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ABSTRACT

The imitation of voice, targeted on specific speech attributes such as timbre and
speaking style, is crucial in speech generation. However, existing methods rely
heavily on annotated data, and struggle with effectively disentangling timbre and
style, leading to challenges in achieving controllable generation, especially in
zero-shot scenarios. To address these issues, we propose Vevo, a versatile zero-
shot voice imitation framework with controllable timbre and style. Vevo operates
in two core stages: (1) Content-Style Modeling: Given either text or speech’s
content tokens as input, we utilize an autoregressive transformer to generate the
content-style tokens, which is prompted by a style reference; (2) Acoustic Mod-
eling: Given the content-style tokens as input, we employ a flow-matching trans-
former to produce acoustic representations, which is prompted by a timbre ref-
erence. To obtain the content and content-style tokens of speech, we design a
fully self-supervised approach that progressively decouples the timbre, style, and
linguistic content of speech. Specifically, we adopt VQ-VAE [1] as the tokenizer
for the continuous hidden features of HuBERT [2]. We treat the vocabulary size
of the VQ-VAE codebook as the information bottleneck, and adjust it carefully
to obtain the disentangled speech representations. Solely self-supervised trained
on 60K hours of audiobook speech data, without any fine-tuning on style-specific
corpora, Vevo matches or surpasses existing methods in accent and emotion con-
version tasks. Additionally, Vevo’s effectiveness in zero-shot voice conversion and
text-to-speech tasks further demonstrates its strong generalization and versatility.

1 INTRODUCTION

The imitation of voice has long been an important issue in the field of speech generation. This
includes the imitation of speaker identity [3, 4], the imitation of speaking style such as accent [5, 6]
or emotion [7], and a broader concept of voice cloning such as in zero-shot text-to-speech (TTS)
task [8]. These techniques have a wide range of applications, including spoken language learning [5,
6, 9], voice anonymization [10], voice assistants [11, 12], and video dubbing [11, 12, 13].

To achieve targeted and controllable imitation over various speech attributes, many studies focuses
on factorizing speech into multiple sub-spaces [14, 15, 16, 17]. In this work, we follow this idea and
decompose speech into three key attributes: linguistic content (what to speak), style (how to speak),
and timbre (who speaks). Based on this, we define three zero-shot speech generation tasks (Table 1):
(1) Timbre Imitation: Given a speech as source, imitate only the timbre of the reference speech
while preserving the linguistic content and speaking style. It can be adopted in voice conversion that
only spectral aspects of speech are converted [3]. (2) Style Imitation: Given a speech as source,
imitate only the speaking style of the reference speech while preserving the content and the timbre.
It can be adopted in accent conversion [5] and emotion conversion [7]. (3) Voice Imitation: Given
either a speech (i.e., conversion task) or text (i.e., synthesis task) as source, imitate both the timbre
and style of the reference speech while preserving the content. It can be adopted in voice conversion
that both spectral and prosodic aspects of speech are converted [3, 4] and zero-shot TTS [8].

∗Work accomplished during the internship at Meta.
†Corresponding author.
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Table 1: Definitions of zero-shot timbre, style, and voice imitation tasks.

Task Source (i) Reference (r) Attribute(s) to Imitate Target Related Areas
Timbre Imitation

W(ci, si, ti) W(cr, sr, tr)

Timbre W(ci, si, tr) Voice Conversion

Style Imitation Style W(ci, sr, ti)
Accent Conversion,
Emotion Conversion

Voice Imitation Timbre and Style W(ci, sr, tr)
Voice Conversion

T (ci) Text to Speech
* W and T denote speech and text. ci, si, and ti represent the linguistic content, style, and timbre of the source i. Similarly, cr , sr ,

and tr represent the linguistic content, style, and timbre of the reference r.

To address these imitation tasks, existing work has explored approaches including learning
the conversion between parallel corpus [9, 18, 19, 20, 21], disentangled representation learn-
ing [2, 14, 17, 22, 23, 24], and large-scale in-context learning [11, 25, 26, 27, 28]. However, these ap-
proaches still suffer from the following limitations. Firstly, for the style imitation, existing methods
rely heavily on supervision with annotated data, which is hard to collect and scale up. This reliance
includes the use of parallel corpus [9, 20, 21], style labels (such as categories of accent [20, 21, 29]
or emotion [30, 31]), and textual transcriptions [29, 30, 31, 32]. Moreover, achieving zero-shot style
imitation—where a system can imitate an accent, emotion, or other speaking styles from just a few
seconds of speech—remains a significant challenge. Secondly, the decoupling of timbre and style
in existing methods is still insufficient, making it challenging to control them independently, unless
mitigated by some timbre (or style) perturbations or additional fine-tuning stages [11, 13, 33].

Motivated by the above, this paper proposes Vevo, a versatile zero-shot voice imitation framework
with controllable timbre and style (Figure 1). It can serve as a unified framework for a wide range of
zero-shot speech generation tasks. Vevo consists of two core stages: (1) Content-Style Modeling
(Content to Content-Style): Given a speech prompt as style reference, we generate content-style
tokens from the input content tokens (or the input text). We employ the decoder-only autoregressive
transformer [34, 35], leveraging its powerful capability of continued generation to model style. (2)
Acoustic Modeling (Content-Style to Acoustic): Given a speech prompt as timbre reference, we
generate acoustic representations (such as Mel spectrograms) from the input of content-style tokens.
We use a flow-matching transformer [36, 37], which has been verified to excel in in-context learning
and reconstructing high-quality audio [12, 24, 27, 38], to achieve timbre-controllable generation.

To obtain the content and content-style tokens of speech, we design a self-supervised method to
decouple the timbre, style, and linguistic content gradually, which is similar to a progressive in-
formation filtering: (1) We firstly investigate the commonly used self-supervised speech pre-trained
model, HuBERT [2]. We find that its continuous hidden features contain rich information about tim-
bre, style, and linguistic content (Section 4.1), making it a suitable initial stage for information filter-
ing. (2) Inspired by existing works for disentangling speaker-agnostic representations [1, 17, 39, 40],
we employ VQ-VAE [1] as a tokenizer for HuBERT to filter out timbre, resulting in content-style
tokens. (3) Furthermore, we propose that the vocabulary size of the VQ-VAE codebook can function
as the “width” of the information bottleneck [22]. By reducing the vocabulary size, we can narrow
the bottleneck and filter out not only timbre but also significant style information, thereby obtaining
content tokens. Besides, we propose to reduce the consecutive duplicate units [41] of the content
tokens, called duration reduction, to further remove some style patterns such as unit-level duration.

The contributions of this paper are summarized as follows:

• We introduce a fully self-supervised approach that progressively decouple timbre, style, and
linguistic content of speech. The resulting content-style tokens and content tokens enhance con-
trollability in downstream speech generation tasks, particularly for timbre and style.

• We propose Vevo, a unified framework that enables versatile, controllable zero-shot voice imita-
tion tasks. It significantly reduces the reliance on annotated corpora, facilitating self-supervised
training and in-context learning that can easily be scaled up.

• Pre-trained on 60K hours of audiobook speech data without any fine-tuning on style-specific cor-
pora, Vevo matches or even surpasses existing methods in accent and emotion conversion tasks –
notably, through zero-shot imitation. Additionally, Vevo’s effectiveness in voice conversion and
text-to-speech tasks further demonstrates its strong generalization and versatility.

2



Published as a conference paper at ICLR 2025

Figure 1: Vevo inference pipeline. Notably, it can take either speech or text as input, and perform
zero-shot imitation with controllable linguistic content (controlled by the source), style (controlled
by the style reference), and timbre (controlled by the timbre reference) in a single forward pass.

2 RELATED WORK

Controllable Voice Imitation We focus primarily on how existing works approach the imitation
of two key speech attributes: timbre and style. (1) Imitation of Timbre: As a crucial aspect of
speaker identity, timbre imitation has been extensively explored within the voice conversion (VC)
field. Most studies aim to utilize the speaker-agnostic representations such as PPG features [20, 42]
or some self-supervised representations [43, 44], and use models including GAN [45, 46], auto-
encoder [14, 22], and diffusion models [47, 48] to achieve timbre imitation. (2) Imitation of Style:
In terms of style imitation, accent and emotion are two widely studied attributes. For conversion
tasks (with speech as input), classic approaches often involve learning the conversion between par-
allel corpus [9, 19, 20, 21]. Additionally, many studies aim to obtain the style-agnostic features, such
as pushing them to be close to textual transcriptions [30, 31, 32, 49]. Besides, leveraging automatic
speech recognition (ASR) models can transform conversion tasks into synthesis tasks, allowing the
injection of style label’s embeddings into TTS models to achieve style imitation [29, 50]. In con-
clusion, these existing approaches often rely on annotated data and struggle to achieve zero-shot
style imitation. (3) Imitation of both Timbre and Style: In VC, some works suggest adopting
a sequence-to-sequence formulation [51, 52] or introducing an additional modeling for prosody
features [48, 53] to achieve both timbre and style imitation. However, these models still have signif-
icant room for improvement in both quality and style imitation. Recent advances in zero-shot TTS
have greatly improved voice imitation and cloning. They leverage large-scale in-context learning to
mimic all speech attributes of a reference prompt, including timbre and style, with high quality and
speaker similarity [11, 13, 16, 17, 26, 33]. Nonetheless, it is challenging to obtain the speech repre-
sentations disentangled timbre and style effectively [23, 33], leading to inadequate targeted control
of these attributes. For instance, using the existing representations directly for VC tasks will lead to
timbre leakage, unless mitigated by timbre perturbation or an additional fine-tuning stage [11, 13].

Disentangled Speech Representation There are many studies aim to decouple linguistic content,
timbre, and style. Existing work on obtaining disentangled speech representations can generally
be categorized into several approaches: (1) Knowledge distillation using auxiliary tasks such as
ASR, F0 prediction, and speaker verification [15, 17, 23], (2) Model architecture design based on
information bottlenecks, including careful adjustments to hidden layer dimensions [14, 22] or vector
quantization methods like K-means [2, 54, 55] or VQ-VAE [1, 15, 17, 39, 40], and (3) Perturbation
of acoustic signals [56, 57, 58]. Besides, existing works also leverage additional learning strategies
including adversarial learning [17, 23], comparative learning [23, 59], and mutual information min-
imization [40, 60, 61] to enhance disentanglement effectiveness. However, existing work still has
two main weaknesses. On one hand, as mentioned earlier, finding suitable representations for down-
stream generation tasks that can effectively decouple timbre and style remains quite challenging. On
the other hand, how to design voice imitation models that can control specific attributes based on
these disentangled speech representations has been scarcely explored.

3 METHODOLOGY

3.1 VQ-VAE TOKENIZER FOR HUBERT

Motivation To disentangle representations of different speech attributes, we adopt a VQ-VAE
tokenizer [1] due to its demonstrated potential in disentangling high-level information within speech
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such as speaker-invariant features [1, 17, 39]. In speech domain, it is common practice to apply
VQ-VAE either directly on the raw waveform [1, 17, 39] or on the self-supervised learning (SSL)
based speech representations [12, 15, 62]. In this work, we choose to apply VQ-VAE based on SSL
representations – specifically, HuBERT [2]. The reasons are two fold: (1) HuBERT’s continuous
hidden features already contain rich information about timbre, style, and linguistic content, making
them well-suited for reconstructing acoustic representations such as Mel spectrograms (Section 4.1);
(2) Self-supervised learning on speech could be also treated as a high-level knowledge distillation.
VQ-VAE enables us to further information filtering and disentangling for the SSL features.

Architecture The VQ-VAE consists of three components: Encoder, Vector Quantization (VQ),
and Decoder. Formally, given the codebook E = [e1, e2, . . . , eK ] whose vocabulary size is K,
taking HuBERT hidden features x as input, we get the reconstructed x̂ after the three modules:

ze(x) = Encoder(x),
zq(x) = ek, where k = argmin

j
∥ze(x)− ej∥2,

x̂ = Decoder(zq(x)),

(1)

where zq(x) is the quantized representation (i.e., token) of ze(x) after VQ. The loss function con-
sists of the reconstruction loss (whose weight is λ) and quantization loss (whose weight is β):

L = λ∥x− x̂∥22 + β∥ze(x)− zq(x)∥22. (2)

Note that there is no real gradient defined for zq(x). We could utilize the straight-through gradient
estimator or exponential moving average (EMA) as the optimization algorithm [1]. In this paper, we
follow the design in [62, 63] and use the EMA algorithm. We describe the specific module design
of VQ-VAE in Appendix B.1. Notably, the VQ-VAE model does not contain any downsampling or
upsampling operations, thus preserving the sequence length of the input x. In other words, for the
50 Hz frame-level HuBERT features [2], we can also get 50 Hz frame-level tokens after VQ.

Analysis of the Vocabulary Size of Codebook The quantization of HuBERT hidden features by
VQ-VAE can be viewed as a form of lossy compression. Inspired by AutoVC [22], we propose
that the vocabulary size of the VQ codebook acts as an information bottleneck. If the input x
possesses sufficient speech information, reducing the vocabulary size K from infinity to zero: (1)
When K → ∞, we consider the bottleneck to be extremely wide, capable of accommodating all
information without any loss. (2) As K decreases, more low-level acoustic information begins to
be lost, such as spectral features related to timbre or prosodic features related to style. At a certain
reduced K, only the highest-level, most abstract information like linguistic content is preserved
within x. (3) When K → 0, the bottleneck becomes exceedingly narrow, filtering out even high-
level information like linguistic content. We validate the above hypothesis through experiments on
the zero-shot timbre imitation task (Section 4.1). Interestingly, as we progressively reduce K, we
observe that timbre information is the first to be filtered out (assuming when K = Ks), from which
we derive the content-style tokens. Subsequently, most style information is filtered, and ultimately,
almost only the highest-level linguistic content information is retained (assuming when K = Kc),
from which we derive the content tokens. We refer to the VQ-VAE model whose K = Ks as the
content-style tokenizer Qs, and the model whose K = Kc as the content tokenizer Qc.

3.2 CONTENT-STYLE MODELING (CONTENT TO CONTENT-STYLE)

During the content-style modeling stage, our goal is to transform the content token of speech (or
text) into content-style tokens, which is prompted by a style reference. This can be formulated as
a sequence-to-sequence generation task. For this stage, we employ a decoder-only autoregressive
(AR) transformer, known for its powerful capability in such tasks [11, 34, 35]. In this section, we
will focus only on cases where speech’s content tokens are used as input (Figure 2). The scenarios
where text serves as input will be discussed in Appendix B.3.

Duration Reduction Given a speech input u, we denote the content and content-style tokens
as Qc(u) and Qs(u). Both of them are 50 Hz frame-level representations of equal length. In
the content-style modeling stage, Qs(u) is used as the output. However, instead of using Qc(u),
we apply a Duration Reduction strategy to it, yielding the reduced Q

′

c(u) as the input. Specif-
ically, we merge the consecutive duplicate units of Qc(u) into one. For instance, if Qc(u) =

[e1, e1, e1, e2, e3, e3], it will be condensed to Q
′

c(u) = [e1, e2, e3]. This strategy offers significant
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(a) Training (b) Inference: reference-style-enhanced continuation

Figure 2: Content-style modeling based on autoregressive transformer. During inference, we employ
both global style encoder and content-style tokenizer to enhance the effect of the style reference.

benefits: (1) It further filters out style-specific information within Qc(u) such as the unit-level du-
ration. Some studies also point out that such a reduction could aid in reducing accents and other
style elements [41]; (2) It resolves the model’s challenge with learning changes in sequence length
before and after style modeling when Qc(u) and Qs(u) are always equal in length; (3) It shortens
the overall sequence length, which is beneficial to model context for transformer.

Global Style Encoder We design a global style encoder to capture the global style guidance from
the speech input u, producing a style embedding (denoted as g(u)). Its advantage comes from the
flexibility during inference: if we aim to optimize inference speed and reduce memory usage, we can
rely solely on this style embedding for style guidance, named as reference-global-guided continua-
tion (Figure 5). However, to maximize the performance of style imitation, in addition to using g(u),
we can also append the style reference’s content-style tokens into the input sequence to enhance
its effect, named as reference-style-enhanced continuation (Figure 2b). The global style encoder
consists of WavLM-based representation layers and TDNN-based feature extraction layers [64, 65].
We describe the detailed module design in Appendix B.2.

Training and Inference During training, we conduct self-supervised learning on speech data. The
input sequence of transformer is [⟨SOS⟩,Q′

c(u), ⟨SEP⟩, g(u), ⟨SEP⟩,Qs(u)]. We only perform the
next token prediction on the last [⟨SEP⟩,Qs(u)], with the ground truth being [Qs(u), ⟨EOS⟩]. Here,
⟨SOS⟩, ⟨SEP⟩, and ⟨EOS⟩ are treated as three special tokens in language model [66]. During infer-
ence, for a source speech ui and a style reference usr, we can conduct the reference-style-enhanced
continuation (Figure 2b) by feeding the input sequence [⟨SOS⟩,Q′

c(usr ⊕ ui), g(usr),Qs(usr)] for
autoregressive generation, where ⊕ means the concatenation. For reference-global-guided continu-
ation (Figure 5), the input sequence becomes [⟨SOS⟩,Q′

c(ui), g(usr)].

3.3 ACOUSTIC MODELING (CONTENT-STYLE TO ACOUSTIC)

During the acoustic modeling stage, prompted by a timbre reference, we aim to transform the
content-style tokens to Mel spectrograms. We adopt a flow matching transformer [34, 35, 36] (Fig-
ure 3), which has been verified to be effective in in-context learning and reconstructing high-quality
acoustic representations [12, 24, 27, 38].

During training, given a speech u and its Mel spectrogram y1, we randomly select a part of y1 as the
timbre reference (denoted as yctx

1 ), and aim to reconstruct the other part (denoted as ymis
1 ) condi-

tioned on yctx
1 and the content-style tokens Qs(u). In other words, we aim to model the conditional

probability p(ymis
1 |yctx

1 ,Qs(u)). Specifically, we follow Voicebox [27] and use a temporal span
masking strategy: ymis

1 = m ⊙ y1, and yctx
1 = (1 − m) ⊙ y1, where m is a binary temporal

mask that is of the same length as y1, and ⊙ means the element-wise multiplying operation. During
inference, given a source speech ui and a timbre reference utr, all the source’s Mel spectrogram will
be masked (i.e., ymis

1 ). The input conditions become the timbre reference’s Mel spectrogram (i.e.,
yctx
1 ) and the concatenated content-style tokens Qs(ui ⊕ utr). This enables the generated target to

preserve the linguistic content and style of ui, and the timbre of utr (Figure 3b).
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(a) Training (b) Inference

Figure 3: Acoustic modeling based on a flow-matching transformer. During inference, we append
the timbre reference to the rightmost (or leftmost) end, enabling timbre-controllable generation.

We use the conditional flow matching algorithms based on optimal transport path, which is widely
adopted in related works [12, 24, 27]. The loss function is defined as:

Lcfm = Et,m,y0,y1

∥∥∥∥dyt

dt
− ft(yt, t,y

ctx
1 ,Qs(u))

∥∥∥∥2
2

,

where yt = (1− (1− σ)t) · y0 + t · y1,

(3)

where t is the time step that is sampled from the uniform distribution U(0, 1), y0 is a noise sampled
from standard Gaussian distribution, ft(·) is the vector filed (which is estimated by transformer).
and σ is a small constant of the optimal transport (OT) path. Notably, the frame rates of the content-
style tokens Qs(u) and the Mel spectrogram y1 could be different. We follow [44] and use a simple
signal resampling operation to align them. Then we use the adding operation to fuse their frame-
level features. We describe the detailed module design in Appendix B.4. After obtaining the Mel
spectrogram, we utilize a BigVGAN [67] vocoder to produce the waveform (Appendix B.5).

3.4 VEVO FOR VARIOUS ZERO-SHOT IMITATION TASKS

Assume that during the content-style modeling and acoustic modeling stages, we have obtained pre-
trained models Mstyle and Macoustic respectively. We can then adjust only the inference pipeline
to apply Vevo to various zero-shot imitation tasks. Given the source speech ui (or text Ti) and the
reference ur, we can utilize the following variants of Vevo to achieve zero-shot timbre, style, and
voice imitation tasks (“ u−→ M ” means that the model M is prompted by u to generate):

• Vevo-Timbre for timbre imitation: Qs(ui)
ur−−→ Macoustic

• Vevo-Style for style Imitation: Q
′

c(ui)
ur−−→ Mstyle

ui−−→ Macoustic

• Vevo-Voice for voice imitation (conversion task): Q
′

c(ui)
ur−−→ Mstyle

ur−−→ Macoustic

• Vevo-TTS for voice imitation (synthesis task): Q̃c(Ti)
ur−−→ M̃style

ur−−→ Macoustic

For Vevo-TTS, Q̃c(Ti) means the tokenization for Ti, and M̃style means the pre-trained model for
content-style modeling that takes text as input. We describe its detailed design in Appendix B.3.

4 EXPERIMENTS

Training Data We train the English-only models on 60K hours of ASR-transcribed English au-
diobooks, which is the same as the dataset used by the Voicebox English model [27]. The model
Macoustic and Mstyle are trained solely with speech data. The model M̃style, which uses text as in-
put, is trained with both speech and textual transcriptions data. We begin with the publicly available
HuBERT-Large1 model [2] to prepare the VQ-VAE tokenizer. We utilize its hidden features from

1https://pytorch.org/audio/0.10.0/pipelines.html#hubert-large
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Table 2: Performance of Macoustic trained by different HuBERT representations on zero-shot tim-
bre imitation task. We highlight three key turning points during the self-supervised disentanglement
process: the initial stage of information filtering (the 18th layer features, where vocabulary size can
be considered infinite), the proposed content-style tokenizer (VQ-VAE tokens with a vocabulary
size of 4096), and the proposed content tokenizer (VQ-VAE tokens with a vocabulary size of 32).

Representations #Vocab WER
(↓)

S-SIM
(to ref) (↑)

S-SIM
(to src) (↓)

FPC
(to src) (↑) Analysis

Ground Truth - 5.526 0.762 0.087 1.000 -

24th layer features ∞ 5.706 0.266 0.400 0.768 Pros: Intelligibility, Style consistency
Cons: Timbre imitation18th layer features ∞ 5.324 0.250 0.505 ↑ 0.824

12th layer features ∞ 5.348 0.200 0.626 ↑ 0.805

PPG features ∞ 6.143 0.449 0.157 0.741 Pros: Intelligibility, Timbre imitation
Cons: Style consistencyASR tokens 29 7.836 0.463 0.125 0.698

K-means tokens 1024 11.493 0.398 0.150 0.734 Worse than VQ-VAE tokens (1024)

VQ-VAE tokens

16384 6.807 0.398 0.306 0.826 As the vocabulary size decreases,
Pros:

Timbre imitation ↑
Cons:

Intelligibility ↓
Style consistency ↓

4096 6.908 ↑ 0.403 0.236 ↓ 0.797 ↓
1024 6.967 ↑ 0.418 0.249 0.764 ↓

32 9.731 ↑ 0.426 0.161 ↓ 0.706 ↓
16 13.169 ↑ 0.441 0.146 ↓ 0.672 ↓
8 21.813 ↑ 0.392 0.109 ↓ 0.675

* PPG features and ASR tokens are obtained from HuBERT-ASR-Large, while the others are from HuBERT-Large. K-means and VQ-
VAE tokens are quantized on the 18th layer features of HuBERT-Large. FPC are evaluated only on EMOTION.

* #Vocab: the vocabulary size K. S-SIM: Speaker SIM. ref/src: reference/source.

the 18th layer as the reconstruction objective for the tokenizer. Both the content and content-style
tokenizers are trained on a 100-hour subset randomly sampled from the full 60K-hour dataset.

Evaluation Data We consider various evaluation settings to construct the evaluation set: (1) For
clean data, such as recordings made in studio environments, we select audiobook speech data.
Specifically, we reserve a subset of the total 60K hours of data as evaluation samples, which we
denote as AB. (2) For noisy data, which may include in-the-wild recordings and diverse recording
devices, we use the Common Voice English dataset (CV) [68]. It covers broader accents and is
noisier compared to AB. (3) Additionally, to introduce more stylized and expressive data, we use
an internal emotional and accented corpus to sample an emotional test set (EMOTION) and an ac-
cented test set (ACCENT). There are 700 evaluation samples in total: 200 from AB, 200 from CV,
150 from ACCENT, and 150 from EMOTION.

Evaluation Metrics For the objective metrics, we evaluate the intelligibility (WER), speaker
similarity (S-SIM), accent similarity (A-SIM), emotion similarity (E-SIM), and F0 correlation
(FPC) [44, 69]. Specially, we calculate WER based on Whisper-large-v3 [11, 13, 70]. For the three
similarity metrics – S-SIM, A-SIM, and E-SIM – we calculate the cosine similarity between the em-
beddings (of speaker, accent, or emotion) of the generated sample and the reference. Specifically, we
extract these embeddings using WavLM TDNN2 [11, 13, 64] for speaker, CommonAccent3 [21, 71]
for accent, and emotion2vec4 [72] for emotion, respectively. We also used CommonAccent and
emotion2vec as the classifiers to measure the classification accuracy of accent and emotion (A-ACC
and E-ACC). For subjective metrics, we use the Mean Opinion Score (MOS, rated from 1 to 5) to
assess naturalness (N-MOS) and similarity in speaker, accent, emotion, and prosody (SS-MOS, AS-
MOS, ES-MOS, and PS-MOS). SS MOS, AS-MOS, and ES-MOS evaluate the similarity between
the generated sample and the reference, while PS-MOS assesses the similarity between the gener-
ated sample and the source. Additionally, we employ Comparative MOS (CMOS, rated from -3 to 3)
to evaluate naturalness (N-CMOS), accentedness (A-CMOS), and emotiveness (E-CMOS). Detailed
backgrounds of subjects and definitions of all subjective metrics are provided in Appendix E.

4.1 EFFECT OF THE VOCABULARY SIZE OF THE VQ-VAE TOKENIZER

We conduct experiments to figure out how to derive content and content-style tokens from speech.
The key questions include: (1) What information from speech is retained in the continuous hidden

2https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker verification
3https://huggingface.co/Jzuluaga/accent-id-commonaccent ecapa
4https://github.com/ddlBoJack/emotion2vec
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Table 3: Results on zero-shot timbre imitation and voice imitation (conversion) tasks. (Con-
tRep/Model: Hours of training data for the used content representations and the model)

Zero-Shot Timbre Imitation (AB, CV) Source i, Reference r ⇒ Target: W(ci, si, tr)

Model AR? Training Data
(ContRep / Model)

WER
(↓)

S-SIM
(to r) (↑)

FPC
(to i) (↑)

N-MOS
(↑)

SS-MOS
(to r) (↑)

PS-MOS
(to i) (↑)

HierSpeech++ [53] ✗ 500K / 2.8K 4.233 0.385 0.634 3.05 ±0.23 3.24 ±0.25 3.08 ±0.26

LM-VC [52] ✓ 1K / 60K 8.623 0.310 0.524 2.90 ±0.11 2.98 ±0.18 2.16 ±0.26

UniAudio [28] ✓ 1K / 100K 7.241 0.264 0.575 3.04 ±0.15 2.47 ±0.20 2.51 ±0.25

FACodec [17] ✗ 60K / 60K 3.682 0.327 0.611 2.50 ±0.20 3.10 ±0.24 3.10 ±0.23

Vevo-Voice ✓ 60K / 60K 7.694 0.458 0.485 3.09 ±0.13 3.51 ±0.24 2.60 ±0.23

Vevo-Timbre ✗ 60K / 60K 2.968 0.420 0.686 3.35 ±0.09 3.36 ±0.16 3.45 ±0.17

Zero-Shot Voice Imitation (ACCENT, EMOTION) Source i, Reference r ⇒ Target: W(ci, sr, tr)

Model WER
(↓)

S-SIM
(to r) (↑)

A-SIM
(to r) (↑)

E-SIM
(to r) (↑)

N-MOS
(↑)

SS-MOS
(to r) (↑)

AS-MOS
(to r) (↑)

ES-MOS
(to r) (↑)

Ground Truth 10.917 0.762 0.763 0.965 - - - -

HierSpeech++ [53] 12.921 0.466 0.526 0.658 3.04 ±0.14 3.15 ±0.23 3.13 ±0.22 2.55 ±0.19

LM-VC [52] 20.353 0.312 0.426 0.649 2.40 ±0.10 2.56 ±0.15 3.02 ±0.19 2.46 ±0.17

UniAudio [28] 15.751 0.311 0.486 0.611 2.95 ±0.11 2.39 ±0.17 2.42 ±0.15 2.41 ±0.26

FACodec [17] 12.731 0.434 0.514 0.688 2.36 ±0.18 3.19 ±0.22 3.01 ±0.16 2.30 ±0.22

Vevo-Timbre 12.351 0.486 0.567 0.816 3.43 ±0.09 3.46 ±0.15 3.55 ±0.25 2.66 ±0.26

Vevo-Voice 15.214 0.517 0.614 0.872 3.24 ±0.11 3.70 ±0.24 3.90 ±0.19 3.20 ±0.16

1 PS-MOS, E-SIM, and ES-MOS are evaluated only on EMOTION. A-SIM and AS-MOS are evaluated only on ACCENT.
2 The best and the second best result is shown in bold and by underlined.

features of HuBERT? (2) How do vector quantization methods, including the commonly used K-
means [2, 28, 52, 73] and our adopted VQ-VAE [1, 62], affect the disentanglement ability of the
resulting discrete tokens of HuBERT? (3) How does the vocabulary size of VQ-VAE codebook in-
fluence the produced tokens? To answer these questions, we investigate the performance of different
HuBERT representations on the zero-shot timbre imitation task – i.e., using them to train Macoustic.

Specifically, we adopt the representations of the HuBERT-Large1 model, which is a 24-layer trans-
former pre-trained on Libri-light dataset [74]. For comparison, we also examine the HuBERT-ASR-
Large5 model, which is fine-tuned from HuBERT-Large for ASR task on LibriSpeech [75]. Com-
pared to HuBERT-Large, HuBERT-ASR-Large contains an additional prediction layer and a softmax
layer, whose output is xppg ∈ RT×29, where T is the frame length and 29 represents the vocabulary
size of phonemes. We refer to xppg as PPG features and also derive frame-level ASR tokens from
each frame’s PPG features: xasr = argmaxxppg ∈ RT . We randomly sample a 6K-hour subset
from the full training data for training. The results are presented in Table 2.

Our findings indicate that: (1) HuBERT continuous hidden features possess rich information on
timbre (high S-SIM to source), style (high FPC), and linguistic content (low WER). Notably, the S-
SIM to source is even higher than that to reference, i.e., there is a timbre leakage. This phenomenon
is more obvious for shallower 12th layer features. (2) After ASR fine-tuning, both PPG features and
ASR tokens retain substantial linguistic content information (low WER) but exhibit a significant
reduction in timbre information (lower S-SIM to source) and a decrease in style information (lower
FPC). (3) Compared to VQ-VAE, K-means tokens show lower intelligibility, S-SIM to reference,
and FPC when K is the same (1024). Huang et al. provides a detailed comparison of between
these two methods recently [62]. (4) For VQ-VAE tokens, larger vocabulary sizes (e.g., 16384)
retain more timbre information (S-SIM to source at 0.306). As K decreases to 4096, much of the
timbre information is filtered out (S-SIM to source/reference at 0.236/0.403), yet style information
is relatively retained (FPC at 0.797). When K reduces further to 32, in addition to timbre, most style
information is also filtered out – FPC drops to 0.706, similar to ASR tokens. As K diminishes to 16
or even 8, even the high-level linguistic content begins to be filtered out (rapid increase in WER).

Based on these findings, we select VQ-VAE with Kc = 32 for the content tokenizer and Ks = 4096
for the content-style tokenizer. Note that designing the information bottleneck is a challenging trade-
off, and such Kc and Ks may not be optimal. However, the results in the following sections show
that such a choice has been pretty good under various voice imitation tasks. Additional effects of
different (Kc, Ks) combinations on Mstyle training are detailed in Appendix D.1.

5https://pytorch.org/audio/0.10.0/pipelines.html#hubert-asr-large
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Table 4: Results on style imitation task. (PC: Parallel corpus. SL: Style labels)

Model Zero
-shot

Supervision WER
(↓)

A- / E-
ACC (↑)

A- / E-
SIM (↑)

N-
COMS (↑)

A- / E-
CMOS (↑)PC SL Text

ASR-AC [29] ✗ ✗ ✓ ✓ 4.775 0.633 - 0.00 ±0.00 0.00 ±0.00

Vevo-Style (ASR) ✓ ✗ ✗ ✓ 1.550 0.723 0.570 0.32 ±0.11 0.49 ±0.14

Vevo-Style ✓ ✗ ✗ ✗ 3.083 0.663 0.562 0.30 ±0.13 0.35 ±0.21

VoiceShop [20] ✗ ✓ ✓ ✓ 5.547 0.642 - 0.00 ±0.00 0.00 ±0.00

Vevo-Style (ASR) ✓ ✗ ✗ ✓ 3.553 0.735 0.585 0.26 ±0.16 0.18 ±0.20

Vevo-Style ✓ ✗ ✗ ✗ 5.464 0.673 0.554 0.12 ±0.10 0.13 ±0.08

Conv-Speak [21] ✗ ✓ ✓ ✗ 9.950 0.571 - 0.00 ±0.00 0.00 ±0.00

Vevo-Style (ASR) ✓ ✗ ✗ ✓ 2.778 0.864 0.574 0.10 ±0.05 0.40 ±0.12

Vevo-Style ✓ ✗ ✗ ✗ 3.889 0.903 0.580 0.15 ±0.12 0.60 ±0.16

Emovox [30] ✗ ✗ ✓ ✓ 15.444 0.750 - 0.00 ±0.00 0.00 ±0.00

Vevo-Style (ASR) ✓ ✗ ✗ ✓ 9.842 0.692 0.800 1.74 ±0.20 0.45 ±0.11

Vevo-Style ✓ ✗ ✗ ✗ 10.221 0.754 0.825 1.78 ±0.20 0.49 ±0.13

* We present four comparative groups. Evaluation samples for each group are sourced from the baseline’s demo website.
For the first three groups, we evaluate A-ACC/SIM/CMOS, and for the last group, we evaluate E-ACC/SIM/CMOS.

4.2 ZERO-SHOT TIMBRE IMITATION AND VOICE IMITATION (CONVERSION TASK)

Further, we apply Vevo to various zero-shot imitation tasks. This section evaluates Vevo-Timbre and
Vevo-Voice on zero-shot timbre and voice imitation tasks. We select several state-of-the-art (SOTA)
baselines in zero-shot voice conversion, including HierSpeech++ [53], LM-VC [52], UniAudio [28],
and FACodec [17]. Details about these baselines are available in Appendix C. We train Mstyle and
Macoustic on the full 60K hours dataset. The results are presented in Table 3.

The findings reveal that: (1) Zero-shot timbre imitation: Compared to the four baselines, Vevo-
Timbre exhibits superior performance across common voice conversion metrics such as WER, S-
SIM, N-MOS, and SS-MOS. Additionally, Vevo-Timbre demonstrates a clear advantage in FPC and
PS-MOS, which measure style consistency. (2) Zero-shot voice imitation: Against the four base-
lines, Vevo-Voice not only excels in mimicking speaker identity (S-SIM, SS-MOS) but also signifi-
cantly outperforms in imitating specific style attributes like accent (A-SIM, AS-MOS) and emotion
(E-SIM, ES-MOS). (3) Comparing Vevo-Timbre and Vevo-Voice: Vevo-Timbre’s strength lies in
preserving the style of the source (FPC, PS-MOS), whereas Vevo-Voice additionally excels in style
imitation, resulting in higher speaker similarity (S-SIM, SS-MOS). However, due to the autoregres-
sive design in Mstyle, Vevo-Voice scores lower in intelligibility (WER) compared to Vevo-Timbre.

4.3 ZERO-SHOT STYLE IMITATION

We present the performance of Vevo-Style in the zero-shot style imitation task, focusing on widely
studied styles such as accent and emotion. For accent imitation, we select baselines including ASR-
AC [29], VoiceShop [20], and Conv-Speak [21]. We use their demo website samples as our evalua-
tion set, including conversions among multiple accented English such as British, American, Hindi,
and Mandarin. For emotion imitation, we choose Emovox [30] and its demo website samples, which
include conversions from Neutral to Happy, Angry, and Sad emotions. Moreover, we also introduce
the Vevo-Style (ASR) for a zero-shot style imitation baseline. Its only difference compared to the
Vevo-Style model is the use of xasr (see Section 4.1) rather than Qc as the content tokenizer.

Our experimental results are shown in Table 4. Our observations indicate: (1) Compared to the base-
lines, Vevo-Style is only self-supervised trained on audiobook speech data. However, without any
fine-tuning on accented or emotional corpus, it delivers superior outcomes in terms of intelligibility
(WER), quality (N-CMOS), and the imitation of accents and emotions (A-ACC/SIM/CMOS and E-
ACC/SIM/CMOS). (2) Using text as the additional supervision, Vevo-Style (ASR) further surpasses
Vevo-Style in intelligibility and specific aspects of accent imitation. We speculate that compared
to xasr, the Qc used by Vevo-Style may still retain a small portion of accent-related information,
thereby limiting the Mstyle to perfectly imitate the accent information from the style reference.

4.4 ZERO-SHOT VOICE IMITATION (SYNTHESIS TASK)

We present the performance of Vevo-TTS in the zero-shot voice imitation (synthesis) task. We select
the classic baselines of the zero-shot TTS filed, including the Non-AR Voicebox model [27], and
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Table 5: Results on zero-shot voice imitation (synthesis) task.

Model AR? Training
Data

WER
(↓)

S-SIM
(↑)

A-SIM
(↑)

E-SIM
(↑)

N-CMOS
(↑)

SS-MOS
(↑)

AS-MOS
(↑)

ES-MOS
(↑)

Ground Truth - - 11.348 0.710 0.633 0.936 0.00 ±0.00 - - -
CosyVoice [24] ✓ 171K 8.400 0.614 0.640 0.839 -0.18 ±0.19 4.11 ±0.19 3.99 ±0.23 3.66 ±0.19

MaskGCT [13] ✗ 100K 9.442 0.659 0.645 0.822 -0.04 ±0.19 4.16 ±0.16 4.38 ±0.14 3.76 ±0.25

VALL-E [26] ✓ 45K 13.226 0.400 0.485 0.735 -1.24 ±0.42 2.82 ±0.40 2.77 ±0.45 2.63 ±0.36

Voicebox [27] ✗ 60K 9.414 0.463 0.575 0.811 -0.35 ±0.21 3.87 ±0.21 3.49 ±0.29 3.61 ±0.19

VoiceCraft [77] ✓ 9K 13.057 0.392 0.517 0.788 -0.50 ±0.23 3.47 ±0.32 3.29 ±0.28 3.52 ±0.25

Vevo-TTS ✓ 60K 12.066 0.505 0.579 0.840 -0.14 ±0.18 4.05 ±0.21 4.12 ±0.21 4.03 ±0.19

1 A-SIM and AS-MOS are evaluated on ACCENT samples. E-SIM and ES-MOS are evaluated on EMOTION samples.
2 The best and the second best results of only the last four are shown in bold and by underlined.

Table 6: Effect of duration reduction and different inference modes of Mstyle. (#Inference Input:
input sequence length (%) during inference. w/o: without. w/: with)

Model #Inference Input WER (↓) S-SIM (↑) A-SIM (↑) E-SIM (↑) DDUR (↓)
Vevo-Voice 100% 15.214 0.517 0.614 0.883 0.933

w/o Duration Reduction 127% 15.958 0.501 0.583 0.842 1.698
w/ Global-guided continuation 42% 16.809 0.510 0.597 0.864 0.947

* Vevo-Voice uses reference-style-enhanced continuation. A-SIM is evaluated only on ACCENT samples. E-SIM is evaluated only on
EMOTION samples. The remaining metrics are evaluated on both ACCENT and EMOTION samples.

the AR models such as VALL-E [26, 76] and VoiceCraft [77], all of which are trained only on au-
diobook speech data. For comparison, we also include two stronger SOTA models: CosyVoice [24]
and MaskGCT [13, 78], which are trained on large-scale private corpus derived from in-the-wild
video data, featuring highly diverse distributions [24, 79]. Detailed baseline information and eval-
uation results are available in Appendix D.2. Here, we only highlight performances on ACCENT
and EMOTION evaluation samples (Table 5). Our observations are as follows: (1) Compared be-
tween Voicebox and Vevo-TTS whose training data are identical, Vevo-TTS, while showing slightly
inferior performance in WER (which is a common weakness for AR models), excels across all other
metrics. (2) Notably, Vevo-TTS demonstrates outstanding performance in style imitation (A/E-SIM,
AS/ES-MOS). Despite being trained only on audiobook data, it surpasses CosyVoice and MaskGCT
in some emotion imitation tasks (ES-MOS is 4.03). This verifies the effectiveness of our proposed
content-style tokens, which could be representations that can effectively capture style information
and are easily learned by downstream models.

4.5 EFFECT OF DURATION REDUCTION AND DIFFERENT INFERENCE MODES

Finally, we conduct ablation studies on several key components within Vevo, including the impact
of different (Kc, Ks) values on voice imitation tasks (see Appendix D.1), the effects of the duration
reduction strategy, and the two inference modes of Mstyle, as presented in Table 6. We adopt
DDUR to measure the average differences in duration (seconds) between the converted and ground
truth utterances [30, 51]. We observe that: (1) The duration reduction not only reduces the inference
input length but also consistently demonstrates clear advantages, especially in duration conversion
(DDUR). (2) The reference-global-guided continuation significantly shortens the sequence length
(to 42% of Vevo-Voice), with only a slight decline in performance metrics. This showcases its
substantial potential in saving inference memory and enhancing inference speed.

5 CONCLUSION

We introduce Vevo, a versatile zero-shot voice imitation framework featuring controllable timbre
and style. Vevo contains of two primary stages: content-style modeling via an autoregressive trans-
former, and acoustic modeling via a flow matching transformer. Both stages are trainable through
self-supervised and in-context learning, friendly to scale up. Vevo operates based on our newly
proposed content and content-style tokens, generated by VQ-VAE tokenizers of HuBERT with care-
fully adjusted vocabulary sizes. Pre-trained only on 60K hours of audiobook speech data without
fine-tuning on style-specific corpus, Vevo outperforms state-of-the-art models of accent and emo-
tion conversion fields, particularly achieving these conversions in a zero-shot manner. Furthermore,
Vevo’s robust performance in zero-shot voice conversion and text-to-speech tasks underscores its
versatility and also highlights the broad potential of our proposed disentangled speech tokens.
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A TERMINOLOGY CLARIFICATION

In this study, we decouple speech into linguistic content (what to speak), timbre (who speaks), and
style (how to speak). Below, we will clarify our definitions and scope for timbre and style.

Timbre Timbre is a physical concept that refers to the acoustic qualities of sound, such as the
spectral envelope, which allows us to differentiate between speakers even when pitch and loudness
are identical. It is primarily determined by the speaker’s vocal anatomy and articulatory behaviors.
Often discussed alongside timbre is speaker identity. Speaker identity is a perceptual concept – it
encompasses not only timbre but also habitual speech patterns, idiosyncrasies, and other personal
styles that make a speaker recognizable. While timbre lays the acoustic foundation of identity,
speaker identity reflects the broader auditory impression formed by a listener.

Style Style refers to the expressive aspects of speech, including accent, emotion, and speaking
habits, which dictate how something is said. It includes specific features such as accent and emotion,
but also covers a wider array of expressive behaviors. A critical component of style is prosody,
which includes features such as F0 (pitch), energy, and duration. These prosodic features govern the
rhythm, stress, and intonation of speech, contributing significantly to how emotion and emphasis are
conveyed. Although style encompasses prosody, it also extends beyond it, influencing not only the
melodic flow of speech but also cultural and emotional expressions.

B DETAILS OF VEVO

B.1 VQ-VAE ARCHITECTURE

We adopt the implementation of RepCodec6 [62] as our VQ-VAE tokenizer, whose λ and β are 45
and 1. Its architecture of encoder and decoder is shown in Figure 4. The vocabulary sizes of our
content and content-style tokenizer are 32 and 4096. Their parameter counts are 59M and 63M,
respectively.

Figure 4: Encoder and decoder architecture of our VQ-VAE tokenizer. k, s. cin, and cout denote the
kernel size, stride, input channels, and output channels. h denotes the vocabulary size of tokenizer.
H denotes the hidden dimension of input representations (which is 1024 for HuBERT-Large). This
figure is borrowed from the paper of RepCodec [62].

B.2 CONTENT-STYLE MODELING

For the content-style modeling stage, we use reference-style-enhanced continuation by default. The
architecture of our AR transformer is similar to LLaMA7 [35]. It has 12 layers, 16 attention heads,
2048/3072 embedding/feed-forward network (FFN) dimension. The global style encoder consists
of WavLM-based representation layers and TDNN-based feature extraction layers [64, 65]. Specif-

6https://github.com/mct10/RepCodec
7https://github.com/meta-llama/llama3
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ically, we adopt the same architecture with a WavLM-based speaker verification model8. The total
parameter count of Mstyle is 463M.

During training, we use AdamW [80] optimizer with a peak learning rate of 1e-4, linearly warmed up
for 2K steps and decays over the rest of training. It is trained for 500K updates. During inference,
we can use the default reference-style-enhanced continuation (Figure 2b) or the reference-global-
guided continuation (Figure 5). We generate evaluation samples with specific sampling parameters:
top-k is 25, top-p is 0.9, and temperature is 0.8.

Figure 5: Reference-global-guided continuation of Mstyle for inference.

B.3 CONTENT-STYLE MODELING (TEXT AS INPUT)

Compared to Mstyle, the only difference of M̃style is that its input becomes text tokens, rather
than the duration reduced content tokens. Specifically, we adopt the Grapheme-to-Phoneme (G2P)
method and use the same phonemization tokenizer as Voicebox [27]. All the hyper parameters of
training and inference are same as Mstyle.

B.4 ACOUSTIC MODELING

For the acoustic modeling stage, we follow the flow matching model implementation of Voice-
box [27]. Specifically, we randomly mask 70%-100% of the frames to create ymis

1 . We employ
the midpoint ODE solver with a step size of 0.0625 (NFE=32). The σ of the optimal transport
path of flow matching is 1e-5. The transformer has 24 layers, 16 attention heads, 1024/4096
embedding/feed-forward network (FFN) dimension. Its parameter count is 334M.

Our target Mel spectrogram is at 24 kHz with 100 Mel bands. It is normalized with the global
mean (-5.8843) and standard deviation (2.2615) to stabilize training [27]. During training, Mel
spectrogram length is capped at 1,600 frames and chunked randomly if length exceeds. We use
Adam [81] optimizer with a peak learning rate of 1e-4, linearly warmed up for 5K steps and decays
over the rest of training. It is trained for 500K updates. During inference, we employ the midpoint
ODE solver with a step size of 0.0625 (NFE=32).

We apply the classifier free guidance (CFG) [82] to improve the generation quality like other
works [12, 24, 27]. Specifically, we randomly drop the conditions, i.e., yctx

1 and Qs(u), with a prob-
ability of puncond. During inference, the modified vector filed f

′

t becomes f
′

t (yt, t,y
ctx
1 ,Qs(u)) =

(1 + α)ft(yt, t,y
ctx
1 ,Qs(u))− αft(yt, t), where α is the strength of the guidance. In practice, we

follow Voicebox and set puncond as 0.2 and α as 0.7.

B.5 VOCODER

We use BigVGAN [67] as vocoder to synthesis waveform from Mel spectrogram. We fine-tune
from the official released checkpoint bigvgan 24khz 100band9 using our 60K hours training data.
Its parameter count is 112M.

8https://huggingface.co/microsoft/wavlm-base-plus-sv
9https://github.com/NVIDIA/BigVGAN
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C DETAILS OF BASELINES

C.1 ZERO-SHOT TIMBRE IMITATION AND VOICE IMITATION (CONVERSION TASK)

• HierSpeech++ [53]: It utilizes MMS [83] (pretrained on 500K hours of data from over 1000
languages) to extract content features. It is designed based on the VITS architecture [84], and
is trained on 2.8k hours sourced from Libri-light [74] and LibriTTS [85]. We use the officially
released checkpoint10 to generate samples.

• LM-VC [52]: It is an autoregressive hierarchical transformer that predicts SoundStream [63]
codecs from soft units similar to HuBERT k-means tokens [54], trained on the Libri-light
dataset [74]. We obtain the generated samples from the authors.

• UniAudio [28]: It is an autoregressive transformer capable of performing multiple audio gen-
eration tasks, using 500-cluster K-means tokens from HuBERT-base (that is pre-trained on Lib-
riSpeech [75]) to predict their proposed acoustic codecs, with training data comprising approx-
imately 80K hours of speech and 20K hours of other audio data. We use the officially released
checkpoint11 to generate samples.

• FACodec [17]: It adopts an auto-encoder and residual vector quantization based architecture. It
decouples the raw waveform into factorized attributes through ASR, F0 prediction, and speaker
classification tasks, trained on the Libri-light dataset [74]. We use the released checkpoint in
Amphion 12 [76, 78] (which is implemented by the authors) to generate samples.

C.2 ZERO-SHOT STYLE IMITATION

• ASR-AC [29]: It uses an ASR model based on wav2vec 2.013 [86] (that is pre-trained on 60K
hours of Libri-light [74] and fine-tuned on 1K hours of LibriSpeech [75]) to extract the one-hot
text predictions from speech, i.e., xasr in our paper (Section 4.1). It adopts a transformer encoder
and a HiFi-GAN decoder to reconstruct waveforms conditioned on xasr, the accent labels, and
F0, which is trained on about 700 hours of accented corpus. We use 30 samples from its demo
website14 to evaluate, including English accents’ conversions from British to American, British
to Hindi, and Hindi to American.

• VoiceShop [20]: To achieve accent conversion, the authors first uses an conformer-based ASR
model (that is trained by 40K hours of their private corpus) to extract the hidden features (BNF).
Then, they create about 300 hours of parallel conversion corpus based on a commercial accented
TTS system. Finally, they adopt an encoder-decoder transformer to learn the BNF’s mapping
between parallel corpus. We use 17 samples from its demo website15 to evaluate, including
English accents’ conversions among American, British, Hindi, and Mandarin.

• Conv-Speak [21]: The authors formulate accent conversion from source’s content tokens to tar-
get’s content tokens. They propose to self-supervised pre-train on content tokens like BART [87],
in order to relieve the requirements of parallel data. They adopt the 500-cluster K-means of
HuBERT-Base16 (that is pre-trained on 1K hours of LibriSpeech [75]) as content tokens. The
conversion model is trained on about 600 hours of data, including about 1 hour of parallel data.
We use 24 samples from its demo website17 to evaluate, including English accents’ conversions
from Hindi and Mandarin to American.

• Emovox [30]: To achieve emotion conversion, the authors design a recognition encoder to push
its output (i.e., emotion-agnostic features) closely with phoneme transcriptions. The conversion
model is based on a sequence-to-sequence decoder, that can reconstruct the Mel spectrogram
conditioned on the emotion-agnostic features and emotion labels. The model is trained on about

10https://github.com/sh-lee-prml/HierSpeechpp
11https://github.com/yangdongchao/UniAudio
12https://huggingface.co/amphion/naturalspeech3 facodec
13https://pytorch.org/audio/0.10.0/pipelines.html#torchaudio.pipelines.WAV2VEC2 ASR LARGE LV60K 960H
14https://accent-conversion.github.io/
15https://voiceshopai.github.io/
16https://pytorch.org/audio/0.10.0/pipelines.html#torchaudio.pipelines.HUBERT BASE
17https://convert-and-speak.github.io/demo/
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80 hours data sourced from VCTK [88] and ESD [7]. We use 24 samples from its demo website18

to evaluate, including emotion conversions from Neutral to Angry, Happy, and Sad.

Notably, Vevo-Style (ASR) and Vevo-Style employ a zero-shot approach to achieve style imitation
– which is rarely seen in existing research. Therefore, for these two, we use the aforementioned
evaluation samples as the source and additionally prepare style references. Specifically, for accent
imitation, we prepare references in three English accents: American, Hindi, and Mandarin, with
four samples each (two males, and two females). For emotion imitation, we prepare references for
three emotions: Angry, Happy, and Sad, with four samples each (two males, and two females). All
these references are randomly sampled from ACCENT and EMOTION.

C.3 ZERO-SHOT VOICE IMITATION (SYNTHESIS TASK)

• VALL-E [26]: It is a classic AR model for zero-shot TTS. It utilizes the transformer to pre-
dict EnCodec [89] codecs. We use the released checkpoint in Amphion 19 [76, 78] to generate
samples, which is pre-trained on 45K hours of MLS English set [90].

• Voicebox [27]: It applies the flow matching transformer to both duration model and acoustic
model. We reproduce it with the help of the authors.

• VoiceCraft [77]: It uses an AR transformer to predict EnCodec [89] codecs. Compared to
VALL-E, it proposes token rearrangement and delayed stacking strategies to enhance the model
learning. We use the officially released checkpoint20 to generate samples, which is pre-trained
on 10K hours of Gigaspeech [91].

• CosyVoice [24]: It proposes a semantic tokenizer that is supervised by ASR task. It contains
an AR transformer to predict the semantic tokens from text, and a flow-matching transformer
to predict Mel spectrograms. We use the officially released checkpoint21 to generate samples,
which is pre-trained on 171K hours of in-the-wild, multilingual, and private data.

• MaskGCT [13]: It consists of two-stage discrete diffusion models. It is based on the hidden
features of w2v-bert 2.022 that pre-trained on 4.5M hours to obtain the semantic tokens. Its TTS
model is trained on 100K hours of in-the-wild and multilingual data [79]. We use the released
checkpoint in Amphion 23 [76, 78] to generate samples.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EFFECT OF THE VOCABULARY SIZE OF THE VQ-VAE TOKENIZER

In Section 4.1, we have already demonstrated the impact of different vocabulary sizes in the VQ-
VAE codebook on Macoustic (i.e., disentanglement capability). In this section, we aim to present
two complementary experimental results. First, we explore the effects of a wider range of vocabulary
sizes (from the smallest at 8 to the largest at 16,384) on the produced tokens. Second, we investigate
the impact of various combinations of Kc and Ks on Vevo-Voice.

D.1.1 EFFECT ON PHONETIC DISCRIMINABILITY

We explore the phonetic discriminability of different representations, inspired by AudioLM [92].
Specifically, we measure phonetic discriminability using the ABX error rate, a distance-based metric
that evaluates a set of phoneme trigrams differing only in the central phoneme (e.g., “bit” vs. “bet”).
The ABX error rate assesses how often a random instance X of a trigram (“bit”) is closer to an
instance B of another trigram (“bet”) rather than to another instance A of the same trigram (“bit”).

18https://kunzhou9646.github.io/Emovox demo/
19https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VALLE V2
20https://github.com/jasonppy/VoiceCraft
21https://github.com/FunAudioLLM/CosyVoice
22https://huggingface.co/facebook/w2v-bert-2.0
23https://huggingface.co/amphion/MaskGCT
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We evaluate scenarios where all three sounds A, B, and X are uttered by the same speaker (within-
speaker) and where the same speaker utters A and B but X comes from a different speaker (across-
speaker). We calculate ABX using scripts provided with the Libri-light dataset24 [74], employing
default settings and reporting scores obtained on the LibriSpeech dev-clean dataset [75]. The results
are displayed in Table 7. Note that for K-means and VQ-VAE tokens, we calculate the ABX error
based on the centroid’s vector corresponding to each token.

Table 7: ABX error rate (↓) of different representations. (within/across speakers)

Repr
#Vocab 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

PPG features 6.1 / 7.0

18th layer features 7.6 / 9.5

K-means tokens - - 17.2 /
19.8

14.5 /
17.7

12.0 /
14.0

9.9 /
11.5

8.8 /
10.3

7.8 /
9.0 - - - -

VQ-VAE tokens 16.4 /
18.2

13.1 /
14.6

12.7 /
14.2

13.0 /
14.9

12.7 /
14.8

12.7 /
14.6

11.1 /
13.0

10.0 /
11.8

10.1 /
12.0

10.4 /
12.4

9.9 /
11.9

10.0 /
11.9

* PPG features are obatined from HuBERT-ASR-Large, while the others are from HuBERT-Large. K-means and VQ-VAE tokens are
quantized on the 18th layer features of HuBERT-Large.

From the table, we observe that: (1) PPG features demonstrate the best phonetic discriminability,
highlighting the advantages of fine-tuning with ASR tasks; (2) For K-means tokens, increasing the
vocabulary size from 32 to 1024 continuously improves their phonetic discriminability, indicating
an ongoing enhancement in their capacity to represent linguistic content; (3) For VQ-VAE tokens,
we see a gradual improvement in phonetic discriminability from 8 to 1024, but beyond 1024, this
metric begins to converge. However, we know that as VQ-VAE tokens’ vocabulary size increases
from 1024 to 4096 to 16384, their style information still increases (as indicated by rising FPC scores
in Table 2). From these observations, we can conclude that beyond 1024, the representation ability
of VQ-VAE tokens for linguistic content stabilizes, and any increase in vocabulary size is likely
allocated to storing style information such as F0; (4) Comparing K-means and VQ-VAE tokens, it’s
evident that VQ-VAE tokens are less sensitive to changes in vocabulary size in terms of representing
linguistic content (e.g., VQ-VAE (32) and K-means (128) exhibit nearly identical ABX error rates),
suggesting that a smaller vocabulary can suffice for a content tokenizer. Recent research has also
delved into this aspect, attributing the differences to the distinct optimization algorithms used by the
two methods [62].

D.1.2 EFFECT ON VEVO-VOICE

We explore the effects of different (Kc, Ks) combinations on Vevo-Voice, with the results presented
in Table 8. Our observations include: (1) A significant drop in intelligibility occurs when Kc changes
from 32 to 16, indicating that a smaller vocabulary size for the content tokenizer leads to loss of
linguistic content information; (2) When Ks decreases from 4096 to 1024, all metrics decline. We
hypothesize that while a reduction in Ks might lessen the learning difficulty for Mstyle, a smaller
Ks also results in a decrease in the quality of the final generated audio for Macoustic.

Table 8: Effect of different (Kc, Ks) for Vevo-Voice.

Content
Tokenizer (Kc)

Content-style
Tokenizer (Ks)

WER
(↓)

S-SIM
(↑)

A-SIM
(↑)

E-SIM
(↑)

32 4096 15.214 0.517 0.614 0.872
32 1024 18.523 0.502 0.609 0.860
16 4096 23.351 0.509 0.613 0.865

* Vevo-Voice uses Kc as 32 and Ks as 4096. E-SIM is evaluated only on EMOTION.
A-SIM is evaluated only on ACCENT.

24https://github.com/facebookresearch/libri-light/tree/main/eval
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D.2 ZERO-SHOT VOICE IMITATION (SYNTHESIS TASK)

In Section 4.4, we present the performance of Vevo-TTS in zero-shot imitation (synthesis) tasks.
We have detailed its comparative performance against baselines on all four evaluation sets (AB, CV,
ACCENT, and EMOTION) in Table 9. We can observe that: (1) In comparison with AR baselines,
Vevo-TTS exhibits a clear advantage over VALL-E and VoiceCraft across various metrics on all
datasets. Compared to the state-of-the-art CosyVoice, although Vevo-TTS is trained solely on 60K
hours of Audiobook data, it performs better in some metrics such as Naturalness CMOS (AB, AC-
CENT, EMOTION), Speaker S-MOS (EMOTION), and notably in style imitation-related metrics
like Accent S-MOS and Emotion S-MOS. This demonstrates the high effectiveness of the AR TTS
model implemented using the content-style tokens proposed in this paper. (2) When compared with
Non-AR baselines, Vevo-TTS falls short on WER across all datasets compared to Voicebox and
MaskGCT. This underscores the stability still needed in AR models, indicating significant room for
improvement.

E SUBJECTIVE EVALUATION

E.1 BACKGROUND OF SUBJECTS

We hired dozens of subjects on a paid basis to complete the subjective evaluations. These individuals
have extensive experience in providing subjective assessments of audio generated by AI models.
They have lived in English-speaking countries for extended periods and are highly familiar with
various common English accents, including American, British, Hindi, and Mandarin. Each audio
sample in our evaluation was rated at least ten times.

E.2 METRICS AND QUESTIONNAIRES

We have developed an automated subjective evaluation interface. For each item to be evaluated,
users will see three components: the System Interface (i.e., the audio to be evaluated), the Question-
naire, and the Scoring Criteria.

E.2.1 NATURALNESS MOS

System Interface One audio to be evaluated (with target text)

Questionnaire How human-like is the speech in the clip? Does it sound like a real human who is
engaged in the topic, or does it sound like an AI that doesn’t understand what is being said?

Scoring criteria 5 (A perfect imitation of human speech), 4 (Exceeds my expectations for AI
voices), 3 (Meets my expectations for AI voices), 2 (A subpar representation of human speech), 1
(Very poor artificial speech)

E.2.2 SPEAKER SIMILARITY MOS

System Interface One reference audio, One audio to be evaluated

Questionnaire Ignore the content and audio quality, just pay attention to the voice of the person.
How similar is the voice to be evaluated compared to the reference voice?

Scoring criteria 5 (Excellent, sounds like exactly the same person), 4 (Good, sounds like a sim-
ilar person), 3 (Fair, sounds like a slightly similar person), 2 (Poor, sounds like a different person
mostly), 1 (Bad, sounds like a completely different person)

E.2.3 ACCENT SIMILARITY MOS

System Interface One reference audio, One audio to be evaluated

Questionnaire Ignore the vocal characteristics (who is speaking), just pay attention to the accent
of the speaker. Is the accent similar to the reference voice?
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Table 9: Results on zero-shot imitation (synthesis) task. (S-MOS: Similarity MOS)

Model AR? Training Data WER (↓) Speaker
SIM (↑)

Naturalness
CMOS (↑)

Speaker
S-MOS (↑)

AB

Ground Truth - - 2.845 0.763 0.00 ±0.00 -
CosyVoice [24] ✓ 171k hours, In-the-wild 3.647 0.727 -0.44 ±0.16 4.17 ±0.15

MaskGCT [13] ✗ 100K hours, In-the-wild 3.841 0.781 -0.21 ±0.08 4.30 ±0.22

VALL-E [26] ✓ 45K hours, MLS English [90] 8.204 0.551 -0.95 ±0.39 3.27 ±0.25

Voicebox [27] ✗ 60K hours, Audiobook 3.175 0.631 -0.55 ±0.15 3.49 ±0.14

VoiceCraft [77] ✓ 10K hours, Gigaspeech [91] 4.737 0.570 -0.41 ±0.18 3.41 ±0.13

Vevo-TTS ✓ 60K hours, Audiobook 3.672 0.593 -0.31 ±0.14 3.58 ±0.15

CV

Ground Truth - - 1.426 0.723 0.00 ±0.00 -
CosyVoice [24] ✓ 171k hours, In-the-wild 3.500 0.627 0.11 ±0.19 3.88 ±0.12

MaskGCT [13] ✗ 100K hours, In-the-wild 2.573 0.688 0.08 ±0.25 4.33 ±0.14

VALL-E [26] ✓ 45K hours, MLS English [90] 6.129 0.433 -1.02 ±0.36 2.68 ±0.52

Voicebox [27] ✗ 60K hours, Audiobook 2.129 0.500 -0.12 ±0.19 2.91 ±0.08

VoiceCraft [77] ✓ 10K hours, Gigaspeech [91] 6.353 0.446 -0.10 ±0.25 3.02 ±0.21

Vevo-TTS ✓ 60K hours, Audiobook 2.687 0.513 -0.11 ±0.19 3.83 ±0.18

ACCENT

Model AR? WER (↓) Speaker
SIM (↑)

Accent
SIM (↑)

Naturalness
CMOS (↑)

Speaker
S-MOS (↑)

Accent
S-MOS (↑)

Ground Truth - 10.903 0.747 0.633 0.00 ±0.00 - -
CosyVoice [24] ✓ 6.660 0.653 0.640 0.10 ±0.19 4.23 ±0.18 3.99 ±0.23

MaskGCT [13] ✗ 6.382 0.717 0.645 0.23 ±0.20 4.24 ±0.16 4.38 ±0.14

VALL-E [26] ✓ 10.721 0.403 0.485 -1.04 ±0.50 3.12 ±0.41 2.77 ±0.45

Voicebox [27] ✗ 6.181 0.475 0.575 -0.55 ±0.22 3.93 ±0.25 3.49 ±0.29

VoiceCraft [77] ✓ 10.072 0.438 0.517 -0.39 ±0.22 3.51 ±0.33 3.29 ±0.28

Vevo-TTS ✓ 9.673 0.544 0.579 0.12 ±0.20 4.11 ±0.20 4.12 ±0.21

EMOTION

Model AR? WER (↓) Speaker
SIM (↑)

Emotion
SIM (↑)

Naturalness
CMOS (↑)

Speaker
S-MOS (↑)

Emotion
S-MOS (↑)

Ground Truth - 11.792 0.673 0.936 0.00 ±0.00 - -
CosyVoice [24] ✓ 10.139 0.575 0.839 -0.45 ±0.18 3.98 ±0.19 3.66 ±0.19

MaskGCT [13] ✗ 12.502 0.600 0.822 -0.31 ±0.17 4.07 ±0.16 3.76 ±0.25

VALL-E [26] ✓ 15.731 0.396 0.735 -1.43 ±0.33 2.52 ±0.38 2.63 ±0.36

Voicebox [27] ✗ 12.647 0.451 0.811 -0.65 ±0.20 3.81 ±0.16 3.61 ±0.19

VoiceCraft [77] ✓ 16.042 0.345 0.788 -0.60 ±0.24 3.42 ±0.31 3.52 ±0.25

Vevo-TTS ✓ 14.458 0.466 0.840 -0.39 ±0.15 3.99 ±0.22 4.03 ±0.19

* The best and the second best results among VALL-E, Voicebox, VoiceCraft, and Vevo-TTS are shown in bold and
by underlined.

Scoring criteria 5 (Excellent, sounds like exactly the same accent), 4 (Good, sounds like a similar
accent), 3 (Fair, sounds like a slightly similar accent), 2 (Poor, sounds like a different accent mostly),
1 (Bad, sounds like a completely different accent)

E.2.4 EMOTION SIMILARITY MOS

System Interface One reference audio, One audio to be evaluated

Questionnaire Ignore the vocal characteristics (who is speaking), just pay attention to the emotion
of the speaker. Is the emotion similar to the reference voice?
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Scoring criteria 5 (Excellent, sounds like exactly the same emotion), 4 (Good, sounds like a
similar emotion), 3 (Fair, sounds like a slightly similar emotion), 2 (Poor, sounds like a different
emotion mostly), 1 (Bad, sounds like a completely different emotion)

E.2.5 PROSODY SIMILARITY MOS

System Interface One reference audio, One audio to be evaluated

Questionnaire Ignore the vocal characteristics (who is speaking), just pay attention to the speak-
ing style (how to speak). Is the speaking style (pace, tone, stress, intonation, pitch, emotion) consis-
tent and identical with the reference voice?

Scoring criteria 5 (Excellent, sounds like a completely identical style), 4 (Good, sounds like a
highly consistent style), 3 (Fair, sounds like a slightly similar style), 2 (Poor, sounds mostly like a
different style), 1 (Bad, sounds like a completely different style)

E.2.6 NATURALNESS CMOS

System Interface One reference audio, One audio to be evaluated (with target text)

Questionnaire Compared to the reference audio, is the quality and the human likeness of the audio
to be evaluated better or worse?

Scoring criteria -3 (Much worse), -2 (Worse), -1 (Slightly worse), 0 (No preference), 1 (Slightly
better), 2 (Better), 3 (Much better)

E.2.7 ACCENTEDNESS CMOS

System Interface One accent label, One reference audio, One audio to be evaluated

Questionnaire Assume that we want to generate the voice whose accent is [accent label]. Com-
pared to the reference audio, is the accentedness of the audio to be evaluated better or worse?

Scoring criteria -3 (Much worse), -2 (Worse), -1 (Slightly worse), 0 (No preference), 1 (Slightly
better), 2 (Better), 3 (Much better)

E.2.8 EMOTIVENESS CMOS

System Interface One emotion label, One reference audio, One audio to be evaluated

Questionnaire Assume that we want to generate the voice whose emotion is [emotion label].
Compared to the reference audio, is the emotional expressiveness of the audio to be evaluated better
or worse?

Scoring criteria -3 (Much worse), -2 (Worse), -1 (Slightly worse), 0 (No preference), 1 (Slightly
better), 2 (Better), 3 (Much better)

F ETHICS STATEMENT

As with other powerful new AI innovations, we recognize this technology brings the potential for
misuse and unintended harm. We will build a highly effective classifier that can distinguish between
authentic speech and audio generated with Vevo to mitigate these possible future risks.
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