anna Rogers,
Aleksandr Drozd, Anna Rumshisky, and Arjun Akula (eds.), Proceedings of the Third Workshop
on Insights from Negative Results in NLP, pp. 1–9, Dublin, Ireland, May 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.insights-1.1. URL https://aclanthology.
org/2022.insights-1.1.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
sition. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/
toy_model/index.html.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the ge-
ometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 55–65, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1006. URL https://aclanthology.org/D19-1006.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Representation degeneration
problem in training natural language generation models. ArXiv, abs/1907.12009, 2019. URL
https://api.semanticscholar.org/CorpusID:59317065.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Begwani,
Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, Amit Singh, and
Harsha Vardhan Simhadri. Filtered-diskann: Graph algorithms for approximate nearest neighbor
search with filters. In Proceedings of the ACM Web Conference 2023, WWW ’23, pp. 3406–3416,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394161. doi:
10.1145/3543507.3583552. URL https://doi.org/10.1145/3543507.3583552.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:

11

https://www.cs.princeton.edu/courses/archive/fall14/cos521/lecnotes/lec11.pdf
https://www.cs.princeton.edu/courses/archive/fall14/cos521/lecnotes/lec11.pdf
https://aclanthology.org/2022.insights-1.1
https://aclanthology.org/2022.insights-1.1
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://aclanthology.org/D19-1006
https://api.semanticscholar.org/CorpusID:59317065
https://doi.org/10.1145/3543507.3583552

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419.

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan Hanbury. Efficiently
teaching an effective dense retriever with balanced topic aware sampling. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’21. ACM, July 2021. doi: 10.1145/3404835.3462891. URL http://dx.doi.org/10.
1145/3404835.3462891.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Euna Jung, Jungwon Park, Jaekeol Choi, Sungyoon Kim, and Wonjong Rhee. Isotropic representation
can improve dense retrieval, 2022.

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011. doi:
10.1109/TPAMI.2010.57.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yuxin Liang, Rui Cao, Jie Zheng, Jie Ren, and Ling Gao. Learning to remove: Towards isotropic
pre-trained bert embedding, 2021.

Yu A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell., 42
(4):824–836, apr 2020. ISSN 0162-8828. doi: 10.1109/TPAMI.2018.2889473. URL https:
//doi.org/10.1109/TPAMI.2018.2889473.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013.

Ishan Misra, Abhinav Kumar Gupta, and Martial Hebert. From red wine to red tomato: Composition
with context. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1160–1169, 2017. URL https://api.semanticscholar.org/CorpusID:19886856.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probabilistic
Techniques in Algorithms and Data Analysis, pp. 61–63. Cambridge university press, 2017.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search, 2022.

Tushar Nagarajan and Kristen Grauman. Attributes as operators. ArXiv, abs/1803.09851, 2018. URL
https://api.semanticscholar.org/CorpusID:52000169.

Andrei Neculai, Yanbei Chen, and Zeynep Akata. Probabilistic compositional embeddings for
multimodal image retrieval. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 4546–4556, 2022. URL https://api.semanticscholar.org/
CorpusID:248118624.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2020.

Sara Rajaee and Mohammad Taher Pilehvar. A cluster-based approach for improving isotropy in
contextual embedding space. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers). Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.acl-short.73. URL http://dx.doi.org/10.18653/v1/2021.acl-short.73.

Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL http://arxiv.org/abs/1908.10084.

12

https://aclanthology.org/N19-1419
http://dx.doi.org/10.1145/3404835.3462891
http://dx.doi.org/10.1145/3404835.3462891
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://api.semanticscholar.org/CorpusID:19886856
https://api.semanticscholar.org/CorpusID:52000169
https://api.semanticscholar.org/CorpusID:248118624
https://api.semanticscholar.org/CorpusID:248118624
http://dx.doi.org/10.18653/v1/2021.acl-short.73
http://arxiv.org/abs/1908.10084

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 3(4):333–389, apr 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
URL https://doi.org/10.1561/1500000019.

William Timkey and Marten van Schijndel. All bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 4527–4546, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.372. URL https://aclanthology.org/2021.emnlp-main.372.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47, chapter 3. Cambridge university press, 2018.

Nam S. Vo, Lu Jiang, Chen Sun, Kevin P. Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing
text and image for image retrieval - an empirical odyssey. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6432–6441, 2018. URL https://api.
semanticscholar.org/CorpusID:56173957.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. Pretrained transformers for text ranking: Bert
and beyond. In Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, WSDM ’21. ACM, March 2021. doi: 10.1145/3437963.3441667. URL http:
//dx.doi.org/10.1145/3437963.3441667.

A PROOF OF LEMMA 2
Below we include the proof of Lemma 2, left out of the main paper due to space considerations.

Lemma 2. Let X1 and X2 be independent random variables sampled as X1 ∼ c1χ
2(k) and

X2 ∼ c2χ
2(k), respectively. If c1 > 2c2, then Pr[X2 ≥ X1] ≤

√
8/9

k
≈ 0.943k.

Proof of Lemma 2. The moment generating functions (MGFs) M1,M2 of the distributions from
which X1 and X2 are respectively sampled can be shown to satisfy

M1(t) = (1− 2c1t)
−k/2

M2(t) = (1− 2c2t)
−k/2

and are both valid where t < .5/max(c1, c2) = .5/c1. Therefore, the MGF M of X = X1 −X2

takes the form

M(t) = M1(t)M2(−t)

= ((1− 2c1t)(1 + 2c2t))
−k/2

valid where |t| < 1/(2c1) and in particular for t = −1/(4c1). By a generic Chernoff bound for
moment generating functions (see e.g. Mitzenmacher & Upfal (2017)),

Pr[X2 ≥ X1] = Pr[X1 −X2 ≤ 0]

≤ inf
t∈(−.5/c1,0)

M(t)

≤M(−1/(4c1))
= ((3/2) · (1− c1/(2c2)))

−k/2

≤ ((3/2) · (3/4))−k/2

≤ (8/9)k/2

13

https://doi.org/10.1561/1500000019
https://aclanthology.org/2021.emnlp-main.372
https://api.semanticscholar.org/CorpusID:56173957
https://api.semanticscholar.org/CorpusID:56173957
http://dx.doi.org/10.1145/3437963.3441667
http://dx.doi.org/10.1145/3437963.3441667

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Accuracy of the linear probe for the three datasets for the model minilm. The full training
data consists of 150, 70, and 2000 samples for each filter type for colors, brands, and countries
respectively. The accuracy when trained on the full data is 0.42, 0.99 and 0.74 respectively. The
y-axis shows the accuracy as a fraction of peak accuracy and x-axis shows the fraction of training
data used. Results averaged over 5 training runs.

B TRAINING DETAILS

In this appendix, we provide additional training details and experiments. For approximate k-
NN search, HNSW, we use the FAISS implementation with standard parameters, efsearch and
efconstruct parameters of 100 and 128 respectively. The former balances search accuracy against
speed, while the latter affects index quality and build time, both through the regulation of candidate
list sizes; that is, larger values yield greater accuracy but at the cost of increased latency.

As mentioned above, the training dataset consisted of 150, 70, and 2000 instances for each filter type
for colors, brands, and countries respectively, resulting in total training dataset sizes of 6K, 7K, and
100K, respectively. We found that gradient descent converges rapidly, typically within a few thousand
iterations, requiring less than a quarter hour of wall clock time on a single Tesla V100 GPU for each
run. The hyperparameter λ for each run is optimized by evaluation on a held-out set from the train
split. We document the accuracy of the linear probe on the held-out set for each dataset and model in
Table 3.

Dataset minilm mpnet sgpt

Colors 0.42 0.52 0.51
Brands 0.99 0.99 0.99
Countries 0.74 0.79 0.92

Table 3: Accuracy of the linear probe on a held-
out set.

Dataset minilm mpnet sgpt

Colors 0.59 0.91 0.99
Brands 0.38 0.41 0.46
Countries 0.86 0.78 1.5

Table 4: Optimal value of λ for each model and
dataset.

The optimal value of λ for each model and dataset is obtained by evaluating on a held out set and can
be found in Table 4. We also measure the performance for the linear probe as we change the number
of training samples per filter in Figure 5 for the model minilm for all three datasets.

C DATASET STATISTICS

In this appendix, we present explicit examples from the Amazon ESCI dataset for the reader’s
convenience and explore the textual overlap between the filters and the documents. For training the
linear probe and evaluating the nDCG and Recall metrics, we consistently utilize a balanced dataset,
ensuring that the filters are uniformly distributed across both the training and evaluation datasets.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5 shows some representative samples from the evaluation datasets, and the set of filters for each
filter category is given below.

Filter Query Document

Blue 18x34 pool cover Swimline S1834OV 18 Foot x 34 Foot
Deluxe Above Ground Swimming Pool. . .

Brushed Nickel 1 l brackets without screws
YUMORE L Bracket, 5" x 3" Max Load:

35lb/15KG Heavy Duty Stainless Steel Solid
Shelf Support Corner Brace Joint Right Angle. . .

Sony 32 inch smart tv 4k
Sony 32-inch 720p Smart LED TV

(KDL32W600D, 2016 Model) X-Reality PRO
for a Cleaner, More Refined Picture . . .

Levi’s brown belt without buckle
Levi’s Men’s Cut to Fit 3 Pack Web Belt

with Buckle, Black/Olive/Khaki, One Size
STURDY STRAP: This belt strap is made . . .

Greece
100w solar panel
without controller

Made in Greece. Renogy 100W Eclipse
Lightweight Suitcase Without Controller,

Panel Only, Black High-efficiency Solar cells . . .

Turkey
1.50 mens xl reading glasses

without nose piece

Made in Turkey OLOMEE Reading
Glasses 3.0 Oversize Large Square Men
Readers 4 Pack,Comfort Lightweight . . .

Table 5: Examples of filters and documents from the Amazon ESCI dataset for colors, brands and
countries.

Colors: black, white, multicolored, blue, gray, red, silver, green, clear, pink, brown, yellow, gold,
purple, orange, beige, stainless steel, navy, rose gold, natural, transparent, dark gray, charcoal, matte
black, chrome, tan, navy blue, ivory, bronze, light blue, khaki, burgundy, oil-rubbed bronze, royal
blue, light gray, espresso, warm white, dark brown, teal, brushed nickel.

Brands: Nike, adidas, Under Armour, Amazon, Amazon Basics, SAMSUNG, Apple, Hanes,
Sony, LEGO, Amazon Essentials, Disney, Carhartt, Simple Joys by Carter’s, Zinus, Rubie’s, HP,
Champion, LG, Nintendo, OtterBox, BLACK+DECKER, DEWALT, Crocs, Microsoft, Bose, Hunter
Fan Company, Columbia, SweatyRocks, SheIn, Cuisinart, Fender, ASUS, Birkenstock, Panasonic,
Gucci, NERF, Michael Kors, Dickies, Levi’s, Crayola, DREAM PAIRS, Samsonite, New Balance,
Spigen, Romwe, Best Choice Products, Forum Novelties, Hallmark, Fruit of the Loom, Fisher-Price,
Safavieh, YETI, Leg Avenue, Oakley, Intex, Nautica, Graco, L’Oreal Paris, Logitech, The North
Face, Canon, Anker, Lacoste, Swiffer, KitchenAid, Command, Calvin Klein, SOJOS, STAR WARS,
Elite Fan Shop, Avidlove, UGG, Makita, Delta Children, Gildan, mDesign, PAVOI, Tommy Hilfiger,
Dell, Ekouaer, VTech, Big Joe, Lee, SPANX, Keurig, Hydro Flask, modelones, Wrangler Authentics,
ASICS, Vans, TAG Heuer, Pyle, Acer, Honeywell, amscan, CUPSHE, Allegra K, Polo Ralph Lauren,
Fujifilm.

Countries: Nigeria, Sweden, New Zealand, Malaysia, Saudi Arabia, Bolivia, Pakistan, Trinidad
and Tobago, Taiwan, Iran, Brazil, Philippines, Ghana, Bangladesh, Chile, Vietnam, Japan, Belgium,
Thailand, United Kingdom, Greece, Ireland, Italy, Afghanistan, South Africa, Bhutan, Switzerland,
Mexico, Netherlands, Egypt, Norway, Turkey, Australia, Poland, Argentina, Qatar, Singapore, Russia,
Indonesia, China, South Korea, Spain, Canada, France, India, United Arab Emirates, Germany,
Austria, United States, Kuwait.

C.1 TEXTUAL OVERLAP

We also conduct a study on the overlap between the documents and the filters. Although some product
descriptions could implicitly imply the brand—for example, Air Jordan would suggest Nike and
iPhone would suggest Apple—most products do not exhibit such a strong brand affinity. Given the
linear probe’s ability to identify relevant filter directions based on document embeddings, it must be
the case that most product descriptions explicitly mention the filter name. We find that for colors and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

brands, the product description contains the filter name 77% and 97% of the time, respectively. For
the synthetic countries data, the overlap is 100%, by construction.

It is worthwhile to mention here that, to the best of our knowledge, even constraining vector search
with k-NN to only retrieve documents that explicitly contain a string or a keyword remains an open
problem.

D ADDITIONAL EXPERIMENTS AND ABLATIONS

In this appendix we provide additional experiments and ablations to show the efficacy and robustness
of our method.

D.1 IMPACT OF DIFFERENT LINEAR COMBINATIONS

There are several different linear combinations that could be potentially used for implementing the
filter criteria. We report some results in Table 6 for the model minilm. As mentioned in the main
draft, we find that different linear combinations yield comparable performance.

Colors Brands Countries

(1− λ)v⃗q + λν⃗f 0.2592 0.4714 0.5512
(1− λ)v⃗q+f + λν⃗f 0.2551 0.4663 0.6582
v⃗q+f+λν⃗f

|v⃗q+f+λν⃗f | 0.2609 0.4713 0.5496

Table 6: Performance of different linear combination protocols for the model minilm in terms of
nDCG@10. The last row corrsponds to the protocol used in the main draft.

D.2 ABLATION STUDY WITH MODEL EMBEDDING

We also conduct experiments where we use the model embedding of the filter instead of finding them
using linear probes. That is, we use the transformer output embedding of the word “Nike” instead of
learning a filter direction. Table 7 shows the results for minilm. We find that using linear probes is on
average better. In fact, for colors and countries, the method performs only as good as the baseline.

Colors Brands Countries

Model embedding 0.2329 0.4443 0.4495
Linear probes 0.2609 0.4713 0.5496

Table 7: Comparison of our method when using linear probes for finding filter directions vs using
vector embedding of the filer for the model minilm in terms of nDCG@10

D.3 FILTER FIDELITY WITH ALPHANUMERIC FILTERS

Our method leverages emergent semantically meaningful directions within transformer embeddings.
Consequently, its performance diminishes when filters are random alphanumeric strings. To evaluate
this, we generated a synthetic dataset of prices by appending “${price}” to documents, where {price}
comes from a discrete set of 50 different possible integer values. Contrary to previous instances,
where the linear probe could readily identify filter directions associated with various filters, we
observed that for prices, the probe’s accuracy did not exceed random chance. Figure 6 illustrates the
dot product of documents with different filter directions, both when they are same and when they
differ, highlighting performance comparable to random chance. For comparison, see Figure 2, which
depicts the scenario when filters have semantic significance.

D.4 RESULTS FOR NON-NORMALIZED MODEL tasb

In the main draft, we analyze the performance of models that output embeddings of unit norm. This
approach is motivated by two main reasons: 1) the most powerful and popular search transformers
within the community employ unit norm embeddings, and 2) it ensures better alignment with our
theoretical analysis. In this subsection, we measure the performance of a popular transformer model,
tasb, that outputs non-normalized embeddings Hofstätter et al. (2021). In this scenario, we do not

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: For the numeric filter dataset prices, the direction corresponding to a specific filter exhibits
similar dot products with all documents, irrespective of the document’s filter.

impose unit norm constraints on the filter directions. As illustrated in Table 8, the performance
improvement is limited compared to unit-norm models. We do not have a clear understanding of why
this is the case and leave this for further investigation.

Colors Brands Countries

nDCG@10 baseline 0.2997 0.4575 0.5924
nDCG@10 ours 0.3297 0.4890 0.6686
Recall@10 baseline 0.4455 0.5879 0.7821
Recall@10 ours 0.4849 0.6282 0.8286

Table 8: Our method vs baseline for a non-normalized model tasb.

D.5 RESULTS FOR THE FINE-TUNED mpnet MODEL

We work with pre-trained models in the draft since we want to emulate the real world scenario,
where ground truth queries are often unavailable. In this appendix, we show that our method yields
impressive performance with fine-tuned models as well. We fined-tuned mpnet on the Task 1 train
set of Amazon ESCI dataset and ran our experiments for all three filter sets and found the following
results for nDCG@10. In Table 9, we present them along with the pre-trained results from the main
draft for convenience.

Colors Brands Countries

mpnet pretrained baseline 0.232 0.409 0.503
mpnet pretrained ours 0.280 0.496 0.623
mpnet finetuned baseline 0.320 0.429 0.449
mpnet finetuned ours 0.362 0.523 0.615

Table 9: Our method vs baseline in terms of nDCG@10 using the fine-tuned mpnet model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

On average, our method with the fine-tuned MPNet model performs 23.5% better than the baseline
with the fine-tuned mpnet model (line 3 vs. 4). This is comparable to the 22% improvement reported
in the main draft for the pre-trained model (line 1 vs. 2).

D.6 RESULTS ON RECALL@100
We additionally assess the Recall@100 performance for our experiments in Table 10. It is important
to note that our evaluation datasets are relatively small, encompassing at most 62K documents, and
each query, on average, corresponds to one relevant ground truth result. Consequently, Recall@k for
k = 10, as reported in the main draft, serves as a more suitable benchmark given the context of our
study.

Colors Brands Countries

minilm baseline 0.7203 0.8880 0.8710
minilm ours 0.7351 0.9772 0.9240
mpnet baseline 0.7546 0.8695 0.9176
mpnet ours 0.7860 0.9809 0.9550
sgpt baseline 0.7108 0.8930 0.9075
sgpt ours 0.7550 0.9781 0.9621

Table 10: Our method vs baseline in terms of Recall@100 using approximate k-NN (HNSW).

E EMPIRICAL EVIDENCE FOR ISOTROPY

In this section, we provide more evidence about the assumptions used in our theoretical analysis.
We also study our results on Gaussianity of vectors in context with the results on anisotropy of
transformer embeddings found in the literature.

E.1 GAUSSIANITY OF HIGH DIMENSIONAL VECTORS

Like in Figure 3, in the main draft we plot the distribution of irrelevant and relevant vectors, and Q−Q
plots for two different models, mpnet and minilm, for some randomly selected vector component j
in Figure 8 and Figure 9. The models have dimensionalities of 768 and 384 respectively.

E.2 COMPARISON WITH PRIOR WORK ON ANISOTROPY

It is widely recognized that contextualized word vectors exhibit high cosine similarity across different
contexts. For example, the cosine similarity for the word ground, whether in the context of ground
truth or Earth, is notably high Ethayarajh (2019). Furthermore, many transformer models feature
rogue dimensions—specific dimensions that dominate over others in the computation of cosine simi-
larities Timkey & van Schijndel (2021). Such phenomena, characterized by high cosine similarity and
the presence of rogue dimensions, have been interpreted as indications of degenerate representations
and a lack of expressivity. As a result, numerous studies have attempted to mitigate this anisotropy to
enhance model performance Jung et al. (2022); Rajaee & Pilehvar (2021); Gao et al. (2019); Liang
et al. (2021). However, the outcomes have been relatively inconsistent, with no isotropization strategy
proving to consistently benefit performance Ding et al. (2022).

We delve into these claims from the perspective of our downstream task: search. We posit that the
utility of a model’s isotropy should be assessed based on its impact on the downstream task. For
search applications, anisotropy likely undermines model performance, as the geometry of the vector
embeddings directly influences the output. Given that anisotropic embeddings limit the model’s
capacity to explore the full available space, it is plausible that this restriction could detrimentally
affect performance. In essence, geometry has a tangible effect on search performance.

This argument, however, may not extend to models designed for text generation or masked language
modeling, where the relationship between geometry and performance is more indirect. Without a
thorough mechanistic understanding of how large neural networks function, making definitive claims
about these models remains challenging. Either-way we focus on search transformers and find two
major themes. First, vector embeddings for search transformers are quite isotropic, and that there
do not exist rogue dimensions in the geometry of search transformers that disproportionately affect
performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Cumulative variance of search transformers suggests that rogue dimensions disappear when
viewed from the lens of the appropriate downstream task.

For the first claim, we have presented evidence throughout the main draft and this appendix. In
Figures 3, 8 and 9 we found that vectors can be modelled as Gaussian distributions and are more
isotropic than what is usually claimed to be. In Figure 2, we showed that random vectors selected
from a corpus are not clumped near each other but are instead approximately orthogonal to each other
in high dimensions.

For the second claim, we assess the influence of rogue dimensions by calculating the variance within
that dimension across a set of vectors, as suggested by Timkey & van Schijndel (2021). Given a
dataset of queries q and passages p we can define the random variable cos for every dimension as,

cos(qi, pi)j ≡
qji p

j
i

|qi||pi|
. (1)

Here i labels the query and the passage, and j refers to the coordinate and runs from 1 to d. We
can measure the variance of these random variables for all d over the entire dataset. These yield d
numbers, which can be used to compute the cumulative variance, i.e.,

Fi =

∑j=i
j=0 Variance(cosj)∑j=d
j=0 Variance(cosj)

(2)

In Figure 7, we plot the cumulative variance for mpnet and minilm and observe that search transform-
ers do not exhibit rogue dimensions, in contrast to their bert counterparts, as previously reported in
the literature Timkey & van Schijndel (2021). The presence of rogue dimensions would imply that
the plots increase sharply as we approach d on the x-axis, indicating that a few dimensions account
for most of the variance. Note that perfectly isotropic embeddings would correspond to a straight line
in Figure 7.

For the search transformer model tasb, we do observe the presence of rogue dimensions, as indicated
by the red line in Figure 7. However, it’s important to recognize that tasb has been fine-tuned with
respect to Euclidean distance rather than cosine similarity. Therefore, the random variable cosj is not
the appropriate metric for this context. Instead we need to define a corresponding variable,

dot(qi, pi)j ≡
(
qji − pji

)2

. (3)

The cumulative variance for this random variable exhibits a very smooth progression, as illustrated by
the blue curve in Figure 7. We discover that rogue dimensions completely disappear when analyzed
through the lens of the appropriate downstream task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Histograms and Q − Q plots (against normal distribution) for mpnet for some vector
randomly selected component.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 9: Histograms and Q − Q plots (against normal distribution) for minilm for some vector
randomly selected component.

21

	Introduction
	Background and Related work
	Method
	Theory
	Experiments
	Proof of Lemma 2
	Training details
	Dataset statistics
	Textual overlap

	Additional experiments and ablations
	Impact of different linear combinations
	Ablation study with model embedding
	Filter fidelity with alphanumeric filters
	Results for non-normalized model tasb
	Results for the fine-tuned mpnet model
	Results on Recall@100

	Empirical evidence for Isotropy
	Gaussianity of high dimensional vectors
	Comparison with prior work on anisotropy

